SlideShare ist ein Scribd-Unternehmen logo
1 von 30
Downloaden Sie, um offline zu lesen
Natural Language Processing for Materials Design—
What Can We Extract From the Research Literature?
Anubhav Jain
Energy Technologies Area
Lawrence Berkeley National Laboratory
Berkeley, CA
MRS Spring
April 18, 2021
Slides (already) posted to hackingmaterials.lbl.gov
2
Useful information is scattered across papers –
how can we make use of this data with NLP?
papers to read “someday”
NLP algorithms
• It is difficult to look up all information any given material
due to the many different ways chemical compositions
are written
– a search for “TiNiSn” will give different results than “NiTiSn”
– a search for “GaSb” won’t match text that reads “Ga0.5Sb0.5”
– a search for “SnBi4Te7” won’t match text that reads “we studied
SnBi4X7 (X=S, Se, Te)”.
– a search for “AgCrSe2”, if it doesn’t have any hits, won’t suggest
“CuCrSe2” as a similar result
• It is difficult to ask questions or compile summaries, e.g.:
– What is the band gap of “Si”?
– What are all the known dopants into GaAs?
– What are all materials studied as thermoelectrics?
3
Traditional search doesn’t answer the questions we want
What is matscholar?
• Matscholar is an attempt to organize the world’s
information on materials science, connecting
together topics of study, synthesis and
characterization methods, and specific materials
compositions
• It is also an effort to use state-of-the-art natural
language processing to make collective use of
the information in millions of articles
One of our main projects concerns named entity
recognition, or automatically labeling text
5
This allows for search
and is crucial to
downstream tasks
6
> 4 million
Papers Collected
31 million
Properties
19 million
Materials Mentions
8.8 million
Characterization Methods
7.5 million
Applications
5 million
Synthesis Methods
•Data Collection: Over 4 million papers
collected from more than 2100 journals.
Note – entities are currently extracted only from the abstracts of the papers
7
Now we can search!
Live on www.matscholar.com
8
How does this work? High-level view
Weston, L. et al Named Entity
Recognition and Normalization
Applied to Large-Scale
Information Extraction from
the Materials Science
Literature. J. Chem. Inf. Model.
(2019).
• We use the word2vec
algorithm (Google) to turn
each unique word in our
corpus into a 200-
dimensional vector
• These vectors encode the
meaning of each word
meaning based on trying to
predict context words
around the target
9
Step 4a: the word2vec algorithm is used to “featurize” words
Barazza, L. How does Word2Vec’s Skip-Gram work? Becominghuman.ai. 2017
• We use the word2vec
algorithm (Google) to turn
each unique word in our
corpus into a 200-
dimensional vector
• These vectors encode the
meaning of each word
meaning based on trying to
predict context words
around the target
10
Step 4a: the word2vec algorithm is used to “featurize” words
Barazza, L. How does Word2Vec’s Skip-Gram work? Becominghuman.ai. 2017
“You shall know a word by
the company it keeps”
- John Rupert Firth (1957)
• The classic example is:
– “king” - “man” + “woman” = ? → “queen”
11
Word embeddings trained on ”normal” text learns
relationships between words
12
There seems to be materials knowledge encoded in the
word vectors trained on materials abstracts
Tshitoyan, V. et al. Unsupervised word embeddings capture latent
knowledge from materials science literature. Nature 571, 95–98 (2019).
13
Ok so how does this work? High-level view
Weston, L. et al Named Entity
Recognition and Normalization
Applied to Large-Scale
Information Extraction from
the Materials Science
Literature. J. Chem. Inf. Model.
(2019).
• If you read this sentence:
“The band gap of ___ is 4.5 eV”
It is clear that the blank should be filled in with a
material word (not a synthesis method, characterization
method, etc.)
How do we get a neural network to take into account
context (as well as properties of the word itself)?
14
Step 4b: How do we train a model to recognize context?
15
Step 4b.An LSTM neural net classifies words by reading
word sequences
Weston, L. et al Named Entity
Recognition and Normalization
Applied to Large-Scale
Information Extraction from
the Materials Science
Literature. J. Chem. Inf. Model.
(2019).
16
Ok so how does this work? High-level view
Weston, L. et al Named Entity
Recognition and Normalization
Applied to Large-Scale
Information Extraction from
the Materials Science
Literature. J. Chem. Inf. Model.
(2019).
17
Step 5. Let the model label things for you!
Named Entity Recognition
X
• Custom machine learning models to
extract the most valuable materials-related
information.
• Utilizes a long short-term memory (LSTM)
network trained on ~1000 hand-annotated
abstracts.
• f1 scores of ~0.9. f1 score for inorganic
materials extraction is >0.9.
Weston, L. et al Named Entity
Recognition and Normalization
Applied to Large-Scale
Information Extraction from
the Materials Science
Literature. J. Chem. Inf. Model.
(2019).
18
Could these techniques also be used to predict which
materials we might want to screen for an application?
papers to read “someday”
NLP algorithms
• Dot product of a composition word with
the word “thermoelectric” essentially
predicts how likely that word is to appear
in an abstract with the word
thermoelectric
• Compositions with high dot products are
typically known thermoelectrics
• Sometimes, compositions have a high dot
product with “thermoelectric” but have
never been studied as a thermoelectric
• These compositions usually have high
computed power factors!
(DFT+BoltzTraP)
19
Making predictions: dot products measure likelihood for
words to co-occur
Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from
materials science literature. Nature 571, 95–98 (2019).
20
Try ”going back in time” and ranking materials, and follow
what happens in later years
Tshitoyan, V. et al. Unsupervised
word embeddings capture latent
knowledge from materials science
literature. Nature 571, 95–98 (2019).
21
We also published a list of potential new thermoelectrics
Tshitoyan, V. et al. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature
571, 95–98 (2019).
It is one thing to
retroactively test, but
perhaps another to see
how things go after
publication
22
Two were studied between submission and publication of
manuscript
Tshitoyan, V. et al. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature
571, 95–98 (2019).
23
More were studied since then (mainly computationally)
Tshitoyan, V. et al. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature
571, 95–98 (2019).
24
More were studied since then (mainly computationally)
Tshitoyan, V. et al. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature
571, 95–98 (2019).
25
More were studied since then (mainly computationally)
Tshitoyan, V. et al. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature
571, 95–98 (2019).
https://arxiv.org/abs/2010.08461
26
Our collaborators also synthesized a prediction, finding a
moderate zT of 0.14
Tshitoyan, V. et al. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature
571, 95–98 (2019).
27
How is this working?
“Context
words” link
together
information
from different
sources
28
Related projects
undoped, anion-doped(Sb,Bi)
and cation-doped(Ca,Zn) solid
sln. of Mg10Si2Sn3…
Doping database
Cube Rod
Sphere
Predicting shape of nanoparticles
Original figure Data snippet
extracted fully
automatically
Replotted data
Data extraction from figures
29
We are creating a comprehensive software library for
materials science NLP research (multiple research groups)
https://github.com/lbnlp
30
The Matscholar team
Kristin Persson
Anubhav Jain
Gerbrand Ceder
John
Dagdelen
Leigh
Weston
Vahe
Tshitoyan
Amalie
Trewartha
Alex
Dunn
Viktoriia
Baibakova
Funding from
(now at Google) (now at Medium)
Slides (already) posted to
hackingmaterials.lbl.gov

Weitere ähnliche Inhalte

Was ist angesagt?

アンサンブル学習
アンサンブル学習アンサンブル学習
アンサンブル学習Hidekazu Tanaka
 
Learning from positive and unlabeled data
Learning from positive and unlabeled dataLearning from positive and unlabeled data
Learning from positive and unlabeled dataData Science Leuven
 
쫄지말자딥러닝2 - CNN RNN 포함버전
쫄지말자딥러닝2 - CNN RNN 포함버전쫄지말자딥러닝2 - CNN RNN 포함버전
쫄지말자딥러닝2 - CNN RNN 포함버전Modulabs
 
機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual TalksYuya Unno
 
Feature Engineering - Getting most out of data for predictive models
Feature Engineering - Getting most out of data for predictive modelsFeature Engineering - Getting most out of data for predictive models
Feature Engineering - Getting most out of data for predictive modelsGabriel Moreira
 
機械学習は化学研究の"経験と勘"を合理化できるか?
機械学習は化学研究の"経験と勘"を合理化できるか?機械学習は化学研究の"経験と勘"を合理化できるか?
機械学習は化学研究の"経験と勘"を合理化できるか?Ichigaku Takigawa
 
Introduction to Machine Learning
Introduction to Machine LearningIntroduction to Machine Learning
Introduction to Machine LearningDr. Radhey Shyam
 
スパースモデリングによる多次元信号・画像復元
スパースモデリングによる多次元信号・画像復元スパースモデリングによる多次元信号・画像復元
スパースモデリングによる多次元信号・画像復元Shogo Muramatsu
 
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)MLSE
 
[DL輪読会]Understanding deep learning requires rethinking generalization
[DL輪読会]Understanding deep learning requires rethinking generalization[DL輪読会]Understanding deep learning requires rethinking generalization
[DL輪読会]Understanding deep learning requires rethinking generalizationDeep Learning JP
 
【宝くじ仮説】The Lottery Ticket Hypothesis: Finding Small, Trainable Neural Networks
【宝くじ仮説】The Lottery Ticket Hypothesis: Finding Small, Trainable Neural Networks【宝くじ仮説】The Lottery Ticket Hypothesis: Finding Small, Trainable Neural Networks
【宝くじ仮説】The Lottery Ticket Hypothesis: Finding Small, Trainable Neural NetworksYosuke Shinya
 
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic DatasetsDeep Learning JP
 
ベイズ最適化によるハイパラーパラメータ探索
ベイズ最適化によるハイパラーパラメータ探索ベイズ最適化によるハイパラーパラメータ探索
ベイズ最適化によるハイパラーパラメータ探索西岡 賢一郎
 
【論文調査】XAI技術の効能を ユーザ実験で評価する研究
【論文調査】XAI技術の効能を ユーザ実験で評価する研究【論文調査】XAI技術の効能を ユーザ実験で評価する研究
【論文調査】XAI技術の効能を ユーザ実験で評価する研究Satoshi Hara
 
分類問題 - 機械学習ライブラリ scikit-learn の活用
分類問題 - 機械学習ライブラリ scikit-learn の活用分類問題 - 機械学習ライブラリ scikit-learn の活用
分類問題 - 機械学習ライブラリ scikit-learn の活用y-uti
 
General Tips for participating Kaggle Competitions
General Tips for participating Kaggle CompetitionsGeneral Tips for participating Kaggle Competitions
General Tips for participating Kaggle CompetitionsMark Peng
 
モンテカルロ法と情報量
モンテカルロ法と情報量モンテカルロ法と情報量
モンテカルロ法と情報量Shohei Miyashita
 
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision TreeNIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision TreeTakami Sato
 
PubMedBERT: 生物医学NLPのための事前学習
PubMedBERT: 生物医学NLPのための事前学習PubMedBERT: 生物医学NLPのための事前学習
PubMedBERT: 生物医学NLPのための事前学習Naoto Usuyama
 

Was ist angesagt? (20)

アンサンブル学習
アンサンブル学習アンサンブル学習
アンサンブル学習
 
Learning from positive and unlabeled data
Learning from positive and unlabeled dataLearning from positive and unlabeled data
Learning from positive and unlabeled data
 
쫄지말자딥러닝2 - CNN RNN 포함버전
쫄지말자딥러닝2 - CNN RNN 포함버전쫄지말자딥러닝2 - CNN RNN 포함버전
쫄지말자딥러닝2 - CNN RNN 포함버전
 
機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks
 
Feature Engineering - Getting most out of data for predictive models
Feature Engineering - Getting most out of data for predictive modelsFeature Engineering - Getting most out of data for predictive models
Feature Engineering - Getting most out of data for predictive models
 
機械学習は化学研究の"経験と勘"を合理化できるか?
機械学習は化学研究の"経験と勘"を合理化できるか?機械学習は化学研究の"経験と勘"を合理化できるか?
機械学習は化学研究の"経験と勘"を合理化できるか?
 
Introduction to Machine Learning
Introduction to Machine LearningIntroduction to Machine Learning
Introduction to Machine Learning
 
スパースモデリングによる多次元信号・画像復元
スパースモデリングによる多次元信号・画像復元スパースモデリングによる多次元信号・画像復元
スパースモデリングによる多次元信号・画像復元
 
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
 
[DL輪読会]Understanding deep learning requires rethinking generalization
[DL輪読会]Understanding deep learning requires rethinking generalization[DL輪読会]Understanding deep learning requires rethinking generalization
[DL輪読会]Understanding deep learning requires rethinking generalization
 
【宝くじ仮説】The Lottery Ticket Hypothesis: Finding Small, Trainable Neural Networks
【宝くじ仮説】The Lottery Ticket Hypothesis: Finding Small, Trainable Neural Networks【宝くじ仮説】The Lottery Ticket Hypothesis: Finding Small, Trainable Neural Networks
【宝くじ仮説】The Lottery Ticket Hypothesis: Finding Small, Trainable Neural Networks
 
Linear Regression
Linear RegressionLinear Regression
Linear Regression
 
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
 
ベイズ最適化によるハイパラーパラメータ探索
ベイズ最適化によるハイパラーパラメータ探索ベイズ最適化によるハイパラーパラメータ探索
ベイズ最適化によるハイパラーパラメータ探索
 
【論文調査】XAI技術の効能を ユーザ実験で評価する研究
【論文調査】XAI技術の効能を ユーザ実験で評価する研究【論文調査】XAI技術の効能を ユーザ実験で評価する研究
【論文調査】XAI技術の効能を ユーザ実験で評価する研究
 
分類問題 - 機械学習ライブラリ scikit-learn の活用
分類問題 - 機械学習ライブラリ scikit-learn の活用分類問題 - 機械学習ライブラリ scikit-learn の活用
分類問題 - 機械学習ライブラリ scikit-learn の活用
 
General Tips for participating Kaggle Competitions
General Tips for participating Kaggle CompetitionsGeneral Tips for participating Kaggle Competitions
General Tips for participating Kaggle Competitions
 
モンテカルロ法と情報量
モンテカルロ法と情報量モンテカルロ法と情報量
モンテカルロ法と情報量
 
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision TreeNIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
 
PubMedBERT: 生物医学NLPのための事前学習
PubMedBERT: 生物医学NLPのための事前学習PubMedBERT: 生物医学NLPのための事前学習
PubMedBERT: 生物医学NLPのための事前学習
 

Ähnlich wie Natural Language Processing for Materials Design - What Can We Extract From the Research Literature

Capturing and leveraging materials science knowledge from millions of journal...
Capturing and leveraging materials science knowledge from millions of journal...Capturing and leveraging materials science knowledge from millions of journal...
Capturing and leveraging materials science knowledge from millions of journal...Anubhav Jain
 
Applications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials DesignApplications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials DesignAnubhav Jain
 
Discovering advanced materials for energy applications by mining the scientif...
Discovering advanced materials for energy applications by mining the scientif...Discovering advanced materials for energy applications by mining the scientif...
Discovering advanced materials for energy applications by mining the scientif...Anubhav Jain
 
Materials design using knowledge from millions of journal articles via natura...
Materials design using knowledge from millions of journal articles via natura...Materials design using knowledge from millions of journal articles via natura...
Materials design using knowledge from millions of journal articles via natura...Anubhav Jain
 
Progress Towards Leveraging Natural Language Processing for Collecting Experi...
Progress Towards Leveraging Natural Language Processing for Collecting Experi...Progress Towards Leveraging Natural Language Processing for Collecting Experi...
Progress Towards Leveraging Natural Language Processing for Collecting Experi...Anubhav Jain
 
Accelerating materials design through natural language processing
Accelerating materials design through natural language processingAccelerating materials design through natural language processing
Accelerating materials design through natural language processingAnubhav Jain
 
Extracting and Making Use of Materials Data from Millions of Journal Articles...
Extracting and Making Use of Materials Data from Millions of Journal Articles...Extracting and Making Use of Materials Data from Millions of Journal Articles...
Extracting and Making Use of Materials Data from Millions of Journal Articles...Anubhav Jain
 
Natural Language Processing on Non-Textual Data
Natural Language Processing on Non-Textual DataNatural Language Processing on Non-Textual Data
Natural Language Processing on Non-Textual Datagpano
 
Using a keyword extraction pipeline to understand concepts in future work sec...
Using a keyword extraction pipeline to understand concepts in future work sec...Using a keyword extraction pipeline to understand concepts in future work sec...
Using a keyword extraction pipeline to understand concepts in future work sec...Kai Li
 
NLP Structured Data Investigation on Non-Text by Casey Stella
NLP Structured Data Investigation on Non-Text by Casey StellaNLP Structured Data Investigation on Non-Text by Casey Stella
NLP Structured Data Investigation on Non-Text by Casey StellaSpark Summit
 
NLP Structured Data Investigation on Non-Text by Casey Stella
NLP Structured Data Investigation on Non-Text by Casey StellaNLP Structured Data Investigation on Non-Text by Casey Stella
NLP Structured Data Investigation on Non-Text by Casey StellaSpark Summit
 
NLP Structured Data Investigation on Non-Text
NLP Structured Data Investigation on Non-TextNLP Structured Data Investigation on Non-Text
NLP Structured Data Investigation on Non-TextHortonworks
 
An-Exploration-of-scientific-literature-using-Natural-Language-Processing
An-Exploration-of-scientific-literature-using-Natural-Language-ProcessingAn-Exploration-of-scientific-literature-using-Natural-Language-Processing
An-Exploration-of-scientific-literature-using-Natural-Language-ProcessingTheodore J. LaGrow
 
Topic detecton by clustering and text mining
Topic detecton by clustering and text miningTopic detecton by clustering and text mining
Topic detecton by clustering and text miningIRJET Journal
 
NAISTビッグデータシンポジウム - 情報 松本先生
NAISTビッグデータシンポジウム - 情報 松本先生NAISTビッグデータシンポジウム - 情報 松本先生
NAISTビッグデータシンポジウム - 情報 松本先生ysuzuki-naist
 
Domain Specific Named Entity Recognition Using Supervised Approach
Domain Specific Named Entity Recognition Using Supervised ApproachDomain Specific Named Entity Recognition Using Supervised Approach
Domain Specific Named Entity Recognition Using Supervised ApproachWaqas Tariq
 
Deep Neural Methods for Retrieval
Deep Neural Methods for RetrievalDeep Neural Methods for Retrieval
Deep Neural Methods for RetrievalBhaskar Mitra
 
Applying machine learning techniques to big data in the scholarly domain
Applying machine learning techniques to big data in the scholarly domainApplying machine learning techniques to big data in the scholarly domain
Applying machine learning techniques to big data in the scholarly domainAngelo Salatino
 

Ähnlich wie Natural Language Processing for Materials Design - What Can We Extract From the Research Literature (20)

Capturing and leveraging materials science knowledge from millions of journal...
Capturing and leveraging materials science knowledge from millions of journal...Capturing and leveraging materials science knowledge from millions of journal...
Capturing and leveraging materials science knowledge from millions of journal...
 
Applications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials DesignApplications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials Design
 
Discovering advanced materials for energy applications by mining the scientif...
Discovering advanced materials for energy applications by mining the scientif...Discovering advanced materials for energy applications by mining the scientif...
Discovering advanced materials for energy applications by mining the scientif...
 
Materials design using knowledge from millions of journal articles via natura...
Materials design using knowledge from millions of journal articles via natura...Materials design using knowledge from millions of journal articles via natura...
Materials design using knowledge from millions of journal articles via natura...
 
Progress Towards Leveraging Natural Language Processing for Collecting Experi...
Progress Towards Leveraging Natural Language Processing for Collecting Experi...Progress Towards Leveraging Natural Language Processing for Collecting Experi...
Progress Towards Leveraging Natural Language Processing for Collecting Experi...
 
Accelerating materials design through natural language processing
Accelerating materials design through natural language processingAccelerating materials design through natural language processing
Accelerating materials design through natural language processing
 
Extracting and Making Use of Materials Data from Millions of Journal Articles...
Extracting and Making Use of Materials Data from Millions of Journal Articles...Extracting and Making Use of Materials Data from Millions of Journal Articles...
Extracting and Making Use of Materials Data from Millions of Journal Articles...
 
NLP Structured Data Investigation on Non-Text
NLP Structured Data Investigation on Non-TextNLP Structured Data Investigation on Non-Text
NLP Structured Data Investigation on Non-Text
 
NLP Structured Data Investigation on Non-Text
NLP Structured Data Investigation on Non-TextNLP Structured Data Investigation on Non-Text
NLP Structured Data Investigation on Non-Text
 
Natural Language Processing on Non-Textual Data
Natural Language Processing on Non-Textual DataNatural Language Processing on Non-Textual Data
Natural Language Processing on Non-Textual Data
 
Using a keyword extraction pipeline to understand concepts in future work sec...
Using a keyword extraction pipeline to understand concepts in future work sec...Using a keyword extraction pipeline to understand concepts in future work sec...
Using a keyword extraction pipeline to understand concepts in future work sec...
 
NLP Structured Data Investigation on Non-Text by Casey Stella
NLP Structured Data Investigation on Non-Text by Casey StellaNLP Structured Data Investigation on Non-Text by Casey Stella
NLP Structured Data Investigation on Non-Text by Casey Stella
 
NLP Structured Data Investigation on Non-Text by Casey Stella
NLP Structured Data Investigation on Non-Text by Casey StellaNLP Structured Data Investigation on Non-Text by Casey Stella
NLP Structured Data Investigation on Non-Text by Casey Stella
 
NLP Structured Data Investigation on Non-Text
NLP Structured Data Investigation on Non-TextNLP Structured Data Investigation on Non-Text
NLP Structured Data Investigation on Non-Text
 
An-Exploration-of-scientific-literature-using-Natural-Language-Processing
An-Exploration-of-scientific-literature-using-Natural-Language-ProcessingAn-Exploration-of-scientific-literature-using-Natural-Language-Processing
An-Exploration-of-scientific-literature-using-Natural-Language-Processing
 
Topic detecton by clustering and text mining
Topic detecton by clustering and text miningTopic detecton by clustering and text mining
Topic detecton by clustering and text mining
 
NAISTビッグデータシンポジウム - 情報 松本先生
NAISTビッグデータシンポジウム - 情報 松本先生NAISTビッグデータシンポジウム - 情報 松本先生
NAISTビッグデータシンポジウム - 情報 松本先生
 
Domain Specific Named Entity Recognition Using Supervised Approach
Domain Specific Named Entity Recognition Using Supervised ApproachDomain Specific Named Entity Recognition Using Supervised Approach
Domain Specific Named Entity Recognition Using Supervised Approach
 
Deep Neural Methods for Retrieval
Deep Neural Methods for RetrievalDeep Neural Methods for Retrieval
Deep Neural Methods for Retrieval
 
Applying machine learning techniques to big data in the scholarly domain
Applying machine learning techniques to big data in the scholarly domainApplying machine learning techniques to big data in the scholarly domain
Applying machine learning techniques to big data in the scholarly domain
 

Mehr von Anubhav Jain

Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...Anubhav Jain
 
Applications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and DesignApplications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and DesignAnubhav Jain
 
An AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesisAn AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesisAnubhav Jain
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software disseminationAnubhav Jain
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software disseminationAnubhav Jain
 
Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...Anubhav Jain
 
Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...Anubhav Jain
 
Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...Anubhav Jain
 
Machine Learning for Catalyst Design
Machine Learning for Catalyst DesignMachine Learning for Catalyst Design
Machine Learning for Catalyst DesignAnubhav Jain
 
Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...Anubhav Jain
 
Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...Anubhav Jain
 
Accelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine LearningAccelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine LearningAnubhav Jain
 
DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …Anubhav Jain
 
The Materials Project
The Materials ProjectThe Materials Project
The Materials ProjectAnubhav Jain
 
Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...Anubhav Jain
 
Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...Anubhav Jain
 
Discovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials ProjectDiscovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials ProjectAnubhav Jain
 
The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...Anubhav Jain
 
The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...Anubhav Jain
 
Machine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst DesignMachine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst DesignAnubhav Jain
 

Mehr von Anubhav Jain (20)

Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...
 
Applications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and DesignApplications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and Design
 
An AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesisAn AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesis
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software dissemination
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software dissemination
 
Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...
 
Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...
 
Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...
 
Machine Learning for Catalyst Design
Machine Learning for Catalyst DesignMachine Learning for Catalyst Design
Machine Learning for Catalyst Design
 
Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...
 
Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...
 
Accelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine LearningAccelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine Learning
 
DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …
 
The Materials Project
The Materials ProjectThe Materials Project
The Materials Project
 
Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...
 
Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...
 
Discovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials ProjectDiscovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials Project
 
The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...
 
The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...
 
Machine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst DesignMachine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst Design
 

Kürzlich hochgeladen

Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000Sapana Sha
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyDrAnita Sharma
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINsankalpkumarsahoo174
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencySheetal Arora
 

Kürzlich hochgeladen (20)

Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomology
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 

Natural Language Processing for Materials Design - What Can We Extract From the Research Literature

  • 1. Natural Language Processing for Materials Design— What Can We Extract From the Research Literature? Anubhav Jain Energy Technologies Area Lawrence Berkeley National Laboratory Berkeley, CA MRS Spring April 18, 2021 Slides (already) posted to hackingmaterials.lbl.gov
  • 2. 2 Useful information is scattered across papers – how can we make use of this data with NLP? papers to read “someday” NLP algorithms
  • 3. • It is difficult to look up all information any given material due to the many different ways chemical compositions are written – a search for “TiNiSn” will give different results than “NiTiSn” – a search for “GaSb” won’t match text that reads “Ga0.5Sb0.5” – a search for “SnBi4Te7” won’t match text that reads “we studied SnBi4X7 (X=S, Se, Te)”. – a search for “AgCrSe2”, if it doesn’t have any hits, won’t suggest “CuCrSe2” as a similar result • It is difficult to ask questions or compile summaries, e.g.: – What is the band gap of “Si”? – What are all the known dopants into GaAs? – What are all materials studied as thermoelectrics? 3 Traditional search doesn’t answer the questions we want
  • 4. What is matscholar? • Matscholar is an attempt to organize the world’s information on materials science, connecting together topics of study, synthesis and characterization methods, and specific materials compositions • It is also an effort to use state-of-the-art natural language processing to make collective use of the information in millions of articles
  • 5. One of our main projects concerns named entity recognition, or automatically labeling text 5 This allows for search and is crucial to downstream tasks
  • 6. 6 > 4 million Papers Collected 31 million Properties 19 million Materials Mentions 8.8 million Characterization Methods 7.5 million Applications 5 million Synthesis Methods •Data Collection: Over 4 million papers collected from more than 2100 journals. Note – entities are currently extracted only from the abstracts of the papers
  • 7. 7 Now we can search! Live on www.matscholar.com
  • 8. 8 How does this work? High-level view Weston, L. et al Named Entity Recognition and Normalization Applied to Large-Scale Information Extraction from the Materials Science Literature. J. Chem. Inf. Model. (2019).
  • 9. • We use the word2vec algorithm (Google) to turn each unique word in our corpus into a 200- dimensional vector • These vectors encode the meaning of each word meaning based on trying to predict context words around the target 9 Step 4a: the word2vec algorithm is used to “featurize” words Barazza, L. How does Word2Vec’s Skip-Gram work? Becominghuman.ai. 2017
  • 10. • We use the word2vec algorithm (Google) to turn each unique word in our corpus into a 200- dimensional vector • These vectors encode the meaning of each word meaning based on trying to predict context words around the target 10 Step 4a: the word2vec algorithm is used to “featurize” words Barazza, L. How does Word2Vec’s Skip-Gram work? Becominghuman.ai. 2017 “You shall know a word by the company it keeps” - John Rupert Firth (1957)
  • 11. • The classic example is: – “king” - “man” + “woman” = ? → “queen” 11 Word embeddings trained on ”normal” text learns relationships between words
  • 12. 12 There seems to be materials knowledge encoded in the word vectors trained on materials abstracts Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 13. 13 Ok so how does this work? High-level view Weston, L. et al Named Entity Recognition and Normalization Applied to Large-Scale Information Extraction from the Materials Science Literature. J. Chem. Inf. Model. (2019).
  • 14. • If you read this sentence: “The band gap of ___ is 4.5 eV” It is clear that the blank should be filled in with a material word (not a synthesis method, characterization method, etc.) How do we get a neural network to take into account context (as well as properties of the word itself)? 14 Step 4b: How do we train a model to recognize context?
  • 15. 15 Step 4b.An LSTM neural net classifies words by reading word sequences Weston, L. et al Named Entity Recognition and Normalization Applied to Large-Scale Information Extraction from the Materials Science Literature. J. Chem. Inf. Model. (2019).
  • 16. 16 Ok so how does this work? High-level view Weston, L. et al Named Entity Recognition and Normalization Applied to Large-Scale Information Extraction from the Materials Science Literature. J. Chem. Inf. Model. (2019).
  • 17. 17 Step 5. Let the model label things for you! Named Entity Recognition X • Custom machine learning models to extract the most valuable materials-related information. • Utilizes a long short-term memory (LSTM) network trained on ~1000 hand-annotated abstracts. • f1 scores of ~0.9. f1 score for inorganic materials extraction is >0.9. Weston, L. et al Named Entity Recognition and Normalization Applied to Large-Scale Information Extraction from the Materials Science Literature. J. Chem. Inf. Model. (2019).
  • 18. 18 Could these techniques also be used to predict which materials we might want to screen for an application? papers to read “someday” NLP algorithms
  • 19. • Dot product of a composition word with the word “thermoelectric” essentially predicts how likely that word is to appear in an abstract with the word thermoelectric • Compositions with high dot products are typically known thermoelectrics • Sometimes, compositions have a high dot product with “thermoelectric” but have never been studied as a thermoelectric • These compositions usually have high computed power factors! (DFT+BoltzTraP) 19 Making predictions: dot products measure likelihood for words to co-occur Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 20. 20 Try ”going back in time” and ranking materials, and follow what happens in later years Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 21. 21 We also published a list of potential new thermoelectrics Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019). It is one thing to retroactively test, but perhaps another to see how things go after publication
  • 22. 22 Two were studied between submission and publication of manuscript Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 23. 23 More were studied since then (mainly computationally) Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 24. 24 More were studied since then (mainly computationally) Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 25. 25 More were studied since then (mainly computationally) Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019). https://arxiv.org/abs/2010.08461
  • 26. 26 Our collaborators also synthesized a prediction, finding a moderate zT of 0.14 Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
  • 27. 27 How is this working? “Context words” link together information from different sources
  • 28. 28 Related projects undoped, anion-doped(Sb,Bi) and cation-doped(Ca,Zn) solid sln. of Mg10Si2Sn3… Doping database Cube Rod Sphere Predicting shape of nanoparticles Original figure Data snippet extracted fully automatically Replotted data Data extraction from figures
  • 29. 29 We are creating a comprehensive software library for materials science NLP research (multiple research groups) https://github.com/lbnlp
  • 30. 30 The Matscholar team Kristin Persson Anubhav Jain Gerbrand Ceder John Dagdelen Leigh Weston Vahe Tshitoyan Amalie Trewartha Alex Dunn Viktoriia Baibakova Funding from (now at Google) (now at Medium) Slides (already) posted to hackingmaterials.lbl.gov