SlideShare ist ein Scribd-Unternehmen logo
1 von 24
Downloaden Sie, um offline zu lesen
1
読書会 「トピックモデルによる統計的潜在意味解析」
第2回
3.2節 サンプリング近似法
日時: 2015/06/18 19:30~
場所: 株式会社 ALBERT
発表者: @aoki_kenji
目次
2
• 前回の復習(条件付き独立性)
• ギブスサンプリングとは?
• 3.2.1節 ギブスサンプリング
• 3.2.2節 周辺化ギブスサンプリング
• 3.2.3節 LDAのギブスサンプリング
• 3.2.4節 LDAの周辺化ギブスサンプリング
今回は時間の都合上省略
目次
3
• 前回の復習(条件付き独立性)
• ギブスサンプリングとは?
• 3.2.1節 ギブスサンプリング
• 3.2.2節 周辺化ギブスサンプリング
• 3.2.3節 LDAのギブスサンプリング
• 3.2.4節 LDAの周辺化ギブスサンプリング
グラフィカルモデル? or 数式?
4
前回の@ksmznさんの資料から引用
• 前回はグラフィカルモデルを参照して条件付き分布を導出した
• 今回は数式から直接条件付き分布を導出してみる
数式からの条件付き独立性の導出(p.22の図1.7)
5
𝑏
𝑎
𝑐
𝑎
𝑏
𝑐
𝑎
𝑏
𝑐
tail-to-tail head-to-tail head-to-head
𝑝 𝑎, 𝑏, 𝑐
= 𝑝 𝑎|𝑐 𝑝 𝑏|𝑐 𝑝 𝑐
𝑝 𝑎, 𝑏|𝑐
∝ 𝑝 𝑎 𝑐 𝑝 𝑏 𝑐
⇒ 𝑎 ⊥ 𝑏|𝑐
𝑝 𝑎, 𝑏, 𝑐
= 𝑝 𝑏|𝑐 𝑝 𝑐|𝑎 𝑝 𝑎
𝑝 𝑎, 𝑏|𝑐
∝ 𝑝 𝑏|𝑐 𝑝 𝑐|𝑎 𝑝 𝑎
⇒ 𝑎 ⊥ 𝑏|𝑐
𝑝 𝑎, 𝑏, 𝑐
= 𝑝 𝑐|𝑎, 𝑏 𝑝 𝑎 𝑝 𝑏
𝑝 𝑎, 𝑏|𝑐
∝ 𝑝 𝑐|𝑎, 𝑏 𝑝 𝑎 𝑝 𝑏
⇒ 𝑎 ⊥ 𝑏|𝑐
グラフィカル
モデル
数式
条件付き
独立性
数式からの条件付き独立性の導出(p.35の図2.4)
6
𝜷𝜶
LDAの生成モデル
𝑝 𝑧 𝑑,𝑖|𝒘, 𝒛−𝑑,𝑖, 𝜽, 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖, 𝝓 𝑝 𝑧 𝑑,𝑖 𝜽 𝑑 ⇒ 𝑝 𝑧 𝑑,𝑖|𝑤 𝑑,𝑖, 𝜽 𝑑, 𝝓
𝑝 𝜽 𝑑|𝒘, 𝒛, 𝜽−𝑑
, 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝒛 𝑑|𝜽 𝑑 𝑝 𝜽 𝑑|𝜶 ⇒ 𝑝 𝜽 𝑑|𝒛 𝑑, 𝜶
𝑝 𝝓 𝑘 𝒘, 𝒛, 𝜽, 𝝓−𝑘, 𝜶, 𝜷 ∝ 𝑝 𝒘 𝒛, 𝝓 𝑝 𝝓 𝑘 𝜷 ⇒ 𝑝 𝝓 𝑘 𝒘, 𝒛, 𝝓−𝑘, 𝜷
𝝓 𝑘𝜽 𝑑 𝑧 𝑑,𝑖 𝑤 𝑑,𝑖
𝐾𝑛 𝑑
𝑀
𝑝 𝒘, 𝒛, 𝜽, 𝝓 𝜶, 𝜷 = 𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖, 𝝓 𝑝 𝑧 𝑑,𝑖 𝜽 𝑑
𝑑,𝑖
𝑝 𝜽 𝑑 𝜶
𝑑
𝑝 𝝓 𝑘 𝜷
𝑘
各確率変数の条件付き分布を数式から
導出してみる
1段目と3段目の式に関しては
実際よりも冗長
数式からの条件付き独立性の導出(p.35の図2.4)
7
𝜷𝜶
LDAの生成モデル
𝑝 𝑧 𝑑,𝑖 = 𝑘|𝒘, 𝑧−𝑑,𝑖
, 𝜽, 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 𝝓 𝑘 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝜽 𝑑 ⇒ 𝑝 𝑧 𝑑,𝑖 = 𝑘|𝑤 𝑑,𝑖, 𝜽 𝑑, 𝝓 𝑘
𝑝 𝜽 𝑑|𝒘, 𝒛, 𝜽−𝑑, 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝒛 𝑑|𝜽 𝑑 𝑝 𝜽 𝑑|𝜶 ⇒ 𝑝 𝜽 𝑑|𝒛 𝑑, 𝜶
𝑝 𝝓 𝑘 𝒘, 𝒛, 𝜽, 𝝓−𝑘
, 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 𝝓 𝑘
𝑧 𝑑,𝑖=𝑘
𝑝 𝝓 𝑘 𝜷 ⇒ 𝑝 𝝓 𝑘 𝑤 𝑑,𝑖|𝑧 𝑑,𝑖 = 𝑘 , 𝒛, 𝜷
𝝓 𝑘𝜽 𝑑 𝑧 𝑑,𝑖 𝑤 𝑑,𝑖
𝐾𝑛 𝑑
𝑀
𝑝 𝒘, 𝒛, 𝜽, 𝝓 𝜶, 𝜷 = 𝑝 𝑤 𝑑,𝑖 𝝓 𝑧 𝑑,𝑖
𝑝 𝑧 𝑑,𝑖 𝜽 𝑑
𝑑,𝑖
𝑝 𝜽 𝑑 𝜶
𝑑
𝑝 𝝓 𝑘 𝜷
𝑘
𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖, 𝝓 = 𝑝 𝑤 𝑑,𝑖 𝝓 𝑧 𝑑,𝑖
という構造を既知とすると…
目次
8
• 前回の復習(条件付き独立性)
• ギブスサンプリングとは?
• 3.2.1節 ギブスサンプリング
• 3.2.2節 周辺化ギブスサンプリング
• 3.2.3節 LDAのギブスサンプリング
• 3.2.4節 LDAの周辺化ギブスサンプリング
ギブスサンプリングのアルゴリズム概要
9
例えば
𝑝 𝑎, 𝑏, 𝑐|𝜃
から直接乱数を生成できないようなときでも、以下の手順(ギブスサンプリング)に
よって上記分布からの乱数を生成することができる
Step1: 𝑏, 𝑐の初期値𝑏 0 , 𝑐 0 と正数𝑆を与える
Step2: 𝑠 = 1, ⋯ , 𝑆に対して以下を繰り返す
𝑝 𝑎 𝑠
|𝑏 𝑠−1
, 𝑐 𝑠−1
, 𝜃 から𝑎 𝑠
をサンプリング
𝑝 𝑏 𝑠 |𝑎 𝑠 , 𝑐 𝑠−1 , 𝜃 から𝑏 𝑠 をサンプリング
𝑝 𝑐 𝑠 |𝑎 𝑠 , 𝑏 𝑠 , 𝜃 から𝑐 𝑠 をサンプリング
上記の手順によって生成された乱数が𝑝 𝑎, 𝑏, 𝑐|𝜃 に従う理論的説明は、例えば
• 伊庭他(2005)、『計算統計Ⅱマルコフ連鎖モンテカルロ法とその周辺
(統計科学のフロンティア12)』、岩波書店
を参照
ギブスサンプリングのアルゴリズム概要
10
• もちろん上記の手順を実行するためには各確率変数の条件付き分布からの
サンプリングが可能でなければならない
(LDAの場合は条件付き分布が解析的に導出可能である)
• 𝑎, 𝑏, 𝑐はそれぞれベクトル(多次元)であっても構わない(その場合はブロック
化ギブスサンプリングと呼ばれる)
• 𝑎 𝑠 , 𝑏 𝑠 , 𝑐 𝑠
s=1
S
を利用して、例えば𝑝 𝑎, 𝑏, 𝑐|𝜃 に関する任意の関数
𝑓 𝑎, 𝑏, 𝑐 の期待値を近似することができる
𝑝 𝑎, 𝑏, 𝑐|𝜃 𝑓 𝑎, 𝑏, 𝑐 𝑑𝑎𝑑𝑏𝑑𝑐 ≈
1
𝑆
𝑓 𝑎 𝑠 , 𝑏 𝑠 , 𝑐 𝑠
𝑆
𝑠=1
• 実際は、上記のように𝑠 = 1から𝑆までの全てのサンプルを使わずに、初期値
に依存した最初の方のサンプルを捨てることがある
このサンプルを捨てる期間を破棄する期間(burn-in period)と呼ぶ
目次
11
• 前回の復習(条件付き独立性)
• ギブスサンプリングとは?
• 3.2.1節 ギブスサンプリング
• 3.2.2節 周辺化ギブスサンプリング
• 3.2.3節 LDAのギブスサンプリング
• 3.2.4節 LDAの周辺化ギブスサンプリング
ギブスサンプリングの動機
12
• LDAのベイズ推定では予測分布以前に事後分布のサンプル生成すら難しい
◎予測分布(積分計算が難しい)
𝑝 𝑤 𝑑
∗
𝒘, 𝜶, 𝜷 = 𝑝 𝑤 𝑑
∗
, 𝑧 𝑑
∗
, 𝒛, 𝜽, 𝝓 𝒘, 𝜶, 𝜷
𝒛𝑧 𝑑
∗
𝑑𝜽𝑑𝝓
= 𝑝 𝑤 𝑑
∗
𝝓 𝑧 𝑑
∗ 𝑝 𝑧 𝑑
∗
𝜽 𝑑 𝑝 𝒛, 𝜽, 𝝓 𝒘, 𝜶, 𝜷
𝒛𝑧 𝑑
∗
𝑑𝜽𝑑𝝓
◎事後分布からのサンプリングによる近似
(事後分布の導出が困難&サンプル生成が難しい)
𝑝 𝑤 𝑑
∗
𝒘, 𝜶, 𝜷 ≈
1
𝑆
𝑝 𝑤 𝑑
∗
𝝓 𝑧 𝑑
∗
𝑠
𝑝 𝑧 𝑑
∗
𝜽 𝑑
𝑠
𝑧 𝑑
∗
𝑆
𝑠=1
• LDAの場合、 𝒛 𝑠 , 𝜽 𝑠 , 𝝓 𝑠 を一度にサンプリングするのは難しいが、
𝒛 𝑠 , 𝜽 𝑠 , 𝝓 𝑠 をそれぞれ個別にサンプリングすることは容易である(条件付き
分布が解析的に導出可能である)
ギブスサンプリングによる近似が可能
条件付き分布の導出その1
13
◎𝑧 𝑑,𝑖について(𝑤 𝑑,𝑖 = 𝑣とする)
𝑝 𝑧 𝑑,𝑖 = 𝑘 𝑤 𝑑,𝑖 = 𝑣, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜽, 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝝓 𝑘 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝜽 𝑑
= 𝜙 𝑘,𝑣 𝜃 𝑑,𝑘
𝑝 𝑧 𝑑,𝑖 = 𝑘 𝑤 𝑑,𝑖 = 𝑣, 𝒘−𝑑,𝑖
, 𝒛−𝑑,𝑖
, 𝜽, 𝝓, 𝜶, 𝜷 = 1𝐾
𝑘=1 となるように正規化すると
𝑝 𝑧 𝑑,𝑖 = 𝑘 𝑤 𝑑,𝑖 = 𝑣, 𝒘−𝑑,𝑖
, 𝒛−𝑑,𝑖
, 𝜽, 𝝓, 𝜶, 𝜷 =
𝜙 𝑘,𝑣 𝜃 𝑑,𝑘
𝜙 𝑘′,𝑣 𝜃 𝑑,𝑘′
𝐾
𝑘′=1
条件付き分布の導出その2
14
◎𝜽 𝑑について
𝑝 𝜽 𝑑 𝒘, 𝒛, 𝜽−𝑑
, 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝒛 𝑑 𝜽 𝑑 𝑝 𝜽 𝑑 𝜶
∝ 𝜃 𝑘
𝛼 𝑘+𝑛 𝑑,𝑘−1
𝐾
𝑘=1
ここで𝑛 𝑑,𝑘は文書𝑑の中でトピック𝑘に属する単語の数とする
すなわち𝑛 𝑑,𝑘 = 𝛿 𝑧 𝑑,𝑖 = 𝑘
𝑛 𝑑
𝑖=1
上の式から𝑝 𝜽 𝑑 𝒘, 𝒛, 𝜽−𝑑
, 𝝓, 𝜶, 𝜷 はディリクレ分布の形をしているので
𝑝 𝜽 𝑑 𝒘, 𝒛, 𝜽−𝑑, 𝝓, 𝜶, 𝜷 = 𝐷𝑖𝑟 𝜽 𝑑|𝜶 + 𝒏 𝑑 ,  𝒏 𝑑 = 𝑛 𝑑,1, ⋯ , 𝑛 𝑑,𝐾
条件付き分布の導出その3
15
◎𝝓 𝑘について
𝑝 𝝓 𝑘 𝒘, 𝒛, 𝜽, 𝝓−𝑘, 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝝓 𝑘
𝑧 𝑑,𝑖=𝑘
𝑝 𝝓 𝑘 𝜷
∝ 𝜙 𝑣
𝛽 𝑣+𝑛 𝑘,𝑣−1
𝑉
𝑣=1
ここで𝑛 𝑘,𝑣は全文書の中でトピック𝑘に属する単語𝑣の数とする
すなわち𝑛 𝑘,𝑣 = 𝛿 𝑧 𝑑,𝑖 = 𝑘, 𝑤 𝑑,𝑖 = 𝑣
𝑛 𝑑
𝑖=1
𝑀
𝑑=1
上の式から𝑝 𝝓 𝑘 𝒘, 𝒛, 𝜽, 𝝓−𝑘
, 𝜶, 𝜷 はディリクレ分布の形をしているので
𝑝 𝝓 𝑘 𝒘, 𝒛, 𝜽, 𝝓−𝑘, 𝜶, 𝜷 = 𝐷𝑖𝑟 𝝓 𝑘|𝜷 + 𝒏 𝑘 ,  𝒏 𝑘 = 𝑛 𝑘,1, ⋯ , 𝑛 𝑘,𝑉
条件付き分布の導出まとめ
16
• どの確率変数𝑧 𝑑,𝑖, 𝜽 𝑑, 𝝓 𝑘に関しても
事後分布
↓
結合分布(生成モデル)
↓
定数項を除外
のステップを踏むことにより条件付き事後分布を導出することができた
LDAのギブスサンプリングの擬似コード
17
• 以下に、LDAのギブスサンプリングの擬似コードを示す
• 𝜶, 𝜷の更新に関しては3.6節で取り扱う
Step1: 𝜶, 𝜷, 𝜽, 𝝓の初期値𝜶 0 , 𝜷 0 , 𝜽 0 , 𝝓 0 と正数𝑆を与える
Step2: 𝑠 = 1, ⋯ , 𝑆に対して以下を繰り返す
全ての𝑧 𝑑,𝑖に対して𝑝 𝑧 𝑑,𝑖|𝑤 𝑑,𝑖, 𝜽 𝑑
𝑠−1
, 𝝓 𝑘
𝑠−1
から𝑧 𝑑,𝑖
𝑠
をサンプリング
全ての𝜽 𝑑に対して𝑝 𝜽 𝑑|𝒛 𝑑
𝑠
, 𝜶 から𝜽 𝑑
𝑠
をサンプリング
全ての𝝓 𝑘に対して𝑝 𝝓 𝑘 𝑤 𝑑,𝑖|𝑧 𝑑,𝑖
𝑠
= 𝑘 , 𝒛 𝑠 , 𝜷 から𝝓 𝑘
𝑠
をサンプリング
𝜶, 𝜷を更新する:𝜶 𝑠−1 , 𝜷 𝑠−1 → 𝜶 𝑠 , 𝜷 𝑠
目次
18
• 前回の復習(条件付き独立性)
• ギブスサンプリングとは?
• 3.2.1節 ギブスサンプリング
• 3.2.2節 周辺化ギブスサンプリング
• 3.2.3節 LDAのギブスサンプリング
• 3.2.4節 LDAの周辺化ギブスサンプリング
周辺化ギブスサンプリングの動機
19
• LDAのギブスサンプリングでは予測分布𝑝 𝑤 𝑑
∗
𝒘, 𝜶, 𝜷 を計算するために事後
分布から 𝒛 𝑠 , 𝜽 𝑠 , 𝝓 𝑠
𝑠=1
𝑆
をサンプリングした
• より効率的なサンプリング方法として、𝜽, 𝝓を積分消去(周辺化)して𝒛のみを
サンプリングする方法がある(逆は不可)
• この方法は周辺化ギブスサンプリングと呼ばれる
• 周辺化ギブスサンプリングでは以下のように予測分布を近似することになる
𝑝 𝑤 𝑑
∗
𝒘, 𝜶, 𝜷 = 𝑝 𝑤 𝑑
∗
, 𝑧 𝑑
∗
, 𝒛 𝒘, 𝜶, 𝜷
𝒛𝑧 𝑑
∗
= 𝑝 𝑤 𝑑
∗
, 𝑧 𝑑
∗
𝒘, 𝒛, 𝜶, 𝜷 𝑝 𝒛 𝒘, 𝜶, 𝜷
𝒛𝑧 𝑑
∗
≈
1
𝑆
𝑝 𝑤 𝑑
∗
, 𝑧 𝑑
∗
𝒘, 𝒛 𝑠
, 𝜶, 𝜷
𝑧 𝑑
∗
𝑆
𝑠=1
• 𝑝 𝑤 𝑑
∗
, 𝑧 𝑑
∗
𝒘, 𝒛, 𝜶, 𝜷 の具体的な形については次ページ以降で導出する
条件付き分布の導出その1
20
◎𝑧 𝑑,𝑖の条件付き分布のみを導出すればよい(𝑤 𝑑,𝑖 = 𝑣とする)
𝑝 𝑧 𝑑,𝑖 = 𝑘 𝑤 𝑑,𝑖, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷
∝ 𝑝 𝑧 𝑑,𝑖 = 𝑘, 𝑤 𝑑,𝑖, 𝒘−𝑑,𝑖
, 𝒛−𝑑,𝑖
𝜶, 𝜷
= 𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 𝑝 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷
∝ 𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖
, 𝒛−𝑑,𝑖
, 𝜶, 𝜷 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖
, 𝒛−𝑑,𝑖
, 𝜶, 𝜷
= 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝝓 𝑘 𝐷𝑖𝑟 𝝓 𝑘|𝜷 + 𝒏 𝑘
−𝑑,𝑖
𝑑𝝓 𝑘 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝜽 𝑑 𝐷𝑖𝑟 𝜽 𝑑|𝜶 + 𝒏 𝑑
−𝑑,𝑖
𝑑𝜽 𝑑
= 𝜙 𝑘,𝑣 𝐷𝑖𝑟 𝝓 𝑘|𝜷 + 𝒏 𝑘
−𝑑,𝑖
𝑑𝝓 𝑘 𝜃 𝑑,𝑘 𝐷𝑖𝑟 𝜽 𝑑|𝜶 + 𝒏 𝑑
−𝑑,𝑖
𝑑𝜽 𝑑
=
𝑛 𝑘,𝑣
−𝑑,𝑖
+ 𝛽𝑣
𝑛 𝑘,𝑣′
−𝑑,𝑖
+ 𝛽𝑣′
𝑉
𝑣′=1
𝑛 𝑑,𝑘
−𝑑,𝑖
+ 𝛼 𝑘
𝑛 𝑑,𝑘′
−𝑑,𝑖
+ 𝛼 𝑘′
𝐾
𝑘′=1
𝑛 𝑘,𝑣
−𝑑,𝑖
, 𝑛 𝑑,𝑘
−𝑑,𝑖
は𝑛 𝑘,𝑣, 𝑛 𝑑,𝑘の計算から𝑧 𝑑,𝑖を
抜いたもの
ここの導出は次ページ
に記載
条件付き分布の導出その2
21
◎𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 の計算に関して
𝑝 𝑤 𝑑,𝑖, 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖
, 𝒛−𝑑,𝑖
, 𝜶, 𝜷
= 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝝓 𝑘 𝑝 𝑤 𝑑′,𝑖′ 𝝓 𝑘
𝑧 𝑑,𝑖=𝑘
𝑑′,𝑖′≠𝑑,𝑖
𝑝 𝝓 𝑘 𝜷 𝑑𝝓 𝑘 × 𝐹 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 ≠ 𝑘 , 𝒛
𝑝 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖
, 𝒛−𝑑,𝑖
, 𝜶, 𝜷
= 𝑝 𝑤 𝑑′,𝑖′ 𝝓 𝑘
𝑧 𝑑,𝑖=𝑘
𝑑′,𝑖′≠𝑑,𝑖
𝑝 𝝓 𝑘 𝜷 𝑑𝝓 𝑘 × 𝐹 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 ≠ 𝑘 , 𝒛
したがって
𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 = 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝝓 𝑘 𝐷𝑖𝑟 𝝓 𝑘|𝜷 + 𝒏 𝑘
−𝑑,𝑖
𝑑𝝓 𝑘
条件付き分布の導出その3
22
◎𝑝 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 の計算に関して
𝑝 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖
, 𝒛−𝑑,𝑖
, 𝜶, 𝜷
= 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝜽 𝑑 𝑝 𝑧 𝑑,𝑖′ 𝜽 𝑑
𝑖′=𝑖
𝑝 𝜽 𝑑 𝜶 𝑑𝜽 𝑑 × 𝐹 𝑤−𝑑,𝑖, 𝒛−𝑑
𝑝 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷
= 𝑝 𝑧 𝑑,𝑖′ 𝜽 𝑑
𝑖′=𝑖
𝑝 𝜽 𝑑 𝜶 𝑑𝜽 𝑑 × 𝐹 𝑤−𝑑,𝑖
, 𝒛−𝑑
したがって
𝑝 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖
, 𝒛−𝑑,𝑖
, 𝜶, 𝜷 = 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝜽 𝑑 𝐷𝑖𝑟 𝜽 𝑑|𝜷 + 𝒏 𝑑
−𝑑,𝑖
𝑑𝜽 𝑑
予測分布の具体的な形
23
◎積み残しにしていた𝑝 𝑤 𝑑
∗
, 𝑧 𝑑
∗
𝒘, 𝒛, 𝜶, 𝜷 の具体的な形に関して
前ページまでの結果から
𝑝 𝑤 𝑑,𝑖 = 𝑣, 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷
= 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷
=
𝑛 𝑘,𝑣
−𝑑,𝑖
+ 𝛽𝑣
𝑛 𝑘,𝑣′
−𝑑,𝑖
+ 𝛽𝑣′
𝑉
𝑣′=1
𝑛 𝑑,𝑘
−𝑑,𝑖
+ 𝛼 𝑘
𝑛 𝑑,𝑘′
−𝑑,𝑖
+ 𝛼 𝑘′
𝐾
𝑘′=1
したがって
𝑝 𝑤 𝑑
∗
= 𝑣, 𝑧 𝑑
∗
= 𝑘 𝒘, 𝒛, 𝜶, 𝜷 =
𝑛 𝑘,𝑣 + 𝛽𝑣
𝑛 𝑘,𝑣′ + 𝛽𝑣′
𝑉
𝑣′=1
𝑛 𝑑,𝑘 + 𝛼 𝑘
𝑛 𝑑,𝑘′ + 𝛼 𝑘′
𝐾
𝑘′=1
LDAの周辺化ギブスサンプリングの擬似コード
24
• 以下に、LDAの周辺化ギブスサンプリングの擬似コードを示す
• 𝜶, 𝜷の更新に関しては3.6節で取り扱う
Step1: 𝜶, 𝜷, 𝒛の初期値 𝜶 0
, 𝜷 0
, 𝒛 0
(=𝑛 𝑘,𝑣, 𝑛 𝑑,𝑘)と正数𝑆を与える
Step2: 𝑠 = 1, ⋯ , 𝑆に対して以下を繰り返す
全ての𝑑, 𝑖 に対して以下を繰り返す
𝑛 𝑘,𝑣
−𝑑,𝑖
, 𝑛 𝑑,𝑘
−𝑑,𝑖
𝑘 = 1, ⋯ , 𝐾 を計算する
𝑛 𝑘,𝑣
−𝑑,𝑖
+𝛽 𝑣
𝑛
𝑘,𝑣′
−𝑑,𝑖
+𝛽 𝑣′
𝑉
𝑣′=1
𝑛 𝑑,𝑘
−𝑑,𝑖
+𝛼 𝑘
𝑛
𝑑,𝑘′
−𝑑,𝑖
+𝛼 𝑘′
𝐾
𝑘′=1
から𝑧 𝑑,𝑖
𝑠
をサンプリング
𝑛 𝑘,𝑣, 𝑛 𝑑,𝑘を更新する
𝜶, 𝜷を更新する:𝜶 𝑠−1
, 𝜷 𝑠−1
→ 𝜶 𝑠
, 𝜷 𝑠

Weitere ähnliche Inhalte

Was ist angesagt?

金融時系列のための深層t過程回帰モデル
金融時系列のための深層t過程回帰モデル金融時系列のための深層t過程回帰モデル
金融時系列のための深層t過程回帰モデルKei Nakagawa
 
機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)Kota Matsui
 
トピックモデルの基礎と応用
トピックモデルの基礎と応用トピックモデルの基礎と応用
トピックモデルの基礎と応用Tomonari Masada
 
トピックモデル
トピックモデルトピックモデル
トピックモデル貴之 八木
 
統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-Shiga University, RIKEN
 
グラフニューラルネットワーク入門
グラフニューラルネットワーク入門グラフニューラルネットワーク入門
グラフニューラルネットワーク入門ryosuke-kojima
 
15分でわかる(範囲の)ベイズ統計学
15分でわかる(範囲の)ベイズ統計学15分でわかる(範囲の)ベイズ統計学
15分でわかる(範囲の)ベイズ統計学Ken'ichi Matsui
 
相関と因果について考える:統計的因果推論、その(不)可能性の中心
相関と因果について考える:統計的因果推論、その(不)可能性の中心相関と因果について考える:統計的因果推論、その(不)可能性の中心
相関と因果について考える:統計的因果推論、その(不)可能性の中心takehikoihayashi
 
ベイズ推論による機械学習入門 第4章
ベイズ推論による機械学習入門 第4章ベイズ推論による機械学習入門 第4章
ベイズ推論による機械学習入門 第4章YosukeAkasaka
 
協調フィルタリング入門
協調フィルタリング入門協調フィルタリング入門
協調フィルタリング入門hoxo_m
 
質的変数の相関・因子分析
質的変数の相関・因子分析質的変数の相関・因子分析
質的変数の相関・因子分析Mitsuo Shimohata
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門hoxo_m
 
最適輸送の解き方
最適輸送の解き方最適輸送の解き方
最適輸送の解き方joisino
 
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」Ken'ichi Matsui
 
バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践智之 村上
 
3.3節 変分近似法(前半)
3.3節 変分近似法(前半)3.3節 変分近似法(前半)
3.3節 変分近似法(前半)tn1031
 
PyData.Tokyo Meetup #21 講演資料「Optuna ハイパーパラメータ最適化フレームワーク」太田 健
PyData.Tokyo Meetup #21 講演資料「Optuna ハイパーパラメータ最適化フレームワーク」太田 健PyData.Tokyo Meetup #21 講演資料「Optuna ハイパーパラメータ最適化フレームワーク」太田 健
PyData.Tokyo Meetup #21 講演資料「Optuna ハイパーパラメータ最適化フレームワーク」太田 健Preferred Networks
 
推薦アルゴリズムの今までとこれから
推薦アルゴリズムの今までとこれから推薦アルゴリズムの今までとこれから
推薦アルゴリズムの今までとこれからcyberagent
 
ベイズファクターとモデル選択
ベイズファクターとモデル選択ベイズファクターとモデル選択
ベイズファクターとモデル選択kazutantan
 

Was ist angesagt? (20)

金融時系列のための深層t過程回帰モデル
金融時系列のための深層t過程回帰モデル金融時系列のための深層t過程回帰モデル
金融時系列のための深層t過程回帰モデル
 
機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)
 
トピックモデルの基礎と応用
トピックモデルの基礎と応用トピックモデルの基礎と応用
トピックモデルの基礎と応用
 
トピックモデル
トピックモデルトピックモデル
トピックモデル
 
統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-
 
グラフニューラルネットワーク入門
グラフニューラルネットワーク入門グラフニューラルネットワーク入門
グラフニューラルネットワーク入門
 
15分でわかる(範囲の)ベイズ統計学
15分でわかる(範囲の)ベイズ統計学15分でわかる(範囲の)ベイズ統計学
15分でわかる(範囲の)ベイズ統計学
 
相関と因果について考える:統計的因果推論、その(不)可能性の中心
相関と因果について考える:統計的因果推論、その(不)可能性の中心相関と因果について考える:統計的因果推論、その(不)可能性の中心
相関と因果について考える:統計的因果推論、その(不)可能性の中心
 
ベイズ推論による機械学習入門 第4章
ベイズ推論による機械学習入門 第4章ベイズ推論による機械学習入門 第4章
ベイズ推論による機械学習入門 第4章
 
協調フィルタリング入門
協調フィルタリング入門協調フィルタリング入門
協調フィルタリング入門
 
2 3.GLMの基礎
2 3.GLMの基礎2 3.GLMの基礎
2 3.GLMの基礎
 
質的変数の相関・因子分析
質的変数の相関・因子分析質的変数の相関・因子分析
質的変数の相関・因子分析
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門
 
最適輸送の解き方
最適輸送の解き方最適輸送の解き方
最適輸送の解き方
 
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
 
バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践
 
3.3節 変分近似法(前半)
3.3節 変分近似法(前半)3.3節 変分近似法(前半)
3.3節 変分近似法(前半)
 
PyData.Tokyo Meetup #21 講演資料「Optuna ハイパーパラメータ最適化フレームワーク」太田 健
PyData.Tokyo Meetup #21 講演資料「Optuna ハイパーパラメータ最適化フレームワーク」太田 健PyData.Tokyo Meetup #21 講演資料「Optuna ハイパーパラメータ最適化フレームワーク」太田 健
PyData.Tokyo Meetup #21 講演資料「Optuna ハイパーパラメータ最適化フレームワーク」太田 健
 
推薦アルゴリズムの今までとこれから
推薦アルゴリズムの今までとこれから推薦アルゴリズムの今までとこれから
推薦アルゴリズムの今までとこれから
 
ベイズファクターとモデル選択
ベイズファクターとモデル選択ベイズファクターとモデル選択
ベイズファクターとモデル選択
 

Andere mochten auch

強化学習勉強会・論文紹介(第50回)Optimal Asset Allocation using Adaptive Dynamic Programming...
強化学習勉強会・論文紹介(第50回)Optimal Asset Allocation using Adaptive Dynamic Programming...強化学習勉強会・論文紹介(第50回)Optimal Asset Allocation using Adaptive Dynamic Programming...
強化学習勉強会・論文紹介(第50回)Optimal Asset Allocation using Adaptive Dynamic Programming...Naoki Nishimura
 
20150730 トピ本第4回 3.4節
20150730 トピ本第4回 3.4節20150730 トピ本第4回 3.4節
20150730 トピ本第4回 3.4節MOTOGRILL
 
3.1節 統計的学習アルゴリズム
3.1節 統計的学習アルゴリズム3.1節 統計的学習アルゴリズム
3.1節 統計的学習アルゴリズムAkito Nakano
 
トピックモデルによる統計的潜在意味解析 2章後半
トピックモデルによる統計的潜在意味解析 2章後半トピックモデルによる統計的潜在意味解析 2章後半
トピックモデルによる統計的潜在意味解析 2章後半Shinya Akiba
 
第3章 変分近似法 LDAにおける変分ベイズ法・周辺化変分ベイズ法
第3章 変分近似法 LDAにおける変分ベイズ法・周辺化変分ベイズ法第3章 変分近似法 LDAにおける変分ベイズ法・周辺化変分ベイズ法
第3章 変分近似法 LDAにおける変分ベイズ法・周辺化変分ベイズ法ksmzn
 
「トピックモデルによる統計的潜在意味解析」読書会「第1章 統計的潜在意味解析とは」
「トピックモデルによる統計的潜在意味解析」読書会「第1章 統計的潜在意味解析とは」「トピックモデルによる統計的潜在意味解析」読書会「第1章 統計的潜在意味解析とは」
「トピックモデルによる統計的潜在意味解析」読書会「第1章 統計的潜在意味解析とは」ksmzn
 
逐次ベイズ学習 - サンプリング近似法の場合 -
逐次ベイズ学習 - サンプリング近似法の場合 -逐次ベイズ学習 - サンプリング近似法の場合 -
逐次ベイズ学習 - サンプリング近似法の場合 -y-uti
 
第二回機械学習アルゴリズム実装会 - LDA
第二回機械学習アルゴリズム実装会 - LDA第二回機械学習アルゴリズム実装会 - LDA
第二回機械学習アルゴリズム実装会 - LDAMasayuki Isobe
 
Prism.Formsについて
Prism.FormsについてPrism.Formsについて
Prism.Formsについて一希 大田
 
AutoEncoderで特徴抽出
AutoEncoderで特徴抽出AutoEncoderで特徴抽出
AutoEncoderで特徴抽出Kai Sasaki
 
TensorFlowで逆強化学習
TensorFlowで逆強化学習TensorFlowで逆強化学習
TensorFlowで逆強化学習Mitsuhisa Ohta
 

Andere mochten auch (11)

強化学習勉強会・論文紹介(第50回)Optimal Asset Allocation using Adaptive Dynamic Programming...
強化学習勉強会・論文紹介(第50回)Optimal Asset Allocation using Adaptive Dynamic Programming...強化学習勉強会・論文紹介(第50回)Optimal Asset Allocation using Adaptive Dynamic Programming...
強化学習勉強会・論文紹介(第50回)Optimal Asset Allocation using Adaptive Dynamic Programming...
 
20150730 トピ本第4回 3.4節
20150730 トピ本第4回 3.4節20150730 トピ本第4回 3.4節
20150730 トピ本第4回 3.4節
 
3.1節 統計的学習アルゴリズム
3.1節 統計的学習アルゴリズム3.1節 統計的学習アルゴリズム
3.1節 統計的学習アルゴリズム
 
トピックモデルによる統計的潜在意味解析 2章後半
トピックモデルによる統計的潜在意味解析 2章後半トピックモデルによる統計的潜在意味解析 2章後半
トピックモデルによる統計的潜在意味解析 2章後半
 
第3章 変分近似法 LDAにおける変分ベイズ法・周辺化変分ベイズ法
第3章 変分近似法 LDAにおける変分ベイズ法・周辺化変分ベイズ法第3章 変分近似法 LDAにおける変分ベイズ法・周辺化変分ベイズ法
第3章 変分近似法 LDAにおける変分ベイズ法・周辺化変分ベイズ法
 
「トピックモデルによる統計的潜在意味解析」読書会「第1章 統計的潜在意味解析とは」
「トピックモデルによる統計的潜在意味解析」読書会「第1章 統計的潜在意味解析とは」「トピックモデルによる統計的潜在意味解析」読書会「第1章 統計的潜在意味解析とは」
「トピックモデルによる統計的潜在意味解析」読書会「第1章 統計的潜在意味解析とは」
 
逐次ベイズ学習 - サンプリング近似法の場合 -
逐次ベイズ学習 - サンプリング近似法の場合 -逐次ベイズ学習 - サンプリング近似法の場合 -
逐次ベイズ学習 - サンプリング近似法の場合 -
 
第二回機械学習アルゴリズム実装会 - LDA
第二回機械学習アルゴリズム実装会 - LDA第二回機械学習アルゴリズム実装会 - LDA
第二回機械学習アルゴリズム実装会 - LDA
 
Prism.Formsについて
Prism.FormsについてPrism.Formsについて
Prism.Formsについて
 
AutoEncoderで特徴抽出
AutoEncoderで特徴抽出AutoEncoderで特徴抽出
AutoEncoderで特徴抽出
 
TensorFlowで逆強化学習
TensorFlowで逆強化学習TensorFlowで逆強化学習
TensorFlowで逆強化学習
 

Ähnlich wie 読書会 「トピックモデルによる統計的潜在意味解析」 第2回 3.2節 サンプリング近似法

PRML第6章「カーネル法」
PRML第6章「カーネル法」PRML第6章「カーネル法」
PRML第6章「カーネル法」Keisuke Sugawara
 
Dynamic Routing Between Capsules
Dynamic Routing Between CapsulesDynamic Routing Between Capsules
Dynamic Routing Between Capsulesyukihiro domae
 
Blow up in a degenerate keller--segel system
Blow up in a degenerate keller--segel systemBlow up in a degenerate keller--segel system
Blow up in a degenerate keller--segel systemTakahiro Hashira
 
退化拡散項をもつ放物・放物型Keller--Segel系の解の有限時刻爆発について
退化拡散項をもつ放物・放物型Keller--Segel系の解の有限時刻爆発について退化拡散項をもつ放物・放物型Keller--Segel系の解の有限時刻爆発について
退化拡散項をもつ放物・放物型Keller--Segel系の解の有限時刻爆発についてTakahiro Hashira
 
速習情報幾何 2018_10_25
速習情報幾何 2018_10_25速習情報幾何 2018_10_25
速習情報幾何 2018_10_25Arithmer Inc.
 
暗号技術の実装と数学
暗号技術の実装と数学暗号技術の実装と数学
暗号技術の実装と数学MITSUNARI Shigeo
 
退化型Keller--Segel系の解の有限時刻爆発について
退化型Keller--Segel系の解の有限時刻爆発について退化型Keller--Segel系の解の有限時刻爆発について
退化型Keller--Segel系の解の有限時刻爆発についてTakahiro Hashira
 
PRML第9章「混合モデルとEM」
PRML第9章「混合モデルとEM」PRML第9章「混合モデルとEM」
PRML第9章「混合モデルとEM」Keisuke Sugawara
 
第4回数理モデル勉強会(日本植物学会第84回大会関連集会)
第4回数理モデル勉強会(日本植物学会第84回大会関連集会)第4回数理モデル勉強会(日本植物学会第84回大会関連集会)
第4回数理モデル勉強会(日本植物学会第84回大会関連集会)TakaakiYonekura
 
強束縛模型における多体電子状態の第2量子化表現
強束縛模型における多体電子状態の第2量子化表現強束縛模型における多体電子状態の第2量子化表現
強束縛模型における多体電子状態の第2量子化表現Kazu Ghalamkari
 
強化学習その3
強化学習その3強化学習その3
強化学習その3nishio
 
Prml 最尤推定からベイズ曲線フィッティング
Prml 最尤推定からベイズ曲線フィッティングPrml 最尤推定からベイズ曲線フィッティング
Prml 最尤推定からベイズ曲線フィッティングtakutori
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)Takao Yamanaka
 
表現論 ゼミ資料
表現論 ゼミ資料表現論 ゼミ資料
表現論 ゼミ資料HanpenRobot
 
PRML復々習レーン#9 6.3-6.3.1
PRML復々習レーン#9 6.3-6.3.1PRML復々習レーン#9 6.3-6.3.1
PRML復々習レーン#9 6.3-6.3.1sleepy_yoshi
 
SMO徹底入門 - SVMをちゃんと実装する
SMO徹底入門 - SVMをちゃんと実装するSMO徹底入門 - SVMをちゃんと実装する
SMO徹底入門 - SVMをちゃんと実装するsleepy_yoshi
 
グレブナー基底輪読会 #1 ―準備体操の巻―
グレブナー基底輪読会 #1 ―準備体操の巻―グレブナー基底輪読会 #1 ―準備体操の巻―
グレブナー基底輪読会 #1 ―準備体操の巻―Yutaka Nagahata
 
オンライン学習 : Online learning
オンライン学習 : Online learningオンライン学習 : Online learning
オンライン学習 : Online learningDaiki Tanaka
 
A Brief Survey of Schrödinger Bridge (Part I)
A Brief Survey of Schrödinger Bridge (Part I)A Brief Survey of Schrödinger Bridge (Part I)
A Brief Survey of Schrödinger Bridge (Part I)Morpho, Inc.
 
読書会 「トピックモデルによる統計的潜在意味解析」 第8回 3.6節 Dirichlet分布のパラメータ推定
読書会 「トピックモデルによる統計的潜在意味解析」 第8回 3.6節 Dirichlet分布のパラメータ推定読書会 「トピックモデルによる統計的潜在意味解析」 第8回 3.6節 Dirichlet分布のパラメータ推定
読書会 「トピックモデルによる統計的潜在意味解析」 第8回 3.6節 Dirichlet分布のパラメータ推定健児 青木
 

Ähnlich wie 読書会 「トピックモデルによる統計的潜在意味解析」 第2回 3.2節 サンプリング近似法 (20)

PRML第6章「カーネル法」
PRML第6章「カーネル法」PRML第6章「カーネル法」
PRML第6章「カーネル法」
 
Dynamic Routing Between Capsules
Dynamic Routing Between CapsulesDynamic Routing Between Capsules
Dynamic Routing Between Capsules
 
Blow up in a degenerate keller--segel system
Blow up in a degenerate keller--segel systemBlow up in a degenerate keller--segel system
Blow up in a degenerate keller--segel system
 
退化拡散項をもつ放物・放物型Keller--Segel系の解の有限時刻爆発について
退化拡散項をもつ放物・放物型Keller--Segel系の解の有限時刻爆発について退化拡散項をもつ放物・放物型Keller--Segel系の解の有限時刻爆発について
退化拡散項をもつ放物・放物型Keller--Segel系の解の有限時刻爆発について
 
速習情報幾何 2018_10_25
速習情報幾何 2018_10_25速習情報幾何 2018_10_25
速習情報幾何 2018_10_25
 
暗号技術の実装と数学
暗号技術の実装と数学暗号技術の実装と数学
暗号技術の実装と数学
 
退化型Keller--Segel系の解の有限時刻爆発について
退化型Keller--Segel系の解の有限時刻爆発について退化型Keller--Segel系の解の有限時刻爆発について
退化型Keller--Segel系の解の有限時刻爆発について
 
PRML第9章「混合モデルとEM」
PRML第9章「混合モデルとEM」PRML第9章「混合モデルとEM」
PRML第9章「混合モデルとEM」
 
第4回数理モデル勉強会(日本植物学会第84回大会関連集会)
第4回数理モデル勉強会(日本植物学会第84回大会関連集会)第4回数理モデル勉強会(日本植物学会第84回大会関連集会)
第4回数理モデル勉強会(日本植物学会第84回大会関連集会)
 
強束縛模型における多体電子状態の第2量子化表現
強束縛模型における多体電子状態の第2量子化表現強束縛模型における多体電子状態の第2量子化表現
強束縛模型における多体電子状態の第2量子化表現
 
強化学習その3
強化学習その3強化学習その3
強化学習その3
 
Prml 最尤推定からベイズ曲線フィッティング
Prml 最尤推定からベイズ曲線フィッティングPrml 最尤推定からベイズ曲線フィッティング
Prml 最尤推定からベイズ曲線フィッティング
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)
 
表現論 ゼミ資料
表現論 ゼミ資料表現論 ゼミ資料
表現論 ゼミ資料
 
PRML復々習レーン#9 6.3-6.3.1
PRML復々習レーン#9 6.3-6.3.1PRML復々習レーン#9 6.3-6.3.1
PRML復々習レーン#9 6.3-6.3.1
 
SMO徹底入門 - SVMをちゃんと実装する
SMO徹底入門 - SVMをちゃんと実装するSMO徹底入門 - SVMをちゃんと実装する
SMO徹底入門 - SVMをちゃんと実装する
 
グレブナー基底輪読会 #1 ―準備体操の巻―
グレブナー基底輪読会 #1 ―準備体操の巻―グレブナー基底輪読会 #1 ―準備体操の巻―
グレブナー基底輪読会 #1 ―準備体操の巻―
 
オンライン学習 : Online learning
オンライン学習 : Online learningオンライン学習 : Online learning
オンライン学習 : Online learning
 
A Brief Survey of Schrödinger Bridge (Part I)
A Brief Survey of Schrödinger Bridge (Part I)A Brief Survey of Schrödinger Bridge (Part I)
A Brief Survey of Schrödinger Bridge (Part I)
 
読書会 「トピックモデルによる統計的潜在意味解析」 第8回 3.6節 Dirichlet分布のパラメータ推定
読書会 「トピックモデルによる統計的潜在意味解析」 第8回 3.6節 Dirichlet分布のパラメータ推定読書会 「トピックモデルによる統計的潜在意味解析」 第8回 3.6節 Dirichlet分布のパラメータ推定
読書会 「トピックモデルによる統計的潜在意味解析」 第8回 3.6節 Dirichlet分布のパラメータ推定
 

読書会 「トピックモデルによる統計的潜在意味解析」 第2回 3.2節 サンプリング近似法

  • 2. 目次 2 • 前回の復習(条件付き独立性) • ギブスサンプリングとは? • 3.2.1節 ギブスサンプリング • 3.2.2節 周辺化ギブスサンプリング • 3.2.3節 LDAのギブスサンプリング • 3.2.4節 LDAの周辺化ギブスサンプリング 今回は時間の都合上省略
  • 3. 目次 3 • 前回の復習(条件付き独立性) • ギブスサンプリングとは? • 3.2.1節 ギブスサンプリング • 3.2.2節 周辺化ギブスサンプリング • 3.2.3節 LDAのギブスサンプリング • 3.2.4節 LDAの周辺化ギブスサンプリング
  • 4. グラフィカルモデル? or 数式? 4 前回の@ksmznさんの資料から引用 • 前回はグラフィカルモデルを参照して条件付き分布を導出した • 今回は数式から直接条件付き分布を導出してみる
  • 5. 数式からの条件付き独立性の導出(p.22の図1.7) 5 𝑏 𝑎 𝑐 𝑎 𝑏 𝑐 𝑎 𝑏 𝑐 tail-to-tail head-to-tail head-to-head 𝑝 𝑎, 𝑏, 𝑐 = 𝑝 𝑎|𝑐 𝑝 𝑏|𝑐 𝑝 𝑐 𝑝 𝑎, 𝑏|𝑐 ∝ 𝑝 𝑎 𝑐 𝑝 𝑏 𝑐 ⇒ 𝑎 ⊥ 𝑏|𝑐 𝑝 𝑎, 𝑏, 𝑐 = 𝑝 𝑏|𝑐 𝑝 𝑐|𝑎 𝑝 𝑎 𝑝 𝑎, 𝑏|𝑐 ∝ 𝑝 𝑏|𝑐 𝑝 𝑐|𝑎 𝑝 𝑎 ⇒ 𝑎 ⊥ 𝑏|𝑐 𝑝 𝑎, 𝑏, 𝑐 = 𝑝 𝑐|𝑎, 𝑏 𝑝 𝑎 𝑝 𝑏 𝑝 𝑎, 𝑏|𝑐 ∝ 𝑝 𝑐|𝑎, 𝑏 𝑝 𝑎 𝑝 𝑏 ⇒ 𝑎 ⊥ 𝑏|𝑐 グラフィカル モデル 数式 条件付き 独立性
  • 6. 数式からの条件付き独立性の導出(p.35の図2.4) 6 𝜷𝜶 LDAの生成モデル 𝑝 𝑧 𝑑,𝑖|𝒘, 𝒛−𝑑,𝑖, 𝜽, 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖, 𝝓 𝑝 𝑧 𝑑,𝑖 𝜽 𝑑 ⇒ 𝑝 𝑧 𝑑,𝑖|𝑤 𝑑,𝑖, 𝜽 𝑑, 𝝓 𝑝 𝜽 𝑑|𝒘, 𝒛, 𝜽−𝑑 , 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝒛 𝑑|𝜽 𝑑 𝑝 𝜽 𝑑|𝜶 ⇒ 𝑝 𝜽 𝑑|𝒛 𝑑, 𝜶 𝑝 𝝓 𝑘 𝒘, 𝒛, 𝜽, 𝝓−𝑘, 𝜶, 𝜷 ∝ 𝑝 𝒘 𝒛, 𝝓 𝑝 𝝓 𝑘 𝜷 ⇒ 𝑝 𝝓 𝑘 𝒘, 𝒛, 𝝓−𝑘, 𝜷 𝝓 𝑘𝜽 𝑑 𝑧 𝑑,𝑖 𝑤 𝑑,𝑖 𝐾𝑛 𝑑 𝑀 𝑝 𝒘, 𝒛, 𝜽, 𝝓 𝜶, 𝜷 = 𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖, 𝝓 𝑝 𝑧 𝑑,𝑖 𝜽 𝑑 𝑑,𝑖 𝑝 𝜽 𝑑 𝜶 𝑑 𝑝 𝝓 𝑘 𝜷 𝑘 各確率変数の条件付き分布を数式から 導出してみる 1段目と3段目の式に関しては 実際よりも冗長
  • 7. 数式からの条件付き独立性の導出(p.35の図2.4) 7 𝜷𝜶 LDAの生成モデル 𝑝 𝑧 𝑑,𝑖 = 𝑘|𝒘, 𝑧−𝑑,𝑖 , 𝜽, 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 𝝓 𝑘 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝜽 𝑑 ⇒ 𝑝 𝑧 𝑑,𝑖 = 𝑘|𝑤 𝑑,𝑖, 𝜽 𝑑, 𝝓 𝑘 𝑝 𝜽 𝑑|𝒘, 𝒛, 𝜽−𝑑, 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝒛 𝑑|𝜽 𝑑 𝑝 𝜽 𝑑|𝜶 ⇒ 𝑝 𝜽 𝑑|𝒛 𝑑, 𝜶 𝑝 𝝓 𝑘 𝒘, 𝒛, 𝜽, 𝝓−𝑘 , 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 𝝓 𝑘 𝑧 𝑑,𝑖=𝑘 𝑝 𝝓 𝑘 𝜷 ⇒ 𝑝 𝝓 𝑘 𝑤 𝑑,𝑖|𝑧 𝑑,𝑖 = 𝑘 , 𝒛, 𝜷 𝝓 𝑘𝜽 𝑑 𝑧 𝑑,𝑖 𝑤 𝑑,𝑖 𝐾𝑛 𝑑 𝑀 𝑝 𝒘, 𝒛, 𝜽, 𝝓 𝜶, 𝜷 = 𝑝 𝑤 𝑑,𝑖 𝝓 𝑧 𝑑,𝑖 𝑝 𝑧 𝑑,𝑖 𝜽 𝑑 𝑑,𝑖 𝑝 𝜽 𝑑 𝜶 𝑑 𝑝 𝝓 𝑘 𝜷 𝑘 𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖, 𝝓 = 𝑝 𝑤 𝑑,𝑖 𝝓 𝑧 𝑑,𝑖 という構造を既知とすると…
  • 8. 目次 8 • 前回の復習(条件付き独立性) • ギブスサンプリングとは? • 3.2.1節 ギブスサンプリング • 3.2.2節 周辺化ギブスサンプリング • 3.2.3節 LDAのギブスサンプリング • 3.2.4節 LDAの周辺化ギブスサンプリング
  • 9. ギブスサンプリングのアルゴリズム概要 9 例えば 𝑝 𝑎, 𝑏, 𝑐|𝜃 から直接乱数を生成できないようなときでも、以下の手順(ギブスサンプリング)に よって上記分布からの乱数を生成することができる Step1: 𝑏, 𝑐の初期値𝑏 0 , 𝑐 0 と正数𝑆を与える Step2: 𝑠 = 1, ⋯ , 𝑆に対して以下を繰り返す 𝑝 𝑎 𝑠 |𝑏 𝑠−1 , 𝑐 𝑠−1 , 𝜃 から𝑎 𝑠 をサンプリング 𝑝 𝑏 𝑠 |𝑎 𝑠 , 𝑐 𝑠−1 , 𝜃 から𝑏 𝑠 をサンプリング 𝑝 𝑐 𝑠 |𝑎 𝑠 , 𝑏 𝑠 , 𝜃 から𝑐 𝑠 をサンプリング 上記の手順によって生成された乱数が𝑝 𝑎, 𝑏, 𝑐|𝜃 に従う理論的説明は、例えば • 伊庭他(2005)、『計算統計Ⅱマルコフ連鎖モンテカルロ法とその周辺 (統計科学のフロンティア12)』、岩波書店 を参照
  • 10. ギブスサンプリングのアルゴリズム概要 10 • もちろん上記の手順を実行するためには各確率変数の条件付き分布からの サンプリングが可能でなければならない (LDAの場合は条件付き分布が解析的に導出可能である) • 𝑎, 𝑏, 𝑐はそれぞれベクトル(多次元)であっても構わない(その場合はブロック 化ギブスサンプリングと呼ばれる) • 𝑎 𝑠 , 𝑏 𝑠 , 𝑐 𝑠 s=1 S を利用して、例えば𝑝 𝑎, 𝑏, 𝑐|𝜃 に関する任意の関数 𝑓 𝑎, 𝑏, 𝑐 の期待値を近似することができる 𝑝 𝑎, 𝑏, 𝑐|𝜃 𝑓 𝑎, 𝑏, 𝑐 𝑑𝑎𝑑𝑏𝑑𝑐 ≈ 1 𝑆 𝑓 𝑎 𝑠 , 𝑏 𝑠 , 𝑐 𝑠 𝑆 𝑠=1 • 実際は、上記のように𝑠 = 1から𝑆までの全てのサンプルを使わずに、初期値 に依存した最初の方のサンプルを捨てることがある このサンプルを捨てる期間を破棄する期間(burn-in period)と呼ぶ
  • 11. 目次 11 • 前回の復習(条件付き独立性) • ギブスサンプリングとは? • 3.2.1節 ギブスサンプリング • 3.2.2節 周辺化ギブスサンプリング • 3.2.3節 LDAのギブスサンプリング • 3.2.4節 LDAの周辺化ギブスサンプリング
  • 12. ギブスサンプリングの動機 12 • LDAのベイズ推定では予測分布以前に事後分布のサンプル生成すら難しい ◎予測分布(積分計算が難しい) 𝑝 𝑤 𝑑 ∗ 𝒘, 𝜶, 𝜷 = 𝑝 𝑤 𝑑 ∗ , 𝑧 𝑑 ∗ , 𝒛, 𝜽, 𝝓 𝒘, 𝜶, 𝜷 𝒛𝑧 𝑑 ∗ 𝑑𝜽𝑑𝝓 = 𝑝 𝑤 𝑑 ∗ 𝝓 𝑧 𝑑 ∗ 𝑝 𝑧 𝑑 ∗ 𝜽 𝑑 𝑝 𝒛, 𝜽, 𝝓 𝒘, 𝜶, 𝜷 𝒛𝑧 𝑑 ∗ 𝑑𝜽𝑑𝝓 ◎事後分布からのサンプリングによる近似 (事後分布の導出が困難&サンプル生成が難しい) 𝑝 𝑤 𝑑 ∗ 𝒘, 𝜶, 𝜷 ≈ 1 𝑆 𝑝 𝑤 𝑑 ∗ 𝝓 𝑧 𝑑 ∗ 𝑠 𝑝 𝑧 𝑑 ∗ 𝜽 𝑑 𝑠 𝑧 𝑑 ∗ 𝑆 𝑠=1 • LDAの場合、 𝒛 𝑠 , 𝜽 𝑠 , 𝝓 𝑠 を一度にサンプリングするのは難しいが、 𝒛 𝑠 , 𝜽 𝑠 , 𝝓 𝑠 をそれぞれ個別にサンプリングすることは容易である(条件付き 分布が解析的に導出可能である) ギブスサンプリングによる近似が可能
  • 13. 条件付き分布の導出その1 13 ◎𝑧 𝑑,𝑖について(𝑤 𝑑,𝑖 = 𝑣とする) 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝑤 𝑑,𝑖 = 𝑣, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜽, 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝝓 𝑘 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝜽 𝑑 = 𝜙 𝑘,𝑣 𝜃 𝑑,𝑘 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝑤 𝑑,𝑖 = 𝑣, 𝒘−𝑑,𝑖 , 𝒛−𝑑,𝑖 , 𝜽, 𝝓, 𝜶, 𝜷 = 1𝐾 𝑘=1 となるように正規化すると 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝑤 𝑑,𝑖 = 𝑣, 𝒘−𝑑,𝑖 , 𝒛−𝑑,𝑖 , 𝜽, 𝝓, 𝜶, 𝜷 = 𝜙 𝑘,𝑣 𝜃 𝑑,𝑘 𝜙 𝑘′,𝑣 𝜃 𝑑,𝑘′ 𝐾 𝑘′=1
  • 14. 条件付き分布の導出その2 14 ◎𝜽 𝑑について 𝑝 𝜽 𝑑 𝒘, 𝒛, 𝜽−𝑑 , 𝝓, 𝜶, 𝜷 ∝ 𝑝 𝒛 𝑑 𝜽 𝑑 𝑝 𝜽 𝑑 𝜶 ∝ 𝜃 𝑘 𝛼 𝑘+𝑛 𝑑,𝑘−1 𝐾 𝑘=1 ここで𝑛 𝑑,𝑘は文書𝑑の中でトピック𝑘に属する単語の数とする すなわち𝑛 𝑑,𝑘 = 𝛿 𝑧 𝑑,𝑖 = 𝑘 𝑛 𝑑 𝑖=1 上の式から𝑝 𝜽 𝑑 𝒘, 𝒛, 𝜽−𝑑 , 𝝓, 𝜶, 𝜷 はディリクレ分布の形をしているので 𝑝 𝜽 𝑑 𝒘, 𝒛, 𝜽−𝑑, 𝝓, 𝜶, 𝜷 = 𝐷𝑖𝑟 𝜽 𝑑|𝜶 + 𝒏 𝑑 ,  𝒏 𝑑 = 𝑛 𝑑,1, ⋯ , 𝑛 𝑑,𝐾
  • 15. 条件付き分布の導出その3 15 ◎𝝓 𝑘について 𝑝 𝝓 𝑘 𝒘, 𝒛, 𝜽, 𝝓−𝑘, 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝝓 𝑘 𝑧 𝑑,𝑖=𝑘 𝑝 𝝓 𝑘 𝜷 ∝ 𝜙 𝑣 𝛽 𝑣+𝑛 𝑘,𝑣−1 𝑉 𝑣=1 ここで𝑛 𝑘,𝑣は全文書の中でトピック𝑘に属する単語𝑣の数とする すなわち𝑛 𝑘,𝑣 = 𝛿 𝑧 𝑑,𝑖 = 𝑘, 𝑤 𝑑,𝑖 = 𝑣 𝑛 𝑑 𝑖=1 𝑀 𝑑=1 上の式から𝑝 𝝓 𝑘 𝒘, 𝒛, 𝜽, 𝝓−𝑘 , 𝜶, 𝜷 はディリクレ分布の形をしているので 𝑝 𝝓 𝑘 𝒘, 𝒛, 𝜽, 𝝓−𝑘, 𝜶, 𝜷 = 𝐷𝑖𝑟 𝝓 𝑘|𝜷 + 𝒏 𝑘 ,  𝒏 𝑘 = 𝑛 𝑘,1, ⋯ , 𝑛 𝑘,𝑉
  • 16. 条件付き分布の導出まとめ 16 • どの確率変数𝑧 𝑑,𝑖, 𝜽 𝑑, 𝝓 𝑘に関しても 事後分布 ↓ 結合分布(生成モデル) ↓ 定数項を除外 のステップを踏むことにより条件付き事後分布を導出することができた
  • 17. LDAのギブスサンプリングの擬似コード 17 • 以下に、LDAのギブスサンプリングの擬似コードを示す • 𝜶, 𝜷の更新に関しては3.6節で取り扱う Step1: 𝜶, 𝜷, 𝜽, 𝝓の初期値𝜶 0 , 𝜷 0 , 𝜽 0 , 𝝓 0 と正数𝑆を与える Step2: 𝑠 = 1, ⋯ , 𝑆に対して以下を繰り返す 全ての𝑧 𝑑,𝑖に対して𝑝 𝑧 𝑑,𝑖|𝑤 𝑑,𝑖, 𝜽 𝑑 𝑠−1 , 𝝓 𝑘 𝑠−1 から𝑧 𝑑,𝑖 𝑠 をサンプリング 全ての𝜽 𝑑に対して𝑝 𝜽 𝑑|𝒛 𝑑 𝑠 , 𝜶 から𝜽 𝑑 𝑠 をサンプリング 全ての𝝓 𝑘に対して𝑝 𝝓 𝑘 𝑤 𝑑,𝑖|𝑧 𝑑,𝑖 𝑠 = 𝑘 , 𝒛 𝑠 , 𝜷 から𝝓 𝑘 𝑠 をサンプリング 𝜶, 𝜷を更新する:𝜶 𝑠−1 , 𝜷 𝑠−1 → 𝜶 𝑠 , 𝜷 𝑠
  • 18. 目次 18 • 前回の復習(条件付き独立性) • ギブスサンプリングとは? • 3.2.1節 ギブスサンプリング • 3.2.2節 周辺化ギブスサンプリング • 3.2.3節 LDAのギブスサンプリング • 3.2.4節 LDAの周辺化ギブスサンプリング
  • 19. 周辺化ギブスサンプリングの動機 19 • LDAのギブスサンプリングでは予測分布𝑝 𝑤 𝑑 ∗ 𝒘, 𝜶, 𝜷 を計算するために事後 分布から 𝒛 𝑠 , 𝜽 𝑠 , 𝝓 𝑠 𝑠=1 𝑆 をサンプリングした • より効率的なサンプリング方法として、𝜽, 𝝓を積分消去(周辺化)して𝒛のみを サンプリングする方法がある(逆は不可) • この方法は周辺化ギブスサンプリングと呼ばれる • 周辺化ギブスサンプリングでは以下のように予測分布を近似することになる 𝑝 𝑤 𝑑 ∗ 𝒘, 𝜶, 𝜷 = 𝑝 𝑤 𝑑 ∗ , 𝑧 𝑑 ∗ , 𝒛 𝒘, 𝜶, 𝜷 𝒛𝑧 𝑑 ∗ = 𝑝 𝑤 𝑑 ∗ , 𝑧 𝑑 ∗ 𝒘, 𝒛, 𝜶, 𝜷 𝑝 𝒛 𝒘, 𝜶, 𝜷 𝒛𝑧 𝑑 ∗ ≈ 1 𝑆 𝑝 𝑤 𝑑 ∗ , 𝑧 𝑑 ∗ 𝒘, 𝒛 𝑠 , 𝜶, 𝜷 𝑧 𝑑 ∗ 𝑆 𝑠=1 • 𝑝 𝑤 𝑑 ∗ , 𝑧 𝑑 ∗ 𝒘, 𝒛, 𝜶, 𝜷 の具体的な形については次ページ以降で導出する
  • 20. 条件付き分布の導出その1 20 ◎𝑧 𝑑,𝑖の条件付き分布のみを導出すればよい(𝑤 𝑑,𝑖 = 𝑣とする) 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝑤 𝑑,𝑖, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 ∝ 𝑝 𝑧 𝑑,𝑖 = 𝑘, 𝑤 𝑑,𝑖, 𝒘−𝑑,𝑖 , 𝒛−𝑑,𝑖 𝜶, 𝜷 = 𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 𝑝 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 ∝ 𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖 , 𝒛−𝑑,𝑖 , 𝜶, 𝜷 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖 , 𝒛−𝑑,𝑖 , 𝜶, 𝜷 = 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝝓 𝑘 𝐷𝑖𝑟 𝝓 𝑘|𝜷 + 𝒏 𝑘 −𝑑,𝑖 𝑑𝝓 𝑘 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝜽 𝑑 𝐷𝑖𝑟 𝜽 𝑑|𝜶 + 𝒏 𝑑 −𝑑,𝑖 𝑑𝜽 𝑑 = 𝜙 𝑘,𝑣 𝐷𝑖𝑟 𝝓 𝑘|𝜷 + 𝒏 𝑘 −𝑑,𝑖 𝑑𝝓 𝑘 𝜃 𝑑,𝑘 𝐷𝑖𝑟 𝜽 𝑑|𝜶 + 𝒏 𝑑 −𝑑,𝑖 𝑑𝜽 𝑑 = 𝑛 𝑘,𝑣 −𝑑,𝑖 + 𝛽𝑣 𝑛 𝑘,𝑣′ −𝑑,𝑖 + 𝛽𝑣′ 𝑉 𝑣′=1 𝑛 𝑑,𝑘 −𝑑,𝑖 + 𝛼 𝑘 𝑛 𝑑,𝑘′ −𝑑,𝑖 + 𝛼 𝑘′ 𝐾 𝑘′=1 𝑛 𝑘,𝑣 −𝑑,𝑖 , 𝑛 𝑑,𝑘 −𝑑,𝑖 は𝑛 𝑘,𝑣, 𝑛 𝑑,𝑘の計算から𝑧 𝑑,𝑖を 抜いたもの ここの導出は次ページ に記載
  • 21. 条件付き分布の導出その2 21 ◎𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 の計算に関して 𝑝 𝑤 𝑑,𝑖, 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖 , 𝒛−𝑑,𝑖 , 𝜶, 𝜷 = 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝝓 𝑘 𝑝 𝑤 𝑑′,𝑖′ 𝝓 𝑘 𝑧 𝑑,𝑖=𝑘 𝑑′,𝑖′≠𝑑,𝑖 𝑝 𝝓 𝑘 𝜷 𝑑𝝓 𝑘 × 𝐹 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 ≠ 𝑘 , 𝒛 𝑝 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖 , 𝒛−𝑑,𝑖 , 𝜶, 𝜷 = 𝑝 𝑤 𝑑′,𝑖′ 𝝓 𝑘 𝑧 𝑑,𝑖=𝑘 𝑑′,𝑖′≠𝑑,𝑖 𝑝 𝝓 𝑘 𝜷 𝑑𝝓 𝑘 × 𝐹 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 ≠ 𝑘 , 𝒛 したがって 𝑝 𝑤 𝑑,𝑖 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 = 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝝓 𝑘 𝐷𝑖𝑟 𝝓 𝑘|𝜷 + 𝒏 𝑘 −𝑑,𝑖 𝑑𝝓 𝑘
  • 22. 条件付き分布の導出その3 22 ◎𝑝 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 の計算に関して 𝑝 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖 , 𝒛−𝑑,𝑖 , 𝜶, 𝜷 = 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝜽 𝑑 𝑝 𝑧 𝑑,𝑖′ 𝜽 𝑑 𝑖′=𝑖 𝑝 𝜽 𝑑 𝜶 𝑑𝜽 𝑑 × 𝐹 𝑤−𝑑,𝑖, 𝒛−𝑑 𝑝 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 = 𝑝 𝑧 𝑑,𝑖′ 𝜽 𝑑 𝑖′=𝑖 𝑝 𝜽 𝑑 𝜶 𝑑𝜽 𝑑 × 𝐹 𝑤−𝑑,𝑖 , 𝒛−𝑑 したがって 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖 , 𝒛−𝑑,𝑖 , 𝜶, 𝜷 = 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝜽 𝑑 𝐷𝑖𝑟 𝜽 𝑑|𝜷 + 𝒏 𝑑 −𝑑,𝑖 𝑑𝜽 𝑑
  • 23. 予測分布の具体的な形 23 ◎積み残しにしていた𝑝 𝑤 𝑑 ∗ , 𝑧 𝑑 ∗ 𝒘, 𝒛, 𝜶, 𝜷 の具体的な形に関して 前ページまでの結果から 𝑝 𝑤 𝑑,𝑖 = 𝑣, 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 = 𝑝 𝑤 𝑑,𝑖 = 𝑣 𝑧 𝑑,𝑖 = 𝑘, 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 𝑝 𝑧 𝑑,𝑖 = 𝑘 𝒘−𝑑,𝑖, 𝒛−𝑑,𝑖, 𝜶, 𝜷 = 𝑛 𝑘,𝑣 −𝑑,𝑖 + 𝛽𝑣 𝑛 𝑘,𝑣′ −𝑑,𝑖 + 𝛽𝑣′ 𝑉 𝑣′=1 𝑛 𝑑,𝑘 −𝑑,𝑖 + 𝛼 𝑘 𝑛 𝑑,𝑘′ −𝑑,𝑖 + 𝛼 𝑘′ 𝐾 𝑘′=1 したがって 𝑝 𝑤 𝑑 ∗ = 𝑣, 𝑧 𝑑 ∗ = 𝑘 𝒘, 𝒛, 𝜶, 𝜷 = 𝑛 𝑘,𝑣 + 𝛽𝑣 𝑛 𝑘,𝑣′ + 𝛽𝑣′ 𝑉 𝑣′=1 𝑛 𝑑,𝑘 + 𝛼 𝑘 𝑛 𝑑,𝑘′ + 𝛼 𝑘′ 𝐾 𝑘′=1
  • 24. LDAの周辺化ギブスサンプリングの擬似コード 24 • 以下に、LDAの周辺化ギブスサンプリングの擬似コードを示す • 𝜶, 𝜷の更新に関しては3.6節で取り扱う Step1: 𝜶, 𝜷, 𝒛の初期値 𝜶 0 , 𝜷 0 , 𝒛 0 (=𝑛 𝑘,𝑣, 𝑛 𝑑,𝑘)と正数𝑆を与える Step2: 𝑠 = 1, ⋯ , 𝑆に対して以下を繰り返す 全ての𝑑, 𝑖 に対して以下を繰り返す 𝑛 𝑘,𝑣 −𝑑,𝑖 , 𝑛 𝑑,𝑘 −𝑑,𝑖 𝑘 = 1, ⋯ , 𝐾 を計算する 𝑛 𝑘,𝑣 −𝑑,𝑖 +𝛽 𝑣 𝑛 𝑘,𝑣′ −𝑑,𝑖 +𝛽 𝑣′ 𝑉 𝑣′=1 𝑛 𝑑,𝑘 −𝑑,𝑖 +𝛼 𝑘 𝑛 𝑑,𝑘′ −𝑑,𝑖 +𝛼 𝑘′ 𝐾 𝑘′=1 から𝑧 𝑑,𝑖 𝑠 をサンプリング 𝑛 𝑘,𝑣, 𝑛 𝑑,𝑘を更新する 𝜶, 𝜷を更新する:𝜶 𝑠−1 , 𝜷 𝑠−1 → 𝜶 𝑠 , 𝜷 𝑠