SlideShare ist ein Scribd-Unternehmen logo
1 von 11
Downloaden Sie, um offline zu lesen
BITS Pil i
                                 Pilani
                               Pilani Campus




Lecture 4 – Ph
L t          Phase Behavior of Pure
                   B h i     fP
Substance, Gases
           ,
P-v-T Surface




Projections on P‐T, T‐v, and P‐v planes
Projections on P‐T T‐v and P‐v planes
Various features
                                          BITSPilani, Pilani Campus
Gibbs Phase Rule
• Had already briefly discussed it without giving the
name
• F = C – P + 2, where C is the number of
components or chemical constituents, P the
      p
number of phases, and F the number of degrees of
freedom
• F is the number of intensive variables which may
     i h       b    fi     i       i bl      hi h
be freely chosen, and must be so chosen before
the system is in a determined state
• For C = 1, F = 3 – P, F= 2 if P = 1, 1 if P = 2, and
0 if P = 3
• Does not make any reference to ‘amounts’
                                              BITSPilani, Pilani Campus
T-v liquid-vapor equilibrium - Quality




As one moves from left to right in the saturation region at a given T and
P, the relative amount of vapor grows at the expense of the liquid.
 ,                           p g                   p             q
Quality x = mg/m, fraction of total mass present as vapor, varies from 0 to
1 along tie line
At any point on the line, v = (1-x)vf + xvg = vf + xvfg where vf and vg are
                                                      g
the specific volumes of the liquid and vapor phases respectively, and vfg
= vg - vf
                                                                BITSPilani, Pilani Campus
State of liquid-vapor system
• T and P not independent in two phase equilibrium
regions f pure substance
    i     for         b t
• Only one degree of freedom, and so only one
needs t be specified, d
      d to b       ifi d does it h
                                 have t b one of
                                      to be         f
these?
• Quality x as an ‘intensive’ property to ‘fully fix’
           x,        intensive             fully fix
state of two phase system along with T or p
• State postulate – two independent intensive
variables fix state of pure substance
• Example

                                              BITSPilani, Pilani Campus
Example: Water saturation region
          Temp (C)   Sat P (kPa)   vf (m3/kg)   vf g(m3/kg)   vg (m3/kg)
            95          84.6       0.001040                   1.98186
            100        101.3       0.001044      1.67185      1.67290
            105        120.8       0.001047                   1.41936

Three rigid containers of volume 1.0 m3, each contain water at 100ºC,
with respective quality values 0.500, 0.001263, and 0.00010. Find the
mass in each. The contents of each container are heated till they just
become homogeneous. Identify the final state in each case, also
finding the final pressure.

      Container      Quality       v(m3/kg)       Remark       Final State
      1              0.500         0.83697        > vc         Sat. vapor
      2              0.001263      0.003155       = vc         Critical
      3              0.000100      0.001211       < vc         Sat. liquid

                                                                          BITSPilani, Pilani Campus
Example (contd.) – final state
              Temp (C)   Sat P (kPa)    vf (m3/kg)
                230        2794.9
                           2794 9       0.001209
                                        0 001209
Container 3     235        3060.1       0.001219
                231         2848        0.001211


              Temp (C)    P (kPa)      v (m3/kg)
Container 2
                374.1
                374 1      22089       0.003155
                                       0 003155



              Temp (C)   Sat P (kPa)    vg(m3/kg)
                 120        198.5        0.89186
Container 1      125        232.1        0.77059
                122.3
                122 3        214         0.83697
                                         0 83697


                                                     BITSPilani, Pilani Campus
Example (contd.)
• The contents of container 1, now in the saturated vapor
state at 122. C are now heated at constant volume to 150 C.
Find the final pressure
The final state is in the superheated steam region

               Temp (C)   P (kPa)   vg(m3/kg)
                 150       200      0.93964
                 150       300      0.63388
                 150      233.6     0.83697




                                                  BITSPilani, Pilani Campus
The Ideal Gas
• PV = nȒT or Pṽ = ȒT
• Ȓ is the universal gas constant 8.3145 kJ kmole-1 K-1
                                                  1   1


• n = m/M
• PV = mRT, where R is the gas constant per unit mass of a
g
given g
      gas, 0.2968 kJ/kg K for N2, 0.1889 kJ/kg K for CO2 etc
                      g                      g
• Obeyed as a limiting law by gases at low density where
inter-molecular forces are negligible
• What constitutes low density, and by how much does a
real gas d i t f
   l     deviate from id l b h i
                      ideal behaviour at given T and P?
                                       t i         d

                                                    BITSPilani, Pilani Campus
Compressibility Factor Z
• Z = Pv/RT
• Z = 1 for ideal gas. Note below that Z → 1 as P → 0
                  g
• What do Z > 1 and Z < 1 signify?




                                                   BITSPilani, Pilani Campus
Generalized compressibility factor chart




                                       BITSPilani, Pilani Campus

Weitere ähnliche Inhalte

Was ist angesagt? (20)

Thermodynamics lecture 10
Thermodynamics lecture 10Thermodynamics lecture 10
Thermodynamics lecture 10
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
JJ207 Thermodynamics I Chapter 2
JJ207 Thermodynamics I Chapter 2JJ207 Thermodynamics I Chapter 2
JJ207 Thermodynamics I Chapter 2
 
Clausius-clapeyron Equation
Clausius-clapeyron EquationClausius-clapeyron Equation
Clausius-clapeyron Equation
 
Chapter 3 lecture
Chapter 3 lectureChapter 3 lecture
Chapter 3 lecture
 
Ch.12
Ch.12Ch.12
Ch.12
 
Thermo Lecture no.5
Thermo Lecture no.5Thermo Lecture no.5
Thermo Lecture no.5
 
Ch.17
Ch.17Ch.17
Ch.17
 
Chap3a jan13
Chap3a jan13Chap3a jan13
Chap3a jan13
 
Diagramas de fase
Diagramas de faseDiagramas de fase
Diagramas de fase
 
Clausius - Clapeyron Equation
Clausius - Clapeyron EquationClausius - Clapeyron Equation
Clausius - Clapeyron Equation
 
Ch.16
Ch.16Ch.16
Ch.16
 
Kinetic theory of gases
Kinetic theory of gasesKinetic theory of gases
Kinetic theory of gases
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
 
Ch.5
Ch.5Ch.5
Ch.5
 
Unit8
Unit8Unit8
Unit8
 
Unit3
Unit3Unit3
Unit3
 
Metr3210 clausius-clapeyron
Metr3210 clausius-clapeyronMetr3210 clausius-clapeyron
Metr3210 clausius-clapeyron
 
ME 12 F1 (MODULE 1)
ME 12 F1 (MODULE 1)ME 12 F1 (MODULE 1)
ME 12 F1 (MODULE 1)
 
Chapter 7 pure substance
Chapter 7 pure substanceChapter 7 pure substance
Chapter 7 pure substance
 

Ähnlich wie Thermodynamics lecture 5

Thermodynamics lecture 12
Thermodynamics lecture 12Thermodynamics lecture 12
Thermodynamics lecture 12Archit Gadhok
 
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptxL7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptxPatelkevinJayeshkuma
 
aula-9.ppt
aula-9.pptaula-9.ppt
aula-9.pptLucasB32
 
Evaluating Properties For mechanical and Industrial Engineering
 Evaluating Properties For mechanical and Industrial Engineering Evaluating Properties For mechanical and Industrial Engineering
Evaluating Properties For mechanical and Industrial EngineeringKum Visal
 
Thermodynamics chapter 2
Thermodynamics chapter 2Thermodynamics chapter 2
Thermodynamics chapter 2zirui lau
 
2. Fluids 2.ppt
2. Fluids 2.ppt2. Fluids 2.ppt
2. Fluids 2.pptBlahBeleh
 
volumetric properties.ppt
volumetric properties.pptvolumetric properties.ppt
volumetric properties.pptIyerVasundhara
 
Module 6 (ideal or perfect gas and gas mixture) 2021 2022
Module 6 (ideal or perfect gas and gas mixture) 2021   2022Module 6 (ideal or perfect gas and gas mixture) 2021   2022
Module 6 (ideal or perfect gas and gas mixture) 2021 2022Yuri Melliza
 
Entropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.pptEntropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.pptMichaelTegegn
 
Properties of pure substances
Properties of pure substancesProperties of pure substances
Properties of pure substancesYasir Hashmi
 
ME 12 F1 MODULE (Thermodynamics 1)
ME 12 F1 MODULE (Thermodynamics 1)ME 12 F1 MODULE (Thermodynamics 1)
ME 12 F1 MODULE (Thermodynamics 1)Yuri Melliza
 
Thermody Properties of Pure Substance (1).ppt
Thermody Properties of Pure Substance (1).pptThermody Properties of Pure Substance (1).ppt
Thermody Properties of Pure Substance (1).pptethiouniverse
 
Revision on thermodynamics
Revision on thermodynamicsRevision on thermodynamics
Revision on thermodynamicscairo university
 
Thermo I CH 2.pptx
Thermo I CH 2.pptxThermo I CH 2.pptx
Thermo I CH 2.pptxJibrilJundi
 
Thermodynamics (2013 new edition) copy
Thermodynamics (2013 new edition)   copyThermodynamics (2013 new edition)   copy
Thermodynamics (2013 new edition) copyYuri Melliza
 
Chapter 1(terms and definition)
Chapter 1(terms and definition)Chapter 1(terms and definition)
Chapter 1(terms and definition)Yuri Melliza
 

Ähnlich wie Thermodynamics lecture 5 (20)

Thermodynamics lecture 12
Thermodynamics lecture 12Thermodynamics lecture 12
Thermodynamics lecture 12
 
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptxL7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
 
aula-9.ppt
aula-9.pptaula-9.ppt
aula-9.ppt
 
Evaluating Properties For mechanical and Industrial Engineering
 Evaluating Properties For mechanical and Industrial Engineering Evaluating Properties For mechanical and Industrial Engineering
Evaluating Properties For mechanical and Industrial Engineering
 
Thermodynamics chapter 2
Thermodynamics chapter 2Thermodynamics chapter 2
Thermodynamics chapter 2
 
2. Fluids 2.ppt
2. Fluids 2.ppt2. Fluids 2.ppt
2. Fluids 2.ppt
 
volumetric properties.ppt
volumetric properties.pptvolumetric properties.ppt
volumetric properties.ppt
 
Module 6 (ideal or perfect gas and gas mixture) 2021 2022
Module 6 (ideal or perfect gas and gas mixture) 2021   2022Module 6 (ideal or perfect gas and gas mixture) 2021   2022
Module 6 (ideal or perfect gas and gas mixture) 2021 2022
 
VLE Notes.ppt
VLE Notes.pptVLE Notes.ppt
VLE Notes.ppt
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
IICHE, Kochi Regional Centre CHEM QUIZ 2013
IICHE, Kochi Regional Centre CHEM QUIZ 2013IICHE, Kochi Regional Centre CHEM QUIZ 2013
IICHE, Kochi Regional Centre CHEM QUIZ 2013
 
Entropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.pptEntropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.ppt
 
Properties of pure substances
Properties of pure substancesProperties of pure substances
Properties of pure substances
 
ME 12 F1 MODULE (Thermodynamics 1)
ME 12 F1 MODULE (Thermodynamics 1)ME 12 F1 MODULE (Thermodynamics 1)
ME 12 F1 MODULE (Thermodynamics 1)
 
Thermody Properties of Pure Substance (1).ppt
Thermody Properties of Pure Substance (1).pptThermody Properties of Pure Substance (1).ppt
Thermody Properties of Pure Substance (1).ppt
 
Revision on thermodynamics
Revision on thermodynamicsRevision on thermodynamics
Revision on thermodynamics
 
Thermo I CH 2.pptx
Thermo I CH 2.pptxThermo I CH 2.pptx
Thermo I CH 2.pptx
 
Thermodynamics (2013 new edition) copy
Thermodynamics (2013 new edition)   copyThermodynamics (2013 new edition)   copy
Thermodynamics (2013 new edition) copy
 
Chapter 1(terms and definition)
Chapter 1(terms and definition)Chapter 1(terms and definition)
Chapter 1(terms and definition)
 
Cmt458 lect3
Cmt458 lect3Cmt458 lect3
Cmt458 lect3
 

Thermodynamics lecture 5

  • 1. BITS Pil i Pilani Pilani Campus Lecture 4 – Ph L t Phase Behavior of Pure B h i fP Substance, Gases ,
  • 2. P-v-T Surface Projections on P‐T, T‐v, and P‐v planes Projections on P‐T T‐v and P‐v planes Various features BITSPilani, Pilani Campus
  • 3. Gibbs Phase Rule • Had already briefly discussed it without giving the name • F = C – P + 2, where C is the number of components or chemical constituents, P the p number of phases, and F the number of degrees of freedom • F is the number of intensive variables which may i h b fi i i bl hi h be freely chosen, and must be so chosen before the system is in a determined state • For C = 1, F = 3 – P, F= 2 if P = 1, 1 if P = 2, and 0 if P = 3 • Does not make any reference to ‘amounts’ BITSPilani, Pilani Campus
  • 4. T-v liquid-vapor equilibrium - Quality As one moves from left to right in the saturation region at a given T and P, the relative amount of vapor grows at the expense of the liquid. , p g p q Quality x = mg/m, fraction of total mass present as vapor, varies from 0 to 1 along tie line At any point on the line, v = (1-x)vf + xvg = vf + xvfg where vf and vg are g the specific volumes of the liquid and vapor phases respectively, and vfg = vg - vf BITSPilani, Pilani Campus
  • 5. State of liquid-vapor system • T and P not independent in two phase equilibrium regions f pure substance i for b t • Only one degree of freedom, and so only one needs t be specified, d d to b ifi d does it h have t b one of to be f these? • Quality x as an ‘intensive’ property to ‘fully fix’ x, intensive fully fix state of two phase system along with T or p • State postulate – two independent intensive variables fix state of pure substance • Example BITSPilani, Pilani Campus
  • 6. Example: Water saturation region Temp (C) Sat P (kPa) vf (m3/kg) vf g(m3/kg) vg (m3/kg) 95 84.6 0.001040 1.98186 100 101.3 0.001044 1.67185 1.67290 105 120.8 0.001047 1.41936 Three rigid containers of volume 1.0 m3, each contain water at 100ºC, with respective quality values 0.500, 0.001263, and 0.00010. Find the mass in each. The contents of each container are heated till they just become homogeneous. Identify the final state in each case, also finding the final pressure. Container Quality v(m3/kg) Remark Final State 1 0.500 0.83697 > vc Sat. vapor 2 0.001263 0.003155 = vc Critical 3 0.000100 0.001211 < vc Sat. liquid BITSPilani, Pilani Campus
  • 7. Example (contd.) – final state Temp (C) Sat P (kPa) vf (m3/kg) 230 2794.9 2794 9 0.001209 0 001209 Container 3 235 3060.1 0.001219 231 2848 0.001211 Temp (C) P (kPa) v (m3/kg) Container 2 374.1 374 1 22089 0.003155 0 003155 Temp (C) Sat P (kPa) vg(m3/kg) 120 198.5 0.89186 Container 1 125 232.1 0.77059 122.3 122 3 214 0.83697 0 83697 BITSPilani, Pilani Campus
  • 8. Example (contd.) • The contents of container 1, now in the saturated vapor state at 122. C are now heated at constant volume to 150 C. Find the final pressure The final state is in the superheated steam region Temp (C) P (kPa) vg(m3/kg) 150 200 0.93964 150 300 0.63388 150 233.6 0.83697 BITSPilani, Pilani Campus
  • 9. The Ideal Gas • PV = nȒT or Pṽ = ȒT • Ȓ is the universal gas constant 8.3145 kJ kmole-1 K-1 1 1 • n = m/M • PV = mRT, where R is the gas constant per unit mass of a g given g gas, 0.2968 kJ/kg K for N2, 0.1889 kJ/kg K for CO2 etc g g • Obeyed as a limiting law by gases at low density where inter-molecular forces are negligible • What constitutes low density, and by how much does a real gas d i t f l deviate from id l b h i ideal behaviour at given T and P? t i d BITSPilani, Pilani Campus
  • 10. Compressibility Factor Z • Z = Pv/RT • Z = 1 for ideal gas. Note below that Z → 1 as P → 0 g • What do Z > 1 and Z < 1 signify? BITSPilani, Pilani Campus
  • 11. Generalized compressibility factor chart BITSPilani, Pilani Campus