SlideShare ist ein Scribd-Unternehmen logo
1 von 2
Downloaden Sie, um offline zu lesen
MA 108——Tutorial Sheet No. 1
Q.1. Classify the following equations (order, linear or non-linear):
(i) d3y
dx3 + 4(dy
dx)2 = y (ii) dy
dx + 2y = sin x (iii) y d2y
dx2 + 2xdy
dx + y = 0
(iv) d4y
dx4 + (sin x)dy
dx + x2y = 0. (v)(1 + y2)d2y
dt2 + td6y
dt6 + y = et.
Q.2. Formulate the differential equations represented by the following functions by eliminating the arbi-
trary constants a, b and c:
(i) y = ax2 (ii) y − a2 = a(x − b)2 (iii) x2 + y2 = a2 (iv) (x − a)2 + (y − b)2 = a2
(v) y = a sin x + b cos x + a (vi) y = a(1 − x2) + bx + cx3 (vii) y = cx + f(c).
Also state the order of the equations obtained.
Q.3. Solve the equation x3(sin y)y = 2. Find the particular solution such that y(x) → π
2 as x → +∞.
Q.4. Prove that a curve with the property that all its normals pass through a point is a circle.
Q.5. Let ϕi be a solution of y + ay = bi(x) for i = 1, 2.
Show that ϕ1 + ϕ2 satisfies y + ay = b1(x) + b2(x). Use this result to find the solutions of
y + y = sin x + 3 cos 2x passing through the origin.
Q.6. Obtain the solution of the following differential equations:
(i) (x2 + 1)dy + (y2 + 4)dx = 0; y(1) = 0 (ii) y = y cot x; y(π/2) = 1
(iii) y = y(y2 − 1), with y(0) = 2 or y(0) = 1, or y(0) = 0 (iv) (x + 2)y − xy = 0; y(0) = 1
(v) y +
y − x
y + x
= 0; y(1) = 1 (vi) y = (y − x)2; y(0) = 2
(vii) 2(y sin 2x + cos 2x)dx = cos 2xdy; y(π) = 0. (viii) y =
1
(x + 1)(x2 + 1)
Q.7. For each of the following differential equations, find the general solution (by substituting y = vx)
(i) y =
y2 − xy
x2 + xy
(ii) x2
y = y2
+ xy + x2
(iii) xy = y + x cos2
(y/x) (iv) xy = y(ln y − ln x)
Q.8. Show that the differential equation
dy
dx
=
ax + by + m
cx + dy + n
where a, b, c, d, m and n are constants can be
reduced to
dy
dt
=
ax + by
cx + dy
if ad − bc = 0. Then find the general solution of
(i) (1 + x − 2y) + y (4x − 3y − 6) = 0
(ii) y = y−x+1
y−x+5
(iii) (x + 2y + 3) + (2x + 4y − 1)y = 0.
Q.9. Solve the differential equation 1 − y2dx+
√
1 − x2dy = 0 with the conditions y(0) =
±1
2
√
3. Sketch
the graphs of the solutions and show that they are each arcs of the same ellipse. Also show that after
these arcs are removed, the remaining part of the ellipse does not satisfy the differential equation.
1
Q.10. State the conditions under which the following equations are exact.
(i) [f(x) + g(y)]dx + [h(x) + k(y)]dy = 0
(ii) (x3 + xy2)dx + (ax2y + bxy2)dy = 0
(iii) (ax2 + 2bxy + cy2)dx + (bx2 + 2cxy + gy2)dy = 0
Q.11. Solve the following exact equations
(i) 3x(xy − 2)dx + (x3 + 2y)dy = 0 (ii) (cos x cos y − cot x)dx − sin x sin ydy = 0.
(iii) exy(x + y)dx + ex(x + 2y − 1)dy = 0
2

Weitere ähnliche Inhalte

Was ist angesagt?

Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005
akabaka12
 
Tugas matematika menemukan konsep persamaan kuadrat
Tugas matematika menemukan konsep persamaan kuadratTugas matematika menemukan konsep persamaan kuadrat
Tugas matematika menemukan konsep persamaan kuadrat
trisnasariasih
 
4.1 implicit differentiation
4.1 implicit differentiation4.1 implicit differentiation
4.1 implicit differentiation
dicosmo178
 
5.2 Solving Quadratic Equations by Factoring
5.2 Solving Quadratic Equations by Factoring5.2 Solving Quadratic Equations by Factoring
5.2 Solving Quadratic Equations by Factoring
hisema01
 
Laboratorio parte i ecuaciones diferenciales 2014 ii (1)
Laboratorio parte i ecuaciones diferenciales 2014 ii (1)Laboratorio parte i ecuaciones diferenciales 2014 ii (1)
Laboratorio parte i ecuaciones diferenciales 2014 ii (1)
Archi Maco
 
1 4 homework
1 4 homework1 4 homework
1 4 homework
math123b
 
Factorización aplicando Ruffini o Método de Evaluación
Factorización aplicando Ruffini o Método de EvaluaciónFactorización aplicando Ruffini o Método de Evaluación
Factorización aplicando Ruffini o Método de Evaluación
Wuendy Garcia
 

Was ist angesagt? (19)

Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005
 
Tugas matematika menemukan konsep persamaan kuadrat
Tugas matematika menemukan konsep persamaan kuadratTugas matematika menemukan konsep persamaan kuadrat
Tugas matematika menemukan konsep persamaan kuadrat
 
C7 7.6
C7 7.6C7 7.6
C7 7.6
 
4.1 implicit differentiation
4.1 implicit differentiation4.1 implicit differentiation
4.1 implicit differentiation
 
Bresenhams
BresenhamsBresenhams
Bresenhams
 
Bresenham's line drawing algorithm
Bresenham's line drawing algorithmBresenham's line drawing algorithm
Bresenham's line drawing algorithm
 
8-5 Adding and Subtracting Rational Expressions
8-5 Adding and Subtracting Rational Expressions8-5 Adding and Subtracting Rational Expressions
8-5 Adding and Subtracting Rational Expressions
 
Ch02 6
Ch02 6Ch02 6
Ch02 6
 
Unit 4 Review
Unit 4 ReviewUnit 4 Review
Unit 4 Review
 
5.2 Solving Quadratic Equations by Factoring
5.2 Solving Quadratic Equations by Factoring5.2 Solving Quadratic Equations by Factoring
5.2 Solving Quadratic Equations by Factoring
 
Sect1 6
Sect1 6Sect1 6
Sect1 6
 
Bresenham's line algorithm
Bresenham's line algorithmBresenham's line algorithm
Bresenham's line algorithm
 
Ch33 11
Ch33 11Ch33 11
Ch33 11
 
Laboratorio parte i ecuaciones diferenciales 2014 ii (1)
Laboratorio parte i ecuaciones diferenciales 2014 ii (1)Laboratorio parte i ecuaciones diferenciales 2014 ii (1)
Laboratorio parte i ecuaciones diferenciales 2014 ii (1)
 
1 4 homework
1 4 homework1 4 homework
1 4 homework
 
Circle algorithm
Circle algorithmCircle algorithm
Circle algorithm
 
Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...
 
Factorización aplicando Ruffini o Método de Evaluación
Factorización aplicando Ruffini o Método de EvaluaciónFactorización aplicando Ruffini o Método de Evaluación
Factorización aplicando Ruffini o Método de Evaluación
 
Writing quadratic equation
Writing quadratic equationWriting quadratic equation
Writing quadratic equation
 

Ähnlich wie Tut 1

Algeopordy
AlgeopordyAlgeopordy
Algeopordy
Jessica
 
Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010
akabaka12
 
04 Differential EquationEx. Module-5.pdf
04 Differential EquationEx. Module-5.pdf04 Differential EquationEx. Module-5.pdf
04 Differential EquationEx. Module-5.pdf
RajuSingh806014
 
Maths assignment
Maths assignmentMaths assignment
Maths assignment
Ntshima
 
Ejercicios de ecuaciones diferenciales
Ejercicios  de ecuaciones diferencialesEjercicios  de ecuaciones diferenciales
Ejercicios de ecuaciones diferenciales
Jimena Perez
 
Straight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptx
Kviskvis
 
Bresenham's line algo.
Bresenham's line algo.Bresenham's line algo.
Bresenham's line algo.
Mohd Arif
 
48 circle part 1 of 2
48 circle part 1 of 248 circle part 1 of 2
48 circle part 1 of 2
tutulk
 

Ähnlich wie Tut 1 (15)

Nts
NtsNts
Nts
 
lec12.pdf
lec12.pdflec12.pdf
lec12.pdf
 
Algeopordy
AlgeopordyAlgeopordy
Algeopordy
 
C6 6.7
C6 6.7C6 6.7
C6 6.7
 
Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010
 
Zeros of polynomial functions
Zeros of polynomial functionsZeros of polynomial functions
Zeros of polynomial functions
 
Assignment For Matlab Report Subject Calculus 2
Assignment For Matlab Report Subject  Calculus 2Assignment For Matlab Report Subject  Calculus 2
Assignment For Matlab Report Subject Calculus 2
 
04 Differential EquationEx. Module-5.pdf
04 Differential EquationEx. Module-5.pdf04 Differential EquationEx. Module-5.pdf
04 Differential EquationEx. Module-5.pdf
 
Calculus Final Exam
Calculus Final ExamCalculus Final Exam
Calculus Final Exam
 
Maths assignment
Maths assignmentMaths assignment
Maths assignment
 
Ejercicios de ecuaciones diferenciales
Ejercicios  de ecuaciones diferencialesEjercicios  de ecuaciones diferenciales
Ejercicios de ecuaciones diferenciales
 
Straight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptx
 
Bresenham's line algo.
Bresenham's line algo.Bresenham's line algo.
Bresenham's line algo.
 
整卷
整卷整卷
整卷
 
48 circle part 1 of 2
48 circle part 1 of 248 circle part 1 of 2
48 circle part 1 of 2
 

Tut 1

  • 1. MA 108——Tutorial Sheet No. 1 Q.1. Classify the following equations (order, linear or non-linear): (i) d3y dx3 + 4(dy dx)2 = y (ii) dy dx + 2y = sin x (iii) y d2y dx2 + 2xdy dx + y = 0 (iv) d4y dx4 + (sin x)dy dx + x2y = 0. (v)(1 + y2)d2y dt2 + td6y dt6 + y = et. Q.2. Formulate the differential equations represented by the following functions by eliminating the arbi- trary constants a, b and c: (i) y = ax2 (ii) y − a2 = a(x − b)2 (iii) x2 + y2 = a2 (iv) (x − a)2 + (y − b)2 = a2 (v) y = a sin x + b cos x + a (vi) y = a(1 − x2) + bx + cx3 (vii) y = cx + f(c). Also state the order of the equations obtained. Q.3. Solve the equation x3(sin y)y = 2. Find the particular solution such that y(x) → π 2 as x → +∞. Q.4. Prove that a curve with the property that all its normals pass through a point is a circle. Q.5. Let ϕi be a solution of y + ay = bi(x) for i = 1, 2. Show that ϕ1 + ϕ2 satisfies y + ay = b1(x) + b2(x). Use this result to find the solutions of y + y = sin x + 3 cos 2x passing through the origin. Q.6. Obtain the solution of the following differential equations: (i) (x2 + 1)dy + (y2 + 4)dx = 0; y(1) = 0 (ii) y = y cot x; y(π/2) = 1 (iii) y = y(y2 − 1), with y(0) = 2 or y(0) = 1, or y(0) = 0 (iv) (x + 2)y − xy = 0; y(0) = 1 (v) y + y − x y + x = 0; y(1) = 1 (vi) y = (y − x)2; y(0) = 2 (vii) 2(y sin 2x + cos 2x)dx = cos 2xdy; y(π) = 0. (viii) y = 1 (x + 1)(x2 + 1) Q.7. For each of the following differential equations, find the general solution (by substituting y = vx) (i) y = y2 − xy x2 + xy (ii) x2 y = y2 + xy + x2 (iii) xy = y + x cos2 (y/x) (iv) xy = y(ln y − ln x) Q.8. Show that the differential equation dy dx = ax + by + m cx + dy + n where a, b, c, d, m and n are constants can be reduced to dy dt = ax + by cx + dy if ad − bc = 0. Then find the general solution of (i) (1 + x − 2y) + y (4x − 3y − 6) = 0 (ii) y = y−x+1 y−x+5 (iii) (x + 2y + 3) + (2x + 4y − 1)y = 0. Q.9. Solve the differential equation 1 − y2dx+ √ 1 − x2dy = 0 with the conditions y(0) = ±1 2 √ 3. Sketch the graphs of the solutions and show that they are each arcs of the same ellipse. Also show that after these arcs are removed, the remaining part of the ellipse does not satisfy the differential equation. 1
  • 2. Q.10. State the conditions under which the following equations are exact. (i) [f(x) + g(y)]dx + [h(x) + k(y)]dy = 0 (ii) (x3 + xy2)dx + (ax2y + bxy2)dy = 0 (iii) (ax2 + 2bxy + cy2)dx + (bx2 + 2cxy + gy2)dy = 0 Q.11. Solve the following exact equations (i) 3x(xy − 2)dx + (x3 + 2y)dy = 0 (ii) (cos x cos y − cot x)dx − sin x sin ydy = 0. (iii) exy(x + y)dx + ex(x + 2y − 1)dy = 0 2