SlideShare ist ein Scribd-Unternehmen logo
1 von 34
Downloaden Sie, um offline zu lesen
University of Utrecht



               MSc Thesis (Theoretical Physics)




                 Matrix Models of 2D
                  String Theory in
               Non–trivial Backgrounds


                        Arnaud Koetsier
       Supervisors: Prof. G. ’t Hooft and Dr. S. Alexandrov
1/31

                                  Overview of Talk



1. Introduction — the partition function

2. Critical strings in background fields

3. Noncritical strings and Liouville gravity

4. Matrix models and discretised surfaces

5. Matrix quantum mechanics (MQM)

6. MQM in the chiral representation

7. Conclusion and outlook
1—I NTRODUCTION                                                                       2/31

                         Partition function of string theory

   Euclidean Polyakov action            + Einstein–Hilbert action

                   (E)      1                   √
                  SP     =              dτ dσ       h habGµν ∂ a X µ ∂ b X ν + α νR
                           4πα      Σ


   world–sheet Σ swept out by the string, with curvature R in Euclidean signature.

   Formal partition function of string theory:

                                                                     (E)
                                                              µ −SP [X µ ,hab ,R]
                         Z=                 D (hab)         DX e
                              Topologies



   Can view as partition function of 2D quantum gravity coupled to matter fields X µ.
1—I NTRODUCTION                                                                                       3/31

                                         Topological Expansion

   For Σ a 2D Riemann surface

              1                 √
                        dτ dσ       h νR = νχ = ν(2 − 2g) (Euler–Poincare characteristic)
                                                                        ´
             4π    Σ
   ⇒ Z is a sum over genus g closed orientable surfaces!

   String coupling: κ ∼ eν

                  ∞
         Z=             κ−χZg = κ2             +     + κ−2                  + κ−4             + ···
                  g=0

                                           µ      1                   √
         Zg =           D (hab)         DX exp −              dτ dσ       h habGµν ∂ a X µ ∂ b X ν
                                                 4πα      Σ


      D (hab) dealt with in terms of discretised surfaces −→ Matrix Models
2—C RITICAL S TRINGS   IN   B ACKGROUNDS                                               4/31

                               Critical Strings in Background Fields I

    Background fields emerge out of string dynamics

    In turn, string dynamics is determined by background.

    Non–trivial background: include the excitation modes of the string in the string
    world–sheet action.

    For the closed bosonic string, massless modes are:
       Gµν (X ρ) traceless, symmetric graviton,
       Bµν (X ρ) antisymmetric axion,
       Φ(X ρ) scalar dilaton.
2—C RITICAL S TRINGS   IN   B ACKGROUNDS                                                                 5/31

                                  Critical Strings in Background Fields II

      Adding those fields to the action, we get a sigma model in D dimensions

                                    1         2
                                                   √
                  Sσ          =              d σ       h   habGµν (X) + i   ab
                                                                                 Bµν (X) ∂ a X µ ∂ b X ν
                                   4πα
                                                                                            +α RΦ(X)


      NB: Coupling constants on the world–sheet become fields in the target space. e.g.
      ν → Φ(X).

      Gµν , Bµν and Φ so far unconstrained.

      Each “running coupling” (target–space field) has a renormalization group
      β–function

=⇒ Theory should possess conformal invariance =⇒ β–functions vanish
2—C RITICAL S TRINGS   IN   B ACKGROUNDS                                                 6/31

                                                  β–functions

    To zeroth order in α

                                     1
           G
          βµν     = Rµν + 2DµDν Φ − HµσρHν σρ = 0,
                                     4
           B
          βµν     = DρHµν ρ − 2Hµν ρDρΦ = 0,
                             1 D − 26     1                         1
           βΦ =                       +       4(DµΦ)2 − 4DµDµΦ − R + HµνρH µνρ = 0,
                             α 48π 2    16π 2                       12

                                           Hµνρ = ∂ µ Bνρ + ∂ ρ Bµν + ∂ ν Bρµ


    Critical string theory:
                                Gµν = ηµν ,       Bµν = 0,      Φ=ν      ⇒      D = 26

    Solution of interest: Linear dilaton background
                                       Gµν = ηµν ,     Bµν = 0,      Φ = lµ X µ .
2—C RITICAL S TRINGS   IN   B ACKGROUNDS                                             7/31

                                  Problem: Divergent String Coupling

 Linear dilaton background in present form leads to a divergent string coupling.

     String coupling
                                                      ν      Φ(X ρ )       lµ X µ
                                               κ∝e =e                  =e

=⇒ For some X µ, coupling diverges!

     Solution: add a potential to the sigma model

                                             cosmo      1          2
                                                                       √
                                            Sσ       =           d σ       hT (X µ)
                                                       4πα
2—C RITICAL S TRINGS   IN   B ACKGROUNDS                                                              8/31

                                      Cosmological Constant Term I

New action (with Bµν = 0):

                              1            2
                                               √
           Sσ     =                    d σ         h habGµν (X) ∂ a X µ ∂ b X ν + α RΦ(X) + T (X µ)
                             4πα

New β–functions:

               G
              βµν           = Rµν + 2DµDν Φ − DµT Dν T = 0,
                βT          = −2DµDµT + 4DµΦDµT − 4T = 0,
                              D − 26
                βΦ          =        − R + 4(DµΦ)2 − 4DµDµΦ + (DµT )2 − 2T 2 = 0,
                               3α

These β–functions are the Euler–Lagrange equations of an effective target space
action.
2—C RITICAL S TRINGS   IN   B ACKGROUNDS                                                                     9/31

               Cosmological Constant Term II — Effective Action

“tachyon” part of effective action is

                                 tach      1         D
                                                          √        −2Φ           4 22
                                Seff     =−          d X       −Ge        (DµT ) − T
                                           2                                     α

1. Substitute L.D. background: Gµν = ηµν , Bµν = 0, Φ = lµX µ

2. Equation of motion on shell: ∂ 2 T − 2lµ ∂ µ T + α T = 0
                                                    4

                                                                         2−D
3. Solution: T = µ exp(kµX µ),                           (kµ − lµ)2 =     6α


    T is a tachyon field in the target space. (in 2D, the tachyon is massless)

    So we add “cosmological constant term”

                    cosmo            1          2
                                                     √         µ    1           2
                                                                                        √
                   Sσ             =            d σ       hT (X ) =             d σ          h µ exp(kµX µ)
                                    4πα                            4πα

     to the sigma model.
11111
                                     00000   111111111111
                                             000000000000
                                             111111111111
                                             000000000000
                                     11111
                                     00000   111111111111
                                             000000000000
                                  11111111
                                  00000000
                                     111
                                     000     111111111111
                                             000000000000
                                  11111111
                                  00000000
                                     111
                                     000     111111111111
                                             000000000000
                                  11111111
                                  00000000
                                     111
                                     000     111111111111
                                             000000000000
                                  111111
                                  000000     111111111111
                                             000000000000
                                             111111111111
                                             000000000000
                                             111111111111
                                             000000000000
                                             111111111111
                                             000000000000
                                                 µ
                      X1
                                             111111111111
                                             000000000000
                                             111111111111
                                             000000000000
                                                 log 1
                                           1 111111111111
                                           0 000000000000
                                             111111111111
                                             000000000000
                                             111111111111
                                             000000000000
                                             111111111111
                                             000000000000
                                             111111111111
                                             000000000000
                                             111111111111
                                             000000000000
                            Strings   111111
                                      000000 111111111111
                                             000000000000    Strings
                           Coupled    111111
                                      000000 111111111111
                                             000000000000
                                             111111111111
                                             000000000000
                                      111111
                                      000000 111111111111
                                             000000000000  Coupled
                           Weakly     111111
                                      000000
                                       111111
                                       000000111111111111
                                             000000000000
                                      111111 1
                                      000000 0             Strongly
                                       1111111
                                       0000000
                                             111111111111
                                             000000000000
                                       1111111
                                       0000000
                                             111111111111
                                             000000000000
                                       1111111
                                       0000000
                                             111111111111
                                             000000000000
                                       X2
                                       1111111
                                       0000000
                                             111111111111
                                             000000000000
                                             111111111111
                                             000000000000
        Adding Sσ
                cosomo
                       to the action creates a potential “wall” in the target space.
                                                     How does Sσ
                                                               cosmo
                                                                     improve the situation?
                                      Liouville Wall
10/31                                                                  B ACKGROUNDS   IN   2—C RITICAL S TRINGS
2—C RITICAL S TRINGS   IN   B ACKGROUNDS                                                 11/31

                            Critical string theory with L.D. background
                                           — Summary —

    Action for critical string theory in D dimensions, in a linear dilaton background:
                 LD       1       2
                                    √      ab    µ                  µ      kµ X µ
               Sσ =              d σ h h ∂ a X ∂ b Xµ + α RlµX + µe
                        4πα

                                                  2    2−D
                                           (kµ − lµ) =
                                                        6α

    This is an exact, well defined conformal field theory.
3—N ON – CRITICAL S TRING T HEORY                                                           12/31

                                     Noncritical String Theory I
No Weyl invariance.

                                          ˆ
    Fix a conformal gauge: hab = eγφ(σ,τ )hab
                      ˆ
        Fixed metric: hab
        Dynamical Liouville field φ(σ, τ )
        Gauge fixes world–sheet diffeomorphism symmetry.

    Action [Polyakov ’81]
                           1               ˆ ˆ                    ˆ
              SCFT      =           dσ 2   h hab ∂ a X µ ∂ b Xµ + hab ∂ a φ ∂ b φ − α QRφ
                          4πα

                                                               ghost
                                                   +µeγφ + terms ,     X 1, . . . , X d
                                    25 − d             1   √         √
                          Q=               ,    γ = −√       25 − d − 1 − d
                                     6α                6α

    Describes Liouville gravity coupled to c = d matter.
3—N ON – CRITICAL S TRING T HEORY                                                                         13/31

                             Non–critical ↔ Critical String Theory
    Now, compare:

                                      1                ˆ ˆ                    ˆ
                    SCFT =                 dσ 2        h hab ∂ a X µ ∂ b Xµ + hab ∂ a φ ∂ b φ
                                     4πα
                                                   − α QRφ + µeγφ ,                    X 1, . . . , X d

                      LD              1        2
                                                   √
                     Sσ        =           d σ         h hab ∂ a X µ ∂ b Xµ
                                     4πα
                                                                µ       kµ X µ
                                                   + α RlµX + µe                 ,     X 1, . . . , X D



    Make the following associations:

                                                            0; µ = D                         0,     µ=D
           D = d + 1;               X D = φ,       lµ =               ;              kµ =
                                                            −Q, µ = D                        γ,     µ=D

                                                             LD
                                               Then, SCFT = Sσ
3—N ON – CRITICAL S TRING T HEORY                                                              14/31

                             Non–critical ↔ Critical String Theory
                                               — Summary —

                             d Dimensional noncritical string theory
                                                  =
                    d + 1 Dimensional critical string theory in L.D. background.

    2D bosonic string theory in a linear dilaton background = Liouville gravity coupled
    to c = 1 matter, or non–critical string theory in 1 dimension (α = 1):

                           1               ˆ ˆ                 ˆ
               SCFT     =           d2 σ   h hab ∂ a X ∂ b X + hab ∂ a φ ∂ b φ − 2Rφ + µe−2φ
                          4π
3—N ON – CRITICAL S TRING T HEORY                                                    15/31

                                    Time dependant Backgrounds

We wish to study more general time dependant backgrounds

    Perturb action by tachyon vertex operators


                            S = SCFT +         tn V n ,   Vn =   d2σ e−in(t+φ)e−2φ
                                         n=0



    With only t±1 = 0 and the rest all zero, get “sine–Liouville CFT”

    The T–Dual of this theory is a CFT perturbed by vortex operators generating
    winding excitations.
        Conjectured to be equivalent to a WZW model which describes a target space
        with a Euclidean black hole (“cigar”) background.
3—N ON – CRITICAL S TRING T HEORY                                                 16/31

                                      Cigar Manifold

Asymptotically, the metric looks like

                                                   1
                     ds2 = − 1 − e−2Qr dt2 +             dr2,   Φ=   0   − Qr.
                                               1 − e−2Qr

Curvature is RG = 4Q2e−2Qr . Performing analytic continuation to Euclidean time
t → iθ, get the Euclidean cigar:
3—M ATRIX M ODELS                                                              17/31

                          Matrix Models — Definition

   A matrix model consists of
       Symmetry group G
       Ensemble of N × N matrices M invariant under G
       Probability law (partition function)
                                                                    gk k
                    Z=   dM exp [−N Tr V (M )] ,   V (M ) =           M
                                                                    k
                                                              k>0


   We are interested in unitary matrix ensembles: G = U(N ), M hermitian.

   As in QFT, we can write down a perturbation expansion in terms of Feynman
   diagrams from the partition function (N ∼ −1).
3—M ATRIX M ODELS                                                             18/31

                          Propagators and Vertices

   From quadratic term in action, we write down a fat propagator

                                                           1
                                                        =      δilδjk
                                                          N g2

   Higher order terms give fat vertices




                                               1
                                          =        δj1i2 δj2i3 · · · δjk i1
                                              N gk
3—M ATRIX M ODELS                                                                    19/31

                                  Discretised Surfaces
                    Duality: Feynman graph network ←→ Discretised surface




                                                               Discretised surface
                                                               Dual Propogator
3—M ATRIX M ODELS                                                                               20/31

                                             Free energy

   We can express the free energy F = log Z as a sum over connected diagrams.

   This is dual to a sum over genus g surfaces

                    ∞
          F =           N χ Fg = N 2     +           + N −2                    + N −4   + ···
                g=0

                                                           1 −P
                                  Fg =                       g2         (−gk )nk .
                                                           s
                                         Discretisations          k>2
                                           of genus g


   P edges, nk k–polygons, s =symmetry factor.

   We are interested in continuous surfaces, where the number of polygons tends to
   infinity.
3—M ATRIX M ODELS                                                                      21/31

                               Double Scaling Limit

Continuum Limit: Number of polygons diverges when couplings approach critical
  values gk → gc.

Spherical Limit: Genus zero surfaces dominate in the limit N → ∞.
       If surface is string world–sheet, then only get contributions from genus zero
       when N → ∞. Contributions from all genera are included by taking the

Double Scaling Limit: Take both limits simultaneously with string coupling fixed

                     N → ∞,     gk → gc,     κ−1 = N (gc − gk )(2−γstr)/2
4—MQM                                                                           22/31

                         Matrix Quantum Mechanics

  MQM refers to a matrix model when
    the number of distinct N × N matrices is infinite
    the matrix label, which is then continuous, is interpreted as time.

                                       Mi, −→ M (t)

  Partition function of MQM

                                                   1
             ZN =     DM (t) exp −N Tr        dt     (∂ t M (t))2 + V [M (t)]
                                                   2


  It models 2D gravity coupled to c = 1 matter (scalar field t(σ, τ )).
4—MQM                                                                                           23/31

                                 Hamiltonian Analysis
  Diagonalize the matrices
        M (t) = Ω†(t)x(t)Ω(t),      x(t) = diag{x1(t), . . . , xN (t)},       , Ω†(t)Ω(t) = 1


  Quantum Hamiltonian of the system:
                          N
                                  − 2 ∂2                        1          Π2 + Π2
                                                                             ij     ij
                HMQM =                      ∆(x) + V (xi)     +                       .
                         i=1
                                 2∆(x) ∂ x2
                                          i                     2   i<j
                                                                          (xi − xj )2

  Write partition function as
                                                b
                                          − 1 T HMQM
                               ZN = Tr e               ,   T →∞


  In this limit, only ground state contributes to the free energy
                                                 E0
                                          F =−
4—MQM                                                                                24/31

                          Non–interacting Fermions

  So we just need ground state.
    Symmetry considerations show it belongs to singlet representation of SU(N )
    and is a Slater determinant.
                                                                        N
                                   1
                       ΨGS(x) = √ det ψi(xj ),       E0 =       εi ,
                                   N!  i,j
                                                            i=1
  Hamiltonian splits into a sum of single–particle Hamiltonians

                      singlet                 N
                      sector     (sing)
                                                                    2
                                                                     ∂2
               HMQM −→          HMQM      =         Hi ,   Hi = −      2 + V (xi )
                                              i=1
                                                                  2 ∂ xi

  MQM reduced to a system of N non–interacting fermions moving in a potential
  V (x).
4—MQM                                                                              25/31

                                  Fermi Sea

  The phase space of MQM: Fermi seas (right) corresponding to potentials (left).

                       V                                   p
                      15                               4
                      10                               2
                      5
                                                                         x
                                             4     2           2     4
                                        x
            4     2           2     4                  2
                       5
                                                       4

                       V                                   p
                                                       4
                      2
                                                       2
                      1
                                                                         x
                                             4     2           2    4
                                        x
            4     2           2     4                  2
                       1
                                                       4
4—MQM                                                                         26/31

                         Inverse Oscillator Potential
  Continuum limit corresponds to energy levels reaching top of potential.
                                     V




                                εC



                                εF
                                                                 x
                                         xC   x1         x2




  In the double scaling limit
    the exact form of the potential is unimportant
    MQM reduces to a problem of fermions in an inverse oscillator potential
              x2
    V (x) = − 2
5—MQM   IN THE   C HIRAL R EPRESENTATION                                          27/31

                                              Chiral Coordinates

  MQM can be reformulated in terms of left and right “light cone” matrix variables.
  [Alexandrov,Kazakov,Kostov ’02] . In the singlet sector:

                                                  x±p                ∂
                                              x± = √ ,        p ≡ −i
                                                    2                ∂x


  Many advantages follow from the fact that the chiral Hamiltonian is linear

                                            ±  1                      ∂   1
                                           H0 = (p2 − x2) =   i(x±       + )
                                               2                     ∂ x± 2


  Introduce tachyon perturbations by acting on ground state wave function, not
  perturbing the Hamiltonian.
5—MQM   IN THE   C HIRAL R EPRESENTATION                                                 28/31

                                           Tachyon Perturbations

  Perturbed state is

                                      E             ϕ± (x± ;E)    E            E
                                     ψ± (x± ) = e                ψ± (x± ) = W±ψ± (x± )


  Perturbing phase ϕ± (x± ; E) contains MQM realizations of tachyon matrix operators
                                                                 ∞
                                               V± (x± ) =            t±k x±/R,
                                                                          k

                                                             k=1


  In quasiclassical limit µ → ∞ we get constraint equations
                                                  ∂
                                x± x = −E± + x±      ϕ
                                                 ∂ x± ±

   which we solve for the profile of the Fermi sea.
5—MQM   IN THE   C HIRAL R EPRESENTATION                                                                        29/31

                                                         Results

  Constraint equations for two non–zero couplings t±1, t±2 = 0

                                                  χ                       1                2
                                               − 2R
                                      x± = e          ω ±1 1 + a±1ω       R    + a±2ω      R



                                                        R−1/2                     2R−3/2
                                                     1 χ R2                   χ            2−R
                                               t   1 Re         +t   2 t±1 e        R2
                                                                                            R3
                                    a±1 =
                                                                     χ 2R−2       2−R 2
                                                      1 − t±2t 2e R      2
                                                                                   R3
                                                              t 2 χ R−1
                                                       a±2 =     e R2
                                                               R

                                                      R−1                     R−1
                                                2−R χ R2                2−R χ R2
                       χ       t−1 +       t−2t1 R2 e         t1 + t2t−1 R2 e                    1 − R χ 2R−1
          1 = µe +     R
                                                                   2R−2 2
                                                                                                      e R2
                                                          2−R 2 χ R2                               R3
                                              1 − t−2t2    R2
                                                                 e
                                                                                            2 − R χ 2R−2
                                                                                     + t2t−2 3 e R2
                                                                                              R
5—MQM   IN THE   C HIRAL R EPRESENTATION                                                                                             30/31

                                                                            Profiles
                                                                            2                                                    4
                         Plot of Fermi Sea for t   1   2, t     2    0, R        Plot of Fermi Sea for t   1   2, t   2   2, R
                                                                            3                                                    3
                           Χ 0 solutions for Μ         1,359                      Χ    0 solutions for Μ 3,363
                           60

                                                            x                     75

                           40
                                                                                  50

                                                                                                 x
                           20
                                                                                  25


                            0                                               x      0                                             x


                                                                                  25
                           20
                                                                                                 x

                                                                                  50
                           40

                                                            x                     75


                                  10    20    30       40       50     60                   20       40        60         80

                                First couplings only                            First and second couplings
5—MQM   IN THE   C HIRAL R EPRESENTATION                                          31/31

                                           Conclusions and Outlook

  The CFT describing string theory in a linear dilaton background was perturbed
  with first and second couplings

                                                             2
                                               S = SCFT +          tn V n ,
                                                            n=−2


  and described as an MQM model.

  Problems and outlook:
    Target space interpretation is complicated
    Free energy of MQM not found explicitly
    Critical points in the moduli space of the perturbed theory correspond to a class
    of minimal CFTs. [Kazakov ’89]
    M(atrix) theory?

Weitere ähnliche Inhalte

Was ist angesagt?

Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesFrank Nielsen
 
Clustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryClustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryFrank Nielsen
 
Cs229 cvxopt
Cs229 cvxoptCs229 cvxopt
Cs229 cvxoptcerezaso
 
Darmon Points for fields of mixed signature
Darmon Points for fields of mixed signatureDarmon Points for fields of mixed signature
Darmon Points for fields of mixed signaturemmasdeu
 
Divergence clustering
Divergence clusteringDivergence clustering
Divergence clusteringFrank Nielsen
 
Classification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsClassification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsFrank Nielsen
 
Clustering in Hilbert geometry for machine learning
Clustering in Hilbert geometry for machine learningClustering in Hilbert geometry for machine learning
Clustering in Hilbert geometry for machine learningFrank Nielsen
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyFrank Nielsen
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon informationFrank Nielsen
 
Divergence center-based clustering and their applications
Divergence center-based clustering and their applicationsDivergence center-based clustering and their applications
Divergence center-based clustering and their applicationsFrank Nielsen
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsVjekoslavKovac1
 
On the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansOn the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansFrank Nielsen
 
Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)Frank Nielsen
 
Pushforward of Differential Forms
Pushforward of Differential FormsPushforward of Differential Forms
Pushforward of Differential FormsHeinrich Hartmann
 

Was ist angesagt? (20)

Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective Divergences
 
Michigan U.
Michigan U.Michigan U.
Michigan U.
 
poster
posterposter
poster
 
Clustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryClustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometry
 
Cs229 cvxopt
Cs229 cvxoptCs229 cvxopt
Cs229 cvxopt
 
Darmon Points for fields of mixed signature
Darmon Points for fields of mixed signatureDarmon Points for fields of mixed signature
Darmon Points for fields of mixed signature
 
Bd32360363
Bd32360363Bd32360363
Bd32360363
 
Divergence clustering
Divergence clusteringDivergence clustering
Divergence clustering
 
Classification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsClassification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metrics
 
Clustering in Hilbert geometry for machine learning
Clustering in Hilbert geometry for machine learningClustering in Hilbert geometry for machine learning
Clustering in Hilbert geometry for machine learning
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropy
 
PAFT10
PAFT10PAFT10
PAFT10
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon information
 
Integration
IntegrationIntegration
Integration
 
Divergence center-based clustering and their applications
Divergence center-based clustering and their applicationsDivergence center-based clustering and their applications
Divergence center-based clustering and their applications
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurations
 
On the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansOn the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract means
 
Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)
 
Pushforward of Differential Forms
Pushforward of Differential FormsPushforward of Differential Forms
Pushforward of Differential Forms
 
Jeju2013
Jeju2013Jeju2013
Jeju2013
 

Ähnlich wie Matrix Models of 2D String Theory in Non-trivial Backgrounds

B. Sazdovic - Noncommutativity and T-duality
B. Sazdovic - Noncommutativity and T-dualityB. Sazdovic - Noncommutativity and T-duality
B. Sazdovic - Noncommutativity and T-dualitySEENET-MTP
 
Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3Sebastian De Haro
 
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton TensorDual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton TensorSebastian De Haro
 
Slides: A glance at information-geometric signal processing
Slides: A glance at information-geometric signal processingSlides: A glance at information-geometric signal processing
Slides: A glance at information-geometric signal processingFrank Nielsen
 
D. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in CosmologyD. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in CosmologySEENET-MTP
 
Lattices and codes
Lattices and codesLattices and codes
Lattices and codesSpringer
 
Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605ketanaka
 
Fluctuations and rare events in stochastic aggregation
Fluctuations and rare events in stochastic aggregationFluctuations and rare events in stochastic aggregation
Fluctuations and rare events in stochastic aggregationColm Connaughton
 
Hyperfunction method for numerical integration and Fredholm integral equation...
Hyperfunction method for numerical integration and Fredholm integral equation...Hyperfunction method for numerical integration and Fredholm integral equation...
Hyperfunction method for numerical integration and Fredholm integral equation...HidenoriOgata
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524kazuhase2011
 
Ysu conference presentation alaverdyan
Ysu conference  presentation alaverdyanYsu conference  presentation alaverdyan
Ysu conference presentation alaverdyanGrigor Alaverdyan
 
Fixed points and two-cycles of the self-power map
Fixed points and two-cycles of the self-power mapFixed points and two-cycles of the self-power map
Fixed points and two-cycles of the self-power mapJoshua Holden
 
Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...
Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...
Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...Marco Frasca
 
Alternating direction
Alternating directionAlternating direction
Alternating directionDerek Pang
 
Geodesic Method in Computer Vision and Graphics
Geodesic Method in Computer Vision and GraphicsGeodesic Method in Computer Vision and Graphics
Geodesic Method in Computer Vision and GraphicsGabriel Peyré
 

Ähnlich wie Matrix Models of 2D String Theory in Non-trivial Backgrounds (20)

B. Sazdovic - Noncommutativity and T-duality
B. Sazdovic - Noncommutativity and T-dualityB. Sazdovic - Noncommutativity and T-duality
B. Sazdovic - Noncommutativity and T-duality
 
Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3
 
Monopole zurich
Monopole zurichMonopole zurich
Monopole zurich
 
Funcion gamma
Funcion gammaFuncion gamma
Funcion gamma
 
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton TensorDual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
 
Session 6
Session 6Session 6
Session 6
 
Slides: A glance at information-geometric signal processing
Slides: A glance at information-geometric signal processingSlides: A glance at information-geometric signal processing
Slides: A glance at information-geometric signal processing
 
D. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in CosmologyD. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in Cosmology
 
Lattices and codes
Lattices and codesLattices and codes
Lattices and codes
 
Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605
 
Fluctuations and rare events in stochastic aggregation
Fluctuations and rare events in stochastic aggregationFluctuations and rare events in stochastic aggregation
Fluctuations and rare events in stochastic aggregation
 
Hyperfunction method for numerical integration and Fredholm integral equation...
Hyperfunction method for numerical integration and Fredholm integral equation...Hyperfunction method for numerical integration and Fredholm integral equation...
Hyperfunction method for numerical integration and Fredholm integral equation...
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524
 
Ysu conference presentation alaverdyan
Ysu conference  presentation alaverdyanYsu conference  presentation alaverdyan
Ysu conference presentation alaverdyan
 
Fixed points and two-cycles of the self-power map
Fixed points and two-cycles of the self-power mapFixed points and two-cycles of the self-power map
Fixed points and two-cycles of the self-power map
 
Holographic Cotton Tensor
Holographic Cotton TensorHolographic Cotton Tensor
Holographic Cotton Tensor
 
Normal
NormalNormal
Normal
 
Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...
Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...
Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...
 
Alternating direction
Alternating directionAlternating direction
Alternating direction
 
Geodesic Method in Computer Vision and Graphics
Geodesic Method in Computer Vision and GraphicsGeodesic Method in Computer Vision and Graphics
Geodesic Method in Computer Vision and Graphics
 

Kürzlich hochgeladen

Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 

Kürzlich hochgeladen (20)

TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 

Matrix Models of 2D String Theory in Non-trivial Backgrounds

  • 1. University of Utrecht MSc Thesis (Theoretical Physics) Matrix Models of 2D String Theory in Non–trivial Backgrounds Arnaud Koetsier Supervisors: Prof. G. ’t Hooft and Dr. S. Alexandrov
  • 2. 1/31 Overview of Talk 1. Introduction — the partition function 2. Critical strings in background fields 3. Noncritical strings and Liouville gravity 4. Matrix models and discretised surfaces 5. Matrix quantum mechanics (MQM) 6. MQM in the chiral representation 7. Conclusion and outlook
  • 3.
  • 4. 1—I NTRODUCTION 2/31 Partition function of string theory Euclidean Polyakov action + Einstein–Hilbert action (E) 1 √ SP = dτ dσ h habGµν ∂ a X µ ∂ b X ν + α νR 4πα Σ world–sheet Σ swept out by the string, with curvature R in Euclidean signature. Formal partition function of string theory: (E) µ −SP [X µ ,hab ,R] Z= D (hab) DX e Topologies Can view as partition function of 2D quantum gravity coupled to matter fields X µ.
  • 5. 1—I NTRODUCTION 3/31 Topological Expansion For Σ a 2D Riemann surface 1 √ dτ dσ h νR = νχ = ν(2 − 2g) (Euler–Poincare characteristic) ´ 4π Σ ⇒ Z is a sum over genus g closed orientable surfaces! String coupling: κ ∼ eν ∞ Z= κ−χZg = κ2 + + κ−2 + κ−4 + ··· g=0 µ 1 √ Zg = D (hab) DX exp − dτ dσ h habGµν ∂ a X µ ∂ b X ν 4πα Σ D (hab) dealt with in terms of discretised surfaces −→ Matrix Models
  • 6. 2—C RITICAL S TRINGS IN B ACKGROUNDS 4/31 Critical Strings in Background Fields I Background fields emerge out of string dynamics In turn, string dynamics is determined by background. Non–trivial background: include the excitation modes of the string in the string world–sheet action. For the closed bosonic string, massless modes are: Gµν (X ρ) traceless, symmetric graviton, Bµν (X ρ) antisymmetric axion, Φ(X ρ) scalar dilaton.
  • 7. 2—C RITICAL S TRINGS IN B ACKGROUNDS 5/31 Critical Strings in Background Fields II Adding those fields to the action, we get a sigma model in D dimensions 1 2 √ Sσ = d σ h habGµν (X) + i ab Bµν (X) ∂ a X µ ∂ b X ν 4πα +α RΦ(X) NB: Coupling constants on the world–sheet become fields in the target space. e.g. ν → Φ(X). Gµν , Bµν and Φ so far unconstrained. Each “running coupling” (target–space field) has a renormalization group β–function =⇒ Theory should possess conformal invariance =⇒ β–functions vanish
  • 8. 2—C RITICAL S TRINGS IN B ACKGROUNDS 6/31 β–functions To zeroth order in α 1 G βµν = Rµν + 2DµDν Φ − HµσρHν σρ = 0, 4 B βµν = DρHµν ρ − 2Hµν ρDρΦ = 0, 1 D − 26 1 1 βΦ = + 4(DµΦ)2 − 4DµDµΦ − R + HµνρH µνρ = 0, α 48π 2 16π 2 12 Hµνρ = ∂ µ Bνρ + ∂ ρ Bµν + ∂ ν Bρµ Critical string theory: Gµν = ηµν , Bµν = 0, Φ=ν ⇒ D = 26 Solution of interest: Linear dilaton background Gµν = ηµν , Bµν = 0, Φ = lµ X µ .
  • 9. 2—C RITICAL S TRINGS IN B ACKGROUNDS 7/31 Problem: Divergent String Coupling Linear dilaton background in present form leads to a divergent string coupling. String coupling ν Φ(X ρ ) lµ X µ κ∝e =e =e =⇒ For some X µ, coupling diverges! Solution: add a potential to the sigma model cosmo 1 2 √ Sσ = d σ hT (X µ) 4πα
  • 10. 2—C RITICAL S TRINGS IN B ACKGROUNDS 8/31 Cosmological Constant Term I New action (with Bµν = 0): 1 2 √ Sσ = d σ h habGµν (X) ∂ a X µ ∂ b X ν + α RΦ(X) + T (X µ) 4πα New β–functions: G βµν = Rµν + 2DµDν Φ − DµT Dν T = 0, βT = −2DµDµT + 4DµΦDµT − 4T = 0, D − 26 βΦ = − R + 4(DµΦ)2 − 4DµDµΦ + (DµT )2 − 2T 2 = 0, 3α These β–functions are the Euler–Lagrange equations of an effective target space action.
  • 11. 2—C RITICAL S TRINGS IN B ACKGROUNDS 9/31 Cosmological Constant Term II — Effective Action “tachyon” part of effective action is tach 1 D √ −2Φ 4 22 Seff =− d X −Ge (DµT ) − T 2 α 1. Substitute L.D. background: Gµν = ηµν , Bµν = 0, Φ = lµX µ 2. Equation of motion on shell: ∂ 2 T − 2lµ ∂ µ T + α T = 0 4 2−D 3. Solution: T = µ exp(kµX µ), (kµ − lµ)2 = 6α T is a tachyon field in the target space. (in 2D, the tachyon is massless) So we add “cosmological constant term” cosmo 1 2 √ µ 1 2 √ Sσ = d σ hT (X ) = d σ h µ exp(kµX µ) 4πα 4πα to the sigma model.
  • 12. 11111 00000 111111111111 000000000000 111111111111 000000000000 11111 00000 111111111111 000000000000 11111111 00000000 111 000 111111111111 000000000000 11111111 00000000 111 000 111111111111 000000000000 11111111 00000000 111 000 111111111111 000000000000 111111 000000 111111111111 000000000000 111111111111 000000000000 111111111111 000000000000 111111111111 000000000000 µ X1 111111111111 000000000000 111111111111 000000000000 log 1 1 111111111111 0 000000000000 111111111111 000000000000 111111111111 000000000000 111111111111 000000000000 111111111111 000000000000 111111111111 000000000000 Strings 111111 000000 111111111111 000000000000 Strings Coupled 111111 000000 111111111111 000000000000 111111111111 000000000000 111111 000000 111111111111 000000000000 Coupled Weakly 111111 000000 111111 000000111111111111 000000000000 111111 1 000000 0 Strongly 1111111 0000000 111111111111 000000000000 1111111 0000000 111111111111 000000000000 1111111 0000000 111111111111 000000000000 X2 1111111 0000000 111111111111 000000000000 111111111111 000000000000 Adding Sσ cosomo to the action creates a potential “wall” in the target space. How does Sσ cosmo improve the situation? Liouville Wall 10/31 B ACKGROUNDS IN 2—C RITICAL S TRINGS
  • 13. 2—C RITICAL S TRINGS IN B ACKGROUNDS 11/31 Critical string theory with L.D. background — Summary — Action for critical string theory in D dimensions, in a linear dilaton background: LD 1 2 √ ab µ µ kµ X µ Sσ = d σ h h ∂ a X ∂ b Xµ + α RlµX + µe 4πα 2 2−D (kµ − lµ) = 6α This is an exact, well defined conformal field theory.
  • 14. 3—N ON – CRITICAL S TRING T HEORY 12/31 Noncritical String Theory I No Weyl invariance. ˆ Fix a conformal gauge: hab = eγφ(σ,τ )hab ˆ Fixed metric: hab Dynamical Liouville field φ(σ, τ ) Gauge fixes world–sheet diffeomorphism symmetry. Action [Polyakov ’81] 1 ˆ ˆ ˆ SCFT = dσ 2 h hab ∂ a X µ ∂ b Xµ + hab ∂ a φ ∂ b φ − α QRφ 4πα ghost +µeγφ + terms , X 1, . . . , X d 25 − d 1 √ √ Q= , γ = −√ 25 − d − 1 − d 6α 6α Describes Liouville gravity coupled to c = d matter.
  • 15. 3—N ON – CRITICAL S TRING T HEORY 13/31 Non–critical ↔ Critical String Theory Now, compare: 1 ˆ ˆ ˆ SCFT = dσ 2 h hab ∂ a X µ ∂ b Xµ + hab ∂ a φ ∂ b φ 4πα − α QRφ + µeγφ , X 1, . . . , X d LD 1 2 √ Sσ = d σ h hab ∂ a X µ ∂ b Xµ 4πα µ kµ X µ + α RlµX + µe , X 1, . . . , X D Make the following associations: 0; µ = D 0, µ=D D = d + 1; X D = φ, lµ = ; kµ = −Q, µ = D γ, µ=D LD Then, SCFT = Sσ
  • 16. 3—N ON – CRITICAL S TRING T HEORY 14/31 Non–critical ↔ Critical String Theory — Summary — d Dimensional noncritical string theory = d + 1 Dimensional critical string theory in L.D. background. 2D bosonic string theory in a linear dilaton background = Liouville gravity coupled to c = 1 matter, or non–critical string theory in 1 dimension (α = 1): 1 ˆ ˆ ˆ SCFT = d2 σ h hab ∂ a X ∂ b X + hab ∂ a φ ∂ b φ − 2Rφ + µe−2φ 4π
  • 17. 3—N ON – CRITICAL S TRING T HEORY 15/31 Time dependant Backgrounds We wish to study more general time dependant backgrounds Perturb action by tachyon vertex operators S = SCFT + tn V n , Vn = d2σ e−in(t+φ)e−2φ n=0 With only t±1 = 0 and the rest all zero, get “sine–Liouville CFT” The T–Dual of this theory is a CFT perturbed by vortex operators generating winding excitations. Conjectured to be equivalent to a WZW model which describes a target space with a Euclidean black hole (“cigar”) background.
  • 18. 3—N ON – CRITICAL S TRING T HEORY 16/31 Cigar Manifold Asymptotically, the metric looks like 1 ds2 = − 1 − e−2Qr dt2 + dr2, Φ= 0 − Qr. 1 − e−2Qr Curvature is RG = 4Q2e−2Qr . Performing analytic continuation to Euclidean time t → iθ, get the Euclidean cigar:
  • 19. 3—M ATRIX M ODELS 17/31 Matrix Models — Definition A matrix model consists of Symmetry group G Ensemble of N × N matrices M invariant under G Probability law (partition function) gk k Z= dM exp [−N Tr V (M )] , V (M ) = M k k>0 We are interested in unitary matrix ensembles: G = U(N ), M hermitian. As in QFT, we can write down a perturbation expansion in terms of Feynman diagrams from the partition function (N ∼ −1).
  • 20. 3—M ATRIX M ODELS 18/31 Propagators and Vertices From quadratic term in action, we write down a fat propagator 1 = δilδjk N g2 Higher order terms give fat vertices 1 = δj1i2 δj2i3 · · · δjk i1 N gk
  • 21. 3—M ATRIX M ODELS 19/31 Discretised Surfaces Duality: Feynman graph network ←→ Discretised surface Discretised surface Dual Propogator
  • 22. 3—M ATRIX M ODELS 20/31 Free energy We can express the free energy F = log Z as a sum over connected diagrams. This is dual to a sum over genus g surfaces ∞ F = N χ Fg = N 2 + + N −2 + N −4 + ··· g=0 1 −P Fg = g2 (−gk )nk . s Discretisations k>2 of genus g P edges, nk k–polygons, s =symmetry factor. We are interested in continuous surfaces, where the number of polygons tends to infinity.
  • 23.
  • 24. 3—M ATRIX M ODELS 21/31 Double Scaling Limit Continuum Limit: Number of polygons diverges when couplings approach critical values gk → gc. Spherical Limit: Genus zero surfaces dominate in the limit N → ∞. If surface is string world–sheet, then only get contributions from genus zero when N → ∞. Contributions from all genera are included by taking the Double Scaling Limit: Take both limits simultaneously with string coupling fixed N → ∞, gk → gc, κ−1 = N (gc − gk )(2−γstr)/2
  • 25. 4—MQM 22/31 Matrix Quantum Mechanics MQM refers to a matrix model when the number of distinct N × N matrices is infinite the matrix label, which is then continuous, is interpreted as time. Mi, −→ M (t) Partition function of MQM 1 ZN = DM (t) exp −N Tr dt (∂ t M (t))2 + V [M (t)] 2 It models 2D gravity coupled to c = 1 matter (scalar field t(σ, τ )).
  • 26. 4—MQM 23/31 Hamiltonian Analysis Diagonalize the matrices M (t) = Ω†(t)x(t)Ω(t), x(t) = diag{x1(t), . . . , xN (t)}, , Ω†(t)Ω(t) = 1 Quantum Hamiltonian of the system: N − 2 ∂2 1 Π2 + Π2 ij ij HMQM = ∆(x) + V (xi) + . i=1 2∆(x) ∂ x2 i 2 i<j (xi − xj )2 Write partition function as b − 1 T HMQM ZN = Tr e , T →∞ In this limit, only ground state contributes to the free energy E0 F =−
  • 27. 4—MQM 24/31 Non–interacting Fermions So we just need ground state. Symmetry considerations show it belongs to singlet representation of SU(N ) and is a Slater determinant. N 1 ΨGS(x) = √ det ψi(xj ), E0 = εi , N! i,j i=1 Hamiltonian splits into a sum of single–particle Hamiltonians singlet N sector (sing) 2 ∂2 HMQM −→ HMQM = Hi , Hi = − 2 + V (xi ) i=1 2 ∂ xi MQM reduced to a system of N non–interacting fermions moving in a potential V (x).
  • 28. 4—MQM 25/31 Fermi Sea The phase space of MQM: Fermi seas (right) corresponding to potentials (left). V p 15 4 10 2 5 x 4 2 2 4 x 4 2 2 4 2 5 4 V p 4 2 2 1 x 4 2 2 4 x 4 2 2 4 2 1 4
  • 29. 4—MQM 26/31 Inverse Oscillator Potential Continuum limit corresponds to energy levels reaching top of potential. V εC εF x xC x1 x2 In the double scaling limit the exact form of the potential is unimportant MQM reduces to a problem of fermions in an inverse oscillator potential x2 V (x) = − 2
  • 30. 5—MQM IN THE C HIRAL R EPRESENTATION 27/31 Chiral Coordinates MQM can be reformulated in terms of left and right “light cone” matrix variables. [Alexandrov,Kazakov,Kostov ’02] . In the singlet sector: x±p ∂ x± = √ , p ≡ −i 2 ∂x Many advantages follow from the fact that the chiral Hamiltonian is linear ± 1 ∂ 1 H0 = (p2 − x2) = i(x± + ) 2 ∂ x± 2 Introduce tachyon perturbations by acting on ground state wave function, not perturbing the Hamiltonian.
  • 31. 5—MQM IN THE C HIRAL R EPRESENTATION 28/31 Tachyon Perturbations Perturbed state is E ϕ± (x± ;E) E E ψ± (x± ) = e ψ± (x± ) = W±ψ± (x± ) Perturbing phase ϕ± (x± ; E) contains MQM realizations of tachyon matrix operators ∞ V± (x± ) = t±k x±/R, k k=1 In quasiclassical limit µ → ∞ we get constraint equations ∂ x± x = −E± + x± ϕ ∂ x± ± which we solve for the profile of the Fermi sea.
  • 32. 5—MQM IN THE C HIRAL R EPRESENTATION 29/31 Results Constraint equations for two non–zero couplings t±1, t±2 = 0 χ 1 2 − 2R x± = e ω ±1 1 + a±1ω R + a±2ω R R−1/2 2R−3/2 1 χ R2 χ 2−R t 1 Re +t 2 t±1 e R2 R3 a±1 = χ 2R−2 2−R 2 1 − t±2t 2e R 2 R3 t 2 χ R−1 a±2 = e R2 R R−1 R−1 2−R χ R2 2−R χ R2 χ t−1 + t−2t1 R2 e t1 + t2t−1 R2 e 1 − R χ 2R−1 1 = µe + R 2R−2 2 e R2 2−R 2 χ R2 R3 1 − t−2t2 R2 e 2 − R χ 2R−2 + t2t−2 3 e R2 R
  • 33. 5—MQM IN THE C HIRAL R EPRESENTATION 30/31 Profiles 2 4 Plot of Fermi Sea for t 1 2, t 2 0, R Plot of Fermi Sea for t 1 2, t 2 2, R 3 3 Χ 0 solutions for Μ 1,359 Χ 0 solutions for Μ 3,363 60 x 75 40 50 x 20 25 0 x 0 x 25 20 x 50 40 x 75 10 20 30 40 50 60 20 40 60 80 First couplings only First and second couplings
  • 34. 5—MQM IN THE C HIRAL R EPRESENTATION 31/31 Conclusions and Outlook The CFT describing string theory in a linear dilaton background was perturbed with first and second couplings 2 S = SCFT + tn V n , n=−2 and described as an MQM model. Problems and outlook: Target space interpretation is complicated Free energy of MQM not found explicitly Critical points in the moduli space of the perturbed theory correspond to a class of minimal CFTs. [Kazakov ’89] M(atrix) theory?