SlideShare ist ein Scribd-Unternehmen logo
1 von 168
SIX SIGMA AND ITS 
IMPLEMENTATION ON 
THE PROJECT
Six Sigma
Six Sigma 
6 sigma is used by individual and 
organizations to: 
•Drive and sustain improvements 
•Provide rigorous alignment of actions 
with strategy 
•Guide decision making with facts and 
data 
•Meet customer needs through improved 
products and processes 
•Deliver bottom-line results
Six Sigma 
Sigma Level Defect.10-6 
± 1σ 
± 2σ 
± 3σ 
± 4σ 
± 5σ 
± 6σ 
697,700 
308,700 
66,810 
6,210 
233 
3.4
Six Sigma
Six Sigma
Six Sigma Companies
The Six Sigma Evolutionary Timeline 
1736: French 
mathematician 
Abraham de 
Moivre publishes 
an article 
introducing the 
normal curve. 
1896: Italian sociologist Vilfredo 
Alfredo Pareto introduces the 80/20 
rule and the Pareto distribution in 
Cours d’Economie Politique. 
1924: Walter A. Shewhart introduces 
the control chart and the distinction of 
special vs. common cause variation as 
contributors to process problems. 
1941: Alex Osborn, head of 
BBDO Advertising, fathers a 
widely-adopted set of rules for 
“brainstorming”. 
1949: U. S. DOD issues Military 
Procedure MIL-P-1629, Procedures 
for Performing a Failure Mode Effects 
and Criticality Analysis. 
1960: Kaoru Ishikawa 
introduces his now famous 
cause-and-effect diagram. 
1818: Gauss uses the normal curve 
to explore the mathematics of error 
analysis for measurement, probability 
analysis, and hypothesis testing. 
1970s: Imai develop Dr. 
Deming concept called 14 keys 
of Deming or called kaizen in 
Japanese. 
1986: Bill Smith, a senior engineer 
and scientist introduces the 
concept of Six Sigma at Motorola 
1994: Larry Bossidy launches 
Six Sigma at Allied Signal. 
1995: Jack Welch 
launches Six Sigma at 
GE.
Customer 
Competitive Price 
High Quality Products 
On-time Delivery, etc 
Company 
Profitability 
Repeat Business 
Growth/Expansion 
$ CCaasshh ! !!! 
VVaaluluee ! !!! 
1 
SSoommee P Prroofiftit 3 
2 
BBiiggggeerr PPrrooffiitt 
1 
3 
2 
PPrriiccee -- CCoosstt == PPrrooffiitt 
Price to 
Sell 
Cost to 
Produce 
KEY BUSINESS CONCEPT OF SIX SIGMA
Where can Six Sigma be applied? 
Service Design 
Purchase 
Six Sigma 
Methods Production 
HRM 
Management 
Administration 
Quality 
Depart. 
M & S 
IT
COPQ against sales revenue 
COPQ (Cost of Poor Quality) 
Sigma Level DPMO COPQ as sales percentile 
1-sigma 691.462 (very low competitive) N/A 
2-sigma 308.538 (Average Indonesia’s Industry) N/A 
3-sigma 66.807 25-40% of sales 
4-sigma 6.210 (Average USA’s Industry) 15-25% of sales 
5-sigma 233 (Average Japan’s Industry) 5-15% of sales 
6-sigma 3,4 (World Class Industry) < 1% of sales
SSUUCCCCEESSSS SSTTOORRYY IINN SSIIXX SSIIGGMMAA 
$500 $600 $380 $450 
$200 
$2500 
$1200 
$700 
$170 
Cost Benefit 
1996 
Cost Benefit 
1997 
Cost Benefit 
1998 
Cost Benefit 
1999 
$3.0B 
$0.5B 
Cost Benefit 
2000 
6 Sigma Cost 
6 Sigma Productivity 
Delighting Customers 
GGeenneerraall EElleeccttrriicc 
$2500 
$$22..55BB
Dupont Chronology 
Periode Description Sigma 
Before six sigma Dupont Total Cost of Poor Quality 
= 20 -30 % of revenue 
About 3 sigma 
Implementing Cost of Implementing Six Sigma 
= $ 20 million 
- 
1999 Q1 Pilot Project Six Sigma on Specialty Chemicals started 
-Revenues $ 1.5 Billions 
-Target $ 80 million savings (5% dari revenues) 
1999 Q2 40 Black Belts done for training and start for project 
1999 Q4 Total saving $ 35 million (initial target $ 25 million) 2.3% of Revenue 
17.7% COPQ 
4 Sigma 
2000 Q4 Total saving $ 100 million (initial target $ 80 million) 6.7% of Revenue 
13.3% COPQ 
5 sigma
Difficult-to-Reach Fruit 
Design for Six Sigma (DFSS) 
Middle Fruit 
Six Sigma tools 
Lower Fruit 
7 Basic Tools of QC 
Ground Fruit 
Logic and Intuition 
66σσ BBaassiicc CCoonncceepptt
66σσ BBaassiicc CCoonncceepptt 
3 sigma level company 6 sigma level company 
• <25~40% of sales is failure cost. • 5% of the sales is failure cost. 
• Having 66,807 defects per million. • 3.4 defects per million. 
• Depends on the detect to find 
defect. 
• Focusing on process not to produce 
defects. 
• Believes that high quality is expensive. • Realizes that high quality creates 
low cost. 
• Not available of systematic 
approach. 
• Uses know-how of measurement, 
analysis, improvement & control. 
• Benchmarking against competing 
companies. 
• Benchmarking to the best 
in the world. 
• Believes 99% is good enough. 
• Define CTQ’s internally. 
• Believes 99% unacceptable. 
 4 sigma Level? 1misspelled word per 30pages of newspaper. 
 5 sigma Level? 1misspelled word in a set of encyclopedias. 
 6 sigma Level? 1misseplled word in all of the books contained in a small library.
Understanding Basic Concept of Statistics 
The concept of sigma 
• It is important to understand the difference between accuracy and precision 
• Sigma is a measure of vvaarriiaattiioonn (the data spread) 
• It is a statistical measure unit displaying a process capability and the 
measured sigma value is expressed by DPU(Defect Per Unit), PPM 
• It is said that the process with higher sigma value is the process having smaller 
defects 
• The more increase the sigma value, the more decrease the quality cost and 
Cycle Time 
1σ 
Inflection 
Point 
μ USL 
T 3σ 
: The size or a standard deviation 
shows the distances between 
the inflection point and the mean. 
We could say the process has 3 
sigma capability if 3 deviations 
are fit table between the target 
and the specification limit.
What does variation mean? 
20 
• Variation means that a 
15 
process does not produce 
10 
the same result (the “Y”) 
5 
every time. 
0 
• Some variation will exist in 
-5 
all processes. 
-10 
• Variation directly affects customer experiences. 
CCuussttoommeerrss ddoo nnoott ffeeeell aavveerraaggeess!!
Measuring Process Performance 
The pizza delivery example. . . 
• Customers want their pizza 
delivered fast! 
• Guarantee = “30 minutes or less” 
• What if we measured performance and found an 
average delivery time of 23.5 minutes? 
– On-time performance is great, right? 
– Our customers must be happy with us, right?
The pizza delivery example. . . 
How often are we delivering 
on time? 
Answer: Look at 
the variation! 
s 
x 
30 min. or less 
0 10 20 30 40 50 
• Managing by the average doesn’t tell the whole story. 
The average and the variation together show what’s 
happening.
Reduce Variation to Improve Performance 
s 
x 
30 min. or less 
How many standard 
deviations can you 
“fit” within 
customer 
expectations? 
0 10 20 30 40 50 
• Sigma level measures how often we meet (or fail to 
meet) the requirement(s) of our customer(s).
SIX SIGMA Basic Concept 
• All work occurs in a system of interconnected processes 
• Variation exists in all processes 
• Understanding and reducing variation are the keys to 
improving customer satisfaction and reducing costs
 Y = f(χ) 
Question 1), Which one should we focus on the Y or X? 
• Y 
• Dependent Variable 
• Output 
• Effect 
• Symptom 
• Monitor 
• X1 … Xn 
• Independent Variable 
• Input 
• Cause 
• Problem 
• Control object 
Question 2), Is needed to test and audit Y continually if the X is good? 
 6 Sigma activity is concerned about the problem happened(in the sector of 
manufacturing and non manufacturing). They could be improved by focusing 
the factor which causes the problem.
The Approach of 6 Sigma Step 
Steps Activity 
Define 
Measurement 
1. Clarifying improvement target object. 
2. Forecasting improvement effect. 
3. CTQ selection for products and process. Y 
4. Understanding process capability for ‘Y’ 
5. Clarifying measurement method of ‘Y’ 
6. Specific description of Target object for improving 
against ‘Y’ 
Focus 
Y 
Y 
Y 
Analysis 7. Clarifying Target for improving ‘Y’ 
8. Clarifying factors which affect ‘Y’ 
Y 
X1 .... Xn 
Improvement 
9. Extract the vital few factors through screening 
10. Understanding correlation of vital few factors 
11. Process optimization and confirmation experiment 
X1 .... Xn 
Vital Few X1 
Vital Few X1 
Control 
12. Confirm measurement system for ‘X’ 
13. Selection method how to control vital few factors 
14. Build up process control system & audit for vital few 
Vital Few X1 
Vital Few X1 
Vital Few X1 
 6 Sigma activity with 5 steps of D-M-A-I-C, will pass through the major 14 steps. 
 6 Sigma activity have D-M-A-I-C process breaking down the problem through the condition analysis, finding 
the potential causal factor , and improving the vital few factors 
After the condition identification, we have the first action about the part being improved at first, and then we 
proceed continually the improvement activity at the next step.
66 SSiiggmmaa RRoolleess
SIX SIGMA CHALLENGES 
• Six sigma less suitable for innovation. 
• Six sigma emphasize process and cost, 
while innovation constitutes something 
new in which cost consuming. 
• Six sigma only analyzing quantitative 
data, qualitative data must be converted to 
quantitative.
Six Sigma DMAIC Process 
Develop Charter and 
Business Case 
Map Existing Process 
Collect Voice of the 
Customer 
Specify CTQs / Requirements 
Measure CTQs / Requirements 
Determine Process Stability 
Determine Process Capability 
Calculate Baseline Sigma 
Refine Problem Statement 
Control 
Identify Root Causes 
Quantify Root Causes 
Verify Root Causes 
Institutionalize Improvement 
Control Deployment 
Quantify Financial Results 
Present Final Project Results 
and Lessons Learned 
Close Project 
Select Solution (Including 
Trade Studies, 
Cost/Benefit Analysis) 
Design Solution 
Pilot Solution 
Implement Solution 
Define 
Measure 
Analyze 
Improv 
e 
DMAIC = Define, Measure, Analyze, Improve and Control
66σσ MMeetthhooddoollooggyy
DDeeffiinnee 
Defining the “Project Y” 
Translate the external CTQ’s into internal product requirements or “Project Y”. 
Example: 
Voice of the CTQ Project Y 
Customer 
The range must heat 
to the setting chosen 
Call-takers must be 
available to answer calls 
The refrigerator must 
stay dry 
Answer rate 
(% of incoming calls 
answered within 
20 seconds) 
Call-takers must answer 
95% of all incoming calls 
within 20 seconds 
(telephone promptness) 
Calibration angle 
of the thermostat 
A thermostat setting of 
350° must result in a 
350° oven cavity 
No sweat Foam density
PPrroocceessss MMaappppiinngg 
Add the operating specification and process targets 
For the controllable variable input 
Start Finish 
1 2 
Process Targets and Specifications 
Experimental 
Input Parameters 
Target Upper Spec. Lower Spec. 
Y = f (X) 
(SOP ) = Standard Operating 
Parameters 
( N ) = Noise Parameters 
( X ) = Controllable Process 
Parameters
Structure Tree 
Example 
ROTOR 
Continue to ask “Why?” until you Reach the Root Cause…... 
RPM 
Courtesy of Daraius Patell 
Losses 
Inductance 
OD 
Core length 
STATOR 
ASSEMBLY 
Electromagnetic 
Mechanical 
Area A 
Area B 
Lamination 
Endrings
CCaauussee && EEffffeecctt DDiiaaggrraamm 
•The final diagram will look like a fishbone with the backbone displaying every known 
variable (Measurement, Method, Machine, People, Materials, Environment). 
Measurement Method Machine 
People Materials Environment
33 
Why-why 
Diagram
MMeeaassuurreemmeenntt 
DDeetteerrmmiinnee PPrroocceessss CCaappaabbiilliittyy ffoorr 
PPrroojjeecctt YY 
Determining process capability for your "Project Y" allows you to do several important things. 
– Establish a baseline for comparing the improvement of your product or process. 
– Quantify the ability of your process to produce output that meets the performance 
standard. 
– Determine if there is a technology or control problem. 
– Understand process capabilities for the design of future processes for DFSS (Design 
for Six Sigma) projects. 
– Compare your process with others (internally and externally) to judge relative 
performance. 
· Define the problem in 
mathematical terms 
· Predict probability of 
producing defects
MMeeaassuurreemmeenntt 
DDeetteerrmmiinnee CCuurrrreenntt SSiiggmmaa LLeevveell
Structure Tree 
Used to break down problem into manageable groups to identify root cause 
or area of focus. 
Process for creating a Structure Tree: 
• List your problem statement on the left hand side of the page. 
• Break the problem down into causes by asking ‘Why?’ and record on 
tree branches. Typical categories of causes include: 
Technical Transactional 
Manpower People 
Machine Price 
Material Product 
Method Promotion 
Measurement Physical Distribution 
• Assign a High, Medium or Low impact to each branch and select the 
highest impact branch. 
• Continue breaking down by asking ‘Why?’ until you reach the root cause.
More Frequently AAsskkeedd QQuueessttiioonnss 
AAbboouutt MMeeaassuurreemmeenntt DDaattaa 
What is a “Measurement System”? 
- Everything associated with taking measurements: 
the people, measurement tool, material, method 
and environment is known as -- 
Observations 
Measurements 
Data 
-- The “Measurement System”. 
Parts 
Inputs Outputs Inputs Outputs 
Think of the “Measurement System” as a sub-process that 
can add additional variation to measurement data. The goal 
is to use a measurement process that has the smallest 
amount of measurement error as possible.
SSoouurrcceess ooff MMeeaassuurreemmeenntt SSyysstteemm VVaarriiaattiioonn 
Observed 
Process 
Variation 
Actual Process 
Variation 
Measurement 
Variation 
Long Term 
Process 
Variation 
slt 
Short Term 
Process 
Variation 
sst 
Within 
Sample 
Variation 
Variation due 
to 
Measurement 
Equipment 
Variation 
due to 
Operators 
Accuracy Linearity Repeatability Stability Reproducibility 
The Gage R&R methods we will study in this class will provide estimates of the total 
measurement variation, the variation attributed to measurement equipment repeatability 
and the variation attributed to the appraisers.
EEvvaalluuaattiioonn CCrriitteerriiaa ffoorr 
%%GGRR&&RR aanndd %%SSttuuddyy VVaarriiaattiioonn 
Acceptable if less than 20% 
Conditional if between 20% to 30% 
Unacceptable if greater than 30% 
Beware of the risk associated with using 
Beware of the risk associated with using 
data acquired from an unacceptable 
data acquired from an unacceptable 
measurement process. 
measurement process. 
s2 
gage = s2 
repeatability + s2 
reproducibility 
Repeatability: The variation in measurements taken by a single person or 
instrument on the same or replicate item and under the same conditions. 
Reproducibility: the variation induced when different operators, instruments, or 
laboratories measure the same or replicate specimen.
AAnnaallyyzzee 
Hypothesis Test (for variables) 
Hypothesis Test (for attributes)
Ho Ha 
Correct 
Decision 
Correct 
Decision 
Type 1 
Error 
α 
Type 2 
Error 
β 
*Ho(Null Hypothesis) is assumed to be true. 
This is like the defendant being assumed 
to be innocent. 
Ho 
Ha 
True 
Ha(Alternative Hypothesis is alternatives 
the Null Hypothesis. 
Ha is the one that must be proved. 
Accept 
The ratio which is 
being “Ha” even if it’s false. 
Where “β” is usually 
set up at 10%. 
The ratio which is 
being rejected Ho even 
though certain thing is true 
where “ α” is α error. 
(usually 5%)
Data Types 
Variable Discrete 
◎ t-Test 
(Compares means less than 2 population) 
◎ ANOVA 
(Compares variances more than 2 population) 
◎ F-Test 
(Compares variances of two population) 
◎ Chi Square 
(Compares counts and 
frequencies.) 
Before t-Test/ANOVA, confirm the 
homogeneity of variance conducting 
F-Test 
the gap delta(δ) 
T 
The larger Means and expected gap is getting, 
the more different two variances of average in population.
• The tool depends on the data type. We use ANOVA when 
we have categorical input(s) and a continuous response. 
Continuous Categorical 
Categorical Continuous 
Dependent Variable (Y) 
Independent Variable (X) 
Regression 
ANOVA 
Logistic 
Regression 
Chi-Square (c2) 
Test
Variance Homogeneity Testing Means Testing 
1.One population variance 
testing 
2.Two population variances 
testing 
3.Testing of population 
variances for more than two 
(Normal distribution) 
4. Testing of population 
variances for more than two 
(Non-Normal distribution) 
Chi Square 
F 
Homogeneity of 
Variance 
▶Bartlett’s Test 
Homogeneity of 
Variance 
▶Levene’s Test 
1.One population Mean 
testing 
1) When we know σ of the 
population 
2) When we know σ of the 
population 
2.Two population Mean 
testing 
1) When they know 
σ1 and σ2 
2) When they don’t know 
σ1 and σ2 
① σ1 = σ2 
② σ1 ≠ σ2 
Normal distribution 
( 1 - Sample Z ) 
T distribution 
( 1 - Sample t ) 
Normal distribution 
T distribution 
( 2 - Sample t ) 
The type of Hypothesis
IImmpprroovveemmeenntt 
What is DOE ? 
• DOE is mmoorree tthhaann jjuusstt aa ssttaattiissttiiccaall 
tteecchhnniiqquuee.. 
• IItt iiss tthhee ccoommbbiinnaattiioonn ooff eeffffeeccttiivvee ppllaannnniinngg,, 
ddiisscciipplliinnee,, ssuubbjjeecctt mmaatttteerr kknnoowwlleeddggee aanndd 
ssttaattiissttiiccaall mmeetthhooddss tthhaatt mmaakkee tthhee 
eexxppeerriimmeenntt aa ssuucccceessss..
DOE Steps 
11.. DDeeffiinnee tthhee oobbjjeeccttiivvee ooff tthhee eexxppeerriimmeenntt.. 
22.. SSeelleecctt tthhee rreessppoonnssee aanndd iinnppuutt ffaaccttoorrss.. 
33.. DDeetteerrmmiinnee tthhee rreessoouurrcceess rreeqquuiirreedd.. 
44.. SSeelleecctt ssuuiittaabbllee eexxppeerriimmeenntt ddeessiiggnn 
mmaattrriixx aanndd aannaallyyssiiss ssttrraatteeggyy.. 
55.. PPeerrffoorrmm tthhee eexxppeerriimmeenntt aanndd rreeccoorrdd 
ddaattaa.. 
66.. AAnnaallyyssee tthhee ddaattaa,, ddrraaww ccoonncclluussiioonnss,, 
aanndd ppeerrffoorrmm ccoonnffiirrmmaattiioonn rruunnss.. 
GGoooodd 
ppllaannnniinngg iiss 
ccrriittiiccaall ttoo 
ssuucccceessss!!
BBaassiicc CCoonncceeppttss iinn DDOOEE 
PPrreessssuurree 
SSppeeeedd PPrroocceessss 
QQuuaalliittyy CChhaarraacctteerriissttiicc ((YY)) 
Run Pr Spd Pr 
Spd x Spd 
Pr Y 
1 5 70 - + 10 
+ + - - 
2 5 90 + - 4 
3 10 70 - - 6 
4 10 90 + + 12 
Ave - 8 5 
79 
Ave 8 11 
+ 
Y = 8 
2 0 6 
y^ == 88 ++ PPrr ++ 33 xx (( PPrr SSppdd)) 
PPrroocceessss 
DDOOEE 
PPrroocceessss 
MMooddeell
FFMMEEAA 
Failure Modes and Effects Analysis is a systematic method for identifying, 
analyzing, prioritizing, and documenting potential failure modes and their 
effects on a system, product, or process.
The Logic of SPC(Statistical Process Control)? 
Upper Control Limit 
Lower Control Limit 
SAMPLES 
Process 
Capability 
α/2 
Controller α/2 
Desired 
Output 
PROCESS OUTPUT 
A B C D E 
· Controllable factors 
- Assignable causes 
- Adjustable 
- Special 
L M N O P 
· Uncontrollable factors 
- Common causes 
- Noise 
- Inherent causes 
INPUT 
• SPC has been traditionally used to monitor and control the output of processes. 
In this application, we are measuring the dimensions of finished parts or 
characteristics of finished assemblies. 
X 
0.5 
0.0 
-0.5 
S am p le Mean 
Subgroup 0 50 100 
• Six Sigma Quality focuses on moving control upstream to the leverage input characteristic for Y. If we can 
measure and control the vital few X’s, control of Y should be assured. 
UCL=0.4384 
Mean=0.001188 
LCL=-0.4360 
1.0 
0.5 
0.0 
S amp le R an g e 
1 1 1 
UCL=0.7596 
R=0.2325 
LCL=0 
Xbar/R Chart for Sealing Angle Line #2 
CCoonnttrrooll
Types of Control Charts Types of Control Charts 
Variables Charts for 
monitoring continuous X’s 
• Average & Range 
X bar & R 
n < 10 
typically 3~5 
• Averages & Std Deviation 
X bar & σ 
n ≥ 10 
• Median & Range 
X & R 
n < 10 
typically 3~5 
• Individual & 
Moving Range 
XmR 
n = 1 
Attributes Charts for 
monitoring discrete X’s 
• Fraction Defective 
P Chart 
typically n ≥ 50 
tracks DPU/DPU 
• Number Defective 
np Chart 
n ≥ 50 (constant) 
tracks # def 
• Number of Defects 
c Chart 
c > 5 
• Number of Def/Unit 
U Chart 
n variable 
• In order to select the appropriate control chart for monitoring your process, first 
determine if your key process variables (X’s) are continuous or discrete. There are 
control charts for both continuous data and discrete data.
Control Chart 
12 
10 
8 
· 
· 
· 
· 
· 
· 
· 
· · · · 
· 
· 
· 
· 
· 
· 
· 
· 
· 
Week 
Upper Control Limit = Ave + 3 x Std Dev 
14 
13 
7 
6 
Lower Control Limit = Ave - 3 x Std Dev 
Central 
Line = 
Average 
Note: Control limits should be established using subgroup standard deviation
Six Sigma DMAIC 
Implementation Project 
Example
Project title 
Date ………………… 
Department / Team 
Prepared : ………….. 
G ManagerDirector Pres. Dir. 
Mgr. 
6s Champion Review 
Final Report 
Contents 
1. Define Step 
2. Measure Step 
3. Analysis Step 
4. Improvement Step 
5. Control Step 
-Attachment
Define Step
PJT Name 
Ka Part Ka Group Project Registration 
Period 
E ngineer 
Approva 
Team 
l 
Div./Dept: Name 
Breakthrough 
KPI Current Wo rld B est Target 
Main Improv ement Object 
Team Fo rmation (Related Department Involved) 
Name De p t. Level Role 
Why ? How to do ? 
(* Selection Background) 
Quantitative 
Qualitative 
Expected 
Results 
New Idea for Target Achievement 
Neck Point
M A I C 
D 
Background Expected result 
4500 
5000 
11% 
CCuurrrreenntt TTaarrggeett Unit: 
(Nm3/day) 
How to do: 
Target Saving cost: 
Others 
Electric 
O2 
N2 
LNG 
0.1650 0.1309 0.1290 0.0605 0.0070 
33.5 26.6 26.2 12.3 1.4 
33.5 60.1 86.3 98.6 100.0 
0.5 
0.4 
0.3 
0.2 
0.1 
0.0 
100 
80 
60 
40 
20 
0 
Defect 
Count 
Percent 
Cum % 
Percent 
Count 
Energy Usage Price 
General Background
Add the operating specification and process targets 
For the controllable variable input 
Start Finish 
1 2 
Process Targets and Specifications 
Experimental 
Input Parameters 
Target Upper Spec. Lower Spec. 
Y = f (X) 
(SOP ) = Standard Operating 
Parameters 
( N ) = Noise Parameters 
( X ) = Controllable Process 
Parameters 
Process Mapping 
M A I C 
D
SIPOC – Suppliers, Inputs, Process, Outputs, Customers 
You obtain inputs from suppliers, add value through your process, and 
provide an output that meets or exceeds your customer's requirements. 
Process Understanding 
M A I C 
D
Measure Step
Brainstorming Potential X’s List 
M 
Big Y X1 X2 X3 
F(x) Machine 
Material 
Material 
Man 
D A I C
Sampling 
Training 
Gage R&R 
Result 
Date:……… 
Collected 12 ea Sampling 
Conduct a training…… 
How to see what kind …….. 
Defect that happened in process. 
Purpose : find out the operator ability. 
Conduct Gage R&R for 4 men to know the 
judgment capability (in different times & do 
not know the inspection result of each other) 
--> Repeat 2 times for each persons 
% Gage R&R : 0 % 
acceptable 
M 
TToo ddeetteerrmmiinnee iiff tthhee mmeeaassuurreemmeenntt eerrrroorr iiss 
ssmmaallll aanndd aacccceeppttaabbllee rreellaattiivvee ttoo tthhee 
Observed Process 
Variation 
Measurement Process Variation 
Sample M a n 
M a n 
Machine 
Method 
Material 
pprroocceessss vvaarriiaattiioonn,, wwee ccaann 
uussee GGaaggee RR&&RR ssttuuddyy.. 
Gage R & R 
D A I C
Process Capability 
Current Condition 
mm Units of Measure 
Center of the bar 
Smooth curve 
interconnecting the 
center of each bar 
M 
D A I C 
Four Block Diagram 
Current Target 
1 2 3 4 5 6 
2.5 
2.0 
1.5 
1.0 
0.5 
Poor 
Z Shift 
Process Control 
Good 
Poor Good 
Technology 
Block A 
Block C 
Block B 
Block D 
Z Shift 
A : Poor control, inadequate technology 
B : Must control the process better, technology is fine 
C : Process control is good, inadequate technology 
D : World class
M 
Factor Detail Analysis Plan Schedule 
Mar 2nd Week Mar 3rd Week Mar 4th Week 
X1.1 Inspect correlation between “Y” and inspector 
X1.3 
for each group 
Analysis khole / dimension 
Height, diameter, angle etc, 
X1.2 
X1.4 
Analysis Plan 
D A I C
Analyze Step
A 
D M I C 
Use regression is to express and analyze a mathematical equation of describing a relationship. 
That is, it is to fit a mathematical equation of describing a relationship between the “YY” and “XX’’ss”. 
Regression Analysis: Angle Value versus Rotate Gear 
The regression equation is 
Angle Value = - 0,380 + 3,74 Rotate Gear 
Predictor Coef SE Coef T P 
Constant -0,3796 0,1693 -2,24 0,042 
Rotate G 3,744 1,153 3,25 0,006 
Regression Analysis: Angle Value versus Rotate Gear 
The regression equation is 
Angle Value = - 0,380 + 3,74 Rotate Gear 
Predictor Coef SE Coef T P 
Constant -0,3796 0,1693 -2,24 0,042 
Rotate G 3,744 1,153 3,25 0,006 
S = 0,1510 R-Sq = 43,0% R-Sq(adj) = 38,9% 
S = 0,1510 R-Sq = 43,0% R-Sq(adj) = 38,9% 
Analysis of Variance 
Source DF SS MS F P 
Regression 1 0,24032 0,24032 10,55 0,006 
Residual Error 14 0,31905 0,02279 
Total 15 0,55937 
Unusual Observations 
Obs Rotate G Angle Va Fit SE Fit Residual St Resid 
2 0,230 0,4000 0,4815 0,1070 -0,0815 -0,77 X 
7 0,130 0,5000 0,1071 0,0407 0,3929 2,70R 
Analysis of Variance 
Source DF SS MS F P 
Regression 1 0,24032 0,24032 10,55 0,006 
Residual Error 14 0,31905 0,02279 
Total 15 0,55937 
Unusual Observations 
Obs Rotate G Angle Va Fit SE Fit Residual St Resid 
2 0,230 0,4000 0,4815 0,1070 -0,0815 -0,77 X 
7 0,130 0,5000 0,1071 0,0407 0,3929 2,70R 
Normal Probability Plot of the Residuals 
(response is Angle Va) 
-0,2 -0,1 0,0 0,1 0,2 0,3 0,4 
2 
1 
0 
-1 
Normal Score 
Residual 
GGeeaarr RRoottaattiioonn 
Motor
D M I C 
We represent characterized variation ““YY”” by the total sum of square, then this method is to find 
what the factor’s level which influence enormously is, comparing both of them. 
One-way ANOVA: Gr.A - 3, Gr.A - 4, Gr.B - 3, Gr.B - 4, Gr.C - 3, Gr.C - 4 
Analysis of Variance 
Source DF SS MS F P 
Factor 5 0.8761 0.1752 2.59 0.030 
Error 102 6.8897 0.0675 
Total 107 7.7659 
Since p-value < 0.05; 
Ho (reject), Ha (accept). 
That is we can claim there’s 
a difference between the level 
Of adhesive 
Individual 95% CIs For Mean 
Based on Pooled StDev 
Level N Mean StDev -------+---------+---------+--------- 
Gr.A - 3 18 0.0572 0.3029 (-------*-------) 
Gr.A - 4 18 -0.1217 0.2427 (-------*-------) 
Gr.B - 3 18 0.0839 0.2231 (--------*-------) 
Normal Probability Plot 
Gr.B - 4 18 -0.1183 0.2403 (-------*-------) 
Gr.C - 3 18 0.0156 0.2796 (-------*-------) 
Gr.C - 4 18 0.0967 0.2626 (-------*--------) 
-------+---------+---------+--------- 
Pooled StDev = 0.2599 -0.15 0.00 0.15 
Anderson-Darling Normality Test 
A-Squared: 0.452 
P-Value: 0.242 
Average: 0.0572222 
StDev: 0.302865 
N: 18 
-0.5 0.0 0.5 
.999 
.99 
.95 
.80 
.50 
.20 
.05 
.01 
.001 
Probability 
Gr.A - 3 
See from sealing angle specifications there’s no problem, cause all operator adjustment 
Still in range (-0.5o ~ 0.5o). But there’s a significant effect both of them seeing by characte 
ristic variation result, each operator have a different mean adjustment. 
G r.C - 4 
Boxplots of Gr.A - 3 - Gr.C - 4 
(means are indicated by solid circles) UCL 
G r.C - 3 
G r.B - 4 
Target Line 
G r.B - 3 
G r.A - 4 
G r.A - 3 
0.5 
0.0 
LCL 
-0.5 
Operator Adjustment 
Screen 
Manual Adjustment 
A
A 
D M I C 
Factor Analysis Purpose Detail Analysis Content Result Conclusion 
Selected as 
Vital “X” P = 0.000 
Selected as 
Vital “X” 
X1.1 Find most effected 
to “ Y “ 
X1.2 
Find most effected 
to “ Y “ 
P = 0.000 
Selected as 
Vital “X” 
Bottle Neck 
Regression, to compare Dew Point and 
Purge Flow rate 
X1.3 
X1.4 Regression, to compare Dew Point 
and Out Air Temperature 
Find most effected 
to “ Y “ 
Find most effected 
to “ Y “ 
ANOVA, to compare Dew Point and 
Heating Time 
ANOVA, to compare Dew Point and 
Drying Time 
P = 0.000 
P = 0.003 
Analysis Result
Improve Step
I 
D M A C 
Design of Experiment 
The Improve phase identifies a solution and confirms that the proposed 
Solution will meet or exceed the improvement goals of the project. 
StdOrder RunOrder CenterPt Blocks Flow rate Heating Time Drying Time Result 
8 1 1 1 810 6 12 -90.2 
5 2 1 1 600 4 12 -52.6 
1 3 1 1 600 4 10 -56.4 
7 4 1 1 600 6 12 -57.6 
2 5 1 1 810 4 10 -89.2 
3 6 1 1 600 6 10 -68.1 
6 7 1 1 810 4 12 -85.3 
4 8 1 1 810 6 10 91.3 
Full Factorial Design 
Factors: 3 Base Design: 3, 8 
Runs: 8 Replicates: 1 
Blocks: 1 Center pts (total): 0 
Factors Level 1 Level 2 
Heating Time 6 hour 
Drying TIme 
Flow rate 
10 hour 
12 hour 
4 hour 
520 m3/hr 
810 m3/hr
I 
D M A C 
Optimize Condition: 
 Heating Time : 4 hour 
 Drying Time : 10 hour 
 Flow rate : 520 m3/hour
LSL USL 
LSL USL 
Z.Bench 
4.51 
Z.LSL 4.65 
Z.USL 4.65 
Cpk 1.55 
-80 -70 -60 -50 -40 
Process Data 
LSL -80.00000 
Target * 
USL -40.00000 
Sample Mean -64.18750 
Sample N 24 
StDev (Within) 4.29772 
StDev (Ov erall) 8.60376 
Potential (Within) Capability 
Z.Bench 
3.68 
Z.LSL 3.68 
Z.USL 5.63 
Cpk 1.23 
CCpk 1.55 
Ov erall Capability 
Z.Bench 1.81 
Z.LSL 1.84 
Z.USL 2.81 
Ppk 
0.61 
Cpm * 
Observ ed Performance 
% < LSL 0.00 
% > USL 0.00 
% Total 0.00 
Exp. Within Performance 
% < LSL 0.01 
% > USL 0.00 
% Total 0.01 
Exp. Ov erall Performance 
% < LSL 3.30 
% > USL 0.25 
% Total 3.55 
Within 
Overall 
Process Capability of Dew Point 
-80 -70 -60 -50 -40 
Process Data 
LSL -80.00000 
Target * 
USL -40.00000 
Sample Mean -60.00000 
Sample N 24 
StDev (Within) 4.29772 
StDev (Ov erall) 8.60376 
Potential (Within) Capability 
CCpk 1.55 
Ov erall Capability 
Z.Bench 2.05 
Z.LSL 2.32 
Z.USL 2.32 
Ppk 
0.77 
Cpm * 
Observ ed Performance 
% < LSL 0.00 
% > USL 0.00 
% Total 0.00 
Exp. Within Performance 
% < LSL 0.00 
% > USL 0.00 
% Total 0.00 
Exp. Ov erall Performance 
% < LSL 1.00 
% > USL 1.00 
% Total 2.01 
Within 
Overall 
Process Capability of Dew Point 
I 
Four Block Diagram 
Current Target 
1 2 3 4 5 6 
2.5 
2.0 
1.5 
1.0 
0.5 
Poor 
Z Shift 
Process Control 
Good 
Poor Good 
Technology 
Block A 
Block C 
Block B 
Block D 
Z Shift 
Improvement Result 
D M A C
Result 
4500 
5000 
CCuurrrreenntt TTaarrggeett 
8% 
4600 
RReessuulltt 
9922%% 
Cost Saving: US$ 
Improvement Result 
I 
D M A C
Control Step
I 
Six Sigma Quality focuses on moving control upstream to the leverage input characteristic 
for Y. If we can measure and control the vital few X’s, control of Y should be assured. 
Desired Process Capability 
Output 
Controller 
Input Process 
Group Member 
Controllable factors: 
- Miss adjust causes 
- Adjustable check 
- Pad control 
- Education 
Upper Control Limit 
X 
● 
Lower Control Limit 
● 
0.5 
0.0 
-0.5 
Sample Mean 
Output 
Subgroup 0 50 100 
UCL=0.4384 
Mean=0.001188 
LCL=-0.4360 
1.0 
0.5 
0.0 
Sample Range 
1 1 1 
UCL=0.7596 
R=0.2325 
LCL=0 
Xbar/R Chart for Sealing Angle Line #2 
Process Standard Change 
C 
D M A
I 
C 
D M A 
P Chart enables us to control our process using statistical method's to signal when 
process adjustments are needed. 
0 10 20 30 40 50 
0.004 
0.003 
0.002 
0.001 
0.000 
Sample Number 
Proportion 
P Chart for Stem Crack 
UCL=0.002466 
P=0.001198 
LCL=0
X-bar/R Chart use to control daily average for CTQ. 
10.2 
10.1 
10.0 
9.9 
9.8 
9.7 
Sample Mean 
1 
Subgroup 0 5 10 15 
UCL=10.13 
Mean=9.943 
LCL=9.755 
1.0 
0.5 
0.0 
Sample Range 
UCL=1.016 
R=0.5594 
LCL=0.1030 
Xbar/R Chart for Cullet Speed 
CTQ’s daily control data
Six Sigma Project 
Example
Optimalkan pemakaian Zinc 
Pada Proses Galvanize 
Date 20 MAY 2009 
Team : Galvanize 
Prepared by : Imam Mudawam 
Prod Mgr CEO 
. 
Work Mgr 
6s Champion Review 
Final Report 
Contents 
1. Define Step 
2. Measure Step 
3. Analysis Step 
4. Improvement Step 
5. Control Step 
NG DC ISK
PJTName 
Period 
M A I C 
Work Mgr Prod Mgr 
Tea 
m Nam 
e 
Div./Dept: 
CONST./GALV. Breakthrough 
KPI Current Wo rld B est Target 
Main Improvement Object 
CEO 
Approval 
Team Fo rmation (Related Department Involved) 
Name De p t. Level Role 
Why ? How to do ? 
(* Selection Background) 
LSL Target USL 
Process Data 
Observ ed Performance 
Exp. Within Performance 
Quantitative 
Qualitative 
Expected 
Results 
New Idea for Target Achievement 
Fab 
Galv 
Qc 
Galv 
Neck Point 
Optimalkan Pemakaian Zinc 
Z 
Shift: 
- 
1.86. 
Imam M 
Lukman 
Banbang 
Spv 
Supv 
Form 
• Ketebalan Galvanize 
sesuai standard. 
Leader 
Leader 
Member 
Amin Form Member 
Exp. Ov erall Performance 
Rp / kg 
Rp / kg 
Slamet Galv 
Member 
D 
Project Registration 
D 
M 
A 
I 
C 
-Making Theme Reg. Schedule 
- Analyzing Aging Root-Caused 
-Determine Potential X List 
- Find Current situation 
- Find Vital X by analyzing 
Potential X 
-Find Improvement idea 
-Confirmation run 
-Process Control by 
Monitoring Aging 
Amount 
May – W5 
Junl – W5 
Jul –W5 
Optimalkan Pemakaian Zinc 
Pada Proses Galvanize 
Potential (Within) Capability 
Z.Bench -1.86 
Lower CL -2.59 
Z.LSL 4.62 
Z.USL -1.86 
Cpk -0.62 
Lower CL -0.80 
Upper CL -0.44 
Ov erall Capability 
Z.Bench -1.07 
Lower CL -2.11 
Saving Zinc 
Rp. 295 Juta /Tahun 
Galvanize 
Reduce 
cost 
Form 
Hans Ga Supv 
Member 
Sept –W3 
Sept –W5 
Galvanize 
183.6 micr. 
Galvanize 
130 micron 
120 160 200 240 280 
LSL 100 
Target 130 
USL 150 
Sample Mean 183.649 
Sample N 35 
StDev (Within) 18.0955 
StDev (Ov erall) 31.8811 
Z.LSL 2.62 
Z.USL -1.06 
Ppk -0.35 
Lower CL -0.49 
Upper CL -0.21 
Cpm 0.11 
Lower CL 0.09 
PPM < LSL 0.00 
PPM > USL 885714.29 
PPM Total 885714.29 
PPM < LSL 1.89 
PPM > USL 968521.55 
PPM Total 968523.44 
PPM < LSL 4348.13 
PPM > USL 854388.04 
PPM Total 858736.18 
Within 
Ov erall 
Pr ocess Capability of t 6.5mm + 
(using 95.0% confidence) 
Worksheet: Worksheet 3; 11/13/2009 
ISK DC NG
D 
General Background M A I C 
• Hasil proses Galvanize ketebalannya melebihi standar yang 
ditentukan dalam ASTM- A123 / A123M. 
• Tujuan Proyek ini untuk dapat mengoptimalkan ketebalan lapisan zinc 
pada hasil proses galvanize. 
Ketebalan material 
400 
300 
200 
100 
0 
Material t.6.5s/d ...mm 
Material t. 3.5s/d6.0mm 
Material t.1.5s/d3.0mm 
sample mean micron 183.6 84.2 83.6 
Percent 52.3 24.0 23.8 
Cum % 52.3 76.2 100.0 
100 
80 
60 
40 
20 
0 
Produk tebal 6.0s/d….mm 
sample mean micr on 
Per cent 
Pareto Char t of Ketebalan mater ial 
Worksheet: Worksheet 3; 10/14/2009
Brainstorming Potential X’s List A I C 
Big Y X1 X2 X3 
M 
D 
Material 
Degrising 
Pickling 1 & 2 
Ketebalan 
Komposisi kimia 
Konsentrasi Basa 
Base Metal 
Caustic Soda 
Konsentrasi Keasaman 
Optimalkan pemakaian Zinc 
Pada Proses Galvanize 
Temperatur 
Waktu Pencelupan 
1 
Hcl
M 
Brainstorming Potential X’s List A I C 
Big Y X1 X2 X3 
Optimalkan Pemakaian Zinc 
Pada proses Galvanize 
D 
Fluxing Konsentrasi Keasaman 
1 
Temperatur 
Zinc Amunium Chloride 
Dipping Aluminium Alloy 
Zinc Ingot 
Temperatur 
Komposisi Campuran 
Waktu pencelupan
Measure Step - GAGE R&R A I C 
Gage R&R take 
from 2 Inspector 
who check this 
sample of 
Galvanize coating 
thickness in 10 
chek point 
In doing gage R&R 
we take 2 times 
repeat in check 
Decide 
operator 
who take Gage 
R&R 
Do Gage 
R&R 
Change 
Method,measurement, etc 
Analyze 
Result 
Gage 
R&R 
Next Step 
NG ; 
Total Gage 
R&R > 20% 
OK ; 
Total Gage 
R&R < 20% 
M 
D
Gage R&R 
Gage R&R < 20% 
Acceptable 
A I C 
M 
D 
Sample pengukuran ketebalan galvanize sebanyak 2 sample dengan 30 titik pengukuran , tiap sampel diambil 15 titik 
pengukuran 
Diukur secara berurutan dan secara acak oleh dua orang operator . 
Study Var %Study Var 
Source StdDev (SD) (6 * SD) 
(%SV) 
Total Gage R&R 2.0064 12.0384 
14.67 
Repeatability 2.0064 12.0384 
14.67 
Reproducibility 0.0000 0.0000 
0.00 
oprtr 0.0000 0.0000 
0.00 
Part-To-Part 13.5243 81.1460 
98.92 
Total Variation 13.6724 82.0341 
100.00 
Gage R&R Repeat Reprod Part-to-Part 
100 
50 
0 
Per cent 
% Cont ribut ion 
% Study Var 
8 
4 
0 
Sam ple Range 
UCL= 8.604 
_ 
R=2.633 
LCL= 0 
A B 
110 
100 
90 
Sam ple Mean 
UCL= 101.62 
__ 
X=96.67 
LCL= 91.71 
A B 
1 2 3 
110 
100 
90 
part no 
A B 
110 
100 
90 
oprt r 
1 2 3 
110 
100 
90 
part no 
Average 
The result of Gage R&R total is 14.67 % the acceptance percentage is 
bellow 20% (< 20 % ) , 
meanwhile the result of measurement between < 20 %, it accepted. 
oprt r 
A 
B 
Gage name: 
Date of study : 
Reported by : 
Tolerance: 
Misc: 
Components of Variation 
R Chart by oprtr 
Xbar Chart by oprtr 
measure by part no 
measure by oprtr 
oprtr * part no I nteraction 
OPERATOR PENGUKURAN KETEBALAN GALVANIZE 
Worksheet: Worksheet 3; 9/9/2009
A I C 
M 
Current Condition D 
Rata rata ketebalan Galvanize pada produk dengan ketebalan > 6.0 mm saat ini mencapai 183.6 micron , berdasarkan data 
dari tgl.20 Juni 09 Sampai 27 Juni 09 ,jumlah sample 35 , alat ukur menggunakan COATING THICKNESS DIGITAL merek 
TIME - TYPE TT 220 . 
Untuk mendapatkan ketebalan sesuai target yang diinginkan grafik harus bergeser kekiri , dan harus mengurangi keteba- 
Pelapisan Galvanize yang sesuai standard ASTM A 123/A 123M antara ( 100 s/d 150 ) micron . 
Probability Plot Ketebalan Galvanize mater ial 6.5mm s/ d .......dst 
100 150 200 250 300 
99 
95 
90 
80 
70 
60 
50 
40 
30 
20 
10 
5 
1 
t 6.5mm + 
Per cent 
Mean 183.6 
StDev 31.88 
N 35 
AD 1.706 
P-Value <0.005 
Normal - 95% CI 
Worksheet: Worksheet 3; 7/1/2009 
LSL Target USL 
120 160 200 240 280 
Exp. Within Performance 
Exp. Ov erall Performance 
KETEBALAN GALVANIZE 
Process Data 
LSL 100 
Target 130 
USL 150 
Sample Mean 183.649 
Sample N 35 
StDev (Within) 18.0955 
StDev (Ov erall) 31.8811 
Potential (Within) Capability 
Z.Bench -1.86 
Lower CL -2.59 
Z.LSL 4.62 
Z.USL -1.86 
Cpk -0.62 
Lower CL -0.80 
Upper CL -0.44 
Ov erall Capability 
Z.Bench -1.07 
Lower CL -2.11 
Z.LSL 2.62 
Z.USL -1.06 
Ppk -0.35 
Lower CL -0.49 
Upper CL -0.21 
Cpm 0.11 
Lower CL 0.09 
Observ ed Performance 
PPM < LSL 0.00 
PPM > USL 885714.29 
PPM Total 885714.29 
PPM < LSL 1.89 
PPM > USL 968521.55 
PPM Total 968523.44 
PPM < LSL 4348.13 
PPM > USL 854388.04 
PPM Total 858736.18 
Within 
Ov erall 
Process Capability of t 6.5mm + 
(using 95.0% confidence) 
Worksheet: Worksheet 3; 11/13/2009
M 
Four Block Diagram D 
A I C 
Nilai sigma level saat ini adalah – 1.86 s, target yang ingin 
dicapai 4.5 s 
A B 
C 
2.5 
2.0 
1.5 
1.0 
0.5 
1 2 3 4 5 6 
Z shift 
Poor 
Process Control 
Good 
Poor Z st Good 
Technology 
EXPLANATION 
Position of Current Condition was 
column C , it was mean : 
PROCESS CONTROL IS GOOD, 
BUT TECHNOLOGY (METHOD) 
IS BAD 
D 
SIGMA TARGET 
SIGMA TARGET 
Sigma current – 1.86
I C 
A 
D M 
F(x) x 
WAKTU PENCELUPAN 
Optimalkan pemakaian Zinc 
Pada proses Galvanize 
Analysis 
TEMPERATUR ZINC 
KETEBALAN GALVANIZE
Analyze – Type of factor & Tools Using I C 
Y Factor (x) Type Tools 
Optimalkan 
pemakaian 
zinc pada 
proses 
Galvanize 
(Continuous) 
Waktu Pencelupan 
A 
D M 
CONTINUE REGRESION
Analysis Waktu Fluxing 
( Regresion ) 
Regression Analysis: Ketbln.Galva versus Wktu fluxing, Wktu.deeping, ... 
* Wktu.deeping is (essentially) constant 
* Wktu.deeping has been removed from the equation. 
* NOTE * All values in column are identical. 
* Temp.deeping is (essentially) constant 
* Temp.deeping has been removed from the equation. 
The regression equation is 
Ketbln.Galvanize (micron ) = 110 - 1.17 Wktu fluxing 
Predictor Coef SE Coef T P VIF 
Constant 109.667 3.658 29.98 0.000 
Wktu fluxing -1.1668 0.4555 -2.56 0.034 1.000 
S = 4.13685 R-Sq = 45.1% R-Sq(adj) = 38.2% 
Analysis of Variance 
Source DF SS MS F P 
Regression 1 112.32 112.32 6.56 0.034 
Residual Error 8 136.91 17.11 
Total 9 249.22 
Unusual Observations 
Wktu Ketbln.Galvanize 
Obs fluxing (micron ) Fit SE Fit Residual St Resid 
1 3.0 114.00 106.17 2.43 7.83 2.34R 
R denotes an observation with a large standardized residual. 
Durbin-Watson statistic = 1.69422 
I C 
A 
D M 
Ketebalan Galvanize VS 
Waktu Fluxing 
Nilai p-value < 0.05, maka 
Ho ditolak, yang 
menandakan variabel 
waktu Fluxing 
berpengaruh terhadap 
ketebalan galvanize.
Analysis Temperatur 
Dipping ( Regresion ) 
Regression Analysis: Ktbl . Galva versus Tmprt deepin, 
Wkt.deeping, ... 
* Wkt.deeping is (essentially) constant 
* Wkt.deeping has been removed from the equation. 
* NOTE * All values in column are identical. 
* Wkt.fluxing is (essentially) constant 
* Wkt.fluxing has been removed from the equation. 
The regression equation is 
Ktbl . Galvanize (micron ) = - 98 + 0.443 Tmprt deeping 
Predictor Coef SE Coef T P VIF 
Constant -98.4 157.1 -0.63 0.548 
Tmprt deeping 0.4428 0.3562 1.24 0.249 1.000 
S = 6.47038 R-Sq = 16.2% R-Sq(adj) = 5.7% 
Analysis of Variance 
Source DF SS MS F P 
Regression 1 64.70 64.70 1.55 0.249 
Residual Error 8 334.93 41.87 
Total 9 399.63 
Durbin-Watson statistic = 1.36705 
I C 
A 
D M 
Ketebalan Galvanize VS Temperatur Zinc 
Nilai p-value > 0.05, maka 
Ho diterima, yang 
menandakan variabel 
temperatur tidak 
berpengaruh terhadap 
ketebalan galvanize.
Analysis Waktu Dipping 
( Regresion ) 
Regression Analysis: Ktbalan Galvanize micron versus Waktu 
deeping 
The regression equation is 
Ktbalan Galvanize micron = 43.7 + 19.9 Waktu deeping 
Predictor Coef SE Coef T P VIF 
Constant 43.674 5.279 8.27 0.000 
Waktu deeping 19.9082 0.6573 30.29 0.000 1.000 
S = 5.96979 R-Sq = 99.1% R-Sq(adj) = 99.0% 
Analysis of Variance 
Source DF SS MS F P 
Regression 1 32698 32698 917.49 0.000 
Residual Error 8 285 36 
Total 9 32983 
Durbin-Watson statistic = 2.41646 
I C 
A 
D M 
Waktu Dipping VS Ketebalan Galvanize 
Nilai p-value < 0.05, maka 
Ho ditolak, yang 
menandakan variabel 
waktu dipping 
berpengaruh terhadap 
ketebalan galvanize.
I C 
A 
D M 
Analysis Result ( Regression ) 
Item Content Result Remarks 
Selected not Vital View 
Selected as Vital View 
Galvanizing 
P = 0.034 
P = 0.024 
P = 0.000 
Waktu Fluxing 
Temperatur Dipping 
Waktu Dipping 
Selected not Vital View 
Berdasarkan data diatas variabel waktu Dipping paling berpengaruh terhadap hasil ketebalan pada proses galvanize (99%)
D M A I 
Improvement C 
• Berdasarkan hasil analisa, untuk 
produk dengan ketebalan 6 mm 
didapatkan hubungan linier antara 
lamanya waktu pencelupan dengan 
hasil ketebalan galvanize. 
• Grafik di bawah ini dapat dijadikan 
acuan untuk menentukan tebal 
galvanize yang diinginkan. 
HUBUNGAN WAKTU PENCELUPAN DAN KETEBALAN GALVANIZE 
PADA PRODUK DENGAN KETEBALAN 6 mm 
260 
250 
240 
230 
220 
210 
200 
190 
180 
170 
160 
150 
140 
130 
120 
110 
100 
90 
80 
70 
60 
50 
40 
30 
20 
10 
0 
0 1 2 3 4 5 6 7 8 9 10 11 
Waktu Pencelupan (menit) 
Ketebalan Galvanis (micron) 
Standar 6mm 
Y = 43.7 + 19.9 x
94 
D M A I 
Improvement C 
Catatan : Proses improvement masih sedang berjalan dan akan dilaporkan 
kemudian hari.
DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll 
Measurement Analysis Improvement Control 
Session Start : 23.01.02 
□○ Theme Register 
□○ Team Organization 
□○ Process Map 
□○ Cpk Analysis(Current) 
□○ Problem Description 
□○ CTQ Selection 
□○ Measurable Y Value 
Selection 
□○ 4 Block Diagram 
Session Start : Session Start : Session Start : 
□○ Brainstorming 
□○ Logic Tree Analysis 
□○ Analysis by Minitab 
□○ Process Benchmarking 
□○ CTQ Selection 
□○ Process Map 
□○ ANOVA 
□○ Regression Analysis 
□○ Factor Level Decision 
□○ DOE 
□○ Statistical Interpretation 
□○ Data Gathering & Analysis 
□○ Main Factor Analysis 
□○ Hypothesis Test 
□○ ANOVA 
□○ Control Chart 
□○ Rational Tolerance 
selection 
□○ Document Control plan 
□○ Training Process Controller 
□○ CTQ Process Monitoring 
System set up 
Session Finished : 
□○ Y Identification 
□○ Gauge R&R 
□○ 4 Block Focus(Zst & Zshift) 
□○ Problem analysis 
reaffirmation 
□○ Statistical skill of Y 
□○ Graphical skill of Y 
□○ Gap Analysis 
□○ The 1st improvement of 
X(Factor) 
□○ Conclusion(the fixed X 
factor) 
□○ Test plan 
□○ Control Plan 
Implementation 
□○ CTQ Process Monitoring 
System Build-Up 
□○ Double check of all the 
problems 
Main Schedule 
Session Finished : Session Finished : Session Finished :
Definition Of Defect 
A period of time taken off by an employee which is neither 
planned or authorised 
DEFINITION 
Sickness 
Unauthorised absence 
Lateness 
DEFECT TYPES 
Payment for overtime to cover absence = £800,000:00 pa 
Loss in revenue due to lost production = £700,000:00 pa (est) 
Adverse morale issues 
Deterioration in productivity and quality 
VALUE 
DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll
Absence Logic Tree 
Absence 
Management 
Style 
DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll 
Accidents 
Morale issues 
Cleanliness 
Repetitive Work 
Sex 
Time With Company 
=CTQ’s 
Age 
Use Of Policy 
Section 
Team Leader 
Guidelines 
Employee 
Target Setting 
Environment 
Method 
Consistent Approach 
Shift Pattern
Sigma Level Calculation 
DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll 
Graph shows reduction in absence, since the beginning of the project (DEC) spotlight effect has 
reduced absence. One problem we do have is the calculation of absence data there is a difference 
between the HR data collection method and the tube plant data collection method. 
8 
6 
4 
2 
0 
-2 
Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun 
Tube 4.27 4.66 5.23 4.7 5.01 5.34 3.86 3.13 2.75 
HR 4.31 5.22 5.86 4.56 5.09 5.02 3.97 3.45 2.72 
Variance -0.04 -0.56 -0.63 0.14 -0.08 0.32 -0.11 -0.32 0.03 
Using The Percentage Defective (4.605%) We Calculated The DPMO Since Merger 
DPMO = 46050 
Using statistical tables the SIGMA LEVEL = 3.21
VOC - Harp Questionnaire 
219 People Questioned Across The Tube Plant 
Answered by all employees. 
Name Marital Status 
Clock Number Age 
Department Children 
Shift Home 
Time with Company Job position 
Time in current job 
Have you taken any unauthorised time off since 5th July 2001? YES / NO 
Do you currently have any warnings that relate to sickness or absence? YES / NO 
Do you understand LGPDW's absence and sickness policy? YES / NO 
Do you understand the affect of absence on our business? (e.g. cost, pressure on colleagues) 
Only to be answered by employees with no absence history 
How do you think high absence levels affects your ability to do your job? 
What do you think of LG. PHILIPS Displays as an employer? 
Are you happy working for LGPDW? 
Ask employee all questions below, and mark the score they give ie strongly agree 
= 10, agree = 5 and strongly disagree = 0. 
Do you think absence is due to Management style? 
Do you think absence is due to accidents in work? 
Do you think absence is due to the current shift pattern? 
Do you think absence is due to your working environment? 
If I was late for work, I would take the rest of the shift off because it still counts as an absence 
Are there any other reasons that you think contribute to absence that are not listed above? 
DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll
Catchment Area Of People Questioned 
Overall 
catchment area 
Main catchment 
area 
DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll
Others 
Job rotation 
P ay rise 
Music 
Mgt at ti tude 
Att Bonus 
137 51 33 14 5 12 
54.4 20.2 13.1 5.6 2.0 4.8 
54.4 74.6 87.7 93.3 95.2 100.0 
250 
200 
150 
100 
50 
0 
100 
80 
60 
40 
20 
0 
Defect 
Count 
Percent 
Cum % 
Percent 
Count 
How would y ou tackle high absence? 
Operators 
Pareto’s Of Absence Data 
DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll 
Teambuilding 
gather info on persistant absentees 
E xtra manning 
1 - 1Communication 
A tendance bonus 
4 2 2 1 1 
40.0 20.0 20.0 10.0 10.0 
40.0 60.0 80.0 90.0 100.0 
10 
5 
0 
100 
80 
60 
40 
20 
0 
Defect 
Count 
Percent 
Cum % 
Percent 
Count 
How would y ou tackle absence? 
Section Leaders 
Conclusions 
Operators would like to be paid 
more to come to work 
Operators see a problem in the 
way they are treated by Mgt 
Music might help?? 
Conclusions 
Section Leaders see the benefit 
in some form of attendance 
bonus, but more emphasis on 
communication and data 
collection
Pareto’s Of Absence Data 
Others 
deaths 
accidents insi de work 
car problems 
i njury out side work 
low morale 
f lexi ble fl oatdays 
si ck ness 
f lu 
domest ic 
4 4 4 3 2 2 1 1 1 1 
17.4 17.4 17.4 13.0 8.7 8.7 4.3 4.3 4.3 4.3 
17.4 34.8 52.2 65.2 73.9 82.6 87.0 91.3 95.7 100.0 
20 
10 
0 
100 
80 
60 
40 
20 
0 
Defect 
Count 
Percent 
Cum % 
Percent 
Count 
Main Reasons For Absence On Your Shif t 
DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll 
Main issues af f ecting shif ts ability to meet output targets 
Others 
experience 
absence 
poor maint enance 
suppl y 
low manning 
11 5 3 2 1 1 
47.8 21.7 13.0 8.7 4.3 4.3 
47.8 69.6 82.6 91.3 95.7 100.0 
20 
10 
0 
100 
80 
60 
40 
20 
0 
Defect 
Count 
Percent 
Cum % 
Percent 
Count 
Conclusions 
No significant patterns have 
emerged 
Conclusions 
Absence is not a major issue
Analysis Using M System 
DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll 
Age 
Sex 
Time With Company 
Employee 
NEXT STEP IS TO CARRY OUT ANALYSIS BY 
EMPLOYEE TO ESTABLISH IF THERE ARE 
ANY STATISTICAL DIFFERENCES 
DATABASE WAS CREATED LOOKING AT THE 
NINE MONTH PERIOD (5th July-4th April) PRIOR 
TO AND DURING PROJECT 
Employment Details Time with Company Personal Details Unauthorised Absence 
empn 
o Emp Name dept 
cd Dept Name Grade shift no Distance 
Details 
date_hir 
ed Year/Month gender Age Age 
Group 
Count 
Absence Abs Occ 
12345 A N OTHER1 81000 Tube Manufacturing Senior Engineer DT CF1 1AB 17/03/00 02/01 Male 34 D 0 0 
12346 A N OTHER2 81000 Tube Manufacturing Senior Engineer DT CF1 1AB 06/10/99 02/06 Male 34 D 0 0 
12347 A N OTHER3 81000 Tube Manufacturing Team Leader DT CF1 1AB 11/08/97 04/08 Male 33 D 3 1 
12348 A N OTHER4 81100 Screen Production Section Leader T4 CF1 1AB 18/05/98 03/11 Male 51 H 0 0 
12349 A N OTHER5 81100 Screen Production Section Leader T2 CF1 1AB 26/04/99 02/12 Male 42 F 1 1 
12350 A N OTHER6 81100 Screen Production Section Leader T1 CF1 1AB 10/05/99 02/11 Male 41 F 0 0 
12351 A N OTHER7 81100 Screen Production Section Leader DT CF1 1AB 20/04/98 03/12 Male 41 F 0 0 
12352 A N OTHER8 81100 Screen Production Section Leader T2 CF1 1AB 06/10/97 04/06 Male 39 E 1 1 
12353 A N OTHER9 81100 Screen Production Team Leader DT CF1 1AB 12/01/98 04/03 Male 39 E 0 0 
12354 A N OTHER10 81100 Screen Production Technician DT CF1 1AB 06/10/97 04/06 Female 35 D 0 0
Analysis By Age 
DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll 
Created Age Groupings 
Age Group Age Range 
A 16-20 
B 21-25 
C 26-30 
D 31-35 
E 36-40 
F 41+ 
Analysed Percent Absent By Age Group 
Conclusions 
There is a significance showing that 
D = 31-35 and F = 41+ are more likely to 
not to take unauthorised absence and that 
B = 21-25 are more likely to take 
unauthorised absence 
Chi-Square Test: A, B, C, D, E, F 
Expected counts are printed below observed counts 
A B C D E F Total 
1 188 175 183 132 91 62 831 
183.80 187.26 182.08 125.12 94.06 58.68 
2 25 42 28 13 18 6 132 
29.20 29.74 28.92 19.88 14.94 9.32 
Total 213 217 211 145 109 68 963 
Chi-Sq = 0.096 + 0.802 + 0.005 + 0.378 + 0.099 + 0.188 + 
0.603 + 5.050 + 0.029 + 2.378 + 0.626 + 1.183 = 11.438 
DF = 5, 
P-Value = 0.043 
19.35% 
13.27% 
8.97% 
16.51% 
8.82% 
13.71% 
11.74% 
A B C D E F Grand 
Total
Analysis By Gender 
DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll 
Split By Gender Analysed Percent Absent By Gender 
Conclusions 
There is significance showing that a 
male person would more likely take 
unauthorised absence 
Female Male Grand Total 
22.28% 30.88% 29.08% 
157 526 683 
45 235 280 
Chi-Square Test: F, M 
Expected counts are printed below 
observed counts 
F M Total 
1 188 643 831 
174.31 656.69 
2 14 118 132 
27.69 104.31 
Total 202 761 963 
Chi-Sq = 1.075 + 0.285 + 
6.767 + 1.796 = 9.924 
DF = 1, 
P-Value = 0.002 
15.51% 
13.71% 
6.93% 
Female Male Grand Total
Analysis By Time Served 
Group Range 
A <1Year 
B 1-2 Years 
C 2-3 Years 
D 3-4 Years 
E >4 Years 
DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll 
Analysed Percent Absent By Time Served 
Conclusions 
There is a significance in that 
E = 4 years + 
is more likely to take unauthorized 
absence 
Created Time Served Groupings 
Chi-Square Test: A, B, C, D, E 
Expected counts are printed below observed counts 
A B C D E Total 
1 117 129 151 324 110 831 
113.04 126.85 154.46 314.97 121.67 
2 14 18 28 41 31 132 
17.96 20.15 24.54 50.03 19.33 
Total 131 147 179 365 141 963 
Chi-Sq = 0.138 + 0.036 + 0.078 + 0.259 + 1.120 + 
0.872 + 0.229 + 0.489 + 1.630 + 7.050 = 
11.902 
DF = 4, 
P-Value = 0.018 
12.24% 
15.64% 
11.23% 
21.99% 
13.71% 
10.69% 
A B C D E Grand 
Total
Analysis By Department 
DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll 
Created Department Sub-Groups Percent Absent By Sub Group 
Group dept_cd Dept Name Total Abs Never 
A 83210 Tube Material Warehouse 46.15% 6 7 
B 81400 Design/Process Engineering 35.71% 5 9 
C 81320 Sputter section 32.50% 13 27 
D 81310 Spin section 21.21% 7 26 
E 84120 Tube OQC section 16.13% 5 26 
81140 Maintenance 1 section 
81510 Maintenance Section(2/3) 
81230 Gunseal and Exhaust section 
81330 I.T.C. section 
81340 Outgoing section 
81450 CS-Reinspection section 
81210 Assembly Section 
81220 Inner Dag section 
I 84110 Tube IQC section 7.69% 1 12 
J 81240 1st Inspection section 5.63% 4 67 
81110 Screen Coating section 
81120 Chemical section 
L 81130 Shadow Mask Section 2.50% 2 78 
Average 12.72% 109 748 
Conclusions 
This shows that there is a significance in departments 
A = Tube Material Warehouse, B = Design/Process Engineering, 
C = Sputter section. 
In which all are more likely to take unauthorised absence 
F 
G 
H 
14.55% 
13.68% 
10.29% 
47 
284 
61 
8 
45 
7 
K 5.45% 6 104 
35.71% 
32.50% 
21.21% 
16.13%14.55%13.68% 
10.29% 
7.69% 
5.63% 5.45% 
2.50% 
46.15% 
A B C D E F G H I J K L
Analysis By Shift 
DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll
Improvement Suggestions 
Improvement Actions/Suggestions by CTQ. 
DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll 
CTQ Proved By Improvement Recommendation 
Age Proved By Chi Square 
Test Use best fit when recruiting. 
Gender Proved By Chi Square 
Test Use best fit when recruiting. 
Length Of Service Proved By Chi Square 
Test Use best fit when recruiting. 
Shift Pattern Proved By Chi Square 
Test Build In More flexibility for day shift workers. 
Department Proved By Chi Square 
Test Compare Management Styles 
Morale Proved By HARP 
Survey New Incentive Scheme (Ongoing) 
Accidents Proved By HARP 
Survey New Health & Safety Structure In Place 
Envirionment Proved By HARP 
Survey Music & Improved Rest Room Facilities 
Management Style Proved By HARP 
Survey 
Training Courses For Manager On Interpersonal Skills. 
Management Attitude Improvement Plan Next Slide 
Aggressive Target Setting Proved By HARP 
Survey Unable to improve due to the nature of our business.
DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll 
Improvement Suggestions - Management Attitude 
Morale Absence 
More 
Information 
Team Building 
Improved 
Interpersonal 
Skills 
Treat 
Operators As 
Equal 
More 1 To 1 
Communication 
Follow Correct 
Procedures 
Improved 
Grading 
System 
HIGH MORALE = LOW ABSENCE
DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll 
Improvement Suggestions - Attendance Bonus 
£100 Per 
Year 
Deductions? 
All Authorised 
Non- Sickness 
Absence 
Paid Quarterly 
Cash/Vouchers/Sa 
vings 
Decided By 
Incentive Scheme 
Working Party 
All Absence 
Resulting In 
Warnings 
Verbal -25% 
Written - 50% 
F Written - 100% 
Total 
Savings 
£1,086,000 
All 
Deductions 
For 1 Year 
From Date Of 
Warning
Output 
DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll 
Initial Current 
s level 3.21 3.43 
PPM (Month) 46021 27300 
Loss (£) £117000 £69405 
Est. Monthly Saving of: £47595 
(Based on hours lost)
Process Sterilization 
Capability Up 
Contents: 
1. Define Step 
2. Measure Step 
3. Analysis Step 
4. Improvement 
5. Control 
6s Champion Review 
Final Report
Background M A I C D 
Develop working efficiency and found 66 SSiiggmmaa control for free 
Salmonella in sterilization process. 
Process Capability Current Condition 
Process Capability Sixpack for Sealing Angle Line #2 
0 100 200 300 400 500 
1.0 
0.5 
0.0 
-0.5 
Individual and MR Chart 
Obser. 
Ind ivid ua l V a lue 
UCL=0.7674 
Mean=-0.01707 
LCL=-0.8016 
0.9 
0.6 
0.3 
0.0 
Mo v.Ra ng e 
UCL=0.9638 
R=0.2950 
LCL=0 
Last 25 Observations 
480 490 500 
0.3 
0.0 
-0.3 
-0.6 
Observation Number 
V a lue s 
Capability Histogram 
-0.5 0.0 0.5 
Normal Prob Plot 
-0.5 0.0 0.5 
Capability Plot 
Process Tolerance 
Within 
I I I 
Overall 
I I I 
Specifications 
I I 
-0.5 0.5 
Within 
StDev: 
Cp: 
Cpk: 
0.261507 
0.64 
0.62 
Overall 
StDev: 
Pp: 
Ppk: 
0.288617 
0.58 
0.56 
2 
0.65 
1.5 
0.51 
Target Current 
Cp 
Cpk
D M A I C 
Potential X’ List 
Executing analysis with Logic Tree for sterile product. 
Big Y X1 X2 X3 
Sterile Product Machine Sterile Time Fixed 
Rotate 
Temp Warm 
Hot > 97 
Steam Supply Spec (6.5 ~ 9) bar 
Pineapples Bracket Stand 
Material 
Juice pH 
Methods Automatic 
Manual
Gage R&R D A I C M 
Sealing angle Line 2 
Mar 3rd,2006 
novi m 
0.05 
0.01 
Gage name: 
Date of study: 
Reported by: 
Tolerance: 
Misc: 
Gage R&R (ANOVA) for Measurement 
0 
0.5 
0.0 
-0.5 
R Chart by Operator 
Xbar Chart by Operator 
A B C 
Sam ple Mean 
UCL=0.01198 
LUMCeCLaLn==0=0.0.00.0233370201767 
0 
0.010 
0.005 
0.000 
A B C 
Sample Range 
R=0.003667 
LCL=0 
1 2 3 4 5 6 7 8 9 10 
1 2 3 4 5 6 7 8 9 10 
0.4 
0.3 
0.2 
0.1 
0.0 
-0.1 
-0.2 
-0.3 
-0.4 
Part 
Operator 
Operator*Part Interaction 
Average 
A 
B 
C 
A B C 
0.4 
0.3 
0.2 
0.1 
0.0 
-0.1 
-0.2 
-0.3 
-0.4 
Operator 
By Operator 
0.4 
0.3 
0.2 
0.1 
0.0 
-0.1 
-0.2 
-0.3 
-0.4 
Part 
By Part 
%Contribution 
%Study Var 
Gage R&R Repeat Reprod Part-to-Part 
100 
50 
0 
Components of Variation 
Perc ent 
Gage R&R 
%Contribution 
Source VarComp (of VarComp) 
Total Gage R&R 0.000020 0.03 
Repeatability 0.000020 0.03 
Reproducibility 0.000000 0.00 
Operator 0.000000 0.00 
Part-To-Part 0.077747 99.97 
Total Variation 0.077767 100.00 
StdDev Study Var %Study 
Var 
Source (SD) (5.15*SD) (%SV) 
Total Gage R&R 0.004437 0.02285 1.59 
Repeatability 0.004425 0.02279 1.59 
Reproducibility 0.000323 0.00166 0.12 
Operator 0.000323 0.00166 0.12 
Two-Way ANOVA Table With Interaction 
Source DF SS MS F P 
Part 9 4.19852 0.466502 21530.8 00..0000000000 
Operator 2 0.00004 0.000022 1.0 0.38742 
Operator*Part 18 0.00039 0.000022 1.2 0.33365 
Repeatability 30 0.00055 0.000018 
Total 59 4.19950 
If significant, P-value < 0.05 indicates 
that a part is having a variation for 
Some measuring 
Ok for “product acceptance” 
considering a products 
tolerance.
M 
D A I C 
Measurement 
Through analysis of process capability , getting sigma level 11..8855 s 
Four Block Diagram 
Target 
1 2 3 4 5 6 
2.5 
2.0 
1.5 
1.0 
0.5 
Poor 
Z Shift 
Process Control 
Good 
Poor Good 
Technology 
Block A 
Block C 
Block B 
Block D 
1.85 s 
4.5 s 
Z Shift 
Process capability for Sterile Product 
Process Capability Analysis for Sealing 
Angle Line #2 
LSL Target USL 
-1.0 -0.5 0.0 0.5 1.0 
Potential (Within) Capability 
Overall Capability Observed Performance Exp. "Within" Performance Exp. "Overall" Performance 
PPM < LSL 
PPM > USL 
PPM Total 
PPM < LSL 
PPM > USL 
PPM Total 
PPM < LSL 
PPM > USL 
PPM Total 
USL 
Target 
LSL 
Mean 
Sample N 
StDev (Within) 
StDev (Overall) 
Z.Bench 
Z.USL 
Cpk Z.LSL 
Cpm 
Z.Bench 
Z.USL 
Z.LSL 
Ppk 
47140.05 
36602.01 
83742.06 
32395.08 
24004.66 
56399.74 
4008.02 
0.00 
4008.02 
0.500000 
0.000000 
-0.500000 
-0.017074 
499 
0.261507 
0.288617 
1.59 
1.98 
1.85 
0.62 
0.58 
1.38 
1.79 
1.67 
0.56 
Process Data 
Within 
Overall 
A : Poor control, inadequate technology 
B : Must control the process better, technology is fine 
C : Process control is good, inadequate technology 
D : World class
A 
Analysis - Regression D M I C 
Use regression is to express and analyze a mathematical equation of describing a relationship. That is, it is 
to fit a mathematical equation of describing a relationship between the “YY” and “XX’’ss”. 
Regression Analysis: Sterile product versus time and temp 
The regression equation is 
Sterile =0.000303 + 0.00113 time + 0.000060 temp 
Regression Analysis: Sterile product versus time and temp 
The regression equation is 
Sterile =0.000303 + 0.00113 time + 0.000060 temp 
Predictor Coef SE Coef T P 
Constant 0.0003033 0.0002999 1.01 0.345 
TTiimmee 00..0000111122885599 00..0000000033993399 2288..6655 00..000000 
Temp 0.00006005 0.00005694 1.05 0.327 
Predictor Coef SE Coef T P 
Constant 0.0003033 0.0002999 1.01 0.345 
TTiimmee 00..0000111122885599 00..0000000033993399 2288..6655 00..000000 
Temp 0.00006005 0.00005694 1.05 0.327 
S = 0.0003891 R-Sq = 100.0% R-Sq(adj) = 100.0% 
S = 0.0003891 R-Sq = 100.0% R-Sq(adj) = 100.0% 
Normal Probability Plot of the Residuals 
(response is Angle) 
Analysis of Variance 
Source DF SS MS F P 
Regression 2 0.82500 0.41250 2.725E+06 0.000 
Residual Error 7 0.00000 0.00000 
Total 9 0.82500 -0.0005 0.0000 0.0005 
Analysis of Variance 
Source DF SS MS F P 
Regression 2 0.82500 0.41250 2.725E+06 0.000 
Residual Error 7 0.00000 0.00000 
Total 9 0.82500 
1 
0 
-1 
N o rm a l S c o re 
Residual 
p-value < 0.05 : 
Significant factor 
R2 and R2-adj are over 90% : 
which indicates a potentially good fit
Analysis – Regression D M I C 
Comparing of Sterile product and steam supply to find what the factor’ level’s which influence 
enormously by represent characterized variation ““YY”” by the total sum of square. 
Regression Analysis: Sterile product versus Steam supply 
The regression equation is 
Sterile product = - 0,380 + 3,74 Steam supply 
Predictor Coef SE Coef T P 
Constant -0,3796 0,1693 -2,24 0,042 
SStteeaamm SSuuppppllyy 33,,774444 11,,115533 33,,2255 00,,000066 
Regression Analysis: Sterile product versus Steam supply 
The regression equation is 
Sterile product = - 0,380 + 3,74 Steam supply 
Predictor Coef SE Coef T P 
Constant -0,3796 0,1693 -2,24 0,042 
Steam Supply 3,744 1,153 33,,2255 00,,000066 
S = 0,1510 R-Sq = 43,0% R-Sq(adj) = 38,9% 
S = 0,1510 R-Sq = 43,0% R-Sq(adj) = 38,9% 
Analysis of Variance 
Source DF SS MS F P 
Regression 1 0,24032 0,24032 10,55 0,006 
Residual Error 14 0,31905 0,02279 
Total 15 0,55937 
Analysis of Variance 
Source DF SS MS F P 
Regression 1 0,24032 0,24032 10,55 0,006 
Residual Error 14 0,31905 0,02279 
Total 15 0,55937 
The P-value < 0.05 
Reject Ho ; Accept ha 
A 
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 
4 
3 
2 
1 
0 
Residual 
Frequency 
Histogram of the Residuals 
(response is Cullet S)
A 
Analysis – Chi-square D M I C 
This Chi-Square is used to Test hypotheses about the frequency of occurrence of some event 
happening with equal probability. 
Conclusion: 
◆ At least no one region is different, because a 
dependence exists. (P > 0.05) 
◆ It no appears that the dependence may exist with 
Region 1 due to the large difference between the 
observed and the expected values.(must 
subtract the expected and observed values) 
Since P-Value >> 0.05; there’s no significant 
Effect between product sterile and factor. 
Chi-Square Test: matang, Stngh matang, 
juice 
Expected counts are printed below observed counts 
Chi-Square contributions are printed below 
expected counts 
Stngh 
matang matang juice Total 
OK 1000 995 1013 3008 
1000.01 993.03 1014.96 
0.000 0.004 0.004 
NG 3 1 5 9 
2.99 2.97 3.04 
0.000 1.308 1.269 
Total 1003 996 1018 3017 
Chi-Sq = 2.585, DF = 2, P-Value = 0.275 
3 cells with expected counts less than 5.
Analysis – 
A 
two sample T-test D M I C 
Hypothesis tests help to determine if a difference is real, or if it could be due to 
chance 
Two-Sample T-Test and CI: Automatic, Chart 
Two-sample T for Automatic vs Chart 
N Mean StDev SE Mean 
Automatic 12 14.70 1.47 0.42 
Manual 12 14.13 2.19 0.63 
Difference = mu (Automatic) - mu (Chart) 
Estimate for difference: 0.562500 
95% CI for difference: (-1.030754, 
2.155754) 
T-Test of difference = 0 (vs not =): T-Value 
= 0.74 P-Value = 0.469 DF = 19 
D a t a 
Automatic Chart 
19 
18 
17 
16 
15 
14 
13 
12 
11 
Boxplot of Automatic, Chart 
There is no statistically significant difference 
if the confidence interval for m1 - m2 does 
include 0.0.
Improvement – D M A C 
Response Surface Experiment 
MMaaiinn EEffffeeccttss PPlloottss ffoorr TTiimmee,, TTeemmpp && SStteeaamm ssuuppppllyy AAvveerraaggee aanndd SSttaannddaarrdd DDeevviiaattiioonn ooff RReessiidduuee.. 
9 
Cube Plot (data means) for Salmonella 
6.5 
97 
90 
10 
7 
0 
7.5 10 
Steam 
Temp 
Time 
3 
4 11 
15 12 
I 
Main Ef fects Plot (data means) for Salmonel la 
From the Main Effects Plot for the average of residue we 
conclude: 
• Temp has the greatest effect on average residue 
• Time has a lesser effect on average residue 
• Steam supply shows little or no effect (within the test range) 
on the average residue 
Best 
Condition: 
• Salmonella : 0 
• Temp max : 97 oC 
• Time : 7.5 min 
• Steam : 6.5 bar 
Mean of Salmonella 
7.5 10.0 
10.0 
7.5 
5.0 
90 97 
6.5 9.0 
10.0 
7.5 
5.0 
Time Temp 
St eam
Improvement – 
Response Surface Experiment 
D M A I C 
Contour Plot 
Lines of target 
response for 
“0” Salmonella 
1. Get to know the condition giving lower salmonella. 
2. To get the regular response, we realize what variables 
is important to control (temp & time) 
3. Determine the level of independent variance needed for 
getting salmonella 00 (When temp is approximately 97oC) 
97 
96 
95 
94 
93 
92 
91 
90 
Contour Plot of Salmonella vs Temp, Time 
7.5 8.0 8.5 9.0 9.5 10.0 
Time 
Te m p 
Salmonella 
< 2.0 
2.0 - 4.5 
4.5 - 7.0 
7.0 - 9.5 
9.5 - 12.0 
12.0 - 14.5 
> 14.5 
Hold Values 
Steam 6.5 
Interpretation: to make sterile product (no salmonella) move towards the center corner of the 
Contour Plot (samonella = 00). Read off potential “Time” and “Temp” values that will provide Salmonella 
< 2.
D M A I C 
Improvement – 
Response Surface Experiment 
Generally, main effect is more important than interaction. If interaction is regarded as a important thing, 
then interaction can be used as a factor of interaction and another interaction might be confounded. 
96 
Salmonella 
10 
5 
0 94 
T emp 
15 
8 92 9 10 90 T ime 
Hold Values 
Steam 6.5 
Surface Plot of Salmonella vs Temp, Time
Improvement – 
Result 
D M A I C 
Four Block Diagram 
1 2 3 4 5 6 
2.5 
2.0 
1.5 
1.0 
0.5 
Poor 
Z Shift 
Process Control 
Good 
Poor Good 
Technology 
Block A 
Block C 
Block B 
Block D 
4.25 s 
Z Shift 
1.85 s 
Improvement Result: 
Saving Cost estimated: 2.7K U$/Year 
Process Capability Analysis for Sealing 
Angle Line #2 
LSL Target USL 
0.500000 
0.000000 
-0.500000 
0.014762 
84 
0.121123 
0.124193 
Potential (Within) Capability 
3.94 
4.01 
1.34 4.25 
-0.50 -0.25 0.00 0.25 0.50 
Overall Capability Observed Performance Exp. "Within" Performance Exp. "Overall" Performance 
PPM < LSL 
PPM > USL 
PPM Total 
PPM < LSL 
PPM > USL 
PPM Total 
PPM < LSL 
PPM > USL 
PPM Total 
USL 
Target 
LSL 
Mean 
Sample N 
StDev (Within) 
StDev (Overall) 
Z.Bench 
Z.USL 
Cpk Z.LSL 
Cpm 
Z.Bench 
Z.USL 
Z.LSL 
Ppk 
17.00 
46.70 
63.70 
10.69 
30.86 
41.55 
0.00 
0.00 
0.00 
1.34 
3.83 
3.91 
4.14 
1.30 
Process Data 
Within 
Overall
Control 
D M A I C 
Six Sigma Quality focuses on moving control upstream to the leverage input characteristic for Y. 
If we can measure and control the vital few X’s, control of Y should be assured. 
Desired Process Capability 
Output 
Input Controller 
Process 
Group Member 
Controllable factors: 
- Miss adjust causes 
- Adjustable check 
- Pad control 
- Education 
Upper Control Limit 
X 
● 
Lower Control Limit 
● 
0.5 
0.0 
-0.5 
Sample Mean 
Output 
Subgroup 0 50 100 
UCL=0.4384 
Mean=0.001188 
LCL=-0.4360 
1.0 
0.5 
0.0 
Sample Range 
1 1 1 
UCL=0.7596 
R=0.2325 
LCL=0 
Xbar/R Chart for Sealing Angle Line #2 
Process Standard Change
Optimizing Material DIO 
Contents 
6s Champion Review 
DMAIC-Step Report 
1. DEFINE 
2. MEASURE 
3. ANALYSIS 
4. IMPROVEMENT 
5. CONTROL
‘06 6s Project Registration 
PJT Name 
Period 
Team 
Name 
Optimizing Material D I O 
Main Improvement Object Breakthrough (KPI) Current World Best Target New Idea for Target Achievement 
Just In Time Purchasing 
Vendor Managed Inventory 
Team Formation, Related Department Involved 
Name Dept. Position Main Role 
NECK POINT 
- Warehouse Inventory Amount D I O 
2.6 days 2.3 days - Working In Process Inventory Amount 
How to do ? Why ? 
(* Selection Background) 
Expected 
Results 
Quantitative 
1. JIT delivery system for press part 
2. Door to door delivery for glass 
3. Hub delivery system from Korea 
4. Raw material issue control to process 
5. Weekly stock taking 
6. Minimize NG and rework stock in process 
Qualitative 
at end of the month 
7. PO issued based on the latest production 
plan 
1. D I O is one of key performance indicators in 
inventory management. 
2. Good level of inventory will support production 
line in effective and efficient way. 
3. Fluctuated material D I O 
Current Condition 
USL : 2.9 
LSL : - 
Means : 2.58091 
Sample N : 14 
Z Bench : 1.03 
( Days Inventory 
Outstanding ) 
Process Capability Analysis for C2 
1.5 2.0 2.5 3.0 3.5 
Potential (Within) Capability 
Overall Capability Observed Performance Exp. "Within" Performance Exp. "Overall" Performance 
PPM < LSL 
PPM > USL 
USL 
Target 
LSL 
Mean 
Sample N 
StDev (Within) 
StDev (Overall) 
Z.Bench 
Z.USL 
Z.LSL 
Cpk 
Cpm 
Z.Bench 
Z.USL 
Z.LSL 
2.90000 
* 
* 
2.58091 
14 
0.310413 
0.380447 
1.03 
1.03 
* 
0.34 
* 
0.84 
0.84 
* 
1,117 K $ US 
* 
214285.71 
Current 
PPM < LSL 
PPM > USL 
* 
151989.40 
1,050 
- Reduced warehouse and WIP inventory amount 1NG and rework stock in the end of month 
- All material used efficiently in production line 
PPM < LSL 
PPM > USL 
* 
200815.40 
Target - Continuous material supplies to production line 
2. Fluctuate production schedule 
K 67 
UUSSLL 
PPM Total 
PPM Total 
PPM Total 
Ppk 
200815.40 
151989.40 
214285.71 
0.28 
Process Data 
Within 
Overall
Background 
D 
M A I C 
One of the material inventory management control is DIO (Days Inventory Outstanding) that 
has the formula: 
Inventory Amount 
Material DIO = ------------------------- X total days of current month 
Sales Amount 
The elements of material DIO are: 
1. Warehouse Inventory (Raw Material) 
2. Working In Process inventory (Semi Finished Goods ) 
3. Material In Transit Inventory 
Current Material Inventory Condition : 
Average Amount : $ K 1,117 
D I O : 2.6 days 
This large amount and high DIO have some effects : 
 Risk in obsolescence, expired, lost, and 
defect 
 High inventory carrying cost 
Optimizing inventory amount and D I O will bring material inventory management in a more 
efficient cost
D 
M A I C 
Y X1 X2 X3 X4 X5 
M. RATIO 
Net BOM 
Material Price 
Src. 
Performance 
BOM Quantity 
M. YIELD 
CPT Price 
Experience 
Negotiation 
Education 
M. DIO 
Material Loss 
Net Req. Material 
Material Cost Amt 
Market Situation 
Key Part 
Chemical 
Others 
Mat. Inv. Amt 
Production Qty 
Sales Amt 
Beginning Stock 
Sales Target 
Forecast Skill 
Calculation Skill 
Purchasing Qty 
Ending Stock 
Receive Amt 
Total Days 
In Transit Inv. 
Warehouse Inv. 
W I P Inv. 
Sales Qty. 
Current Month 
Supply Condition 
Glass 
Mask 
Press Part 
Sub Mount 
Process Part 
Assy Part 
Logic Tree
Logic Tree D M A I C 
Y X1 X2 X3 X4 X5 
Mat Inv Amt 
In Transit Inv Delivery Sched. 
Material 
DIO 
Sales Amt 
B 
Graphite G 72 B 
Warehouse Inv Experience 
Sales Qty 
Price 
A 
Education 
Total Days 
Simulation Skill 
Glass 
Stock 
Bulb 
D Y 
Part Stock 
Assy Stock 
Current Month 
Sales Target 
Production Capa 
CMA 
M/Assy 
Marketing Nego 
Market Situation 
W I P Inventory 
YS 
TCL Prod. 
Comp. Supply 
Sub Month
D M A I C 
This project with potential X-List will be focused to control Warehouse Inventory and working In 
Process Inventory 
X Level 
X Level 
2 
2 
X Level 
3 
DD Y Y 
BBigig Y Y 
MMaateteriraial lD DIOIO 
PP A A D D 
PPaartr tS Stotockck 
AAssssy yS Stotockck 
X Level 
4 
FFlalat tM Maasksk 
GGlalassss 
SSuubb M Moouunnt t 
PPhhoosspphhoor r 
GG 7 722 B B 
X Level 
X Level 
1 
1 
MMaateteriraial lI nInvv. .A Ammtt 
WW/h/hoouussee I nInv.v. 
WWIPIP I nInv.v. 
X Level 
3 
X Level 
4 
ggoooodd 
AAssssyy 
CCMMAA 
Brainstorming Potential X
D M A I C 
Gage R & R 
To test validation of measurement , 3 (three) persons, twice inspection and 14 months calculation for 
material D I O has carried out, and the result was acceptable. 
Gage R&R 
StdDev Study Var %Study 
Var 
Source (SD) (5.15*SD) (%SV) 
Total Gage R&R 0.109148 0.56211 16.58 
Repeatability 0.109046 0.56159 16.56 
Reproducibility 0.004723 0.02432 0.72 
Operator 0.004723 0.02432 0.72 
Part-To-Part 0.649363 3.34422 98.62 
Total Variation 0.658472 3.39113 100.00 
Number of Distinct Categories = 8 
Gage name: 
Date of study: 
Reported by: 
Tolerance: 
Misc: 
Gage R&R (ANOVA) for Measure 
0 
4 
3 
2 
R Chart by Operator 
Xbar Chart by Operator 
1 2 3 
S a m p le M e a n 
LUMCeCLaLn==2=2.2.67.3624749 
0 
1.0 
0.5 
0.0 
1 2 3 
S a m p le R a n g e 
LRUC=C0LL.==0002.40075857 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 
4 
3 
2 
Part 
Operator 
Operator*Part Interaction 
A v e r a g e 
1 
2 
3 
1 2 3 
4 
3 
2 
Operator 
By Operator 
4 
3 
2 
Part 
By Part 
%Contribution 
%Study Var 
%Tolerance 
Gage R&R Repeat Reprod Part-to-Part 
350 
300 
250 
200 
150 
100 
50 
0 
Components of Variation 
P e r c e n t 
Gage R&R 
<20% 
Acceptable 
The result of Gage R&R total is 16.58, the acceptance percentage is below 20 (<20), meanwhile the 
result of measurement between <20, it accepted.
Current Condition DM A I C 
Process Capability Analysis for C2 
UUSSLL 
1.5 2.0 2.5 3.0 3.5 
Potential (Within) Capability 
Overall Capability Observed Performance Exp. "Within" Performance Exp. "Overall" Performance 
PPM < LSL 
PPM > USL 
PPM Total 
PPM < LSL 
PPM > USL 
PPM Total 
PPM < LSL 
PPM > USL 
PPM Total 
USL 
Target 
LSL 
Mean 
Sample N 
StDev (Within) 
StDev (Overall) 
Z.Bench 
Z.USL 
Z.LSL 
Cpk 
Cpm 
Z.Bench 
Z.USL 
Z.LSL 
Ppk 
* 
200815.40 
200815.40 
* 
151989.40 
151989.40 
* 
214285.71 
214285.71 
2.90000 
* 
* 
2.58091 
14 
0.310413 
0.380447 
1.03 
1.03 
* 
0.34 
* 
0.84 
0.84 
* 
0.28 
Process Data 
Within 
Overall 
Z-Bench : 
1.03
Block Diagram D M 
A I C 
Z shift has been identified , the Z shift will be 0.19, regarding this issue the target 
of the project is 4.5 sigma 
A B 
C 
2.5 
2.0 
1.5 
1.0 
0.5 
1 2 3 4 5 6 
Z shift 
Poor 
Process Control 
Good 
Poor Z st Good 
Technology 
EXPLANATION 
Position of DIO was column C , 
it was mean : 
PROCESS CONTROL IS GOOD, 
BUT TECHNOLOGY (METHOD) 
IS BAD 
Z st : 1.03 
Z shift : Z st – Z lt 
Z st : 1.03 
Z shift : Z st – Z lt 
: 1.03 – 0.84 
: 0.19 
: 1.03 – 0.84 
: 0.19 
D
D M A I C 
WIP Assy Stock Analysis 
The Pareto analysis has been done, the result shows that tube stock, Furnace, CMA, and Assy 
have the highest contribution to WIP Assy Amount 
Bare Tub e 
165826 48983 37174 33504 7725 14962 
53.8 15.9 12.1 10.9 2.5 4.9 
53.8 69.7 81.8 92.6 95.1 100.0 
Others 
CP T D o ngbang 
Mo unt Assy 
C MA 
B ulb 
300000 
200000 
100000 
0 
100 
80 
60 
40 
20 
0 
Defect 
Count 
Percent 
Cum % 
P e rc e n t 
C o u n t 
Avg WIP Stock 1Q '04 
Analysis 
BBBBaaaarrrreeee TTTTuuuubbbbeeee 
45 % conveyor stock ($ 78 K) 
55 % ( $ 97 K) consists 
-O Nf G: & rework, 
- Pending Lot 
- Remained Prod. Stock 
BBBBuuuullllbbbb 
F’ce Stock 
C/V Stock 
CCCCMMMMAAAA 
Stock to keep production 
MMMMoooouuuunnnntttt AAAAssssssssyyyy 
Safety Stock to secure 
supply 
2 shift Mount Assy Process 
Pareto Chart for WIP Assy Inv.
WIP Part Stock Analysis D M A I C 
The Pareto analysis result for WIP part stock shows that Mask Stock, Glass, Sub Mount and 
Phosphor have the highest contribution to WIP part Amount Analysis 
Others 
Pho spor 
S ub M ount 
Ma sk 
la ss 
G 179511 50418 32501 10535 7375 
64.0 18.0 11.6 3.8 2.6 
64.0 82.0 93.6 97.4 100.0 
200000 
100000 
0 
100 
80 
60 
40 
20 
0 
Defect 
Count 
Percent 
Cum % 
P e rc e n t 
C o u n t 
Pareto Chart for Desc. 
FFFFllllaaaatttt MMMMaaaasssskkkk 
86 % stock at PT YSI($ 156 K) 
- Flat Mask (RM) 
- Annealing 
- Forming & Blackening 
14 % stock at SM ( $ 23 K) 
GGGGllllaaaassssssss 
Stock 
loading 
SSSSuuuubbbb MMMMoooouuuunnnntttt 
Mount Assy Process stock 
PPPPhhhhoooosssspppphhhhoooorrrr 
Safety Stock for aging time 
High price 
Pareto Chart for WIP Part Inv.
Warehouse Stock Analysis D M A I C 
The Pareto analysis result for warehouse stock shows that Stock, Graphite, Phosphor and PAD 
have the highest contribution to Warehouse Stock amount Analysis 
DDDD YYYY 
Inner Supply 
- Revised Production Plan 
So frequently 
- Quality Problem 
- Comp. Request to achieve 
sales target 
GGGGrrrraaaapppphhhhiiiitttteeee 
Hardly PO revision 
PO issued three month before 
PPPPhhhhoooosssspppphhhhoooorrrr 
PPPP AAAA DDDD 
Decreasing consumptions 
G la ss 
P AD 
P ho spo r 
Graphi te 
D Y 
47520 41443 39654 17572 16007 
29.3 25.6 24.4 10.8 9.9 
29.3 54.8 79.3 90.1 100.0 
150000 
100000 
50000 
0 
100 
80 
60 
40 
20 
0 
Defect 
Count 
Percent 
Cum % 
P e rc e n t 
C o u n t 
Pareto Chart for C1 
Blue Stock 
Pareto Chart for W/House Inv. 
Minimum order 2304 kg
D M A I C 
Item High Amount Stock Remarks 
Selected as Vital View 
Selected as Vital View 
Not Selected as Vital View 
Assy 
Remained production stock & Pending lot 
conveyor stock 
W I P Selected as Vital View 
Selected as Vital View 
Part 
NG and rework Stock 
Mask Stock outsourcing process 
Warehouse 
Analysis Result 
Glass Stock 
Sub Mount 
Selected as Vital View 
Not Selected as Vital View 
Y D Y 
G 72 B & G 355 
P A D 
Selected as Vital View 
Selected as Vital View 
Phosphor 
Selected as Vital View
D M A I C 
Bottle Neck 
Analysis Result 
1. High stock of NG, rework, pending lot in the end of month due to quality 
problem, sourcing team can not fully controlled this situation. Actually, it’s depend 
on process and quality performance. 
2. Outsourcing Mask Annealing process at Shin require more raw material 
stock to keep production and secure supply. 
3. Frequently change production plan for CIT and Y DY quality problem cause influence 
high stock Y DY.
Improvement 
I 
D M A 
C Item Improvement Remarks 
Stock 
Mask Stock 
- Identify and checking 3 days before closing 
- Communicate Stock to related dept and 
push for action 
- Working closely with PCT Team to input remained stock 
- Partial raw material delivery 
Glass Stock 
- Daily vendor managed inventory 
In the end of month 
- Pending Lot 
- Remained Prod. 
from March ‘04 
Annealing 
Outsourced 
- Optimized in out stock control 
- Daily input glass to production line 
- Communicate and push process to minimize stock 
- Check stock condition & make any necessary action 
Y D Y 
- Confirm I production plan 
- Best effort to match PCT Production Plan & actual 
- Just In Time purchasing 
Phosphor 
Graphite 
- Improve Import delivery simulation skill 
Weekly control 
from March ‘04 
Weekly control 
from March ‘04 
- Tightly control on ETD & ETA 
- Maintain actual delivery performance on SRS 
from March ‘04 
from March ‘04
D M A 
I 
Improvement Result C 
Result analysis after improvement actions : Z bench 2.60 
UUSSLL 
Process Capability Analysis for DIO 
1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 
Potential (Within) Capability 
Overall Capability Observed Performance Exp. "Within" Performance Exp. "Overall" Performance 
PPM < LSL 
PPM > USL 
PPM Total 
PPM < LSL 
PPM > USL 
PPM Total 
PPM < LSL 
PPM > USL 
PPM Total 
USL 
Target 
LSL 
Mean 
Sample N 
StDev (Within) 
StDev (Overall) 
Z.Bench 
Z.USL 
Z.LSL 
Cpk 
Cpm 
Z.Bench 
Z.USL 
Z.LSL 
Ppk 
* 
1307.83 
1307.83 
* 
4651.78 
4651.78 
* 
0.00 
0.00 
2.90000 
* 
* 
2.25093 
6 
0.249574 
0.215663 
2.60 
2.60 
* 
0.87 
* 
3.01 
3.01 
* 
1.00 
Process Data 
Within 
Overall 
Z-Bench : 
2.60
D M A 
I 
Sigma Value C 
After improvement action, we can compare it with previous condition. 
Improved Condition is better than Previous Condition. 
PREVIOUS CONDITION 
IMPROVED CONDITION 
A B 
C 
2.5 
2.0 
1.5 
1.0 
0.5 
1 2 3 4 5 6 
Poor 
Z shift 
Process Control 
Good 
Poor Z st Good 
Technology 
2.5 
2.0 
1.5 
1.0 
Poor 
Sigma = 1.03 
D 
Z st : 2.60 
Z shift : Z st – Z lt 
Z st : 2.60 
Z shift : Z st – Z lt 
: 2.60 – 3.01 
: -0.41 
: 2.60 – 3.01 
: -0.41 
A B 
C 
0.5 
1 2 3 4 5 6 
Z shift 
Process Control 
Good 
Poor Z st Good 
Technology 
D 
Z st : 1.03 
Z shift : Z st – Z lt 
Z st : 1.03 
Z shift : Z st – Z lt 
: 1.03 – 0.84 
: 0.19 
: 1.03 – 0.84 
: 0.19 
Sigma = 2.60
D M A 
I 
Saving Cost C 
TARGET 
1,117 
K $ US 
Current 
1,050 
Target 
K 67 
(6%) 
RESULT 
1,117 
K $ US 
Before 
1,075 
After 
K 42 
(4%) 
Previous Average Material Inventory Amount : $ K 1,117 
Current Average Material Inventory Amount : $ K 1,075 
Saving Cost : $ K 42
Control 
D M C A I 
Below check sheets are applied to ensure and maintain the material inventory DIO 
stays optimized and some improvement activities stay controlled : 
1. Mask daily inventory stock control at Shin 
This is one of the application of vendor managed inventory (VMI) 
2. Salvage glass daily input to process 
3. Weekly Stock taking for warehouse and WIP (include Assy and Stock) 
1. Desc. 31 1 2 3 4 5 6 
2. 
F/MASK 5000 120000 120000 110000 100000 87000 80000 
ANNEA 35447 33612 21740 19973 23373 25155 20373 
FORM 2550 1961 3170 5149 2090 2095 8300 
BLACK 7189 4841 7146 6972 6860 7207 2961 
TOTAL 50186 160414 152056 142094 132323 121457 111634 
F/MASK 5000 75000 75000 75000 75000 75000 75000 
ANNEA 2933 2933 2933 2933 2933 2933 2933 
FORM 0 0 0 0 0 0 0 
BLACK 2790 2790 2790 2790 2790 2790 2790 
No Part No Description Act.Gd Inv. Book Process PMS Gap U/PRICE Amount REMARKS 
1 153-113V DY 14" LG STD 0 0 488 2,432 -2,432 1.68205 0.00 820.84 
2 153-276F DY HARTONO/SANKEN/VESTEL 0 0 0 0 0.00000 0.00 0.00 
3 3024GAFA01C MASK FLAT 21" MULTI 20,000 20,000 2,191 80,000 -60,000 1.72214 34,442.80 145.70 
4 3040GA0001A BASE 20" 202,103 202,103 0 202,103 0 0.02246 4,539.23 0.00 
5 3040GA0006A BASE 14" 210,000 210,000 0 210,000 0 0.03620 7,602.00 0.00 
6 3210GBAA01A FRAME SUPPORT 14" 0 0 4,284 0 0 0.12900 0.00 552.64 
7 3210GBEA01A FRAME SUPPORT 20" 0 0 1,920 0 0 0.58850 0.00 1,129.92 
8 3210GBFA01A FRAME SUPPORT 21" 0 0 3,120 0 0 0.63900 0.00 1,993.68 
9 3300GB0001A PLATE COMPENSATION 0 0 0 0 0 0.63900 0.00 0.00 
10 3300GB0001B PLATE COMPENSATION 10,000 10,000 0 10,000 0 0.00428 42.80 0.00 
11 3300GB0002A PLATE COMPENSATION 20,000 20,000 0 20,000 0 0.00299 59.80 0.00 
12 3300GC0001A B-S PLATE 20" 0 0 20,000 10,000 -10,000 0.01220 0.00 244.00 
13 3740GA0001A LEAD PROTECT 20" 12,500 12,500 11,500 12,500 0 0.01182 147.75 135.93 
TOTAL 10723 80723 80723 80723 80723 80723 80723 
14" 
20" 
3. 
PANEL 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Ttl 
Tanggal 
14 0 0 0 672 504 168 336 0 224 224 308 154 322 168 0 0 0 392 504 168 168 0 0 308 0 782 168 168 0 336 168 6242 
20 0 0 0 72 266 248 310 0 0 180 72 272 0 0 0 0 72 0 0 72 208 0 0 192 416 200 64 62 0 548 64 3318 
21 0 0 512 256 192 0 64 0 192 320 320 192 128 320 0 0 576 320 512 192 0 0 0 384 320 64 128 0 0 0 128 5120 
0 0 512 ## 962 416 710 0 416 724 700 618 450 488 0 0 648 712 ## 432 376 0 0 884 736 ## 360 230 0 884 360 14680 
FUNNEL 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Ttl 
JUMLAH 
Tanggal 
14 200 0 0 400 400 400 0 0 400 200 200 0 400 0 0 0 200 400 200 200 400 0 0 0 200 200 200 0 0 200 400 5200 
20 0 0 81 0 261 90 270 0 90 0 0 180 0 0 0 0 0 0 0 0 0 0 270 0 180 270 270 180 0 180 90 2412 
21 0 0 405 243 162 81 0 0 81 405 374 162 162 243 0 0 324 324 324 243 81 0 0 405 162 0 0 243 0 81 162 4667 
200 0 486 643 823 571 270 0 571 605 574 342 562 243 0 0 524 724 524 443 481 0 270 405 542 470 470 423 0 461 652 12279 
JUMLAH 
Process 
Amount 
INV
Attachment 
Inventory and DIO Monthly Control 2004 
1250 
1200 
1150 
1100 
1050 
1000 
950 
900 
850 
Inventory 
1181 
1201 
4 
Actual Targe 
3 
2 
1 
DESC. 1 2 3 4 5 6 7 8 9 10 11 12 
(K $) 
INTR. 
W/H 
WIP 
T/T 
15 62 84 135 82 
303 333 432 469 394 
706 786 522 597 509 
1,024 1,181 1039 1201 984 
Days 2.3 2.5 2.0 2.3 2.0 
2. DIO 
1024 
1039 
984 
800 
1 2 3 4 5 6 7 8 9 10 11 12 
2.3 
2.5 
2.0 2.32 
0 
1 2 3 4 5 6 7 8 9 10 11 12 
Targe 
t 
Actual t
Attachment 
Inventory and DIO Budget Control 2004 
Desc. 2004 Avg/Total 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Sales Amount Target 12,060 12,176 12,569 12,256 12,290 12,322 12,432 12,879 12,874 12,197 10,740 11,551 146,346 
Actual 13,784 13,668 15,892 15,388 15,423 
In transit Target 45 45 45 41 41 41 40 40 40 40 40 40 42 
Actual 15 62 84 135 82 
W/house Target 372 372 372 365 365 365 365 365 365 325 325 325 357 
Actual 303 333 432 469 394 
WIP Target 695 695 695 672 672 672 672 672 672 665 665 665 676 
Actual 706 786 522 597 509 
Total Target 1,112 1,112 1,112 1,078 1,078 1,078 1,077 1,077 1,077 1,030 1,030 1,030 1,074 
Actual 1,024 1,181 1,039 1,201 984 
DIO Target 2.9 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.5 2.6 2.9 2.8 2.7 
Actual 2.30 2.51 2.03 2.34 1.98
Attachment 
Material Inventory and DIO Control 2003 and 1 Q of 2004 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 Avg 
Months 
4 
3.5 
3 
2.5 
2 
1.5 
1 
0.5 
0 
DESC. avg 
1 2 3 4 5 6 7 8 9 10 11 12 1 2 
In Transit 25 39 33 24 17 24 113 107 80 44 124 109 55 62 61 
W I P 564 724 713 799 890 970 693 653 604 664 668 574 706 786 715 
W/House 442 331 278 333 298 357 314 361 409 320 383 311 303 333 341 
Total 1,031 1,094 1,024 1,156 1,205 1,351 1,120 1,121 1,093 1,029 1,175 994 1,064 1,181 1,117 
Sales Amt 12,953 13,091 13,701 12,080 12,698 12,328 14,099 14,396 14,147 14,385 10,551 13,112 13,784 13,668 13,214 
D I O 2.4675 2.3399 2.3169 2.8709 2.9412 3.2879 2.4632 2.4138 2.3186 2.2166 3.3403 2.3502 2.3936 2.5055 2.6205
Reduce LNG Usage 
Date Nov 24th , 2004 
Process Technique Group 
Prepared : Novi Muharam 
6s Champion Review 
DMAIC Report 
Contents 
1. Define Step 
2. Measure Step 
3. Analysis Step 
4. Improvement 
5. Control
Background 
D M A I C 
LNG (Liquid Natural Gas) is source of energy for combustion process in F’ce 
Up to 3rd quarter LNG usage for exhaust furnace still higher, it’s about 5000 Nm3/day. 
This project have a purpose to decreasing LNG usage in furnace 
LNG Usage 
4500 
5000 
CCuurrrreenntt TTaarrggeett 
11% 
Unit: 
(Nm3/day) 
Energy Unit Price (U$) 
How to do: 
LNG & Air pressure system 
Adjustment to find best ratio 
Both of them. 
Target Saving cost: 
= (5000 –4500 )Nm3/day x 0.165 U$/Nm3 x 30 x 12 
= 500 Nm3/day x 0.165 x 30 x 12 
= 2299,,770000 UU$$//YYeeaarrss 
Others 
Electric 
O2 
N2 
LNG 
0.1650 0.1309 0.1290 0.0605 0.0070 
33.5 26.6 26.2 12.3 1.4 
33.5 60.1 86.3 98.6 100.0 
0.5 
0.4 
0.3 
0.2 
0.1 
0.0 
100 
80 
60 
40 
20 
0 
Defect 
Count 
Percent 
Cum % 
Percent 
Count 
Energy Usage Price
G/S 
Process Mapping 
Load Exh 
P-pipe 
Exhaust Furnace 
Zone #1 ~ #44 
In 
Out 
Tip off B.B.D 
-F/F C/V -Cart 
Unload 
Robot 
Robot Control Panel 
Keeping 
Zone 
Up Slope 
Zone 
Down Slope 
D M A I C 
CTQ Area : - LNG & Air Usage
Big Y X1 X2 X3 
LNG Ratio 
Usage 
Material LNG Pressure Ratio 
Air Pressure Ratio 
Machine TIC Temperature 
RC Fan RPM Motor 
Dumper Valve 
Exh Blower Pressure 
D M A I C 
Brainstormed Potential X List
Gage R&R for Exhaust F’ce Line #1 Measurement 
GaR StdDev Study Var 
%Study Var 
Source (SD) (5,15*SD) (%SV) 
Total Gage R&R 0,009704 0,04998 1,40 
Repeatability 0,002582 0,01330 0,37 
Reproducibility 0,009354 0,04817 1,35 
Operator 0,002566 0,01321 0,37 
Operator*Part 0,008995 0,04633 1,30 
Part-To-Part 0,692590 3,56684 99,99 
Total Variation 0,692658 3,56719 100,00 
Gage name: 
Date of study: 
Reported by: 
Tolerance: 
Misc: 
Exhaust F'Ce Measurement 
Oct 19th, 2005 
Novi M 
Gage R&R (ANOVA) for Auto 14" 
100 
50 
0,010 Eng'r Gijo Maker 1 maker 2 PQC 
0,005 
0,5 Eng'r Gijo Maker 1 maker 2 PQC 
0 
0,0 
-0,5 
-1,0 
-1,5 
Xbar Chart by Operator 
S a m p le M e a n 
UCL=0,004356 
LUMCCeLLa=n=-=-00-,,055,0058032257 
0 
0,000 
R Chart by Operator 
S a m p le R a n g e 
R=0,001333 
LCL=0 
a b c d e f 
a b c d e f 
0,5 
0,0 
-0,5 
0,5 
0,0 
-0,5 
0,5 
0,0 
-0,5 
-1,0 
Part 
Operator 
Operator*Part Interaction 
A v e r a g e 
Eng'r 
Gijo_1 
Gijo_2 
Gijo_3 
PQC 
Eng'r Gijo Maker 1 maker 2 PQC 
-1,0 
Oper 
Response By Operator 
-1,0 
Part 
Response By Part 
%Contribution 
%Study Var 
Gage R&R Repeat Reprod Part-to-Part 
0 
Components of Variation 
P e r c e n t 
Gage R&R 
D M A I C 
Gage R&R <20% 
Acceptable
Capability Process 
Exhaust F'ce 14" Capa' 
LSL USL 
0 2 4 6 8 10 
Potential (Within) Capability 
Overall Capability Observed Performance Exp. "Within" Performance Exp. "Overall" Performance 
PPM < LSL 
PPM > USL 
PPM Total 
PPM < LSL 
PPM > USL 
PPM Total 
PPM < LSL 
PPM > USL 
PPM Total 
USL 
Target 
LSL 
Mean 
Sample N 
StDev (Within) 
StDev (Overall) 
7.50000 
* 
2.50000 
5.27297 
37 
0.98276 
1.66305 
Z.USL Z.Bench 
Z.LSL 
Cpk 
Cpm 
Z.Bench 
Z.USL 
Z.LSL 
Ppk 
47716.94 
90265.06 
137981.99 
2389.10 
11722.77 
14111.87 
0.00 
81081.08 
81081.08 
2.27 2.19 
2.82 
0.76 
* 
1.09 
1.34 
1.67 
0.45 
Process Data 
Within 
Overall 
D M A I C 
Four Block Diagram 
1 2 3 4 5 6 
2.5 
2.0 
1.5 
1.0 
0.5 
Poor 
Z Shift 
Process Control 
Good 
Poor Good 
Z st 
Technology 
Block A 
Block C 
Block B 
Block 
D 
A : Poor control, inadequate technology 
B : Must control the process better, technology is fine 
C : Process control is good, inadequate technology 
D : World class
Analysis 
A 
Analysis of Temp furnace with result has significant effect to Pressure LNG 
Regression Analysis: Press LNG versus Temp 
The regression equation is 
Press LNG = 3.7 + 21.9 Temp 
Regression Analysis: Press LNG versus Temp 
The regression equation is 
Press LNG = 3.7 + 21.9 Temp 
Fail to reject Ho 
Predictor Coef SE Coef T P 
Constant 3.75 36.18 0.10 0.918 
Temp 21.934 6.556 3.35 0.002 
S = 64.96 R-Sq = 24.2% R-Sq(adj) = 22.1% 
Predictor Coef SE Coef T P 
Constant 3.75 36.18 0.10 0.918 
Temp 21.934 6.556 3.35 0.002 
S = 64.96 R-Sq = 24.2% R-Sq(adj) = 22.1% 
Analysis of Variance 
Analysis of Variance 
Accept Ha 
Source DF SS MS F PP 
Source DF SS MS F PP 
Regression 1 47242 47242 11.19 00..000022 
Residual Error 35 147702 4220 
Total 36 194945 
Regression 1 47242 47242 11.19 00..000022 
Residual Error 35 147702 4220 
Total 36 194945 
The p-value < 0.05, Fail to accept 
Ho, which demonstrate statistical 
significance (an equation with a 
“good” fit) 
LNG 
Pressure 
Manometer 
Gauge 
D M I C 
Normal Probability Plot 
Anderson-Darling Normality Test 
A-Squared: 0.414 
P-Value: 0.321 
Average: 5.27297 
StDev: 1.65154 
N: 37 
2.2 3.2 4.2 5.2 6.2 7.2 8.2 9.2 
.999 
.99 
.95 
.80 
.50 
.20 
.05 
.01 
.001 
Probability 
Qty LNG 
Hypothesis Analysis : 
Ho : Temperature furnace has no significant effect to LNG Pressure 
Ha : Temperature furnace has significant effect to LNG Pressure
Test for Equal Variances for LNG Ratio 
95% Confidence Intervals for Sigmas 
One-way ANOVA: Air Press, Press LNG, 
Temp 
0 100 200 300 400 500 600 700 800 900 
Analysis of Variance 
Source DF SS MS F PP 
Factor 2 1769458 884729 118.10 00..000000 
Error 108 809084 7492 
Total 110 2578542 
Bartlett's Test 
Test Statistic: 3.282 
P-Value : 0.858 
Levene's Test 
Test Statistic: 2.096 
P-Value : 0.131 
Factor Levels 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
0.1 
0.2 
0.5 
0.6 
1.7 
2.0 
3.0 
4.0 
5.0 
6.0 
6.8 
7.0 
7.3 
8.0 
9.0 
9.1 
9.3 
9.8 
11.0 
11.6 
11.8 
12.0 
12.9 
13.5 
14.2 
14.6 
One-way ANOVA: Air Press, Press LNG, 
Temp 
Analysis of Variance 
Source DF SS MS F PP 
Factor 2 1769458 884729 118.10 00..000000 
Error 108 809084 7492 
Total 110 2578542 
Individual 95% CIs For Mean 
Based on Pooled St Dev 
Individual 95% CIs For Mean 
Based on Pooled St Dev 
Level N Mean StDev --+---------+---------+---------+---- 
Air Pres 37 424.73 73.53 (-*--) 
Press LN 37 117.00 73.04 (--*--) 
Temp 2 37 297.54 108.32 (--*--) 
Level N Mean StDev --+---------+---------+---------+---- 
Air Pres 37 424.73 73.53 (-*--) 
Press LN 37 117.00 73.04 (--*--) 
Temp 2 37 297.54 108.32 (--*--) 
--+---------+---------+---------+---- 
--+---------+---------+---------+---- 
Pooled StDev = 86.55 100 200 300 400 
Pooled StDev = 86.55 100 200 300 400 
A 
Temp 
Press 
LNG 
Air Pres 
600 
500 
400 
300 
200 
100 
0 
Boxplots of Air Press - Temp 
(means are indicated by solid circles) 
Analysis 
D M I C 
Analysis of Temp furnace with result has significant effect to LNG & Air press 
Hypothesis Analysis : 
Ho : Temperature furnace has no significant effect to LNG & Air Pressure 
Ha : Temperature furnace has significant effect to LNG & Air Pressure
A 
D M I C 
Analysis of RPM motor with result has significant effect to Pressure LNG 
Regression Analysis: LNG Press versus RPM 
Motor 
The regression equation is 
RPM = 1448 + 0.0344 LNG Press 
The regression equation is 
RPM = 1448 + 0.0344 LNG Press 
Fail to reject Ho 
Predictor Coef SE Coef T P 
Constant 1448.00 5.02 288.20 0.000 
LNG press 0.03440 0.01568 2.19 0.035 
Predictor Coef SE Coef T P 
Constant 1448.00 5.02 288.20 0.000 
LNG press 0.03440 0.01568 2.19 0.035 
S = 8.711 R-Sq = 12.1% R-Sq(adj) = 9.6% 
S = 8.711 R-Sq = 12.1% R-Sq(adj) = 9.6% 
Analysis of Variance 
Analysis of Variance 
Source DF SS MS F PP 
Source DF SS MS F PP 
Regression 1 365.11 365.11 4.81 00..003355 
Residual Error 35 2655.97 75.88 
Total 36 3021.08 
Regression 1 365.11 365.11 4.81 00..003355 
Residual Error 35 2655.97 75.88 
Total 36 3021.08 
RC Fan 
Rotation 
Analysis 
Accept Ha 
Normal Probability Plot 
Anderson-Darling Normality Test 
A-Squared: 0.624 
P-Value: 0.097 
Average: 1462.22 
StDev: 19.1748 
N: 37 
1420 1430 1440 1450 1460 1470 1480 1490 
.999 
.99 
.95 
.80 
.50 
.20 
.05 
.01 
.001 
Probability 
RPM 
The p-value < 0.05, Fail to accept Ho, which 
demonstrate statistical significance (an 
equation with a “good” fit) 
Hypothesis Analysis : 
Ho : RPM motor has no significant effect to LNG Pressure 
Ha : RPM motor has significant effect to LNG Pressure
Analysis 
A 
D M I C 
Analysis of Air Blower with result has no significant effect to Pressure LNG 
Regression Analysis: LNG Press Versus Air Blower 
The regression equation is 
Air Blower = 475 - 0.169 LNG Press 
Regression Analysis: LNG Press Versus Air Blower 
The regression equation is 
Air Blower = 475 - 0.169 LNG Press 
Reject Ho 
Predictor Coef SE Coef T P 
Constant 474.97 35.14 13.52 0.000 
Air Blower -0.1689 0.1111 -1.52 0.138 
Predictor Coef SE Coef T P 
Constant 474.97 35.14 13.52 0.000 
Air Blower -0.1689 0.1111 -1.52 0.138 
S = 72.23 R-Sq = 6.2% R-Sq(adj) = 3.5% 
Analysis of Variance 
Source DF SS MS F PP 
S = 72.23 R-Sq = 6.2% R-Sq(adj) = 3.5% 
Analysis of Variance 
Source DF SS MS F PP 
Regression 1 12044 12044 2.31 00..113388 
Residual Error 35 182604 5217 
Total 36 194647 
Regression 1 12044 12044 2.31 00..113388 
Residual Error 35 182604 5217 
Total 36 194647 
Exhaust F’ce 
Blower 
Fail to accept Ha 
.999 
.99 
.95 
.80 
.50 
.20 
.05 
.01 
Average: 424.730 
StDev: 73.5314 
N: 37 
Normal Probability Plot 
300 400 500 600 
Anderson-Darling Normality Test 
A-Squared: 0.200 
P-Value: 0.875 
.001 
Probability 
Blower 
Hypothesis Analysis : 
Ho : RPM motor has significant effect to LNG Pressure 
Ha : RPM motor has no significant effect to LNG Pressure
Six Sigma and Its Implementation
Six Sigma and Its Implementation
Six Sigma and Its Implementation
Six Sigma and Its Implementation
Six Sigma and Its Implementation
Six Sigma and Its Implementation
Six Sigma and Its Implementation
Six Sigma and Its Implementation
Six Sigma and Its Implementation

Weitere ähnliche Inhalte

Was ist angesagt?

Six sigma awareness
Six sigma awarenessSix sigma awareness
Six sigma awarenesssawate
 
Lean Six Sigma Leadership 062507
Lean Six Sigma Leadership 062507Lean Six Sigma Leadership 062507
Lean Six Sigma Leadership 062507larrypenni
 
How to Introduce Operational Excellence in your Organisation?
How to Introduce Operational Excellence in your Organisation?How to Introduce Operational Excellence in your Organisation?
How to Introduce Operational Excellence in your Organisation?Tina Arora
 
DMAIC Methodolgy
DMAIC MethodolgyDMAIC Methodolgy
DMAIC MethodolgyBharath M
 
Lean six sigma - Waste elimination (Yellow Belt)
Lean six sigma - Waste elimination (Yellow Belt)Lean six sigma - Waste elimination (Yellow Belt)
Lean six sigma - Waste elimination (Yellow Belt)Abhay Yadav
 
Six Sigma Introduction
Six Sigma IntroductionSix Sigma Introduction
Six Sigma IntroductionAbhishek Kumar
 
SIX SIGMA Green Belt Training
SIX SIGMA Green Belt TrainingSIX SIGMA Green Belt Training
SIX SIGMA Green Belt Trainingchaudhryshailja
 
Six Sigma Project Report
Six Sigma Project ReportSix Sigma Project Report
Six Sigma Project ReportPravin Kumar
 
Lean Six Sigma methodology
Lean Six Sigma methodologyLean Six Sigma methodology
Lean Six Sigma methodologyRamiro Cid
 
Six sigma case study-a good approach with example
Six sigma case study-a good approach with exampleSix sigma case study-a good approach with example
Six sigma case study-a good approach with examplebhanutomar
 
Global 8D Problem Solving Process Training Module
Global 8D Problem Solving Process Training ModuleGlobal 8D Problem Solving Process Training Module
Global 8D Problem Solving Process Training ModuleFrank-G. Adler
 
Six Sigma Black Belt Project
Six Sigma Black Belt ProjectSix Sigma Black Belt Project
Six Sigma Black Belt ProjectAndrey Lygin
 
Six Sigma Green Belt for Beginners in a Nutshell
Six Sigma Green Belt for Beginners in a NutshellSix Sigma Green Belt for Beginners in a Nutshell
Six Sigma Green Belt for Beginners in a NutshellMentor Global Delhi
 

Was ist angesagt? (20)

Six sigma awareness
Six sigma awarenessSix sigma awareness
Six sigma awareness
 
Lean Six Sigma Leadership 062507
Lean Six Sigma Leadership 062507Lean Six Sigma Leadership 062507
Lean Six Sigma Leadership 062507
 
How to Introduce Operational Excellence in your Organisation?
How to Introduce Operational Excellence in your Organisation?How to Introduce Operational Excellence in your Organisation?
How to Introduce Operational Excellence in your Organisation?
 
Operational-Excellence
Operational-ExcellenceOperational-Excellence
Operational-Excellence
 
DMAIC Methodolgy
DMAIC MethodolgyDMAIC Methodolgy
DMAIC Methodolgy
 
Lean six sigma - Waste elimination (Yellow Belt)
Lean six sigma - Waste elimination (Yellow Belt)Lean six sigma - Waste elimination (Yellow Belt)
Lean six sigma - Waste elimination (Yellow Belt)
 
Six Sigma Yellow Belt
Six Sigma Yellow BeltSix Sigma Yellow Belt
Six Sigma Yellow Belt
 
Six Sigma Introduction
Six Sigma IntroductionSix Sigma Introduction
Six Sigma Introduction
 
Basics of Six Sigma
Basics of Six SigmaBasics of Six Sigma
Basics of Six Sigma
 
SIX SIGMA Green Belt Training
SIX SIGMA Green Belt TrainingSIX SIGMA Green Belt Training
SIX SIGMA Green Belt Training
 
Lean 6sigma and DMAIC
Lean 6sigma and DMAICLean 6sigma and DMAIC
Lean 6sigma and DMAIC
 
Six Sigma Project Report
Six Sigma Project ReportSix Sigma Project Report
Six Sigma Project Report
 
Lean Six Sigma methodology
Lean Six Sigma methodologyLean Six Sigma methodology
Lean Six Sigma methodology
 
Six sigma case study-a good approach with example
Six sigma case study-a good approach with exampleSix sigma case study-a good approach with example
Six sigma case study-a good approach with example
 
Global 8D Problem Solving Process Training Module
Global 8D Problem Solving Process Training ModuleGlobal 8D Problem Solving Process Training Module
Global 8D Problem Solving Process Training Module
 
Dmaic
DmaicDmaic
Dmaic
 
Six Sigma Black Belt Project
Six Sigma Black Belt ProjectSix Sigma Black Belt Project
Six Sigma Black Belt Project
 
Dmaic
DmaicDmaic
Dmaic
 
Six Sigma Green Belt for Beginners in a Nutshell
Six Sigma Green Belt for Beginners in a NutshellSix Sigma Green Belt for Beginners in a Nutshell
Six Sigma Green Belt for Beginners in a Nutshell
 
Introduction to six sigma
Introduction to six sigmaIntroduction to six sigma
Introduction to six sigma
 

Andere mochten auch

Effect of Various External and Internal Factors on the Carrier Mobility in n-...
Effect of Various External and Internal Factors on the Carrier Mobility in n-...Effect of Various External and Internal Factors on the Carrier Mobility in n-...
Effect of Various External and Internal Factors on the Carrier Mobility in n-...inventy
 
Digital Six Sigma vs Directed Innovation
Digital Six Sigma vs Directed InnovationDigital Six Sigma vs Directed Innovation
Digital Six Sigma vs Directed InnovationMaria Thompson
 
Miniature circuit breaker construction, can't be more specific any more!
Miniature circuit breaker construction, can't be more specific any more! Miniature circuit breaker construction, can't be more specific any more!
Miniature circuit breaker construction, can't be more specific any more! Guangzhou Shilin Electrical Co., Ltd.
 
EATON Miniature circuit breaker
EATON Miniature circuit breakerEATON Miniature circuit breaker
EATON Miniature circuit breakerMeena Tanwar
 
Implementing lean Six sigma
Implementing lean Six sigmaImplementing lean Six sigma
Implementing lean Six sigmasanobar77
 
Ferrovial Presentación Inversores 2011
Ferrovial Presentación Inversores 2011Ferrovial Presentación Inversores 2011
Ferrovial Presentación Inversores 2011Ferrovial
 
Asterisk-Java at JUGC 2009-05-29
Asterisk-Java at JUGC 2009-05-29Asterisk-Java at JUGC 2009-05-29
Asterisk-Java at JUGC 2009-05-29Stefan Reuter
 
Reporte Octavo Diálogo Creativo por la Felicidad
Reporte Octavo Diálogo Creativo por la FelicidadReporte Octavo Diálogo Creativo por la Felicidad
Reporte Octavo Diálogo Creativo por la FelicidadJuan Luis Walker
 
Eyaculación Precoz en Boston Medical Group
Eyaculación Precoz en Boston Medical GroupEyaculación Precoz en Boston Medical Group
Eyaculación Precoz en Boston Medical GroupBMG Latinoamérica
 
Goldbach Media Austria | YOUTH Kombi Angebot
Goldbach Media Austria | YOUTH Kombi AngebotGoldbach Media Austria | YOUTH Kombi Angebot
Goldbach Media Austria | YOUTH Kombi AngebotGoldbach Group AG
 
Tablas de multiplicar
Tablas de multiplicarTablas de multiplicar
Tablas de multiplicarLuis Fernando
 
Migrating Belgium's Largest Telecommunication Company to Magnolia
Migrating Belgium's Largest Telecommunication Company to Magnolia Migrating Belgium's Largest Telecommunication Company to Magnolia
Migrating Belgium's Largest Telecommunication Company to Magnolia Magnolia
 
Taller marketing digital_presentacion
Taller marketing digital_presentacionTaller marketing digital_presentacion
Taller marketing digital_presentacionFernando Izquierdo
 
Taller 3 - Cuestionario Edwin Salinas, Dennis Santamaria
Taller 3 - Cuestionario Edwin Salinas, Dennis SantamariaTaller 3 - Cuestionario Edwin Salinas, Dennis Santamaria
Taller 3 - Cuestionario Edwin Salinas, Dennis SantamariaEdwin Salinas
 
Máquina simple mariianny #25 2dob
Máquina simple mariianny #25 2dobMáquina simple mariianny #25 2dob
Máquina simple mariianny #25 2dobMarianny07
 

Andere mochten auch (19)

Lean Six Sigma Implementation
Lean Six Sigma ImplementationLean Six Sigma Implementation
Lean Six Sigma Implementation
 
Six sigma
Six sigmaSix sigma
Six sigma
 
Effect of Various External and Internal Factors on the Carrier Mobility in n-...
Effect of Various External and Internal Factors on the Carrier Mobility in n-...Effect of Various External and Internal Factors on the Carrier Mobility in n-...
Effect of Various External and Internal Factors on the Carrier Mobility in n-...
 
Digital Six Sigma vs Directed Innovation
Digital Six Sigma vs Directed InnovationDigital Six Sigma vs Directed Innovation
Digital Six Sigma vs Directed Innovation
 
Miniature circuit breaker construction, can't be more specific any more!
Miniature circuit breaker construction, can't be more specific any more! Miniature circuit breaker construction, can't be more specific any more!
Miniature circuit breaker construction, can't be more specific any more!
 
EATON Miniature circuit breaker
EATON Miniature circuit breakerEATON Miniature circuit breaker
EATON Miniature circuit breaker
 
6 sigma
6 sigma6 sigma
6 sigma
 
Implementing lean Six sigma
Implementing lean Six sigmaImplementing lean Six sigma
Implementing lean Six sigma
 
Ferrovial Presentación Inversores 2011
Ferrovial Presentación Inversores 2011Ferrovial Presentación Inversores 2011
Ferrovial Presentación Inversores 2011
 
Asterisk-Java at JUGC 2009-05-29
Asterisk-Java at JUGC 2009-05-29Asterisk-Java at JUGC 2009-05-29
Asterisk-Java at JUGC 2009-05-29
 
01 grupo arpeco_brochure
01 grupo arpeco_brochure01 grupo arpeco_brochure
01 grupo arpeco_brochure
 
Reporte Octavo Diálogo Creativo por la Felicidad
Reporte Octavo Diálogo Creativo por la FelicidadReporte Octavo Diálogo Creativo por la Felicidad
Reporte Octavo Diálogo Creativo por la Felicidad
 
Eyaculación Precoz en Boston Medical Group
Eyaculación Precoz en Boston Medical GroupEyaculación Precoz en Boston Medical Group
Eyaculación Precoz en Boston Medical Group
 
Goldbach Media Austria | YOUTH Kombi Angebot
Goldbach Media Austria | YOUTH Kombi AngebotGoldbach Media Austria | YOUTH Kombi Angebot
Goldbach Media Austria | YOUTH Kombi Angebot
 
Tablas de multiplicar
Tablas de multiplicarTablas de multiplicar
Tablas de multiplicar
 
Migrating Belgium's Largest Telecommunication Company to Magnolia
Migrating Belgium's Largest Telecommunication Company to Magnolia Migrating Belgium's Largest Telecommunication Company to Magnolia
Migrating Belgium's Largest Telecommunication Company to Magnolia
 
Taller marketing digital_presentacion
Taller marketing digital_presentacionTaller marketing digital_presentacion
Taller marketing digital_presentacion
 
Taller 3 - Cuestionario Edwin Salinas, Dennis Santamaria
Taller 3 - Cuestionario Edwin Salinas, Dennis SantamariaTaller 3 - Cuestionario Edwin Salinas, Dennis Santamaria
Taller 3 - Cuestionario Edwin Salinas, Dennis Santamaria
 
Máquina simple mariianny #25 2dob
Máquina simple mariianny #25 2dobMáquina simple mariianny #25 2dob
Máquina simple mariianny #25 2dob
 

Ähnlich wie Six Sigma and Its Implementation

Ähnlich wie Six Sigma and Its Implementation (20)

Yellow belt training 68 s
Yellow belt training 68 sYellow belt training 68 s
Yellow belt training 68 s
 
3 16-01 six-sigma
3 16-01 six-sigma3 16-01 six-sigma
3 16-01 six-sigma
 
6sigma
6sigma6sigma
6sigma
 
Six sigma an overview | Online Mini MBA (Free)
Six sigma  an overview | Online Mini MBA (Free)Six sigma  an overview | Online Mini MBA (Free)
Six sigma an overview | Online Mini MBA (Free)
 
Six sigma
Six sigmaSix sigma
Six sigma
 
SIX SIGMA
SIX SIGMA SIX SIGMA
SIX SIGMA
 
Six Sigma.pptx
Six Sigma.pptxSix Sigma.pptx
Six Sigma.pptx
 
Basic overview six sigma
Basic overview six sigmaBasic overview six sigma
Basic overview six sigma
 
Six sigma - pimg
Six sigma - pimgSix sigma - pimg
Six sigma - pimg
 
Six Sigma
Six SigmaSix Sigma
Six Sigma
 
Six sigma seminar
Six sigma seminarSix sigma seminar
Six sigma seminar
 
6 sigma
6 sigma6 sigma
6 sigma
 
Introduction to Six Sigma
Introduction to Six Sigma Introduction to Six Sigma
Introduction to Six Sigma
 
Six Sigma
Six SigmaSix Sigma
Six Sigma
 
yellow belt training
yellow belt trainingyellow belt training
yellow belt training
 
Six Sigma Final
Six Sigma FinalSix Sigma Final
Six Sigma Final
 
Sixsigmaintrorerevisedii 13198308548378-phpapp02-111028144148-phpapp02
Sixsigmaintrorerevisedii 13198308548378-phpapp02-111028144148-phpapp02Sixsigmaintrorerevisedii 13198308548378-phpapp02-111028144148-phpapp02
Sixsigmaintrorerevisedii 13198308548378-phpapp02-111028144148-phpapp02
 
Six sigma for beginner
Six sigma for beginnerSix sigma for beginner
Six sigma for beginner
 
Six sigma introduction
Six sigma introductionSix sigma introduction
Six sigma introduction
 
Six Sigma Training Tutorial for industrial engineering in factory.pdf
Six Sigma Training Tutorial for industrial engineering in factory.pdfSix Sigma Training Tutorial for industrial engineering in factory.pdf
Six Sigma Training Tutorial for industrial engineering in factory.pdf
 

Mehr von Ansar Lawi

5S for Enhancing Productivity, Quality, and Safety at the Workplace
5S for Enhancing Productivity, Quality, and Safety at the Workplace5S for Enhancing Productivity, Quality, and Safety at the Workplace
5S for Enhancing Productivity, Quality, and Safety at the WorkplaceAnsar Lawi
 
Etika dasar (lawi)
Etika dasar (lawi)Etika dasar (lawi)
Etika dasar (lawi)Ansar Lawi
 
Pengantar Pengendalian kualitas
Pengantar Pengendalian kualitasPengantar Pengendalian kualitas
Pengantar Pengendalian kualitasAnsar Lawi
 
Penjadwalan Produksi Induk
Penjadwalan Produksi IndukPenjadwalan Produksi Induk
Penjadwalan Produksi IndukAnsar Lawi
 
PPIC Manajemen Permintaan
PPIC Manajemen PermintaanPPIC Manajemen Permintaan
PPIC Manajemen PermintaanAnsar Lawi
 
Pertidaksamaan Dengan Nilai Mutlak
Pertidaksamaan Dengan Nilai MutlakPertidaksamaan Dengan Nilai Mutlak
Pertidaksamaan Dengan Nilai MutlakAnsar Lawi
 
Surface Preparation & Treatment
Surface Preparation & TreatmentSurface Preparation & Treatment
Surface Preparation & TreatmentAnsar Lawi
 
Corrosion Process and Control
Corrosion Process and ControlCorrosion Process and Control
Corrosion Process and ControlAnsar Lawi
 
JIT Kanban (Sejarah and Implementasi)
JIT Kanban (Sejarah and Implementasi)JIT Kanban (Sejarah and Implementasi)
JIT Kanban (Sejarah and Implementasi)Ansar Lawi
 
Implementation of OHSAS 18001
Implementation of  OHSAS 18001Implementation of  OHSAS 18001
Implementation of OHSAS 18001Ansar Lawi
 

Mehr von Ansar Lawi (11)

5S for Enhancing Productivity, Quality, and Safety at the Workplace
5S for Enhancing Productivity, Quality, and Safety at the Workplace5S for Enhancing Productivity, Quality, and Safety at the Workplace
5S for Enhancing Productivity, Quality, and Safety at the Workplace
 
Etika dasar (lawi)
Etika dasar (lawi)Etika dasar (lawi)
Etika dasar (lawi)
 
Pengantar Pengendalian kualitas
Pengantar Pengendalian kualitasPengantar Pengendalian kualitas
Pengantar Pengendalian kualitas
 
Penjadwalan Produksi Induk
Penjadwalan Produksi IndukPenjadwalan Produksi Induk
Penjadwalan Produksi Induk
 
5S Training
5S Training5S Training
5S Training
 
PPIC Manajemen Permintaan
PPIC Manajemen PermintaanPPIC Manajemen Permintaan
PPIC Manajemen Permintaan
 
Pertidaksamaan Dengan Nilai Mutlak
Pertidaksamaan Dengan Nilai MutlakPertidaksamaan Dengan Nilai Mutlak
Pertidaksamaan Dengan Nilai Mutlak
 
Surface Preparation & Treatment
Surface Preparation & TreatmentSurface Preparation & Treatment
Surface Preparation & Treatment
 
Corrosion Process and Control
Corrosion Process and ControlCorrosion Process and Control
Corrosion Process and Control
 
JIT Kanban (Sejarah and Implementasi)
JIT Kanban (Sejarah and Implementasi)JIT Kanban (Sejarah and Implementasi)
JIT Kanban (Sejarah and Implementasi)
 
Implementation of OHSAS 18001
Implementation of  OHSAS 18001Implementation of  OHSAS 18001
Implementation of OHSAS 18001
 

Kürzlich hochgeladen

Marketing Management 16th edition by Philip Kotler test bank.docx
Marketing Management 16th edition by Philip Kotler test bank.docxMarketing Management 16th edition by Philip Kotler test bank.docx
Marketing Management 16th edition by Philip Kotler test bank.docxssuserf63bd7
 
Reviewing and summarization of university ranking system to.pptx
Reviewing and summarization of university ranking system  to.pptxReviewing and summarization of university ranking system  to.pptx
Reviewing and summarization of university ranking system to.pptxAss.Prof. Dr. Mogeeb Mosleh
 
internship thesis pakistan aeronautical complex kamra
internship thesis pakistan aeronautical complex kamrainternship thesis pakistan aeronautical complex kamra
internship thesis pakistan aeronautical complex kamraAllTops
 
W.H.Bender Quote 62 - Always strive to be a Hospitality Service professional
W.H.Bender Quote 62 - Always strive to be a Hospitality Service professionalW.H.Bender Quote 62 - Always strive to be a Hospitality Service professional
W.H.Bender Quote 62 - Always strive to be a Hospitality Service professionalWilliam (Bill) H. Bender, FCSI
 
Dealing with Poor Performance - get the full picture from 3C Performance Mana...
Dealing with Poor Performance - get the full picture from 3C Performance Mana...Dealing with Poor Performance - get the full picture from 3C Performance Mana...
Dealing with Poor Performance - get the full picture from 3C Performance Mana...Hedda Bird
 
Strategic Management, Vision Mission, Internal Analsysis
Strategic Management, Vision Mission, Internal AnalsysisStrategic Management, Vision Mission, Internal Analsysis
Strategic Management, Vision Mission, Internal Analsysistanmayarora45
 
Agile Coaching Change Management Framework.pptx
Agile Coaching Change Management Framework.pptxAgile Coaching Change Management Framework.pptx
Agile Coaching Change Management Framework.pptxalinstan901
 
Safety T fire missions army field Artillery
Safety T fire missions army field ArtillerySafety T fire missions army field Artillery
Safety T fire missions army field ArtilleryKennethSwanberg
 
Leaders enhance communication by actively listening, providing constructive f...
Leaders enhance communication by actively listening, providing constructive f...Leaders enhance communication by actively listening, providing constructive f...
Leaders enhance communication by actively listening, providing constructive f...Ram V Chary
 
Independent Escorts Vikaspuri / 9899900591 High Profile Escort Service in Delhi
Independent Escorts Vikaspuri  / 9899900591 High Profile Escort Service in DelhiIndependent Escorts Vikaspuri  / 9899900591 High Profile Escort Service in Delhi
Independent Escorts Vikaspuri / 9899900591 High Profile Escort Service in Delhiguptaswati8536
 
How Software Developers Destroy Business Value.pptx
How Software Developers Destroy Business Value.pptxHow Software Developers Destroy Business Value.pptx
How Software Developers Destroy Business Value.pptxAaron Stannard
 
The Psychology Of Motivation - Richard Brown
The Psychology Of Motivation - Richard BrownThe Psychology Of Motivation - Richard Brown
The Psychology Of Motivation - Richard BrownSandaliGurusinghe2
 
digital Human resource management presentation.pdf
digital Human resource management presentation.pdfdigital Human resource management presentation.pdf
digital Human resource management presentation.pdfArtiSrivastava23
 
Beyond the Codes_Repositioning towards sustainable development
Beyond the Codes_Repositioning towards sustainable developmentBeyond the Codes_Repositioning towards sustainable development
Beyond the Codes_Repositioning towards sustainable developmentNimot Muili
 
International Ocean Transportation p.pdf
International Ocean Transportation p.pdfInternational Ocean Transportation p.pdf
International Ocean Transportation p.pdfAlejandromexEspino
 

Kürzlich hochgeladen (17)

Intro_University_Ranking_Introduction.pptx
Intro_University_Ranking_Introduction.pptxIntro_University_Ranking_Introduction.pptx
Intro_University_Ranking_Introduction.pptx
 
Marketing Management 16th edition by Philip Kotler test bank.docx
Marketing Management 16th edition by Philip Kotler test bank.docxMarketing Management 16th edition by Philip Kotler test bank.docx
Marketing Management 16th edition by Philip Kotler test bank.docx
 
Reviewing and summarization of university ranking system to.pptx
Reviewing and summarization of university ranking system  to.pptxReviewing and summarization of university ranking system  to.pptx
Reviewing and summarization of university ranking system to.pptx
 
internship thesis pakistan aeronautical complex kamra
internship thesis pakistan aeronautical complex kamrainternship thesis pakistan aeronautical complex kamra
internship thesis pakistan aeronautical complex kamra
 
Abortion pills in Jeddah |• +966572737505 ] GET CYTOTEC
Abortion pills in Jeddah |• +966572737505 ] GET CYTOTECAbortion pills in Jeddah |• +966572737505 ] GET CYTOTEC
Abortion pills in Jeddah |• +966572737505 ] GET CYTOTEC
 
W.H.Bender Quote 62 - Always strive to be a Hospitality Service professional
W.H.Bender Quote 62 - Always strive to be a Hospitality Service professionalW.H.Bender Quote 62 - Always strive to be a Hospitality Service professional
W.H.Bender Quote 62 - Always strive to be a Hospitality Service professional
 
Dealing with Poor Performance - get the full picture from 3C Performance Mana...
Dealing with Poor Performance - get the full picture from 3C Performance Mana...Dealing with Poor Performance - get the full picture from 3C Performance Mana...
Dealing with Poor Performance - get the full picture from 3C Performance Mana...
 
Strategic Management, Vision Mission, Internal Analsysis
Strategic Management, Vision Mission, Internal AnalsysisStrategic Management, Vision Mission, Internal Analsysis
Strategic Management, Vision Mission, Internal Analsysis
 
Agile Coaching Change Management Framework.pptx
Agile Coaching Change Management Framework.pptxAgile Coaching Change Management Framework.pptx
Agile Coaching Change Management Framework.pptx
 
Safety T fire missions army field Artillery
Safety T fire missions army field ArtillerySafety T fire missions army field Artillery
Safety T fire missions army field Artillery
 
Leaders enhance communication by actively listening, providing constructive f...
Leaders enhance communication by actively listening, providing constructive f...Leaders enhance communication by actively listening, providing constructive f...
Leaders enhance communication by actively listening, providing constructive f...
 
Independent Escorts Vikaspuri / 9899900591 High Profile Escort Service in Delhi
Independent Escorts Vikaspuri  / 9899900591 High Profile Escort Service in DelhiIndependent Escorts Vikaspuri  / 9899900591 High Profile Escort Service in Delhi
Independent Escorts Vikaspuri / 9899900591 High Profile Escort Service in Delhi
 
How Software Developers Destroy Business Value.pptx
How Software Developers Destroy Business Value.pptxHow Software Developers Destroy Business Value.pptx
How Software Developers Destroy Business Value.pptx
 
The Psychology Of Motivation - Richard Brown
The Psychology Of Motivation - Richard BrownThe Psychology Of Motivation - Richard Brown
The Psychology Of Motivation - Richard Brown
 
digital Human resource management presentation.pdf
digital Human resource management presentation.pdfdigital Human resource management presentation.pdf
digital Human resource management presentation.pdf
 
Beyond the Codes_Repositioning towards sustainable development
Beyond the Codes_Repositioning towards sustainable developmentBeyond the Codes_Repositioning towards sustainable development
Beyond the Codes_Repositioning towards sustainable development
 
International Ocean Transportation p.pdf
International Ocean Transportation p.pdfInternational Ocean Transportation p.pdf
International Ocean Transportation p.pdf
 

Six Sigma and Its Implementation

  • 1. SIX SIGMA AND ITS IMPLEMENTATION ON THE PROJECT
  • 3. Six Sigma 6 sigma is used by individual and organizations to: •Drive and sustain improvements •Provide rigorous alignment of actions with strategy •Guide decision making with facts and data •Meet customer needs through improved products and processes •Deliver bottom-line results
  • 4. Six Sigma Sigma Level Defect.10-6 ± 1σ ± 2σ ± 3σ ± 4σ ± 5σ ± 6σ 697,700 308,700 66,810 6,210 233 3.4
  • 8. The Six Sigma Evolutionary Timeline 1736: French mathematician Abraham de Moivre publishes an article introducing the normal curve. 1896: Italian sociologist Vilfredo Alfredo Pareto introduces the 80/20 rule and the Pareto distribution in Cours d’Economie Politique. 1924: Walter A. Shewhart introduces the control chart and the distinction of special vs. common cause variation as contributors to process problems. 1941: Alex Osborn, head of BBDO Advertising, fathers a widely-adopted set of rules for “brainstorming”. 1949: U. S. DOD issues Military Procedure MIL-P-1629, Procedures for Performing a Failure Mode Effects and Criticality Analysis. 1960: Kaoru Ishikawa introduces his now famous cause-and-effect diagram. 1818: Gauss uses the normal curve to explore the mathematics of error analysis for measurement, probability analysis, and hypothesis testing. 1970s: Imai develop Dr. Deming concept called 14 keys of Deming or called kaizen in Japanese. 1986: Bill Smith, a senior engineer and scientist introduces the concept of Six Sigma at Motorola 1994: Larry Bossidy launches Six Sigma at Allied Signal. 1995: Jack Welch launches Six Sigma at GE.
  • 9. Customer Competitive Price High Quality Products On-time Delivery, etc Company Profitability Repeat Business Growth/Expansion $ CCaasshh ! !!! VVaaluluee ! !!! 1 SSoommee P Prroofiftit 3 2 BBiiggggeerr PPrrooffiitt 1 3 2 PPrriiccee -- CCoosstt == PPrrooffiitt Price to Sell Cost to Produce KEY BUSINESS CONCEPT OF SIX SIGMA
  • 10. Where can Six Sigma be applied? Service Design Purchase Six Sigma Methods Production HRM Management Administration Quality Depart. M & S IT
  • 11. COPQ against sales revenue COPQ (Cost of Poor Quality) Sigma Level DPMO COPQ as sales percentile 1-sigma 691.462 (very low competitive) N/A 2-sigma 308.538 (Average Indonesia’s Industry) N/A 3-sigma 66.807 25-40% of sales 4-sigma 6.210 (Average USA’s Industry) 15-25% of sales 5-sigma 233 (Average Japan’s Industry) 5-15% of sales 6-sigma 3,4 (World Class Industry) < 1% of sales
  • 12. SSUUCCCCEESSSS SSTTOORRYY IINN SSIIXX SSIIGGMMAA $500 $600 $380 $450 $200 $2500 $1200 $700 $170 Cost Benefit 1996 Cost Benefit 1997 Cost Benefit 1998 Cost Benefit 1999 $3.0B $0.5B Cost Benefit 2000 6 Sigma Cost 6 Sigma Productivity Delighting Customers GGeenneerraall EElleeccttrriicc $2500 $$22..55BB
  • 13. Dupont Chronology Periode Description Sigma Before six sigma Dupont Total Cost of Poor Quality = 20 -30 % of revenue About 3 sigma Implementing Cost of Implementing Six Sigma = $ 20 million - 1999 Q1 Pilot Project Six Sigma on Specialty Chemicals started -Revenues $ 1.5 Billions -Target $ 80 million savings (5% dari revenues) 1999 Q2 40 Black Belts done for training and start for project 1999 Q4 Total saving $ 35 million (initial target $ 25 million) 2.3% of Revenue 17.7% COPQ 4 Sigma 2000 Q4 Total saving $ 100 million (initial target $ 80 million) 6.7% of Revenue 13.3% COPQ 5 sigma
  • 14. Difficult-to-Reach Fruit Design for Six Sigma (DFSS) Middle Fruit Six Sigma tools Lower Fruit 7 Basic Tools of QC Ground Fruit Logic and Intuition 66σσ BBaassiicc CCoonncceepptt
  • 15. 66σσ BBaassiicc CCoonncceepptt 3 sigma level company 6 sigma level company • <25~40% of sales is failure cost. • 5% of the sales is failure cost. • Having 66,807 defects per million. • 3.4 defects per million. • Depends on the detect to find defect. • Focusing on process not to produce defects. • Believes that high quality is expensive. • Realizes that high quality creates low cost. • Not available of systematic approach. • Uses know-how of measurement, analysis, improvement & control. • Benchmarking against competing companies. • Benchmarking to the best in the world. • Believes 99% is good enough. • Define CTQ’s internally. • Believes 99% unacceptable.  4 sigma Level? 1misspelled word per 30pages of newspaper.  5 sigma Level? 1misspelled word in a set of encyclopedias.  6 sigma Level? 1misseplled word in all of the books contained in a small library.
  • 16. Understanding Basic Concept of Statistics The concept of sigma • It is important to understand the difference between accuracy and precision • Sigma is a measure of vvaarriiaattiioonn (the data spread) • It is a statistical measure unit displaying a process capability and the measured sigma value is expressed by DPU(Defect Per Unit), PPM • It is said that the process with higher sigma value is the process having smaller defects • The more increase the sigma value, the more decrease the quality cost and Cycle Time 1σ Inflection Point μ USL T 3σ : The size or a standard deviation shows the distances between the inflection point and the mean. We could say the process has 3 sigma capability if 3 deviations are fit table between the target and the specification limit.
  • 17. What does variation mean? 20 • Variation means that a 15 process does not produce 10 the same result (the “Y”) 5 every time. 0 • Some variation will exist in -5 all processes. -10 • Variation directly affects customer experiences. CCuussttoommeerrss ddoo nnoott ffeeeell aavveerraaggeess!!
  • 18. Measuring Process Performance The pizza delivery example. . . • Customers want their pizza delivered fast! • Guarantee = “30 minutes or less” • What if we measured performance and found an average delivery time of 23.5 minutes? – On-time performance is great, right? – Our customers must be happy with us, right?
  • 19. The pizza delivery example. . . How often are we delivering on time? Answer: Look at the variation! s x 30 min. or less 0 10 20 30 40 50 • Managing by the average doesn’t tell the whole story. The average and the variation together show what’s happening.
  • 20. Reduce Variation to Improve Performance s x 30 min. or less How many standard deviations can you “fit” within customer expectations? 0 10 20 30 40 50 • Sigma level measures how often we meet (or fail to meet) the requirement(s) of our customer(s).
  • 21. SIX SIGMA Basic Concept • All work occurs in a system of interconnected processes • Variation exists in all processes • Understanding and reducing variation are the keys to improving customer satisfaction and reducing costs
  • 22.  Y = f(χ) Question 1), Which one should we focus on the Y or X? • Y • Dependent Variable • Output • Effect • Symptom • Monitor • X1 … Xn • Independent Variable • Input • Cause • Problem • Control object Question 2), Is needed to test and audit Y continually if the X is good?  6 Sigma activity is concerned about the problem happened(in the sector of manufacturing and non manufacturing). They could be improved by focusing the factor which causes the problem.
  • 23. The Approach of 6 Sigma Step Steps Activity Define Measurement 1. Clarifying improvement target object. 2. Forecasting improvement effect. 3. CTQ selection for products and process. Y 4. Understanding process capability for ‘Y’ 5. Clarifying measurement method of ‘Y’ 6. Specific description of Target object for improving against ‘Y’ Focus Y Y Y Analysis 7. Clarifying Target for improving ‘Y’ 8. Clarifying factors which affect ‘Y’ Y X1 .... Xn Improvement 9. Extract the vital few factors through screening 10. Understanding correlation of vital few factors 11. Process optimization and confirmation experiment X1 .... Xn Vital Few X1 Vital Few X1 Control 12. Confirm measurement system for ‘X’ 13. Selection method how to control vital few factors 14. Build up process control system & audit for vital few Vital Few X1 Vital Few X1 Vital Few X1  6 Sigma activity with 5 steps of D-M-A-I-C, will pass through the major 14 steps.  6 Sigma activity have D-M-A-I-C process breaking down the problem through the condition analysis, finding the potential causal factor , and improving the vital few factors After the condition identification, we have the first action about the part being improved at first, and then we proceed continually the improvement activity at the next step.
  • 25. SIX SIGMA CHALLENGES • Six sigma less suitable for innovation. • Six sigma emphasize process and cost, while innovation constitutes something new in which cost consuming. • Six sigma only analyzing quantitative data, qualitative data must be converted to quantitative.
  • 26. Six Sigma DMAIC Process Develop Charter and Business Case Map Existing Process Collect Voice of the Customer Specify CTQs / Requirements Measure CTQs / Requirements Determine Process Stability Determine Process Capability Calculate Baseline Sigma Refine Problem Statement Control Identify Root Causes Quantify Root Causes Verify Root Causes Institutionalize Improvement Control Deployment Quantify Financial Results Present Final Project Results and Lessons Learned Close Project Select Solution (Including Trade Studies, Cost/Benefit Analysis) Design Solution Pilot Solution Implement Solution Define Measure Analyze Improv e DMAIC = Define, Measure, Analyze, Improve and Control
  • 28. DDeeffiinnee Defining the “Project Y” Translate the external CTQ’s into internal product requirements or “Project Y”. Example: Voice of the CTQ Project Y Customer The range must heat to the setting chosen Call-takers must be available to answer calls The refrigerator must stay dry Answer rate (% of incoming calls answered within 20 seconds) Call-takers must answer 95% of all incoming calls within 20 seconds (telephone promptness) Calibration angle of the thermostat A thermostat setting of 350° must result in a 350° oven cavity No sweat Foam density
  • 29. PPrroocceessss MMaappppiinngg Add the operating specification and process targets For the controllable variable input Start Finish 1 2 Process Targets and Specifications Experimental Input Parameters Target Upper Spec. Lower Spec. Y = f (X) (SOP ) = Standard Operating Parameters ( N ) = Noise Parameters ( X ) = Controllable Process Parameters
  • 30. Structure Tree Example ROTOR Continue to ask “Why?” until you Reach the Root Cause…... RPM Courtesy of Daraius Patell Losses Inductance OD Core length STATOR ASSEMBLY Electromagnetic Mechanical Area A Area B Lamination Endrings
  • 31. CCaauussee && EEffffeecctt DDiiaaggrraamm •The final diagram will look like a fishbone with the backbone displaying every known variable (Measurement, Method, Machine, People, Materials, Environment). Measurement Method Machine People Materials Environment
  • 33. MMeeaassuurreemmeenntt DDeetteerrmmiinnee PPrroocceessss CCaappaabbiilliittyy ffoorr PPrroojjeecctt YY Determining process capability for your "Project Y" allows you to do several important things. – Establish a baseline for comparing the improvement of your product or process. – Quantify the ability of your process to produce output that meets the performance standard. – Determine if there is a technology or control problem. – Understand process capabilities for the design of future processes for DFSS (Design for Six Sigma) projects. – Compare your process with others (internally and externally) to judge relative performance. · Define the problem in mathematical terms · Predict probability of producing defects
  • 35. Structure Tree Used to break down problem into manageable groups to identify root cause or area of focus. Process for creating a Structure Tree: • List your problem statement on the left hand side of the page. • Break the problem down into causes by asking ‘Why?’ and record on tree branches. Typical categories of causes include: Technical Transactional Manpower People Machine Price Material Product Method Promotion Measurement Physical Distribution • Assign a High, Medium or Low impact to each branch and select the highest impact branch. • Continue breaking down by asking ‘Why?’ until you reach the root cause.
  • 36. More Frequently AAsskkeedd QQuueessttiioonnss AAbboouutt MMeeaassuurreemmeenntt DDaattaa What is a “Measurement System”? - Everything associated with taking measurements: the people, measurement tool, material, method and environment is known as -- Observations Measurements Data -- The “Measurement System”. Parts Inputs Outputs Inputs Outputs Think of the “Measurement System” as a sub-process that can add additional variation to measurement data. The goal is to use a measurement process that has the smallest amount of measurement error as possible.
  • 37. SSoouurrcceess ooff MMeeaassuurreemmeenntt SSyysstteemm VVaarriiaattiioonn Observed Process Variation Actual Process Variation Measurement Variation Long Term Process Variation slt Short Term Process Variation sst Within Sample Variation Variation due to Measurement Equipment Variation due to Operators Accuracy Linearity Repeatability Stability Reproducibility The Gage R&R methods we will study in this class will provide estimates of the total measurement variation, the variation attributed to measurement equipment repeatability and the variation attributed to the appraisers.
  • 38. EEvvaalluuaattiioonn CCrriitteerriiaa ffoorr %%GGRR&&RR aanndd %%SSttuuddyy VVaarriiaattiioonn Acceptable if less than 20% Conditional if between 20% to 30% Unacceptable if greater than 30% Beware of the risk associated with using Beware of the risk associated with using data acquired from an unacceptable data acquired from an unacceptable measurement process. measurement process. s2 gage = s2 repeatability + s2 reproducibility Repeatability: The variation in measurements taken by a single person or instrument on the same or replicate item and under the same conditions. Reproducibility: the variation induced when different operators, instruments, or laboratories measure the same or replicate specimen.
  • 39. AAnnaallyyzzee Hypothesis Test (for variables) Hypothesis Test (for attributes)
  • 40. Ho Ha Correct Decision Correct Decision Type 1 Error α Type 2 Error β *Ho(Null Hypothesis) is assumed to be true. This is like the defendant being assumed to be innocent. Ho Ha True Ha(Alternative Hypothesis is alternatives the Null Hypothesis. Ha is the one that must be proved. Accept The ratio which is being “Ha” even if it’s false. Where “β” is usually set up at 10%. The ratio which is being rejected Ho even though certain thing is true where “ α” is α error. (usually 5%)
  • 41. Data Types Variable Discrete ◎ t-Test (Compares means less than 2 population) ◎ ANOVA (Compares variances more than 2 population) ◎ F-Test (Compares variances of two population) ◎ Chi Square (Compares counts and frequencies.) Before t-Test/ANOVA, confirm the homogeneity of variance conducting F-Test the gap delta(δ) T The larger Means and expected gap is getting, the more different two variances of average in population.
  • 42. • The tool depends on the data type. We use ANOVA when we have categorical input(s) and a continuous response. Continuous Categorical Categorical Continuous Dependent Variable (Y) Independent Variable (X) Regression ANOVA Logistic Regression Chi-Square (c2) Test
  • 43. Variance Homogeneity Testing Means Testing 1.One population variance testing 2.Two population variances testing 3.Testing of population variances for more than two (Normal distribution) 4. Testing of population variances for more than two (Non-Normal distribution) Chi Square F Homogeneity of Variance ▶Bartlett’s Test Homogeneity of Variance ▶Levene’s Test 1.One population Mean testing 1) When we know σ of the population 2) When we know σ of the population 2.Two population Mean testing 1) When they know σ1 and σ2 2) When they don’t know σ1 and σ2 ① σ1 = σ2 ② σ1 ≠ σ2 Normal distribution ( 1 - Sample Z ) T distribution ( 1 - Sample t ) Normal distribution T distribution ( 2 - Sample t ) The type of Hypothesis
  • 44. IImmpprroovveemmeenntt What is DOE ? • DOE is mmoorree tthhaann jjuusstt aa ssttaattiissttiiccaall tteecchhnniiqquuee.. • IItt iiss tthhee ccoommbbiinnaattiioonn ooff eeffffeeccttiivvee ppllaannnniinngg,, ddiisscciipplliinnee,, ssuubbjjeecctt mmaatttteerr kknnoowwlleeddggee aanndd ssttaattiissttiiccaall mmeetthhooddss tthhaatt mmaakkee tthhee eexxppeerriimmeenntt aa ssuucccceessss..
  • 45. DOE Steps 11.. DDeeffiinnee tthhee oobbjjeeccttiivvee ooff tthhee eexxppeerriimmeenntt.. 22.. SSeelleecctt tthhee rreessppoonnssee aanndd iinnppuutt ffaaccttoorrss.. 33.. DDeetteerrmmiinnee tthhee rreessoouurrcceess rreeqquuiirreedd.. 44.. SSeelleecctt ssuuiittaabbllee eexxppeerriimmeenntt ddeessiiggnn mmaattrriixx aanndd aannaallyyssiiss ssttrraatteeggyy.. 55.. PPeerrffoorrmm tthhee eexxppeerriimmeenntt aanndd rreeccoorrdd ddaattaa.. 66.. AAnnaallyyssee tthhee ddaattaa,, ddrraaww ccoonncclluussiioonnss,, aanndd ppeerrffoorrmm ccoonnffiirrmmaattiioonn rruunnss.. GGoooodd ppllaannnniinngg iiss ccrriittiiccaall ttoo ssuucccceessss!!
  • 46. BBaassiicc CCoonncceeppttss iinn DDOOEE PPrreessssuurree SSppeeeedd PPrroocceessss QQuuaalliittyy CChhaarraacctteerriissttiicc ((YY)) Run Pr Spd Pr Spd x Spd Pr Y 1 5 70 - + 10 + + - - 2 5 90 + - 4 3 10 70 - - 6 4 10 90 + + 12 Ave - 8 5 79 Ave 8 11 + Y = 8 2 0 6 y^ == 88 ++ PPrr ++ 33 xx (( PPrr SSppdd)) PPrroocceessss DDOOEE PPrroocceessss MMooddeell
  • 47. FFMMEEAA Failure Modes and Effects Analysis is a systematic method for identifying, analyzing, prioritizing, and documenting potential failure modes and their effects on a system, product, or process.
  • 48. The Logic of SPC(Statistical Process Control)? Upper Control Limit Lower Control Limit SAMPLES Process Capability α/2 Controller α/2 Desired Output PROCESS OUTPUT A B C D E · Controllable factors - Assignable causes - Adjustable - Special L M N O P · Uncontrollable factors - Common causes - Noise - Inherent causes INPUT • SPC has been traditionally used to monitor and control the output of processes. In this application, we are measuring the dimensions of finished parts or characteristics of finished assemblies. X 0.5 0.0 -0.5 S am p le Mean Subgroup 0 50 100 • Six Sigma Quality focuses on moving control upstream to the leverage input characteristic for Y. If we can measure and control the vital few X’s, control of Y should be assured. UCL=0.4384 Mean=0.001188 LCL=-0.4360 1.0 0.5 0.0 S amp le R an g e 1 1 1 UCL=0.7596 R=0.2325 LCL=0 Xbar/R Chart for Sealing Angle Line #2 CCoonnttrrooll
  • 49. Types of Control Charts Types of Control Charts Variables Charts for monitoring continuous X’s • Average & Range X bar & R n < 10 typically 3~5 • Averages & Std Deviation X bar & σ n ≥ 10 • Median & Range X & R n < 10 typically 3~5 • Individual & Moving Range XmR n = 1 Attributes Charts for monitoring discrete X’s • Fraction Defective P Chart typically n ≥ 50 tracks DPU/DPU • Number Defective np Chart n ≥ 50 (constant) tracks # def • Number of Defects c Chart c > 5 • Number of Def/Unit U Chart n variable • In order to select the appropriate control chart for monitoring your process, first determine if your key process variables (X’s) are continuous or discrete. There are control charts for both continuous data and discrete data.
  • 50. Control Chart 12 10 8 · · · · · · · · · · · · · · · · · · · · Week Upper Control Limit = Ave + 3 x Std Dev 14 13 7 6 Lower Control Limit = Ave - 3 x Std Dev Central Line = Average Note: Control limits should be established using subgroup standard deviation
  • 51. Six Sigma DMAIC Implementation Project Example
  • 52. Project title Date ………………… Department / Team Prepared : ………….. G ManagerDirector Pres. Dir. Mgr. 6s Champion Review Final Report Contents 1. Define Step 2. Measure Step 3. Analysis Step 4. Improvement Step 5. Control Step -Attachment
  • 54. PJT Name Ka Part Ka Group Project Registration Period E ngineer Approva Team l Div./Dept: Name Breakthrough KPI Current Wo rld B est Target Main Improv ement Object Team Fo rmation (Related Department Involved) Name De p t. Level Role Why ? How to do ? (* Selection Background) Quantitative Qualitative Expected Results New Idea for Target Achievement Neck Point
  • 55. M A I C D Background Expected result 4500 5000 11% CCuurrrreenntt TTaarrggeett Unit: (Nm3/day) How to do: Target Saving cost: Others Electric O2 N2 LNG 0.1650 0.1309 0.1290 0.0605 0.0070 33.5 26.6 26.2 12.3 1.4 33.5 60.1 86.3 98.6 100.0 0.5 0.4 0.3 0.2 0.1 0.0 100 80 60 40 20 0 Defect Count Percent Cum % Percent Count Energy Usage Price General Background
  • 56. Add the operating specification and process targets For the controllable variable input Start Finish 1 2 Process Targets and Specifications Experimental Input Parameters Target Upper Spec. Lower Spec. Y = f (X) (SOP ) = Standard Operating Parameters ( N ) = Noise Parameters ( X ) = Controllable Process Parameters Process Mapping M A I C D
  • 57. SIPOC – Suppliers, Inputs, Process, Outputs, Customers You obtain inputs from suppliers, add value through your process, and provide an output that meets or exceeds your customer's requirements. Process Understanding M A I C D
  • 59. Brainstorming Potential X’s List M Big Y X1 X2 X3 F(x) Machine Material Material Man D A I C
  • 60. Sampling Training Gage R&R Result Date:……… Collected 12 ea Sampling Conduct a training…… How to see what kind …….. Defect that happened in process. Purpose : find out the operator ability. Conduct Gage R&R for 4 men to know the judgment capability (in different times & do not know the inspection result of each other) --> Repeat 2 times for each persons % Gage R&R : 0 % acceptable M TToo ddeetteerrmmiinnee iiff tthhee mmeeaassuurreemmeenntt eerrrroorr iiss ssmmaallll aanndd aacccceeppttaabbllee rreellaattiivvee ttoo tthhee Observed Process Variation Measurement Process Variation Sample M a n M a n Machine Method Material pprroocceessss vvaarriiaattiioonn,, wwee ccaann uussee GGaaggee RR&&RR ssttuuddyy.. Gage R & R D A I C
  • 61. Process Capability Current Condition mm Units of Measure Center of the bar Smooth curve interconnecting the center of each bar M D A I C Four Block Diagram Current Target 1 2 3 4 5 6 2.5 2.0 1.5 1.0 0.5 Poor Z Shift Process Control Good Poor Good Technology Block A Block C Block B Block D Z Shift A : Poor control, inadequate technology B : Must control the process better, technology is fine C : Process control is good, inadequate technology D : World class
  • 62. M Factor Detail Analysis Plan Schedule Mar 2nd Week Mar 3rd Week Mar 4th Week X1.1 Inspect correlation between “Y” and inspector X1.3 for each group Analysis khole / dimension Height, diameter, angle etc, X1.2 X1.4 Analysis Plan D A I C
  • 64. A D M I C Use regression is to express and analyze a mathematical equation of describing a relationship. That is, it is to fit a mathematical equation of describing a relationship between the “YY” and “XX’’ss”. Regression Analysis: Angle Value versus Rotate Gear The regression equation is Angle Value = - 0,380 + 3,74 Rotate Gear Predictor Coef SE Coef T P Constant -0,3796 0,1693 -2,24 0,042 Rotate G 3,744 1,153 3,25 0,006 Regression Analysis: Angle Value versus Rotate Gear The regression equation is Angle Value = - 0,380 + 3,74 Rotate Gear Predictor Coef SE Coef T P Constant -0,3796 0,1693 -2,24 0,042 Rotate G 3,744 1,153 3,25 0,006 S = 0,1510 R-Sq = 43,0% R-Sq(adj) = 38,9% S = 0,1510 R-Sq = 43,0% R-Sq(adj) = 38,9% Analysis of Variance Source DF SS MS F P Regression 1 0,24032 0,24032 10,55 0,006 Residual Error 14 0,31905 0,02279 Total 15 0,55937 Unusual Observations Obs Rotate G Angle Va Fit SE Fit Residual St Resid 2 0,230 0,4000 0,4815 0,1070 -0,0815 -0,77 X 7 0,130 0,5000 0,1071 0,0407 0,3929 2,70R Analysis of Variance Source DF SS MS F P Regression 1 0,24032 0,24032 10,55 0,006 Residual Error 14 0,31905 0,02279 Total 15 0,55937 Unusual Observations Obs Rotate G Angle Va Fit SE Fit Residual St Resid 2 0,230 0,4000 0,4815 0,1070 -0,0815 -0,77 X 7 0,130 0,5000 0,1071 0,0407 0,3929 2,70R Normal Probability Plot of the Residuals (response is Angle Va) -0,2 -0,1 0,0 0,1 0,2 0,3 0,4 2 1 0 -1 Normal Score Residual GGeeaarr RRoottaattiioonn Motor
  • 65. D M I C We represent characterized variation ““YY”” by the total sum of square, then this method is to find what the factor’s level which influence enormously is, comparing both of them. One-way ANOVA: Gr.A - 3, Gr.A - 4, Gr.B - 3, Gr.B - 4, Gr.C - 3, Gr.C - 4 Analysis of Variance Source DF SS MS F P Factor 5 0.8761 0.1752 2.59 0.030 Error 102 6.8897 0.0675 Total 107 7.7659 Since p-value < 0.05; Ho (reject), Ha (accept). That is we can claim there’s a difference between the level Of adhesive Individual 95% CIs For Mean Based on Pooled StDev Level N Mean StDev -------+---------+---------+--------- Gr.A - 3 18 0.0572 0.3029 (-------*-------) Gr.A - 4 18 -0.1217 0.2427 (-------*-------) Gr.B - 3 18 0.0839 0.2231 (--------*-------) Normal Probability Plot Gr.B - 4 18 -0.1183 0.2403 (-------*-------) Gr.C - 3 18 0.0156 0.2796 (-------*-------) Gr.C - 4 18 0.0967 0.2626 (-------*--------) -------+---------+---------+--------- Pooled StDev = 0.2599 -0.15 0.00 0.15 Anderson-Darling Normality Test A-Squared: 0.452 P-Value: 0.242 Average: 0.0572222 StDev: 0.302865 N: 18 -0.5 0.0 0.5 .999 .99 .95 .80 .50 .20 .05 .01 .001 Probability Gr.A - 3 See from sealing angle specifications there’s no problem, cause all operator adjustment Still in range (-0.5o ~ 0.5o). But there’s a significant effect both of them seeing by characte ristic variation result, each operator have a different mean adjustment. G r.C - 4 Boxplots of Gr.A - 3 - Gr.C - 4 (means are indicated by solid circles) UCL G r.C - 3 G r.B - 4 Target Line G r.B - 3 G r.A - 4 G r.A - 3 0.5 0.0 LCL -0.5 Operator Adjustment Screen Manual Adjustment A
  • 66. A D M I C Factor Analysis Purpose Detail Analysis Content Result Conclusion Selected as Vital “X” P = 0.000 Selected as Vital “X” X1.1 Find most effected to “ Y “ X1.2 Find most effected to “ Y “ P = 0.000 Selected as Vital “X” Bottle Neck Regression, to compare Dew Point and Purge Flow rate X1.3 X1.4 Regression, to compare Dew Point and Out Air Temperature Find most effected to “ Y “ Find most effected to “ Y “ ANOVA, to compare Dew Point and Heating Time ANOVA, to compare Dew Point and Drying Time P = 0.000 P = 0.003 Analysis Result
  • 68. I D M A C Design of Experiment The Improve phase identifies a solution and confirms that the proposed Solution will meet or exceed the improvement goals of the project. StdOrder RunOrder CenterPt Blocks Flow rate Heating Time Drying Time Result 8 1 1 1 810 6 12 -90.2 5 2 1 1 600 4 12 -52.6 1 3 1 1 600 4 10 -56.4 7 4 1 1 600 6 12 -57.6 2 5 1 1 810 4 10 -89.2 3 6 1 1 600 6 10 -68.1 6 7 1 1 810 4 12 -85.3 4 8 1 1 810 6 10 91.3 Full Factorial Design Factors: 3 Base Design: 3, 8 Runs: 8 Replicates: 1 Blocks: 1 Center pts (total): 0 Factors Level 1 Level 2 Heating Time 6 hour Drying TIme Flow rate 10 hour 12 hour 4 hour 520 m3/hr 810 m3/hr
  • 69. I D M A C Optimize Condition:  Heating Time : 4 hour  Drying Time : 10 hour  Flow rate : 520 m3/hour
  • 70. LSL USL LSL USL Z.Bench 4.51 Z.LSL 4.65 Z.USL 4.65 Cpk 1.55 -80 -70 -60 -50 -40 Process Data LSL -80.00000 Target * USL -40.00000 Sample Mean -64.18750 Sample N 24 StDev (Within) 4.29772 StDev (Ov erall) 8.60376 Potential (Within) Capability Z.Bench 3.68 Z.LSL 3.68 Z.USL 5.63 Cpk 1.23 CCpk 1.55 Ov erall Capability Z.Bench 1.81 Z.LSL 1.84 Z.USL 2.81 Ppk 0.61 Cpm * Observ ed Performance % < LSL 0.00 % > USL 0.00 % Total 0.00 Exp. Within Performance % < LSL 0.01 % > USL 0.00 % Total 0.01 Exp. Ov erall Performance % < LSL 3.30 % > USL 0.25 % Total 3.55 Within Overall Process Capability of Dew Point -80 -70 -60 -50 -40 Process Data LSL -80.00000 Target * USL -40.00000 Sample Mean -60.00000 Sample N 24 StDev (Within) 4.29772 StDev (Ov erall) 8.60376 Potential (Within) Capability CCpk 1.55 Ov erall Capability Z.Bench 2.05 Z.LSL 2.32 Z.USL 2.32 Ppk 0.77 Cpm * Observ ed Performance % < LSL 0.00 % > USL 0.00 % Total 0.00 Exp. Within Performance % < LSL 0.00 % > USL 0.00 % Total 0.00 Exp. Ov erall Performance % < LSL 1.00 % > USL 1.00 % Total 2.01 Within Overall Process Capability of Dew Point I Four Block Diagram Current Target 1 2 3 4 5 6 2.5 2.0 1.5 1.0 0.5 Poor Z Shift Process Control Good Poor Good Technology Block A Block C Block B Block D Z Shift Improvement Result D M A C
  • 71. Result 4500 5000 CCuurrrreenntt TTaarrggeett 8% 4600 RReessuulltt 9922%% Cost Saving: US$ Improvement Result I D M A C
  • 73. I Six Sigma Quality focuses on moving control upstream to the leverage input characteristic for Y. If we can measure and control the vital few X’s, control of Y should be assured. Desired Process Capability Output Controller Input Process Group Member Controllable factors: - Miss adjust causes - Adjustable check - Pad control - Education Upper Control Limit X ● Lower Control Limit ● 0.5 0.0 -0.5 Sample Mean Output Subgroup 0 50 100 UCL=0.4384 Mean=0.001188 LCL=-0.4360 1.0 0.5 0.0 Sample Range 1 1 1 UCL=0.7596 R=0.2325 LCL=0 Xbar/R Chart for Sealing Angle Line #2 Process Standard Change C D M A
  • 74. I C D M A P Chart enables us to control our process using statistical method's to signal when process adjustments are needed. 0 10 20 30 40 50 0.004 0.003 0.002 0.001 0.000 Sample Number Proportion P Chart for Stem Crack UCL=0.002466 P=0.001198 LCL=0
  • 75. X-bar/R Chart use to control daily average for CTQ. 10.2 10.1 10.0 9.9 9.8 9.7 Sample Mean 1 Subgroup 0 5 10 15 UCL=10.13 Mean=9.943 LCL=9.755 1.0 0.5 0.0 Sample Range UCL=1.016 R=0.5594 LCL=0.1030 Xbar/R Chart for Cullet Speed CTQ’s daily control data
  • 76. Six Sigma Project Example
  • 77. Optimalkan pemakaian Zinc Pada Proses Galvanize Date 20 MAY 2009 Team : Galvanize Prepared by : Imam Mudawam Prod Mgr CEO . Work Mgr 6s Champion Review Final Report Contents 1. Define Step 2. Measure Step 3. Analysis Step 4. Improvement Step 5. Control Step NG DC ISK
  • 78. PJTName Period M A I C Work Mgr Prod Mgr Tea m Nam e Div./Dept: CONST./GALV. Breakthrough KPI Current Wo rld B est Target Main Improvement Object CEO Approval Team Fo rmation (Related Department Involved) Name De p t. Level Role Why ? How to do ? (* Selection Background) LSL Target USL Process Data Observ ed Performance Exp. Within Performance Quantitative Qualitative Expected Results New Idea for Target Achievement Fab Galv Qc Galv Neck Point Optimalkan Pemakaian Zinc Z Shift: - 1.86. Imam M Lukman Banbang Spv Supv Form • Ketebalan Galvanize sesuai standard. Leader Leader Member Amin Form Member Exp. Ov erall Performance Rp / kg Rp / kg Slamet Galv Member D Project Registration D M A I C -Making Theme Reg. Schedule - Analyzing Aging Root-Caused -Determine Potential X List - Find Current situation - Find Vital X by analyzing Potential X -Find Improvement idea -Confirmation run -Process Control by Monitoring Aging Amount May – W5 Junl – W5 Jul –W5 Optimalkan Pemakaian Zinc Pada Proses Galvanize Potential (Within) Capability Z.Bench -1.86 Lower CL -2.59 Z.LSL 4.62 Z.USL -1.86 Cpk -0.62 Lower CL -0.80 Upper CL -0.44 Ov erall Capability Z.Bench -1.07 Lower CL -2.11 Saving Zinc Rp. 295 Juta /Tahun Galvanize Reduce cost Form Hans Ga Supv Member Sept –W3 Sept –W5 Galvanize 183.6 micr. Galvanize 130 micron 120 160 200 240 280 LSL 100 Target 130 USL 150 Sample Mean 183.649 Sample N 35 StDev (Within) 18.0955 StDev (Ov erall) 31.8811 Z.LSL 2.62 Z.USL -1.06 Ppk -0.35 Lower CL -0.49 Upper CL -0.21 Cpm 0.11 Lower CL 0.09 PPM < LSL 0.00 PPM > USL 885714.29 PPM Total 885714.29 PPM < LSL 1.89 PPM > USL 968521.55 PPM Total 968523.44 PPM < LSL 4348.13 PPM > USL 854388.04 PPM Total 858736.18 Within Ov erall Pr ocess Capability of t 6.5mm + (using 95.0% confidence) Worksheet: Worksheet 3; 11/13/2009 ISK DC NG
  • 79. D General Background M A I C • Hasil proses Galvanize ketebalannya melebihi standar yang ditentukan dalam ASTM- A123 / A123M. • Tujuan Proyek ini untuk dapat mengoptimalkan ketebalan lapisan zinc pada hasil proses galvanize. Ketebalan material 400 300 200 100 0 Material t.6.5s/d ...mm Material t. 3.5s/d6.0mm Material t.1.5s/d3.0mm sample mean micron 183.6 84.2 83.6 Percent 52.3 24.0 23.8 Cum % 52.3 76.2 100.0 100 80 60 40 20 0 Produk tebal 6.0s/d….mm sample mean micr on Per cent Pareto Char t of Ketebalan mater ial Worksheet: Worksheet 3; 10/14/2009
  • 80. Brainstorming Potential X’s List A I C Big Y X1 X2 X3 M D Material Degrising Pickling 1 & 2 Ketebalan Komposisi kimia Konsentrasi Basa Base Metal Caustic Soda Konsentrasi Keasaman Optimalkan pemakaian Zinc Pada Proses Galvanize Temperatur Waktu Pencelupan 1 Hcl
  • 81. M Brainstorming Potential X’s List A I C Big Y X1 X2 X3 Optimalkan Pemakaian Zinc Pada proses Galvanize D Fluxing Konsentrasi Keasaman 1 Temperatur Zinc Amunium Chloride Dipping Aluminium Alloy Zinc Ingot Temperatur Komposisi Campuran Waktu pencelupan
  • 82. Measure Step - GAGE R&R A I C Gage R&R take from 2 Inspector who check this sample of Galvanize coating thickness in 10 chek point In doing gage R&R we take 2 times repeat in check Decide operator who take Gage R&R Do Gage R&R Change Method,measurement, etc Analyze Result Gage R&R Next Step NG ; Total Gage R&R > 20% OK ; Total Gage R&R < 20% M D
  • 83. Gage R&R Gage R&R < 20% Acceptable A I C M D Sample pengukuran ketebalan galvanize sebanyak 2 sample dengan 30 titik pengukuran , tiap sampel diambil 15 titik pengukuran Diukur secara berurutan dan secara acak oleh dua orang operator . Study Var %Study Var Source StdDev (SD) (6 * SD) (%SV) Total Gage R&R 2.0064 12.0384 14.67 Repeatability 2.0064 12.0384 14.67 Reproducibility 0.0000 0.0000 0.00 oprtr 0.0000 0.0000 0.00 Part-To-Part 13.5243 81.1460 98.92 Total Variation 13.6724 82.0341 100.00 Gage R&R Repeat Reprod Part-to-Part 100 50 0 Per cent % Cont ribut ion % Study Var 8 4 0 Sam ple Range UCL= 8.604 _ R=2.633 LCL= 0 A B 110 100 90 Sam ple Mean UCL= 101.62 __ X=96.67 LCL= 91.71 A B 1 2 3 110 100 90 part no A B 110 100 90 oprt r 1 2 3 110 100 90 part no Average The result of Gage R&R total is 14.67 % the acceptance percentage is bellow 20% (< 20 % ) , meanwhile the result of measurement between < 20 %, it accepted. oprt r A B Gage name: Date of study : Reported by : Tolerance: Misc: Components of Variation R Chart by oprtr Xbar Chart by oprtr measure by part no measure by oprtr oprtr * part no I nteraction OPERATOR PENGUKURAN KETEBALAN GALVANIZE Worksheet: Worksheet 3; 9/9/2009
  • 84. A I C M Current Condition D Rata rata ketebalan Galvanize pada produk dengan ketebalan > 6.0 mm saat ini mencapai 183.6 micron , berdasarkan data dari tgl.20 Juni 09 Sampai 27 Juni 09 ,jumlah sample 35 , alat ukur menggunakan COATING THICKNESS DIGITAL merek TIME - TYPE TT 220 . Untuk mendapatkan ketebalan sesuai target yang diinginkan grafik harus bergeser kekiri , dan harus mengurangi keteba- Pelapisan Galvanize yang sesuai standard ASTM A 123/A 123M antara ( 100 s/d 150 ) micron . Probability Plot Ketebalan Galvanize mater ial 6.5mm s/ d .......dst 100 150 200 250 300 99 95 90 80 70 60 50 40 30 20 10 5 1 t 6.5mm + Per cent Mean 183.6 StDev 31.88 N 35 AD 1.706 P-Value <0.005 Normal - 95% CI Worksheet: Worksheet 3; 7/1/2009 LSL Target USL 120 160 200 240 280 Exp. Within Performance Exp. Ov erall Performance KETEBALAN GALVANIZE Process Data LSL 100 Target 130 USL 150 Sample Mean 183.649 Sample N 35 StDev (Within) 18.0955 StDev (Ov erall) 31.8811 Potential (Within) Capability Z.Bench -1.86 Lower CL -2.59 Z.LSL 4.62 Z.USL -1.86 Cpk -0.62 Lower CL -0.80 Upper CL -0.44 Ov erall Capability Z.Bench -1.07 Lower CL -2.11 Z.LSL 2.62 Z.USL -1.06 Ppk -0.35 Lower CL -0.49 Upper CL -0.21 Cpm 0.11 Lower CL 0.09 Observ ed Performance PPM < LSL 0.00 PPM > USL 885714.29 PPM Total 885714.29 PPM < LSL 1.89 PPM > USL 968521.55 PPM Total 968523.44 PPM < LSL 4348.13 PPM > USL 854388.04 PPM Total 858736.18 Within Ov erall Process Capability of t 6.5mm + (using 95.0% confidence) Worksheet: Worksheet 3; 11/13/2009
  • 85. M Four Block Diagram D A I C Nilai sigma level saat ini adalah – 1.86 s, target yang ingin dicapai 4.5 s A B C 2.5 2.0 1.5 1.0 0.5 1 2 3 4 5 6 Z shift Poor Process Control Good Poor Z st Good Technology EXPLANATION Position of Current Condition was column C , it was mean : PROCESS CONTROL IS GOOD, BUT TECHNOLOGY (METHOD) IS BAD D SIGMA TARGET SIGMA TARGET Sigma current – 1.86
  • 86. I C A D M F(x) x WAKTU PENCELUPAN Optimalkan pemakaian Zinc Pada proses Galvanize Analysis TEMPERATUR ZINC KETEBALAN GALVANIZE
  • 87. Analyze – Type of factor & Tools Using I C Y Factor (x) Type Tools Optimalkan pemakaian zinc pada proses Galvanize (Continuous) Waktu Pencelupan A D M CONTINUE REGRESION
  • 88. Analysis Waktu Fluxing ( Regresion ) Regression Analysis: Ketbln.Galva versus Wktu fluxing, Wktu.deeping, ... * Wktu.deeping is (essentially) constant * Wktu.deeping has been removed from the equation. * NOTE * All values in column are identical. * Temp.deeping is (essentially) constant * Temp.deeping has been removed from the equation. The regression equation is Ketbln.Galvanize (micron ) = 110 - 1.17 Wktu fluxing Predictor Coef SE Coef T P VIF Constant 109.667 3.658 29.98 0.000 Wktu fluxing -1.1668 0.4555 -2.56 0.034 1.000 S = 4.13685 R-Sq = 45.1% R-Sq(adj) = 38.2% Analysis of Variance Source DF SS MS F P Regression 1 112.32 112.32 6.56 0.034 Residual Error 8 136.91 17.11 Total 9 249.22 Unusual Observations Wktu Ketbln.Galvanize Obs fluxing (micron ) Fit SE Fit Residual St Resid 1 3.0 114.00 106.17 2.43 7.83 2.34R R denotes an observation with a large standardized residual. Durbin-Watson statistic = 1.69422 I C A D M Ketebalan Galvanize VS Waktu Fluxing Nilai p-value < 0.05, maka Ho ditolak, yang menandakan variabel waktu Fluxing berpengaruh terhadap ketebalan galvanize.
  • 89. Analysis Temperatur Dipping ( Regresion ) Regression Analysis: Ktbl . Galva versus Tmprt deepin, Wkt.deeping, ... * Wkt.deeping is (essentially) constant * Wkt.deeping has been removed from the equation. * NOTE * All values in column are identical. * Wkt.fluxing is (essentially) constant * Wkt.fluxing has been removed from the equation. The regression equation is Ktbl . Galvanize (micron ) = - 98 + 0.443 Tmprt deeping Predictor Coef SE Coef T P VIF Constant -98.4 157.1 -0.63 0.548 Tmprt deeping 0.4428 0.3562 1.24 0.249 1.000 S = 6.47038 R-Sq = 16.2% R-Sq(adj) = 5.7% Analysis of Variance Source DF SS MS F P Regression 1 64.70 64.70 1.55 0.249 Residual Error 8 334.93 41.87 Total 9 399.63 Durbin-Watson statistic = 1.36705 I C A D M Ketebalan Galvanize VS Temperatur Zinc Nilai p-value > 0.05, maka Ho diterima, yang menandakan variabel temperatur tidak berpengaruh terhadap ketebalan galvanize.
  • 90. Analysis Waktu Dipping ( Regresion ) Regression Analysis: Ktbalan Galvanize micron versus Waktu deeping The regression equation is Ktbalan Galvanize micron = 43.7 + 19.9 Waktu deeping Predictor Coef SE Coef T P VIF Constant 43.674 5.279 8.27 0.000 Waktu deeping 19.9082 0.6573 30.29 0.000 1.000 S = 5.96979 R-Sq = 99.1% R-Sq(adj) = 99.0% Analysis of Variance Source DF SS MS F P Regression 1 32698 32698 917.49 0.000 Residual Error 8 285 36 Total 9 32983 Durbin-Watson statistic = 2.41646 I C A D M Waktu Dipping VS Ketebalan Galvanize Nilai p-value < 0.05, maka Ho ditolak, yang menandakan variabel waktu dipping berpengaruh terhadap ketebalan galvanize.
  • 91. I C A D M Analysis Result ( Regression ) Item Content Result Remarks Selected not Vital View Selected as Vital View Galvanizing P = 0.034 P = 0.024 P = 0.000 Waktu Fluxing Temperatur Dipping Waktu Dipping Selected not Vital View Berdasarkan data diatas variabel waktu Dipping paling berpengaruh terhadap hasil ketebalan pada proses galvanize (99%)
  • 92. D M A I Improvement C • Berdasarkan hasil analisa, untuk produk dengan ketebalan 6 mm didapatkan hubungan linier antara lamanya waktu pencelupan dengan hasil ketebalan galvanize. • Grafik di bawah ini dapat dijadikan acuan untuk menentukan tebal galvanize yang diinginkan. HUBUNGAN WAKTU PENCELUPAN DAN KETEBALAN GALVANIZE PADA PRODUK DENGAN KETEBALAN 6 mm 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 0 1 2 3 4 5 6 7 8 9 10 11 Waktu Pencelupan (menit) Ketebalan Galvanis (micron) Standar 6mm Y = 43.7 + 19.9 x
  • 93. 94 D M A I Improvement C Catatan : Proses improvement masih sedang berjalan dan akan dilaporkan kemudian hari.
  • 94.
  • 95. DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll Measurement Analysis Improvement Control Session Start : 23.01.02 □○ Theme Register □○ Team Organization □○ Process Map □○ Cpk Analysis(Current) □○ Problem Description □○ CTQ Selection □○ Measurable Y Value Selection □○ 4 Block Diagram Session Start : Session Start : Session Start : □○ Brainstorming □○ Logic Tree Analysis □○ Analysis by Minitab □○ Process Benchmarking □○ CTQ Selection □○ Process Map □○ ANOVA □○ Regression Analysis □○ Factor Level Decision □○ DOE □○ Statistical Interpretation □○ Data Gathering & Analysis □○ Main Factor Analysis □○ Hypothesis Test □○ ANOVA □○ Control Chart □○ Rational Tolerance selection □○ Document Control plan □○ Training Process Controller □○ CTQ Process Monitoring System set up Session Finished : □○ Y Identification □○ Gauge R&R □○ 4 Block Focus(Zst & Zshift) □○ Problem analysis reaffirmation □○ Statistical skill of Y □○ Graphical skill of Y □○ Gap Analysis □○ The 1st improvement of X(Factor) □○ Conclusion(the fixed X factor) □○ Test plan □○ Control Plan Implementation □○ CTQ Process Monitoring System Build-Up □○ Double check of all the problems Main Schedule Session Finished : Session Finished : Session Finished :
  • 96. Definition Of Defect A period of time taken off by an employee which is neither planned or authorised DEFINITION Sickness Unauthorised absence Lateness DEFECT TYPES Payment for overtime to cover absence = £800,000:00 pa Loss in revenue due to lost production = £700,000:00 pa (est) Adverse morale issues Deterioration in productivity and quality VALUE DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll
  • 97. Absence Logic Tree Absence Management Style DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll Accidents Morale issues Cleanliness Repetitive Work Sex Time With Company =CTQ’s Age Use Of Policy Section Team Leader Guidelines Employee Target Setting Environment Method Consistent Approach Shift Pattern
  • 98. Sigma Level Calculation DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll Graph shows reduction in absence, since the beginning of the project (DEC) spotlight effect has reduced absence. One problem we do have is the calculation of absence data there is a difference between the HR data collection method and the tube plant data collection method. 8 6 4 2 0 -2 Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Tube 4.27 4.66 5.23 4.7 5.01 5.34 3.86 3.13 2.75 HR 4.31 5.22 5.86 4.56 5.09 5.02 3.97 3.45 2.72 Variance -0.04 -0.56 -0.63 0.14 -0.08 0.32 -0.11 -0.32 0.03 Using The Percentage Defective (4.605%) We Calculated The DPMO Since Merger DPMO = 46050 Using statistical tables the SIGMA LEVEL = 3.21
  • 99. VOC - Harp Questionnaire 219 People Questioned Across The Tube Plant Answered by all employees. Name Marital Status Clock Number Age Department Children Shift Home Time with Company Job position Time in current job Have you taken any unauthorised time off since 5th July 2001? YES / NO Do you currently have any warnings that relate to sickness or absence? YES / NO Do you understand LGPDW's absence and sickness policy? YES / NO Do you understand the affect of absence on our business? (e.g. cost, pressure on colleagues) Only to be answered by employees with no absence history How do you think high absence levels affects your ability to do your job? What do you think of LG. PHILIPS Displays as an employer? Are you happy working for LGPDW? Ask employee all questions below, and mark the score they give ie strongly agree = 10, agree = 5 and strongly disagree = 0. Do you think absence is due to Management style? Do you think absence is due to accidents in work? Do you think absence is due to the current shift pattern? Do you think absence is due to your working environment? If I was late for work, I would take the rest of the shift off because it still counts as an absence Are there any other reasons that you think contribute to absence that are not listed above? DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll
  • 100. Catchment Area Of People Questioned Overall catchment area Main catchment area DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll
  • 101. Others Job rotation P ay rise Music Mgt at ti tude Att Bonus 137 51 33 14 5 12 54.4 20.2 13.1 5.6 2.0 4.8 54.4 74.6 87.7 93.3 95.2 100.0 250 200 150 100 50 0 100 80 60 40 20 0 Defect Count Percent Cum % Percent Count How would y ou tackle high absence? Operators Pareto’s Of Absence Data DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll Teambuilding gather info on persistant absentees E xtra manning 1 - 1Communication A tendance bonus 4 2 2 1 1 40.0 20.0 20.0 10.0 10.0 40.0 60.0 80.0 90.0 100.0 10 5 0 100 80 60 40 20 0 Defect Count Percent Cum % Percent Count How would y ou tackle absence? Section Leaders Conclusions Operators would like to be paid more to come to work Operators see a problem in the way they are treated by Mgt Music might help?? Conclusions Section Leaders see the benefit in some form of attendance bonus, but more emphasis on communication and data collection
  • 102. Pareto’s Of Absence Data Others deaths accidents insi de work car problems i njury out side work low morale f lexi ble fl oatdays si ck ness f lu domest ic 4 4 4 3 2 2 1 1 1 1 17.4 17.4 17.4 13.0 8.7 8.7 4.3 4.3 4.3 4.3 17.4 34.8 52.2 65.2 73.9 82.6 87.0 91.3 95.7 100.0 20 10 0 100 80 60 40 20 0 Defect Count Percent Cum % Percent Count Main Reasons For Absence On Your Shif t DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll Main issues af f ecting shif ts ability to meet output targets Others experience absence poor maint enance suppl y low manning 11 5 3 2 1 1 47.8 21.7 13.0 8.7 4.3 4.3 47.8 69.6 82.6 91.3 95.7 100.0 20 10 0 100 80 60 40 20 0 Defect Count Percent Cum % Percent Count Conclusions No significant patterns have emerged Conclusions Absence is not a major issue
  • 103. Analysis Using M System DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll Age Sex Time With Company Employee NEXT STEP IS TO CARRY OUT ANALYSIS BY EMPLOYEE TO ESTABLISH IF THERE ARE ANY STATISTICAL DIFFERENCES DATABASE WAS CREATED LOOKING AT THE NINE MONTH PERIOD (5th July-4th April) PRIOR TO AND DURING PROJECT Employment Details Time with Company Personal Details Unauthorised Absence empn o Emp Name dept cd Dept Name Grade shift no Distance Details date_hir ed Year/Month gender Age Age Group Count Absence Abs Occ 12345 A N OTHER1 81000 Tube Manufacturing Senior Engineer DT CF1 1AB 17/03/00 02/01 Male 34 D 0 0 12346 A N OTHER2 81000 Tube Manufacturing Senior Engineer DT CF1 1AB 06/10/99 02/06 Male 34 D 0 0 12347 A N OTHER3 81000 Tube Manufacturing Team Leader DT CF1 1AB 11/08/97 04/08 Male 33 D 3 1 12348 A N OTHER4 81100 Screen Production Section Leader T4 CF1 1AB 18/05/98 03/11 Male 51 H 0 0 12349 A N OTHER5 81100 Screen Production Section Leader T2 CF1 1AB 26/04/99 02/12 Male 42 F 1 1 12350 A N OTHER6 81100 Screen Production Section Leader T1 CF1 1AB 10/05/99 02/11 Male 41 F 0 0 12351 A N OTHER7 81100 Screen Production Section Leader DT CF1 1AB 20/04/98 03/12 Male 41 F 0 0 12352 A N OTHER8 81100 Screen Production Section Leader T2 CF1 1AB 06/10/97 04/06 Male 39 E 1 1 12353 A N OTHER9 81100 Screen Production Team Leader DT CF1 1AB 12/01/98 04/03 Male 39 E 0 0 12354 A N OTHER10 81100 Screen Production Technician DT CF1 1AB 06/10/97 04/06 Female 35 D 0 0
  • 104. Analysis By Age DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll Created Age Groupings Age Group Age Range A 16-20 B 21-25 C 26-30 D 31-35 E 36-40 F 41+ Analysed Percent Absent By Age Group Conclusions There is a significance showing that D = 31-35 and F = 41+ are more likely to not to take unauthorised absence and that B = 21-25 are more likely to take unauthorised absence Chi-Square Test: A, B, C, D, E, F Expected counts are printed below observed counts A B C D E F Total 1 188 175 183 132 91 62 831 183.80 187.26 182.08 125.12 94.06 58.68 2 25 42 28 13 18 6 132 29.20 29.74 28.92 19.88 14.94 9.32 Total 213 217 211 145 109 68 963 Chi-Sq = 0.096 + 0.802 + 0.005 + 0.378 + 0.099 + 0.188 + 0.603 + 5.050 + 0.029 + 2.378 + 0.626 + 1.183 = 11.438 DF = 5, P-Value = 0.043 19.35% 13.27% 8.97% 16.51% 8.82% 13.71% 11.74% A B C D E F Grand Total
  • 105. Analysis By Gender DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll Split By Gender Analysed Percent Absent By Gender Conclusions There is significance showing that a male person would more likely take unauthorised absence Female Male Grand Total 22.28% 30.88% 29.08% 157 526 683 45 235 280 Chi-Square Test: F, M Expected counts are printed below observed counts F M Total 1 188 643 831 174.31 656.69 2 14 118 132 27.69 104.31 Total 202 761 963 Chi-Sq = 1.075 + 0.285 + 6.767 + 1.796 = 9.924 DF = 1, P-Value = 0.002 15.51% 13.71% 6.93% Female Male Grand Total
  • 106. Analysis By Time Served Group Range A <1Year B 1-2 Years C 2-3 Years D 3-4 Years E >4 Years DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll Analysed Percent Absent By Time Served Conclusions There is a significance in that E = 4 years + is more likely to take unauthorized absence Created Time Served Groupings Chi-Square Test: A, B, C, D, E Expected counts are printed below observed counts A B C D E Total 1 117 129 151 324 110 831 113.04 126.85 154.46 314.97 121.67 2 14 18 28 41 31 132 17.96 20.15 24.54 50.03 19.33 Total 131 147 179 365 141 963 Chi-Sq = 0.138 + 0.036 + 0.078 + 0.259 + 1.120 + 0.872 + 0.229 + 0.489 + 1.630 + 7.050 = 11.902 DF = 4, P-Value = 0.018 12.24% 15.64% 11.23% 21.99% 13.71% 10.69% A B C D E Grand Total
  • 107. Analysis By Department DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll Created Department Sub-Groups Percent Absent By Sub Group Group dept_cd Dept Name Total Abs Never A 83210 Tube Material Warehouse 46.15% 6 7 B 81400 Design/Process Engineering 35.71% 5 9 C 81320 Sputter section 32.50% 13 27 D 81310 Spin section 21.21% 7 26 E 84120 Tube OQC section 16.13% 5 26 81140 Maintenance 1 section 81510 Maintenance Section(2/3) 81230 Gunseal and Exhaust section 81330 I.T.C. section 81340 Outgoing section 81450 CS-Reinspection section 81210 Assembly Section 81220 Inner Dag section I 84110 Tube IQC section 7.69% 1 12 J 81240 1st Inspection section 5.63% 4 67 81110 Screen Coating section 81120 Chemical section L 81130 Shadow Mask Section 2.50% 2 78 Average 12.72% 109 748 Conclusions This shows that there is a significance in departments A = Tube Material Warehouse, B = Design/Process Engineering, C = Sputter section. In which all are more likely to take unauthorised absence F G H 14.55% 13.68% 10.29% 47 284 61 8 45 7 K 5.45% 6 104 35.71% 32.50% 21.21% 16.13%14.55%13.68% 10.29% 7.69% 5.63% 5.45% 2.50% 46.15% A B C D E F G H I J K L
  • 108. Analysis By Shift DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll
  • 109. Improvement Suggestions Improvement Actions/Suggestions by CTQ. DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll CTQ Proved By Improvement Recommendation Age Proved By Chi Square Test Use best fit when recruiting. Gender Proved By Chi Square Test Use best fit when recruiting. Length Of Service Proved By Chi Square Test Use best fit when recruiting. Shift Pattern Proved By Chi Square Test Build In More flexibility for day shift workers. Department Proved By Chi Square Test Compare Management Styles Morale Proved By HARP Survey New Incentive Scheme (Ongoing) Accidents Proved By HARP Survey New Health & Safety Structure In Place Envirionment Proved By HARP Survey Music & Improved Rest Room Facilities Management Style Proved By HARP Survey Training Courses For Manager On Interpersonal Skills. Management Attitude Improvement Plan Next Slide Aggressive Target Setting Proved By HARP Survey Unable to improve due to the nature of our business.
  • 110. DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll Improvement Suggestions - Management Attitude Morale Absence More Information Team Building Improved Interpersonal Skills Treat Operators As Equal More 1 To 1 Communication Follow Correct Procedures Improved Grading System HIGH MORALE = LOW ABSENCE
  • 111. DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll Improvement Suggestions - Attendance Bonus £100 Per Year Deductions? All Authorised Non- Sickness Absence Paid Quarterly Cash/Vouchers/Sa vings Decided By Incentive Scheme Working Party All Absence Resulting In Warnings Verbal -25% Written - 50% F Written - 100% Total Savings £1,086,000 All Deductions For 1 Year From Date Of Warning
  • 112. Output DDeeffiinnee MMeeaassuurree AAnnaallyyssee IImmpprroovvee CCoonnttrrooll Initial Current s level 3.21 3.43 PPM (Month) 46021 27300 Loss (£) £117000 £69405 Est. Monthly Saving of: £47595 (Based on hours lost)
  • 113. Process Sterilization Capability Up Contents: 1. Define Step 2. Measure Step 3. Analysis Step 4. Improvement 5. Control 6s Champion Review Final Report
  • 114. Background M A I C D Develop working efficiency and found 66 SSiiggmmaa control for free Salmonella in sterilization process. Process Capability Current Condition Process Capability Sixpack for Sealing Angle Line #2 0 100 200 300 400 500 1.0 0.5 0.0 -0.5 Individual and MR Chart Obser. Ind ivid ua l V a lue UCL=0.7674 Mean=-0.01707 LCL=-0.8016 0.9 0.6 0.3 0.0 Mo v.Ra ng e UCL=0.9638 R=0.2950 LCL=0 Last 25 Observations 480 490 500 0.3 0.0 -0.3 -0.6 Observation Number V a lue s Capability Histogram -0.5 0.0 0.5 Normal Prob Plot -0.5 0.0 0.5 Capability Plot Process Tolerance Within I I I Overall I I I Specifications I I -0.5 0.5 Within StDev: Cp: Cpk: 0.261507 0.64 0.62 Overall StDev: Pp: Ppk: 0.288617 0.58 0.56 2 0.65 1.5 0.51 Target Current Cp Cpk
  • 115. D M A I C Potential X’ List Executing analysis with Logic Tree for sterile product. Big Y X1 X2 X3 Sterile Product Machine Sterile Time Fixed Rotate Temp Warm Hot > 97 Steam Supply Spec (6.5 ~ 9) bar Pineapples Bracket Stand Material Juice pH Methods Automatic Manual
  • 116. Gage R&R D A I C M Sealing angle Line 2 Mar 3rd,2006 novi m 0.05 0.01 Gage name: Date of study: Reported by: Tolerance: Misc: Gage R&R (ANOVA) for Measurement 0 0.5 0.0 -0.5 R Chart by Operator Xbar Chart by Operator A B C Sam ple Mean UCL=0.01198 LUMCeCLaLn==0=0.0.00.0233370201767 0 0.010 0.005 0.000 A B C Sample Range R=0.003667 LCL=0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 Part Operator Operator*Part Interaction Average A B C A B C 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 Operator By Operator 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 Part By Part %Contribution %Study Var Gage R&R Repeat Reprod Part-to-Part 100 50 0 Components of Variation Perc ent Gage R&R %Contribution Source VarComp (of VarComp) Total Gage R&R 0.000020 0.03 Repeatability 0.000020 0.03 Reproducibility 0.000000 0.00 Operator 0.000000 0.00 Part-To-Part 0.077747 99.97 Total Variation 0.077767 100.00 StdDev Study Var %Study Var Source (SD) (5.15*SD) (%SV) Total Gage R&R 0.004437 0.02285 1.59 Repeatability 0.004425 0.02279 1.59 Reproducibility 0.000323 0.00166 0.12 Operator 0.000323 0.00166 0.12 Two-Way ANOVA Table With Interaction Source DF SS MS F P Part 9 4.19852 0.466502 21530.8 00..0000000000 Operator 2 0.00004 0.000022 1.0 0.38742 Operator*Part 18 0.00039 0.000022 1.2 0.33365 Repeatability 30 0.00055 0.000018 Total 59 4.19950 If significant, P-value < 0.05 indicates that a part is having a variation for Some measuring Ok for “product acceptance” considering a products tolerance.
  • 117. M D A I C Measurement Through analysis of process capability , getting sigma level 11..8855 s Four Block Diagram Target 1 2 3 4 5 6 2.5 2.0 1.5 1.0 0.5 Poor Z Shift Process Control Good Poor Good Technology Block A Block C Block B Block D 1.85 s 4.5 s Z Shift Process capability for Sterile Product Process Capability Analysis for Sealing Angle Line #2 LSL Target USL -1.0 -0.5 0.0 0.5 1.0 Potential (Within) Capability Overall Capability Observed Performance Exp. "Within" Performance Exp. "Overall" Performance PPM < LSL PPM > USL PPM Total PPM < LSL PPM > USL PPM Total PPM < LSL PPM > USL PPM Total USL Target LSL Mean Sample N StDev (Within) StDev (Overall) Z.Bench Z.USL Cpk Z.LSL Cpm Z.Bench Z.USL Z.LSL Ppk 47140.05 36602.01 83742.06 32395.08 24004.66 56399.74 4008.02 0.00 4008.02 0.500000 0.000000 -0.500000 -0.017074 499 0.261507 0.288617 1.59 1.98 1.85 0.62 0.58 1.38 1.79 1.67 0.56 Process Data Within Overall A : Poor control, inadequate technology B : Must control the process better, technology is fine C : Process control is good, inadequate technology D : World class
  • 118. A Analysis - Regression D M I C Use regression is to express and analyze a mathematical equation of describing a relationship. That is, it is to fit a mathematical equation of describing a relationship between the “YY” and “XX’’ss”. Regression Analysis: Sterile product versus time and temp The regression equation is Sterile =0.000303 + 0.00113 time + 0.000060 temp Regression Analysis: Sterile product versus time and temp The regression equation is Sterile =0.000303 + 0.00113 time + 0.000060 temp Predictor Coef SE Coef T P Constant 0.0003033 0.0002999 1.01 0.345 TTiimmee 00..0000111122885599 00..0000000033993399 2288..6655 00..000000 Temp 0.00006005 0.00005694 1.05 0.327 Predictor Coef SE Coef T P Constant 0.0003033 0.0002999 1.01 0.345 TTiimmee 00..0000111122885599 00..0000000033993399 2288..6655 00..000000 Temp 0.00006005 0.00005694 1.05 0.327 S = 0.0003891 R-Sq = 100.0% R-Sq(adj) = 100.0% S = 0.0003891 R-Sq = 100.0% R-Sq(adj) = 100.0% Normal Probability Plot of the Residuals (response is Angle) Analysis of Variance Source DF SS MS F P Regression 2 0.82500 0.41250 2.725E+06 0.000 Residual Error 7 0.00000 0.00000 Total 9 0.82500 -0.0005 0.0000 0.0005 Analysis of Variance Source DF SS MS F P Regression 2 0.82500 0.41250 2.725E+06 0.000 Residual Error 7 0.00000 0.00000 Total 9 0.82500 1 0 -1 N o rm a l S c o re Residual p-value < 0.05 : Significant factor R2 and R2-adj are over 90% : which indicates a potentially good fit
  • 119. Analysis – Regression D M I C Comparing of Sterile product and steam supply to find what the factor’ level’s which influence enormously by represent characterized variation ““YY”” by the total sum of square. Regression Analysis: Sterile product versus Steam supply The regression equation is Sterile product = - 0,380 + 3,74 Steam supply Predictor Coef SE Coef T P Constant -0,3796 0,1693 -2,24 0,042 SStteeaamm SSuuppppllyy 33,,774444 11,,115533 33,,2255 00,,000066 Regression Analysis: Sterile product versus Steam supply The regression equation is Sterile product = - 0,380 + 3,74 Steam supply Predictor Coef SE Coef T P Constant -0,3796 0,1693 -2,24 0,042 Steam Supply 3,744 1,153 33,,2255 00,,000066 S = 0,1510 R-Sq = 43,0% R-Sq(adj) = 38,9% S = 0,1510 R-Sq = 43,0% R-Sq(adj) = 38,9% Analysis of Variance Source DF SS MS F P Regression 1 0,24032 0,24032 10,55 0,006 Residual Error 14 0,31905 0,02279 Total 15 0,55937 Analysis of Variance Source DF SS MS F P Regression 1 0,24032 0,24032 10,55 0,006 Residual Error 14 0,31905 0,02279 Total 15 0,55937 The P-value < 0.05 Reject Ho ; Accept ha A -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 4 3 2 1 0 Residual Frequency Histogram of the Residuals (response is Cullet S)
  • 120. A Analysis – Chi-square D M I C This Chi-Square is used to Test hypotheses about the frequency of occurrence of some event happening with equal probability. Conclusion: ◆ At least no one region is different, because a dependence exists. (P > 0.05) ◆ It no appears that the dependence may exist with Region 1 due to the large difference between the observed and the expected values.(must subtract the expected and observed values) Since P-Value >> 0.05; there’s no significant Effect between product sterile and factor. Chi-Square Test: matang, Stngh matang, juice Expected counts are printed below observed counts Chi-Square contributions are printed below expected counts Stngh matang matang juice Total OK 1000 995 1013 3008 1000.01 993.03 1014.96 0.000 0.004 0.004 NG 3 1 5 9 2.99 2.97 3.04 0.000 1.308 1.269 Total 1003 996 1018 3017 Chi-Sq = 2.585, DF = 2, P-Value = 0.275 3 cells with expected counts less than 5.
  • 121. Analysis – A two sample T-test D M I C Hypothesis tests help to determine if a difference is real, or if it could be due to chance Two-Sample T-Test and CI: Automatic, Chart Two-sample T for Automatic vs Chart N Mean StDev SE Mean Automatic 12 14.70 1.47 0.42 Manual 12 14.13 2.19 0.63 Difference = mu (Automatic) - mu (Chart) Estimate for difference: 0.562500 95% CI for difference: (-1.030754, 2.155754) T-Test of difference = 0 (vs not =): T-Value = 0.74 P-Value = 0.469 DF = 19 D a t a Automatic Chart 19 18 17 16 15 14 13 12 11 Boxplot of Automatic, Chart There is no statistically significant difference if the confidence interval for m1 - m2 does include 0.0.
  • 122. Improvement – D M A C Response Surface Experiment MMaaiinn EEffffeeccttss PPlloottss ffoorr TTiimmee,, TTeemmpp && SStteeaamm ssuuppppllyy AAvveerraaggee aanndd SSttaannddaarrdd DDeevviiaattiioonn ooff RReessiidduuee.. 9 Cube Plot (data means) for Salmonella 6.5 97 90 10 7 0 7.5 10 Steam Temp Time 3 4 11 15 12 I Main Ef fects Plot (data means) for Salmonel la From the Main Effects Plot for the average of residue we conclude: • Temp has the greatest effect on average residue • Time has a lesser effect on average residue • Steam supply shows little or no effect (within the test range) on the average residue Best Condition: • Salmonella : 0 • Temp max : 97 oC • Time : 7.5 min • Steam : 6.5 bar Mean of Salmonella 7.5 10.0 10.0 7.5 5.0 90 97 6.5 9.0 10.0 7.5 5.0 Time Temp St eam
  • 123. Improvement – Response Surface Experiment D M A I C Contour Plot Lines of target response for “0” Salmonella 1. Get to know the condition giving lower salmonella. 2. To get the regular response, we realize what variables is important to control (temp & time) 3. Determine the level of independent variance needed for getting salmonella 00 (When temp is approximately 97oC) 97 96 95 94 93 92 91 90 Contour Plot of Salmonella vs Temp, Time 7.5 8.0 8.5 9.0 9.5 10.0 Time Te m p Salmonella < 2.0 2.0 - 4.5 4.5 - 7.0 7.0 - 9.5 9.5 - 12.0 12.0 - 14.5 > 14.5 Hold Values Steam 6.5 Interpretation: to make sterile product (no salmonella) move towards the center corner of the Contour Plot (samonella = 00). Read off potential “Time” and “Temp” values that will provide Salmonella < 2.
  • 124. D M A I C Improvement – Response Surface Experiment Generally, main effect is more important than interaction. If interaction is regarded as a important thing, then interaction can be used as a factor of interaction and another interaction might be confounded. 96 Salmonella 10 5 0 94 T emp 15 8 92 9 10 90 T ime Hold Values Steam 6.5 Surface Plot of Salmonella vs Temp, Time
  • 125. Improvement – Result D M A I C Four Block Diagram 1 2 3 4 5 6 2.5 2.0 1.5 1.0 0.5 Poor Z Shift Process Control Good Poor Good Technology Block A Block C Block B Block D 4.25 s Z Shift 1.85 s Improvement Result: Saving Cost estimated: 2.7K U$/Year Process Capability Analysis for Sealing Angle Line #2 LSL Target USL 0.500000 0.000000 -0.500000 0.014762 84 0.121123 0.124193 Potential (Within) Capability 3.94 4.01 1.34 4.25 -0.50 -0.25 0.00 0.25 0.50 Overall Capability Observed Performance Exp. "Within" Performance Exp. "Overall" Performance PPM < LSL PPM > USL PPM Total PPM < LSL PPM > USL PPM Total PPM < LSL PPM > USL PPM Total USL Target LSL Mean Sample N StDev (Within) StDev (Overall) Z.Bench Z.USL Cpk Z.LSL Cpm Z.Bench Z.USL Z.LSL Ppk 17.00 46.70 63.70 10.69 30.86 41.55 0.00 0.00 0.00 1.34 3.83 3.91 4.14 1.30 Process Data Within Overall
  • 126. Control D M A I C Six Sigma Quality focuses on moving control upstream to the leverage input characteristic for Y. If we can measure and control the vital few X’s, control of Y should be assured. Desired Process Capability Output Input Controller Process Group Member Controllable factors: - Miss adjust causes - Adjustable check - Pad control - Education Upper Control Limit X ● Lower Control Limit ● 0.5 0.0 -0.5 Sample Mean Output Subgroup 0 50 100 UCL=0.4384 Mean=0.001188 LCL=-0.4360 1.0 0.5 0.0 Sample Range 1 1 1 UCL=0.7596 R=0.2325 LCL=0 Xbar/R Chart for Sealing Angle Line #2 Process Standard Change
  • 127. Optimizing Material DIO Contents 6s Champion Review DMAIC-Step Report 1. DEFINE 2. MEASURE 3. ANALYSIS 4. IMPROVEMENT 5. CONTROL
  • 128. ‘06 6s Project Registration PJT Name Period Team Name Optimizing Material D I O Main Improvement Object Breakthrough (KPI) Current World Best Target New Idea for Target Achievement Just In Time Purchasing Vendor Managed Inventory Team Formation, Related Department Involved Name Dept. Position Main Role NECK POINT - Warehouse Inventory Amount D I O 2.6 days 2.3 days - Working In Process Inventory Amount How to do ? Why ? (* Selection Background) Expected Results Quantitative 1. JIT delivery system for press part 2. Door to door delivery for glass 3. Hub delivery system from Korea 4. Raw material issue control to process 5. Weekly stock taking 6. Minimize NG and rework stock in process Qualitative at end of the month 7. PO issued based on the latest production plan 1. D I O is one of key performance indicators in inventory management. 2. Good level of inventory will support production line in effective and efficient way. 3. Fluctuated material D I O Current Condition USL : 2.9 LSL : - Means : 2.58091 Sample N : 14 Z Bench : 1.03 ( Days Inventory Outstanding ) Process Capability Analysis for C2 1.5 2.0 2.5 3.0 3.5 Potential (Within) Capability Overall Capability Observed Performance Exp. "Within" Performance Exp. "Overall" Performance PPM < LSL PPM > USL USL Target LSL Mean Sample N StDev (Within) StDev (Overall) Z.Bench Z.USL Z.LSL Cpk Cpm Z.Bench Z.USL Z.LSL 2.90000 * * 2.58091 14 0.310413 0.380447 1.03 1.03 * 0.34 * 0.84 0.84 * 1,117 K $ US * 214285.71 Current PPM < LSL PPM > USL * 151989.40 1,050 - Reduced warehouse and WIP inventory amount 1NG and rework stock in the end of month - All material used efficiently in production line PPM < LSL PPM > USL * 200815.40 Target - Continuous material supplies to production line 2. Fluctuate production schedule K 67 UUSSLL PPM Total PPM Total PPM Total Ppk 200815.40 151989.40 214285.71 0.28 Process Data Within Overall
  • 129. Background D M A I C One of the material inventory management control is DIO (Days Inventory Outstanding) that has the formula: Inventory Amount Material DIO = ------------------------- X total days of current month Sales Amount The elements of material DIO are: 1. Warehouse Inventory (Raw Material) 2. Working In Process inventory (Semi Finished Goods ) 3. Material In Transit Inventory Current Material Inventory Condition : Average Amount : $ K 1,117 D I O : 2.6 days This large amount and high DIO have some effects :  Risk in obsolescence, expired, lost, and defect  High inventory carrying cost Optimizing inventory amount and D I O will bring material inventory management in a more efficient cost
  • 130. D M A I C Y X1 X2 X3 X4 X5 M. RATIO Net BOM Material Price Src. Performance BOM Quantity M. YIELD CPT Price Experience Negotiation Education M. DIO Material Loss Net Req. Material Material Cost Amt Market Situation Key Part Chemical Others Mat. Inv. Amt Production Qty Sales Amt Beginning Stock Sales Target Forecast Skill Calculation Skill Purchasing Qty Ending Stock Receive Amt Total Days In Transit Inv. Warehouse Inv. W I P Inv. Sales Qty. Current Month Supply Condition Glass Mask Press Part Sub Mount Process Part Assy Part Logic Tree
  • 131. Logic Tree D M A I C Y X1 X2 X3 X4 X5 Mat Inv Amt In Transit Inv Delivery Sched. Material DIO Sales Amt B Graphite G 72 B Warehouse Inv Experience Sales Qty Price A Education Total Days Simulation Skill Glass Stock Bulb D Y Part Stock Assy Stock Current Month Sales Target Production Capa CMA M/Assy Marketing Nego Market Situation W I P Inventory YS TCL Prod. Comp. Supply Sub Month
  • 132. D M A I C This project with potential X-List will be focused to control Warehouse Inventory and working In Process Inventory X Level X Level 2 2 X Level 3 DD Y Y BBigig Y Y MMaateteriraial lD DIOIO PP A A D D PPaartr tS Stotockck AAssssy yS Stotockck X Level 4 FFlalat tM Maasksk GGlalassss SSuubb M Moouunnt t PPhhoosspphhoor r GG 7 722 B B X Level X Level 1 1 MMaateteriraial lI nInvv. .A Ammtt WW/h/hoouussee I nInv.v. WWIPIP I nInv.v. X Level 3 X Level 4 ggoooodd AAssssyy CCMMAA Brainstorming Potential X
  • 133. D M A I C Gage R & R To test validation of measurement , 3 (three) persons, twice inspection and 14 months calculation for material D I O has carried out, and the result was acceptable. Gage R&R StdDev Study Var %Study Var Source (SD) (5.15*SD) (%SV) Total Gage R&R 0.109148 0.56211 16.58 Repeatability 0.109046 0.56159 16.56 Reproducibility 0.004723 0.02432 0.72 Operator 0.004723 0.02432 0.72 Part-To-Part 0.649363 3.34422 98.62 Total Variation 0.658472 3.39113 100.00 Number of Distinct Categories = 8 Gage name: Date of study: Reported by: Tolerance: Misc: Gage R&R (ANOVA) for Measure 0 4 3 2 R Chart by Operator Xbar Chart by Operator 1 2 3 S a m p le M e a n LUMCeCLaLn==2=2.2.67.3624749 0 1.0 0.5 0.0 1 2 3 S a m p le R a n g e LRUC=C0LL.==0002.40075857 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 4 3 2 Part Operator Operator*Part Interaction A v e r a g e 1 2 3 1 2 3 4 3 2 Operator By Operator 4 3 2 Part By Part %Contribution %Study Var %Tolerance Gage R&R Repeat Reprod Part-to-Part 350 300 250 200 150 100 50 0 Components of Variation P e r c e n t Gage R&R <20% Acceptable The result of Gage R&R total is 16.58, the acceptance percentage is below 20 (<20), meanwhile the result of measurement between <20, it accepted.
  • 134. Current Condition DM A I C Process Capability Analysis for C2 UUSSLL 1.5 2.0 2.5 3.0 3.5 Potential (Within) Capability Overall Capability Observed Performance Exp. "Within" Performance Exp. "Overall" Performance PPM < LSL PPM > USL PPM Total PPM < LSL PPM > USL PPM Total PPM < LSL PPM > USL PPM Total USL Target LSL Mean Sample N StDev (Within) StDev (Overall) Z.Bench Z.USL Z.LSL Cpk Cpm Z.Bench Z.USL Z.LSL Ppk * 200815.40 200815.40 * 151989.40 151989.40 * 214285.71 214285.71 2.90000 * * 2.58091 14 0.310413 0.380447 1.03 1.03 * 0.34 * 0.84 0.84 * 0.28 Process Data Within Overall Z-Bench : 1.03
  • 135. Block Diagram D M A I C Z shift has been identified , the Z shift will be 0.19, regarding this issue the target of the project is 4.5 sigma A B C 2.5 2.0 1.5 1.0 0.5 1 2 3 4 5 6 Z shift Poor Process Control Good Poor Z st Good Technology EXPLANATION Position of DIO was column C , it was mean : PROCESS CONTROL IS GOOD, BUT TECHNOLOGY (METHOD) IS BAD Z st : 1.03 Z shift : Z st – Z lt Z st : 1.03 Z shift : Z st – Z lt : 1.03 – 0.84 : 0.19 : 1.03 – 0.84 : 0.19 D
  • 136. D M A I C WIP Assy Stock Analysis The Pareto analysis has been done, the result shows that tube stock, Furnace, CMA, and Assy have the highest contribution to WIP Assy Amount Bare Tub e 165826 48983 37174 33504 7725 14962 53.8 15.9 12.1 10.9 2.5 4.9 53.8 69.7 81.8 92.6 95.1 100.0 Others CP T D o ngbang Mo unt Assy C MA B ulb 300000 200000 100000 0 100 80 60 40 20 0 Defect Count Percent Cum % P e rc e n t C o u n t Avg WIP Stock 1Q '04 Analysis BBBBaaaarrrreeee TTTTuuuubbbbeeee 45 % conveyor stock ($ 78 K) 55 % ( $ 97 K) consists -O Nf G: & rework, - Pending Lot - Remained Prod. Stock BBBBuuuullllbbbb F’ce Stock C/V Stock CCCCMMMMAAAA Stock to keep production MMMMoooouuuunnnntttt AAAAssssssssyyyy Safety Stock to secure supply 2 shift Mount Assy Process Pareto Chart for WIP Assy Inv.
  • 137. WIP Part Stock Analysis D M A I C The Pareto analysis result for WIP part stock shows that Mask Stock, Glass, Sub Mount and Phosphor have the highest contribution to WIP part Amount Analysis Others Pho spor S ub M ount Ma sk la ss G 179511 50418 32501 10535 7375 64.0 18.0 11.6 3.8 2.6 64.0 82.0 93.6 97.4 100.0 200000 100000 0 100 80 60 40 20 0 Defect Count Percent Cum % P e rc e n t C o u n t Pareto Chart for Desc. FFFFllllaaaatttt MMMMaaaasssskkkk 86 % stock at PT YSI($ 156 K) - Flat Mask (RM) - Annealing - Forming & Blackening 14 % stock at SM ( $ 23 K) GGGGllllaaaassssssss Stock loading SSSSuuuubbbb MMMMoooouuuunnnntttt Mount Assy Process stock PPPPhhhhoooosssspppphhhhoooorrrr Safety Stock for aging time High price Pareto Chart for WIP Part Inv.
  • 138. Warehouse Stock Analysis D M A I C The Pareto analysis result for warehouse stock shows that Stock, Graphite, Phosphor and PAD have the highest contribution to Warehouse Stock amount Analysis DDDD YYYY Inner Supply - Revised Production Plan So frequently - Quality Problem - Comp. Request to achieve sales target GGGGrrrraaaapppphhhhiiiitttteeee Hardly PO revision PO issued three month before PPPPhhhhoooosssspppphhhhoooorrrr PPPP AAAA DDDD Decreasing consumptions G la ss P AD P ho spo r Graphi te D Y 47520 41443 39654 17572 16007 29.3 25.6 24.4 10.8 9.9 29.3 54.8 79.3 90.1 100.0 150000 100000 50000 0 100 80 60 40 20 0 Defect Count Percent Cum % P e rc e n t C o u n t Pareto Chart for C1 Blue Stock Pareto Chart for W/House Inv. Minimum order 2304 kg
  • 139. D M A I C Item High Amount Stock Remarks Selected as Vital View Selected as Vital View Not Selected as Vital View Assy Remained production stock & Pending lot conveyor stock W I P Selected as Vital View Selected as Vital View Part NG and rework Stock Mask Stock outsourcing process Warehouse Analysis Result Glass Stock Sub Mount Selected as Vital View Not Selected as Vital View Y D Y G 72 B & G 355 P A D Selected as Vital View Selected as Vital View Phosphor Selected as Vital View
  • 140. D M A I C Bottle Neck Analysis Result 1. High stock of NG, rework, pending lot in the end of month due to quality problem, sourcing team can not fully controlled this situation. Actually, it’s depend on process and quality performance. 2. Outsourcing Mask Annealing process at Shin require more raw material stock to keep production and secure supply. 3. Frequently change production plan for CIT and Y DY quality problem cause influence high stock Y DY.
  • 141. Improvement I D M A C Item Improvement Remarks Stock Mask Stock - Identify and checking 3 days before closing - Communicate Stock to related dept and push for action - Working closely with PCT Team to input remained stock - Partial raw material delivery Glass Stock - Daily vendor managed inventory In the end of month - Pending Lot - Remained Prod. from March ‘04 Annealing Outsourced - Optimized in out stock control - Daily input glass to production line - Communicate and push process to minimize stock - Check stock condition & make any necessary action Y D Y - Confirm I production plan - Best effort to match PCT Production Plan & actual - Just In Time purchasing Phosphor Graphite - Improve Import delivery simulation skill Weekly control from March ‘04 Weekly control from March ‘04 - Tightly control on ETD & ETA - Maintain actual delivery performance on SRS from March ‘04 from March ‘04
  • 142. D M A I Improvement Result C Result analysis after improvement actions : Z bench 2.60 UUSSLL Process Capability Analysis for DIO 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 Potential (Within) Capability Overall Capability Observed Performance Exp. "Within" Performance Exp. "Overall" Performance PPM < LSL PPM > USL PPM Total PPM < LSL PPM > USL PPM Total PPM < LSL PPM > USL PPM Total USL Target LSL Mean Sample N StDev (Within) StDev (Overall) Z.Bench Z.USL Z.LSL Cpk Cpm Z.Bench Z.USL Z.LSL Ppk * 1307.83 1307.83 * 4651.78 4651.78 * 0.00 0.00 2.90000 * * 2.25093 6 0.249574 0.215663 2.60 2.60 * 0.87 * 3.01 3.01 * 1.00 Process Data Within Overall Z-Bench : 2.60
  • 143. D M A I Sigma Value C After improvement action, we can compare it with previous condition. Improved Condition is better than Previous Condition. PREVIOUS CONDITION IMPROVED CONDITION A B C 2.5 2.0 1.5 1.0 0.5 1 2 3 4 5 6 Poor Z shift Process Control Good Poor Z st Good Technology 2.5 2.0 1.5 1.0 Poor Sigma = 1.03 D Z st : 2.60 Z shift : Z st – Z lt Z st : 2.60 Z shift : Z st – Z lt : 2.60 – 3.01 : -0.41 : 2.60 – 3.01 : -0.41 A B C 0.5 1 2 3 4 5 6 Z shift Process Control Good Poor Z st Good Technology D Z st : 1.03 Z shift : Z st – Z lt Z st : 1.03 Z shift : Z st – Z lt : 1.03 – 0.84 : 0.19 : 1.03 – 0.84 : 0.19 Sigma = 2.60
  • 144. D M A I Saving Cost C TARGET 1,117 K $ US Current 1,050 Target K 67 (6%) RESULT 1,117 K $ US Before 1,075 After K 42 (4%) Previous Average Material Inventory Amount : $ K 1,117 Current Average Material Inventory Amount : $ K 1,075 Saving Cost : $ K 42
  • 145. Control D M C A I Below check sheets are applied to ensure and maintain the material inventory DIO stays optimized and some improvement activities stay controlled : 1. Mask daily inventory stock control at Shin This is one of the application of vendor managed inventory (VMI) 2. Salvage glass daily input to process 3. Weekly Stock taking for warehouse and WIP (include Assy and Stock) 1. Desc. 31 1 2 3 4 5 6 2. F/MASK 5000 120000 120000 110000 100000 87000 80000 ANNEA 35447 33612 21740 19973 23373 25155 20373 FORM 2550 1961 3170 5149 2090 2095 8300 BLACK 7189 4841 7146 6972 6860 7207 2961 TOTAL 50186 160414 152056 142094 132323 121457 111634 F/MASK 5000 75000 75000 75000 75000 75000 75000 ANNEA 2933 2933 2933 2933 2933 2933 2933 FORM 0 0 0 0 0 0 0 BLACK 2790 2790 2790 2790 2790 2790 2790 No Part No Description Act.Gd Inv. Book Process PMS Gap U/PRICE Amount REMARKS 1 153-113V DY 14" LG STD 0 0 488 2,432 -2,432 1.68205 0.00 820.84 2 153-276F DY HARTONO/SANKEN/VESTEL 0 0 0 0 0.00000 0.00 0.00 3 3024GAFA01C MASK FLAT 21" MULTI 20,000 20,000 2,191 80,000 -60,000 1.72214 34,442.80 145.70 4 3040GA0001A BASE 20" 202,103 202,103 0 202,103 0 0.02246 4,539.23 0.00 5 3040GA0006A BASE 14" 210,000 210,000 0 210,000 0 0.03620 7,602.00 0.00 6 3210GBAA01A FRAME SUPPORT 14" 0 0 4,284 0 0 0.12900 0.00 552.64 7 3210GBEA01A FRAME SUPPORT 20" 0 0 1,920 0 0 0.58850 0.00 1,129.92 8 3210GBFA01A FRAME SUPPORT 21" 0 0 3,120 0 0 0.63900 0.00 1,993.68 9 3300GB0001A PLATE COMPENSATION 0 0 0 0 0 0.63900 0.00 0.00 10 3300GB0001B PLATE COMPENSATION 10,000 10,000 0 10,000 0 0.00428 42.80 0.00 11 3300GB0002A PLATE COMPENSATION 20,000 20,000 0 20,000 0 0.00299 59.80 0.00 12 3300GC0001A B-S PLATE 20" 0 0 20,000 10,000 -10,000 0.01220 0.00 244.00 13 3740GA0001A LEAD PROTECT 20" 12,500 12,500 11,500 12,500 0 0.01182 147.75 135.93 TOTAL 10723 80723 80723 80723 80723 80723 80723 14" 20" 3. PANEL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Ttl Tanggal 14 0 0 0 672 504 168 336 0 224 224 308 154 322 168 0 0 0 392 504 168 168 0 0 308 0 782 168 168 0 336 168 6242 20 0 0 0 72 266 248 310 0 0 180 72 272 0 0 0 0 72 0 0 72 208 0 0 192 416 200 64 62 0 548 64 3318 21 0 0 512 256 192 0 64 0 192 320 320 192 128 320 0 0 576 320 512 192 0 0 0 384 320 64 128 0 0 0 128 5120 0 0 512 ## 962 416 710 0 416 724 700 618 450 488 0 0 648 712 ## 432 376 0 0 884 736 ## 360 230 0 884 360 14680 FUNNEL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Ttl JUMLAH Tanggal 14 200 0 0 400 400 400 0 0 400 200 200 0 400 0 0 0 200 400 200 200 400 0 0 0 200 200 200 0 0 200 400 5200 20 0 0 81 0 261 90 270 0 90 0 0 180 0 0 0 0 0 0 0 0 0 0 270 0 180 270 270 180 0 180 90 2412 21 0 0 405 243 162 81 0 0 81 405 374 162 162 243 0 0 324 324 324 243 81 0 0 405 162 0 0 243 0 81 162 4667 200 0 486 643 823 571 270 0 571 605 574 342 562 243 0 0 524 724 524 443 481 0 270 405 542 470 470 423 0 461 652 12279 JUMLAH Process Amount INV
  • 146. Attachment Inventory and DIO Monthly Control 2004 1250 1200 1150 1100 1050 1000 950 900 850 Inventory 1181 1201 4 Actual Targe 3 2 1 DESC. 1 2 3 4 5 6 7 8 9 10 11 12 (K $) INTR. W/H WIP T/T 15 62 84 135 82 303 333 432 469 394 706 786 522 597 509 1,024 1,181 1039 1201 984 Days 2.3 2.5 2.0 2.3 2.0 2. DIO 1024 1039 984 800 1 2 3 4 5 6 7 8 9 10 11 12 2.3 2.5 2.0 2.32 0 1 2 3 4 5 6 7 8 9 10 11 12 Targe t Actual t
  • 147. Attachment Inventory and DIO Budget Control 2004 Desc. 2004 Avg/Total Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Sales Amount Target 12,060 12,176 12,569 12,256 12,290 12,322 12,432 12,879 12,874 12,197 10,740 11,551 146,346 Actual 13,784 13,668 15,892 15,388 15,423 In transit Target 45 45 45 41 41 41 40 40 40 40 40 40 42 Actual 15 62 84 135 82 W/house Target 372 372 372 365 365 365 365 365 365 325 325 325 357 Actual 303 333 432 469 394 WIP Target 695 695 695 672 672 672 672 672 672 665 665 665 676 Actual 706 786 522 597 509 Total Target 1,112 1,112 1,112 1,078 1,078 1,078 1,077 1,077 1,077 1,030 1,030 1,030 1,074 Actual 1,024 1,181 1,039 1,201 984 DIO Target 2.9 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.5 2.6 2.9 2.8 2.7 Actual 2.30 2.51 2.03 2.34 1.98
  • 148. Attachment Material Inventory and DIO Control 2003 and 1 Q of 2004 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Avg Months 4 3.5 3 2.5 2 1.5 1 0.5 0 DESC. avg 1 2 3 4 5 6 7 8 9 10 11 12 1 2 In Transit 25 39 33 24 17 24 113 107 80 44 124 109 55 62 61 W I P 564 724 713 799 890 970 693 653 604 664 668 574 706 786 715 W/House 442 331 278 333 298 357 314 361 409 320 383 311 303 333 341 Total 1,031 1,094 1,024 1,156 1,205 1,351 1,120 1,121 1,093 1,029 1,175 994 1,064 1,181 1,117 Sales Amt 12,953 13,091 13,701 12,080 12,698 12,328 14,099 14,396 14,147 14,385 10,551 13,112 13,784 13,668 13,214 D I O 2.4675 2.3399 2.3169 2.8709 2.9412 3.2879 2.4632 2.4138 2.3186 2.2166 3.3403 2.3502 2.3936 2.5055 2.6205
  • 149. Reduce LNG Usage Date Nov 24th , 2004 Process Technique Group Prepared : Novi Muharam 6s Champion Review DMAIC Report Contents 1. Define Step 2. Measure Step 3. Analysis Step 4. Improvement 5. Control
  • 150.
  • 151. Background D M A I C LNG (Liquid Natural Gas) is source of energy for combustion process in F’ce Up to 3rd quarter LNG usage for exhaust furnace still higher, it’s about 5000 Nm3/day. This project have a purpose to decreasing LNG usage in furnace LNG Usage 4500 5000 CCuurrrreenntt TTaarrggeett 11% Unit: (Nm3/day) Energy Unit Price (U$) How to do: LNG & Air pressure system Adjustment to find best ratio Both of them. Target Saving cost: = (5000 –4500 )Nm3/day x 0.165 U$/Nm3 x 30 x 12 = 500 Nm3/day x 0.165 x 30 x 12 = 2299,,770000 UU$$//YYeeaarrss Others Electric O2 N2 LNG 0.1650 0.1309 0.1290 0.0605 0.0070 33.5 26.6 26.2 12.3 1.4 33.5 60.1 86.3 98.6 100.0 0.5 0.4 0.3 0.2 0.1 0.0 100 80 60 40 20 0 Defect Count Percent Cum % Percent Count Energy Usage Price
  • 152. G/S Process Mapping Load Exh P-pipe Exhaust Furnace Zone #1 ~ #44 In Out Tip off B.B.D -F/F C/V -Cart Unload Robot Robot Control Panel Keeping Zone Up Slope Zone Down Slope D M A I C CTQ Area : - LNG & Air Usage
  • 153. Big Y X1 X2 X3 LNG Ratio Usage Material LNG Pressure Ratio Air Pressure Ratio Machine TIC Temperature RC Fan RPM Motor Dumper Valve Exh Blower Pressure D M A I C Brainstormed Potential X List
  • 154. Gage R&R for Exhaust F’ce Line #1 Measurement GaR StdDev Study Var %Study Var Source (SD) (5,15*SD) (%SV) Total Gage R&R 0,009704 0,04998 1,40 Repeatability 0,002582 0,01330 0,37 Reproducibility 0,009354 0,04817 1,35 Operator 0,002566 0,01321 0,37 Operator*Part 0,008995 0,04633 1,30 Part-To-Part 0,692590 3,56684 99,99 Total Variation 0,692658 3,56719 100,00 Gage name: Date of study: Reported by: Tolerance: Misc: Exhaust F'Ce Measurement Oct 19th, 2005 Novi M Gage R&R (ANOVA) for Auto 14" 100 50 0,010 Eng'r Gijo Maker 1 maker 2 PQC 0,005 0,5 Eng'r Gijo Maker 1 maker 2 PQC 0 0,0 -0,5 -1,0 -1,5 Xbar Chart by Operator S a m p le M e a n UCL=0,004356 LUMCCeLLa=n=-=-00-,,055,0058032257 0 0,000 R Chart by Operator S a m p le R a n g e R=0,001333 LCL=0 a b c d e f a b c d e f 0,5 0,0 -0,5 0,5 0,0 -0,5 0,5 0,0 -0,5 -1,0 Part Operator Operator*Part Interaction A v e r a g e Eng'r Gijo_1 Gijo_2 Gijo_3 PQC Eng'r Gijo Maker 1 maker 2 PQC -1,0 Oper Response By Operator -1,0 Part Response By Part %Contribution %Study Var Gage R&R Repeat Reprod Part-to-Part 0 Components of Variation P e r c e n t Gage R&R D M A I C Gage R&R <20% Acceptable
  • 155. Capability Process Exhaust F'ce 14" Capa' LSL USL 0 2 4 6 8 10 Potential (Within) Capability Overall Capability Observed Performance Exp. "Within" Performance Exp. "Overall" Performance PPM < LSL PPM > USL PPM Total PPM < LSL PPM > USL PPM Total PPM < LSL PPM > USL PPM Total USL Target LSL Mean Sample N StDev (Within) StDev (Overall) 7.50000 * 2.50000 5.27297 37 0.98276 1.66305 Z.USL Z.Bench Z.LSL Cpk Cpm Z.Bench Z.USL Z.LSL Ppk 47716.94 90265.06 137981.99 2389.10 11722.77 14111.87 0.00 81081.08 81081.08 2.27 2.19 2.82 0.76 * 1.09 1.34 1.67 0.45 Process Data Within Overall D M A I C Four Block Diagram 1 2 3 4 5 6 2.5 2.0 1.5 1.0 0.5 Poor Z Shift Process Control Good Poor Good Z st Technology Block A Block C Block B Block D A : Poor control, inadequate technology B : Must control the process better, technology is fine C : Process control is good, inadequate technology D : World class
  • 156. Analysis A Analysis of Temp furnace with result has significant effect to Pressure LNG Regression Analysis: Press LNG versus Temp The regression equation is Press LNG = 3.7 + 21.9 Temp Regression Analysis: Press LNG versus Temp The regression equation is Press LNG = 3.7 + 21.9 Temp Fail to reject Ho Predictor Coef SE Coef T P Constant 3.75 36.18 0.10 0.918 Temp 21.934 6.556 3.35 0.002 S = 64.96 R-Sq = 24.2% R-Sq(adj) = 22.1% Predictor Coef SE Coef T P Constant 3.75 36.18 0.10 0.918 Temp 21.934 6.556 3.35 0.002 S = 64.96 R-Sq = 24.2% R-Sq(adj) = 22.1% Analysis of Variance Analysis of Variance Accept Ha Source DF SS MS F PP Source DF SS MS F PP Regression 1 47242 47242 11.19 00..000022 Residual Error 35 147702 4220 Total 36 194945 Regression 1 47242 47242 11.19 00..000022 Residual Error 35 147702 4220 Total 36 194945 The p-value < 0.05, Fail to accept Ho, which demonstrate statistical significance (an equation with a “good” fit) LNG Pressure Manometer Gauge D M I C Normal Probability Plot Anderson-Darling Normality Test A-Squared: 0.414 P-Value: 0.321 Average: 5.27297 StDev: 1.65154 N: 37 2.2 3.2 4.2 5.2 6.2 7.2 8.2 9.2 .999 .99 .95 .80 .50 .20 .05 .01 .001 Probability Qty LNG Hypothesis Analysis : Ho : Temperature furnace has no significant effect to LNG Pressure Ha : Temperature furnace has significant effect to LNG Pressure
  • 157. Test for Equal Variances for LNG Ratio 95% Confidence Intervals for Sigmas One-way ANOVA: Air Press, Press LNG, Temp 0 100 200 300 400 500 600 700 800 900 Analysis of Variance Source DF SS MS F PP Factor 2 1769458 884729 118.10 00..000000 Error 108 809084 7492 Total 110 2578542 Bartlett's Test Test Statistic: 3.282 P-Value : 0.858 Levene's Test Test Statistic: 2.096 P-Value : 0.131 Factor Levels 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 0.1 0.2 0.5 0.6 1.7 2.0 3.0 4.0 5.0 6.0 6.8 7.0 7.3 8.0 9.0 9.1 9.3 9.8 11.0 11.6 11.8 12.0 12.9 13.5 14.2 14.6 One-way ANOVA: Air Press, Press LNG, Temp Analysis of Variance Source DF SS MS F PP Factor 2 1769458 884729 118.10 00..000000 Error 108 809084 7492 Total 110 2578542 Individual 95% CIs For Mean Based on Pooled St Dev Individual 95% CIs For Mean Based on Pooled St Dev Level N Mean StDev --+---------+---------+---------+---- Air Pres 37 424.73 73.53 (-*--) Press LN 37 117.00 73.04 (--*--) Temp 2 37 297.54 108.32 (--*--) Level N Mean StDev --+---------+---------+---------+---- Air Pres 37 424.73 73.53 (-*--) Press LN 37 117.00 73.04 (--*--) Temp 2 37 297.54 108.32 (--*--) --+---------+---------+---------+---- --+---------+---------+---------+---- Pooled StDev = 86.55 100 200 300 400 Pooled StDev = 86.55 100 200 300 400 A Temp Press LNG Air Pres 600 500 400 300 200 100 0 Boxplots of Air Press - Temp (means are indicated by solid circles) Analysis D M I C Analysis of Temp furnace with result has significant effect to LNG & Air press Hypothesis Analysis : Ho : Temperature furnace has no significant effect to LNG & Air Pressure Ha : Temperature furnace has significant effect to LNG & Air Pressure
  • 158. A D M I C Analysis of RPM motor with result has significant effect to Pressure LNG Regression Analysis: LNG Press versus RPM Motor The regression equation is RPM = 1448 + 0.0344 LNG Press The regression equation is RPM = 1448 + 0.0344 LNG Press Fail to reject Ho Predictor Coef SE Coef T P Constant 1448.00 5.02 288.20 0.000 LNG press 0.03440 0.01568 2.19 0.035 Predictor Coef SE Coef T P Constant 1448.00 5.02 288.20 0.000 LNG press 0.03440 0.01568 2.19 0.035 S = 8.711 R-Sq = 12.1% R-Sq(adj) = 9.6% S = 8.711 R-Sq = 12.1% R-Sq(adj) = 9.6% Analysis of Variance Analysis of Variance Source DF SS MS F PP Source DF SS MS F PP Regression 1 365.11 365.11 4.81 00..003355 Residual Error 35 2655.97 75.88 Total 36 3021.08 Regression 1 365.11 365.11 4.81 00..003355 Residual Error 35 2655.97 75.88 Total 36 3021.08 RC Fan Rotation Analysis Accept Ha Normal Probability Plot Anderson-Darling Normality Test A-Squared: 0.624 P-Value: 0.097 Average: 1462.22 StDev: 19.1748 N: 37 1420 1430 1440 1450 1460 1470 1480 1490 .999 .99 .95 .80 .50 .20 .05 .01 .001 Probability RPM The p-value < 0.05, Fail to accept Ho, which demonstrate statistical significance (an equation with a “good” fit) Hypothesis Analysis : Ho : RPM motor has no significant effect to LNG Pressure Ha : RPM motor has significant effect to LNG Pressure
  • 159. Analysis A D M I C Analysis of Air Blower with result has no significant effect to Pressure LNG Regression Analysis: LNG Press Versus Air Blower The regression equation is Air Blower = 475 - 0.169 LNG Press Regression Analysis: LNG Press Versus Air Blower The regression equation is Air Blower = 475 - 0.169 LNG Press Reject Ho Predictor Coef SE Coef T P Constant 474.97 35.14 13.52 0.000 Air Blower -0.1689 0.1111 -1.52 0.138 Predictor Coef SE Coef T P Constant 474.97 35.14 13.52 0.000 Air Blower -0.1689 0.1111 -1.52 0.138 S = 72.23 R-Sq = 6.2% R-Sq(adj) = 3.5% Analysis of Variance Source DF SS MS F PP S = 72.23 R-Sq = 6.2% R-Sq(adj) = 3.5% Analysis of Variance Source DF SS MS F PP Regression 1 12044 12044 2.31 00..113388 Residual Error 35 182604 5217 Total 36 194647 Regression 1 12044 12044 2.31 00..113388 Residual Error 35 182604 5217 Total 36 194647 Exhaust F’ce Blower Fail to accept Ha .999 .99 .95 .80 .50 .20 .05 .01 Average: 424.730 StDev: 73.5314 N: 37 Normal Probability Plot 300 400 500 600 Anderson-Darling Normality Test A-Squared: 0.200 P-Value: 0.875 .001 Probability Blower Hypothesis Analysis : Ho : RPM motor has significant effect to LNG Pressure Ha : RPM motor has no significant effect to LNG Pressure

Hinweis der Redaktion

  1. Six sigma digunakan baik secara individu maupun secara kelompok, untuk (1) pengerak dan penyokong improvement (proses peningkatan/pengembangan kualitas), (2) menyediakan arah yang tepat/akurat/teliti dari suatu kegiatan dengan sebuah strategi, (3) memandu membuat keputusan dengan fakta dan data, (4) mencapai kebutuhan pelanggan dengan meningkatkan product dan proses, dan (5) mengantarkan/mengantarkan hasil yang bottom-line (benefit, ukuran kinerja yg berhubungan dengan uang). Definisi 6 sigma mempunyai 3 elemen, ke-3 elemen tersebut tujuannya sama yaitu untuk CI .