SlideShare ist ein Scribd-Unternehmen logo
1 von 17
FACULDADE DE FORMAÇÃO DE PROFESSORES DA MATA SUL – FAMASUL FACULDADE ESCRITOR OSMAN DA COSTA LINS - FACOL CURSO DE PÓS-GRADUAÇÃO “LATO SENSO” EM ENSINO DA QUÍMICA Ligação Química Alison Andrade B. Moura 2.2011
Introdução Como podemos explicar que porções tão limitadas da matéria, como os átomos, possam formar corpos com que nos deparamos no nosso dia a dia macroscopicamente. É impossível se pensar em átomos como os constituintes básicos da matéria sem se pensar em ligações químicas, como também é impossível se falar em ligações químicas sem falarmos em elétrons.  Kekulé e Couper(1868), propuseram a utilização do termo valência para explicar o poder de combinação de um átomo com outros. A valência de um dado elemento é que determina as fórmulas possíveis ou não de compostos formados por ele. Microscópico: Estrutura chamada de retículo cristalino (sal de cozinha) Macroscópico: Sal de cozinha (NaCl)
Introdução Na natureza, os únicos átomos que podem ser encontrados no estado isolado (moléculas monoatômicas) são os gases nobres, logo se pensou que os demais átomos se ligariam entre si tentando alcançar a configuração eletrônica do gás nobre mais próximo deles na tabela periódica. Todos os gases nobres, com exceção do He, possuem 8 elétrons. Esta maneira de pensar a ligação entre os átomos passou a ser conhecida por Teoria do octeto, e foi proposta por Kossel e Lewis no início do século XX. Baseado nessa ideia, a valência de um átomo passou a ser vista como a quantidade de elétrons que um átomo deveria receber, perder ou compartilhar para tornar sua última camada (camada de valência) igual a do gás nobre de número atômico mais próximo. Walter Kossel (1888-1956) Gilbert Newton Lewis em seu laboratório na Universidade da Califórnia, em Berkeley. Gases Nobres – distribuição eletrônica do nível de valência
Ligação Iônica Como o próprio nome já diz, a ligação iônica  ocorre com a formação de íons. A atração entre os átomos que formam o composto é de origem eletrostática. Sempre um dos átomos perde elétrons, enquanto o outro recebe. O átomo mais eletronegativo arranca os elétrons do de menor eletronegatividade. Ocorre entre metais e não metais e entre metais e hidrogênio. Ex.: A ligação entre o sódio (11Na) e o cloro (17Cl) é um exemplo característico de ligação iônica. Observe a distribuição dos elétrons em camadas para os dois elementos: Para o cloro interessa adicionar um elétron à sua última camada, completando a quantidade de oito elétrons nela. Ao sódio interessa perder o elétron de sua camada M, assim a anterior passará a ser a última, já possuindo a quantidade necessária de elétrons.  Na 2 - 8 - 1   Cl 2 - 8 - 7
Ligação Iônica Na representação da ligação, utilizamos somente os elétrons da última camada de cada átomo. A seta indica quem cede e quem recebe o elétron. Cada elétron cedido deve ser simbolizado por uma seta. Esta representação é conhecida por fórmula eletrônica ou de Lewis. OBS.: O sódio possuía inicialmente 11 prótons e 11 elétrons. Após a ligação, a quantidade de prótons não se altera e a de elétrons passa a ser 10. O cloro que inicialmente possuía 17 prótons e 17 elétrons, tem sua quantidade de elétrons aumentada de uma unidade após a ligação. Com isso o sódio se torna um íon de carga 1+ e o cloro 1-. A força que mantém os dois átomos unidos é de atração elétrica, ou seja, uma ligação muito forte. Como foram utilizados um átomo de cada tipo, a fórmula do composto será NaCl.
Ligação Iônica De maneira análoga podemos observar a ligação entre o flúor (9F)  e o alumínio (13Al). O alumínio perde os três elétrons de sua última camada, pois a penúltima já possui os oito elétrons necessários. Como o átomo de flúor possui 7 elétrons em sua última camada, precisa de apenas mais um elétron. São necessários três átomos de flúor para acomodar os três elétrons cedidos pelo alumínio. De maneira análoga ao exemplo anterior, ocorre a formação de íons positivo e negativo devido a quebra do equilíbrio entre as quantidades de prótons e elétrons nos átomos. O alumínio passa a ser um íon de carga 3+ e o flúor 1-. A fórmula do composto será AlF3.
Ligação Covalente Simples É o tipo de ligação que ocorre quando os dois átomos precisam adicionar elétrons em suas últimas camadas. Somente o compartilhamento é que pode assegurar que que estes átomos atinjam a quantidade de elétrons necessária em suas últimas camadas. Cada um dos átomos envolvidos entra com um elétron para a formação de um par compartilhado, que a partir da formação passará a pertencer a ambos os átomos. Ocorre entre não metais e não metais, não metais e hidrogênio e entre hidrogênio e hidrogênio. O hidrogênio possui somente uma camada contendo um único elétron, compartilhando 1 elétron, atinge a quantidade necessária para a camada K, que é de dois elétrons. Os elétrons compartilhados passam a ser contados para as eletrosferas dos dois átomos participantes da ligação. Na molécula de nitrogênio ocorrem três ligações covalentes entre os dois átomos.    1H = 1s1    7N = 1s2 2s2 2p3
Ligação Covalente Simples Estas três ligações garantem que os dois átomos de nitrogênio atinjam a quantidade de oito elétrons nas suas últimas camadas. A ligação covalente entre dois átomos iguais é dita apolar, pois nela os elétrons são compartilhados de maneira igual, nenhum dos átomos tem mais força que o outro para atrair o elétron para si. A molécula de CO2 é formada por dois átomos de oxigênio e um de carbono unidos através de ligações covalentes. O átomo de carbono compartilha 4 elétrons e cada átomo de carbono 2, garantindo assim que ambos atinjam os oito elétrons nas últimas camadas. 6C=1s2 2s2 2p2 = 2 - 4                8O = 1s2 2s2 2p4 = 2 - 6
Ligação Covalente Simples Como a ligação é entre átomos diferentes e com diferentes eletronegatividades, a ligação é dita polar pois o átomo de oxigênio atrai para si mais fortemente os elétrons compartilhados.    Além da fórmula eletrônica, os compostos covalentes podem ser representados pela fórmula estrutural, onde cada par compartilhado é representado por um traço. Ex.: H - H, O = C = O. Uma ligação covalente unindo dois átomos é dita simples. O conjunto de duas ligações unindo dois átomos é dito dupla ligação. O conjunto de três ligações unindo dois átomos é dito tripla ligação. 
Ligação Covalente dativa ou coordenada A existência de algumas moléculas não pode ser explicada simplesmente através da ligação covalente simples. Para estes casos foi formulada a teoria da ligação covalente coordenada. Neste tipo de ligação, um dos átomos que já estiver com última camada completa entra com os dois elétrons do par compartilhado. Este par de elétrons apresenta as mesmas características do da ligação covalente simples, a única diferença é a origem dos elétrons, que é somente um dos átomos participantes da ligação. Os elétrons do par passam a pertencer a ambos os átomos participantes. A ligação covalente coordenada é representada por uma seta que se origina no átomo doador e termina no átomo receptor. Dadas as distribuições eletrônicas em camadas para os átomos de 16S e 8O. S = 2 - 8 - 6              O = 2 - 6 Compartilhando dois elétrons através de ligações covalentes simples, ambos os átomos atingem os oito elétrons na última camada.
Ligação Covalente dativa ou coordenada No entanto, esta molécula ainda pode incorporar ainda um ou dois átomos de oxigênio. Tal fato só pode ser explicado se o enxofre utilizar um ou dois pares de elétrons não envolvidos em ligações para formar um ou dois pares dativos com o oxigênio. Outra molécula que não pode ser explicada somente com a ligação covalente simples é a de CO2. O interessante desta molécula é que a ligação covalente dativa ocorre do átomo mais eletronegativo (O) para o menos eletronegativo (C).
Ligação Metálica É o tipo de ligação que ocorre entre os átomos de metais. Os átomos dos elementos metálicos apresentam forte tendência a doarem seus elétrons de última camada. Quando muitos destes átomos estão juntos num cristal metálico, estes perdem seus elétrons da última camada. Forma-se então uma rede ordenada de íons positivos mergulhada num mar de elétrons em movimento aleatório. Se aplicarmos um campo elétrico a um metal, orientamos o movimento dos elétrons numa direção preferencial, ou seja, geramos uma corrente elétrica. É preciso haver uma ligação entre metais para produzir joias de ouro.
Referências: Cláudio, L. Átomos & moléculas. Ribeirão Preto – SP. Disponível no site: http://luizclaudionovaes.sites.uol.com.br/ligaquim.htm Resumo sobre ligações químicas. Disponível no site: http://www.youtube.com/watch?v=vjETqU7-1RY&feature=results_video&playnext=1&list=PL61475098430C07D0 Oxigênio na Escola. Disponível no site: http://www.youtube.com/watch?v=5YH99hIAVJg&feature=related

Weitere ähnliche Inhalte

Was ist angesagt?

Modelos atomicos 9ano
Modelos atomicos 9anoModelos atomicos 9ano
Modelos atomicos 9anojoana bolsi
 
Modelos atômicos ( 9 ano)
Modelos atômicos ( 9 ano)Modelos atômicos ( 9 ano)
Modelos atômicos ( 9 ano)Karol Maia
 
Funções Inorgânicas
Funções InorgânicasFunções Inorgânicas
Funções Inorgânicasloirissimavivi
 
Quimica inorgânica ácidosbases (9o ano)
Quimica inorgânica ácidosbases (9o ano)Quimica inorgânica ácidosbases (9o ano)
Quimica inorgânica ácidosbases (9o ano)Karol Maia
 
Aula 1 introdução à química orgânica.
Aula 1    introdução à química orgânica.Aula 1    introdução à química orgânica.
Aula 1 introdução à química orgânica.Ajudar Pessoas
 
Quimica SoluçõEs
Quimica SoluçõEsQuimica SoluçõEs
Quimica SoluçõEsThiago
 
Química distribuição eletronica
Química   distribuição eletronicaQuímica   distribuição eletronica
Química distribuição eletronicaRubao1E
 
Tabela Periódica - 9º ano
Tabela Periódica - 9º anoTabela Periódica - 9º ano
Tabela Periódica - 9º ano7 de Setembro
 
Substância e mistura 9º ano
Substância e mistura 9º anoSubstância e mistura 9º ano
Substância e mistura 9º anoKarla Almeida
 
Tranformações fisicas e quimicas
Tranformações fisicas e quimicasTranformações fisicas e quimicas
Tranformações fisicas e quimicasIsadora Girio
 

Was ist angesagt? (20)

Radioatividade
RadioatividadeRadioatividade
Radioatividade
 
Modelos atomicos 9ano
Modelos atomicos 9anoModelos atomicos 9ano
Modelos atomicos 9ano
 
Aula 1 Elementos SubstâNcias E Misturas2
Aula 1   Elementos SubstâNcias E Misturas2Aula 1   Elementos SubstâNcias E Misturas2
Aula 1 Elementos SubstâNcias E Misturas2
 
Modelos atômicos ( 9 ano)
Modelos atômicos ( 9 ano)Modelos atômicos ( 9 ano)
Modelos atômicos ( 9 ano)
 
Geometria molecular
Geometria molecularGeometria molecular
Geometria molecular
 
Funções Inorgânicas
Funções InorgânicasFunções Inorgânicas
Funções Inorgânicas
 
Radioatividade
RadioatividadeRadioatividade
Radioatividade
 
Estrutura Atomica
Estrutura AtomicaEstrutura Atomica
Estrutura Atomica
 
Transformações químicas
Transformações químicasTransformações químicas
Transformações químicas
 
Quimica inorgânica ácidosbases (9o ano)
Quimica inorgânica ácidosbases (9o ano)Quimica inorgânica ácidosbases (9o ano)
Quimica inorgânica ácidosbases (9o ano)
 
Polaridade
PolaridadePolaridade
Polaridade
 
Aula 1 introdução à química orgânica.
Aula 1    introdução à química orgânica.Aula 1    introdução à química orgânica.
Aula 1 introdução à química orgânica.
 
Quimica SoluçõEs
Quimica SoluçõEsQuimica SoluçõEs
Quimica SoluçõEs
 
Pilhas - eletroquímica
Pilhas - eletroquímicaPilhas - eletroquímica
Pilhas - eletroquímica
 
Química distribuição eletronica
Química   distribuição eletronicaQuímica   distribuição eletronica
Química distribuição eletronica
 
Átomos
ÁtomosÁtomos
Átomos
 
Cadeias carbônicas
Cadeias carbônicasCadeias carbônicas
Cadeias carbônicas
 
Tabela Periódica - 9º ano
Tabela Periódica - 9º anoTabela Periódica - 9º ano
Tabela Periódica - 9º ano
 
Substância e mistura 9º ano
Substância e mistura 9º anoSubstância e mistura 9º ano
Substância e mistura 9º ano
 
Tranformações fisicas e quimicas
Tranformações fisicas e quimicasTranformações fisicas e quimicas
Tranformações fisicas e quimicas
 

Ähnlich wie Aula - Ligação Química

Ligações covalentes trabalho de quimica
Ligações covalentes trabalho de quimicaLigações covalentes trabalho de quimica
Ligações covalentes trabalho de quimicaslidesescolares
 
INTRODUÇÃO À LIGAÇÃO QUÍMICA 9° ANO
INTRODUÇÃO À LIGAÇÃO QUÍMICA 9° ANOINTRODUÇÃO À LIGAÇÃO QUÍMICA 9° ANO
INTRODUÇÃO À LIGAÇÃO QUÍMICA 9° ANOSocorro Barros
 
Ligações químicas
Ligações químicasLigações químicas
Ligações químicasquimicabare
 
Ligacoes quimicas
Ligacoes quimicasLigacoes quimicas
Ligacoes quimicasDamigol Gol
 
LIGAÇÃO QUÍMICA.pptx
LIGAÇÃO QUÍMICA.pptxLIGAÇÃO QUÍMICA.pptx
LIGAÇÃO QUÍMICA.pptxElanoSousa1
 
Ligações químicas, Forças intermoleculares, Geometria molecular
Ligações químicas, Forças intermoleculares, Geometria molecularLigações químicas, Forças intermoleculares, Geometria molecular
Ligações químicas, Forças intermoleculares, Geometria molecularCarlos Priante
 
Teoria dos orbitais moleculares
Teoria dos orbitais molecularesTeoria dos orbitais moleculares
Teoria dos orbitais molecularessimone444
 
QUÍMICA ORGÂNICA TEÓRICA
QUÍMICA ORGÂNICA TEÓRICAQUÍMICA ORGÂNICA TEÓRICA
QUÍMICA ORGÂNICA TEÓRICAautonomo
 
www.slideshare.net/rinnelylins/Ligações químicas rinnely
www.slideshare.net/rinnelylins/Ligações químicas rinnelywww.slideshare.net/rinnelylins/Ligações químicas rinnely
www.slideshare.net/rinnelylins/Ligações químicas rinnelyrinnelylins
 
Ligações químicas
Ligações químicasLigações químicas
Ligações químicasEfraim Lima
 
ÁTOMO - propriedades ligações com isótopos
ÁTOMO - propriedades ligações com isótoposÁTOMO - propriedades ligações com isótopos
ÁTOMO - propriedades ligações com isótoposMateusCoelho36
 

Ähnlich wie Aula - Ligação Química (20)

Ligações químicas
Ligações químicasLigações químicas
Ligações químicas
 
Ligações covalentes trabalho de quimica
Ligações covalentes trabalho de quimicaLigações covalentes trabalho de quimica
Ligações covalentes trabalho de quimica
 
Ligação química
Ligação químicaLigação química
Ligação química
 
INTRODUÇÃO À LIGAÇÃO QUÍMICA 9° ANO
INTRODUÇÃO À LIGAÇÃO QUÍMICA 9° ANOINTRODUÇÃO À LIGAÇÃO QUÍMICA 9° ANO
INTRODUÇÃO À LIGAÇÃO QUÍMICA 9° ANO
 
239
239239
239
 
Ligações químicas
Ligações químicasLigações químicas
Ligações químicas
 
Ligacoes quimicas
Ligacoes quimicasLigacoes quimicas
Ligacoes quimicas
 
Trabalho
TrabalhoTrabalho
Trabalho
 
Trabalho de química
Trabalho de químicaTrabalho de química
Trabalho de química
 
LIGAÇÃO QUÍMICA.pptx
LIGAÇÃO QUÍMICA.pptxLIGAÇÃO QUÍMICA.pptx
LIGAÇÃO QUÍMICA.pptx
 
Bio ação 02
Bio ação 02 Bio ação 02
Bio ação 02
 
Captulo iii ligaes qumicas
Captulo iii ligaes qumicasCaptulo iii ligaes qumicas
Captulo iii ligaes qumicas
 
Ligações químicas, Forças intermoleculares, Geometria molecular
Ligações químicas, Forças intermoleculares, Geometria molecularLigações químicas, Forças intermoleculares, Geometria molecular
Ligações químicas, Forças intermoleculares, Geometria molecular
 
"Somos Físicos" Ligações Químicas
"Somos Físicos" Ligações Químicas"Somos Físicos" Ligações Químicas
"Somos Físicos" Ligações Químicas
 
Teoria dos orbitais moleculares
Teoria dos orbitais molecularesTeoria dos orbitais moleculares
Teoria dos orbitais moleculares
 
QUÍMICA ORGÂNICA TEÓRICA
QUÍMICA ORGÂNICA TEÓRICAQUÍMICA ORGÂNICA TEÓRICA
QUÍMICA ORGÂNICA TEÓRICA
 
www.slideshare.net/rinnelylins/Ligações químicas rinnely
www.slideshare.net/rinnelylins/Ligações químicas rinnelywww.slideshare.net/rinnelylins/Ligações químicas rinnely
www.slideshare.net/rinnelylins/Ligações químicas rinnely
 
Unidade 01 Teoria Estrutural
Unidade 01   Teoria EstruturalUnidade 01   Teoria Estrutural
Unidade 01 Teoria Estrutural
 
Ligações químicas
Ligações químicasLigações químicas
Ligações químicas
 
ÁTOMO - propriedades ligações com isótopos
ÁTOMO - propriedades ligações com isótoposÁTOMO - propriedades ligações com isótopos
ÁTOMO - propriedades ligações com isótopos
 

Kürzlich hochgeladen

SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffffSSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffffNarlaAquino
 
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdfApresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdfcomercial400681
 
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdfProjeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdfHELENO FAVACHO
 
Análise poema país de abril (Mauel alegre)
Análise poema país de abril (Mauel alegre)Análise poema país de abril (Mauel alegre)
Análise poema país de abril (Mauel alegre)ElliotFerreira
 
Os editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxOs editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxTailsonSantos1
 
Reta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdf
Reta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdfReta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdf
Reta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdfWagnerCamposCEA
 
P P P 2024 - *CIEJA Santana / Tucuruvi*
P P P 2024  - *CIEJA Santana / Tucuruvi*P P P 2024  - *CIEJA Santana / Tucuruvi*
P P P 2024 - *CIEJA Santana / Tucuruvi*Viviane Moreiras
 
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIAPROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIAHELENO FAVACHO
 
praticas experimentais 1 ano ensino médio
praticas experimentais 1 ano ensino médiopraticas experimentais 1 ano ensino médio
praticas experimentais 1 ano ensino médiorosenilrucks
 
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdfPROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdfHELENO FAVACHO
 
COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcante
COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcanteCOMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcante
COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcanteVanessaCavalcante37
 
aula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.pptaula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.pptssuser2b53fe
 
Antero de Quental, sua vida e sua escrita
Antero de Quental, sua vida e sua escritaAntero de Quental, sua vida e sua escrita
Antero de Quental, sua vida e sua escritaPaula Duarte
 
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptxSlides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptxLuizHenriquedeAlmeid6
 
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxResponde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxAntonioVieira539017
 
Modelo de Plano Plano semanal Educação Infantil 5 anossemanal Educação Infant...
Modelo de Plano Plano semanal Educação Infantil 5 anossemanal Educação Infant...Modelo de Plano Plano semanal Educação Infantil 5 anossemanal Educação Infant...
Modelo de Plano Plano semanal Educação Infantil 5 anossemanal Educação Infant...AndreaCavalcante14
 
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdfLeloIurk1
 
Atividade - Letra da música Esperando na Janela.
Atividade -  Letra da música Esperando na Janela.Atividade -  Letra da música Esperando na Janela.
Atividade - Letra da música Esperando na Janela.Mary Alvarenga
 
Nós Propomos! Autocarros Elétricos - Trabalho desenvolvido no âmbito de Cidad...
Nós Propomos! Autocarros Elétricos - Trabalho desenvolvido no âmbito de Cidad...Nós Propomos! Autocarros Elétricos - Trabalho desenvolvido no âmbito de Cidad...
Nós Propomos! Autocarros Elétricos - Trabalho desenvolvido no âmbito de Cidad...Ilda Bicacro
 
migração e trabalho 2º ano.pptx fenomenos
migração e trabalho 2º ano.pptx fenomenosmigração e trabalho 2º ano.pptx fenomenos
migração e trabalho 2º ano.pptx fenomenosLucianoPrado15
 

Kürzlich hochgeladen (20)

SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffffSSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
 
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdfApresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
 
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdfProjeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
 
Análise poema país de abril (Mauel alegre)
Análise poema país de abril (Mauel alegre)Análise poema país de abril (Mauel alegre)
Análise poema país de abril (Mauel alegre)
 
Os editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxOs editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptx
 
Reta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdf
Reta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdfReta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdf
Reta Final - CNU - Gestão Governamental - Prof. Stefan Fantini.pdf
 
P P P 2024 - *CIEJA Santana / Tucuruvi*
P P P 2024  - *CIEJA Santana / Tucuruvi*P P P 2024  - *CIEJA Santana / Tucuruvi*
P P P 2024 - *CIEJA Santana / Tucuruvi*
 
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIAPROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
 
praticas experimentais 1 ano ensino médio
praticas experimentais 1 ano ensino médiopraticas experimentais 1 ano ensino médio
praticas experimentais 1 ano ensino médio
 
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdfPROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
 
COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcante
COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcanteCOMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcante
COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcante
 
aula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.pptaula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.ppt
 
Antero de Quental, sua vida e sua escrita
Antero de Quental, sua vida e sua escritaAntero de Quental, sua vida e sua escrita
Antero de Quental, sua vida e sua escrita
 
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptxSlides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
 
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxResponde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
 
Modelo de Plano Plano semanal Educação Infantil 5 anossemanal Educação Infant...
Modelo de Plano Plano semanal Educação Infantil 5 anossemanal Educação Infant...Modelo de Plano Plano semanal Educação Infantil 5 anossemanal Educação Infant...
Modelo de Plano Plano semanal Educação Infantil 5 anossemanal Educação Infant...
 
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
 
Atividade - Letra da música Esperando na Janela.
Atividade -  Letra da música Esperando na Janela.Atividade -  Letra da música Esperando na Janela.
Atividade - Letra da música Esperando na Janela.
 
Nós Propomos! Autocarros Elétricos - Trabalho desenvolvido no âmbito de Cidad...
Nós Propomos! Autocarros Elétricos - Trabalho desenvolvido no âmbito de Cidad...Nós Propomos! Autocarros Elétricos - Trabalho desenvolvido no âmbito de Cidad...
Nós Propomos! Autocarros Elétricos - Trabalho desenvolvido no âmbito de Cidad...
 
migração e trabalho 2º ano.pptx fenomenos
migração e trabalho 2º ano.pptx fenomenosmigração e trabalho 2º ano.pptx fenomenos
migração e trabalho 2º ano.pptx fenomenos
 

Aula - Ligação Química

  • 1. FACULDADE DE FORMAÇÃO DE PROFESSORES DA MATA SUL – FAMASUL FACULDADE ESCRITOR OSMAN DA COSTA LINS - FACOL CURSO DE PÓS-GRADUAÇÃO “LATO SENSO” EM ENSINO DA QUÍMICA Ligação Química Alison Andrade B. Moura 2.2011
  • 2.
  • 3. Introdução Como podemos explicar que porções tão limitadas da matéria, como os átomos, possam formar corpos com que nos deparamos no nosso dia a dia macroscopicamente. É impossível se pensar em átomos como os constituintes básicos da matéria sem se pensar em ligações químicas, como também é impossível se falar em ligações químicas sem falarmos em elétrons. Kekulé e Couper(1868), propuseram a utilização do termo valência para explicar o poder de combinação de um átomo com outros. A valência de um dado elemento é que determina as fórmulas possíveis ou não de compostos formados por ele. Microscópico: Estrutura chamada de retículo cristalino (sal de cozinha) Macroscópico: Sal de cozinha (NaCl)
  • 4. Introdução Na natureza, os únicos átomos que podem ser encontrados no estado isolado (moléculas monoatômicas) são os gases nobres, logo se pensou que os demais átomos se ligariam entre si tentando alcançar a configuração eletrônica do gás nobre mais próximo deles na tabela periódica. Todos os gases nobres, com exceção do He, possuem 8 elétrons. Esta maneira de pensar a ligação entre os átomos passou a ser conhecida por Teoria do octeto, e foi proposta por Kossel e Lewis no início do século XX. Baseado nessa ideia, a valência de um átomo passou a ser vista como a quantidade de elétrons que um átomo deveria receber, perder ou compartilhar para tornar sua última camada (camada de valência) igual a do gás nobre de número atômico mais próximo. Walter Kossel (1888-1956) Gilbert Newton Lewis em seu laboratório na Universidade da Califórnia, em Berkeley. Gases Nobres – distribuição eletrônica do nível de valência
  • 5. Ligação Iônica Como o próprio nome já diz, a ligação iônica  ocorre com a formação de íons. A atração entre os átomos que formam o composto é de origem eletrostática. Sempre um dos átomos perde elétrons, enquanto o outro recebe. O átomo mais eletronegativo arranca os elétrons do de menor eletronegatividade. Ocorre entre metais e não metais e entre metais e hidrogênio. Ex.: A ligação entre o sódio (11Na) e o cloro (17Cl) é um exemplo característico de ligação iônica. Observe a distribuição dos elétrons em camadas para os dois elementos: Para o cloro interessa adicionar um elétron à sua última camada, completando a quantidade de oito elétrons nela. Ao sódio interessa perder o elétron de sua camada M, assim a anterior passará a ser a última, já possuindo a quantidade necessária de elétrons. Na 2 - 8 - 1   Cl 2 - 8 - 7
  • 6. Ligação Iônica Na representação da ligação, utilizamos somente os elétrons da última camada de cada átomo. A seta indica quem cede e quem recebe o elétron. Cada elétron cedido deve ser simbolizado por uma seta. Esta representação é conhecida por fórmula eletrônica ou de Lewis. OBS.: O sódio possuía inicialmente 11 prótons e 11 elétrons. Após a ligação, a quantidade de prótons não se altera e a de elétrons passa a ser 10. O cloro que inicialmente possuía 17 prótons e 17 elétrons, tem sua quantidade de elétrons aumentada de uma unidade após a ligação. Com isso o sódio se torna um íon de carga 1+ e o cloro 1-. A força que mantém os dois átomos unidos é de atração elétrica, ou seja, uma ligação muito forte. Como foram utilizados um átomo de cada tipo, a fórmula do composto será NaCl.
  • 7. Ligação Iônica De maneira análoga podemos observar a ligação entre o flúor (9F)  e o alumínio (13Al). O alumínio perde os três elétrons de sua última camada, pois a penúltima já possui os oito elétrons necessários. Como o átomo de flúor possui 7 elétrons em sua última camada, precisa de apenas mais um elétron. São necessários três átomos de flúor para acomodar os três elétrons cedidos pelo alumínio. De maneira análoga ao exemplo anterior, ocorre a formação de íons positivo e negativo devido a quebra do equilíbrio entre as quantidades de prótons e elétrons nos átomos. O alumínio passa a ser um íon de carga 3+ e o flúor 1-. A fórmula do composto será AlF3.
  • 8.
  • 9. Ligação Covalente Simples É o tipo de ligação que ocorre quando os dois átomos precisam adicionar elétrons em suas últimas camadas. Somente o compartilhamento é que pode assegurar que que estes átomos atinjam a quantidade de elétrons necessária em suas últimas camadas. Cada um dos átomos envolvidos entra com um elétron para a formação de um par compartilhado, que a partir da formação passará a pertencer a ambos os átomos. Ocorre entre não metais e não metais, não metais e hidrogênio e entre hidrogênio e hidrogênio. O hidrogênio possui somente uma camada contendo um único elétron, compartilhando 1 elétron, atinge a quantidade necessária para a camada K, que é de dois elétrons. Os elétrons compartilhados passam a ser contados para as eletrosferas dos dois átomos participantes da ligação. Na molécula de nitrogênio ocorrem três ligações covalentes entre os dois átomos.    1H = 1s1    7N = 1s2 2s2 2p3
  • 10. Ligação Covalente Simples Estas três ligações garantem que os dois átomos de nitrogênio atinjam a quantidade de oito elétrons nas suas últimas camadas. A ligação covalente entre dois átomos iguais é dita apolar, pois nela os elétrons são compartilhados de maneira igual, nenhum dos átomos tem mais força que o outro para atrair o elétron para si. A molécula de CO2 é formada por dois átomos de oxigênio e um de carbono unidos através de ligações covalentes. O átomo de carbono compartilha 4 elétrons e cada átomo de carbono 2, garantindo assim que ambos atinjam os oito elétrons nas últimas camadas. 6C=1s2 2s2 2p2 = 2 - 4                8O = 1s2 2s2 2p4 = 2 - 6
  • 11. Ligação Covalente Simples Como a ligação é entre átomos diferentes e com diferentes eletronegatividades, a ligação é dita polar pois o átomo de oxigênio atrai para si mais fortemente os elétrons compartilhados.    Além da fórmula eletrônica, os compostos covalentes podem ser representados pela fórmula estrutural, onde cada par compartilhado é representado por um traço. Ex.: H - H, O = C = O. Uma ligação covalente unindo dois átomos é dita simples. O conjunto de duas ligações unindo dois átomos é dito dupla ligação. O conjunto de três ligações unindo dois átomos é dito tripla ligação. 
  • 12. Ligação Covalente dativa ou coordenada A existência de algumas moléculas não pode ser explicada simplesmente através da ligação covalente simples. Para estes casos foi formulada a teoria da ligação covalente coordenada. Neste tipo de ligação, um dos átomos que já estiver com última camada completa entra com os dois elétrons do par compartilhado. Este par de elétrons apresenta as mesmas características do da ligação covalente simples, a única diferença é a origem dos elétrons, que é somente um dos átomos participantes da ligação. Os elétrons do par passam a pertencer a ambos os átomos participantes. A ligação covalente coordenada é representada por uma seta que se origina no átomo doador e termina no átomo receptor. Dadas as distribuições eletrônicas em camadas para os átomos de 16S e 8O. S = 2 - 8 - 6              O = 2 - 6 Compartilhando dois elétrons através de ligações covalentes simples, ambos os átomos atingem os oito elétrons na última camada.
  • 13.
  • 14. Ligação Covalente dativa ou coordenada No entanto, esta molécula ainda pode incorporar ainda um ou dois átomos de oxigênio. Tal fato só pode ser explicado se o enxofre utilizar um ou dois pares de elétrons não envolvidos em ligações para formar um ou dois pares dativos com o oxigênio. Outra molécula que não pode ser explicada somente com a ligação covalente simples é a de CO2. O interessante desta molécula é que a ligação covalente dativa ocorre do átomo mais eletronegativo (O) para o menos eletronegativo (C).
  • 15. Ligação Metálica É o tipo de ligação que ocorre entre os átomos de metais. Os átomos dos elementos metálicos apresentam forte tendência a doarem seus elétrons de última camada. Quando muitos destes átomos estão juntos num cristal metálico, estes perdem seus elétrons da última camada. Forma-se então uma rede ordenada de íons positivos mergulhada num mar de elétrons em movimento aleatório. Se aplicarmos um campo elétrico a um metal, orientamos o movimento dos elétrons numa direção preferencial, ou seja, geramos uma corrente elétrica. É preciso haver uma ligação entre metais para produzir joias de ouro.
  • 16.
  • 17. Referências: Cláudio, L. Átomos & moléculas. Ribeirão Preto – SP. Disponível no site: http://luizclaudionovaes.sites.uol.com.br/ligaquim.htm Resumo sobre ligações químicas. Disponível no site: http://www.youtube.com/watch?v=vjETqU7-1RY&feature=results_video&playnext=1&list=PL61475098430C07D0 Oxigênio na Escola. Disponível no site: http://www.youtube.com/watch?v=5YH99hIAVJg&feature=related