SlideShare ist ein Scribd-Unternehmen logo
1 von 55
Downloaden Sie, um offline zu lesen
Knowledge-­‐empowered	
  Probabilis3c	
  Graphical	
  
Models	
  for	
  Physical-­‐Cyber-­‐Social	
  Systems	
  
Pramod	
  Anantharam	
  
PhD	
  Disserta+on	
  Defense	
  
April	
  14,	
  2016	
  
The	
  Ohio	
  Center	
  of	
  Excellence	
  in	
  Knowledge-­‐enabled	
  Compu+ng	
  (Kno.e.sis),	
  
Wright	
  State	
  University	
  
	
  
Commi%ee:	
  Dr.	
  Payam	
  Barnaghi	
  (University	
  of	
  Surrey),	
  Dr.	
  Shalini	
  Forbis	
  (BoonshoP	
  School	
  
of	
  Medicine),	
  Dr.	
  Cory	
  Henson	
  (Bosch	
  Research),	
  Dr.	
  Biplav	
  Srivastava	
  (IBM	
  Research),	
  	
  
Prof.	
  Shaojun	
  Wang	
  (Wright	
  State	
  University/Alibaba)	
  
Advisors:	
  Prof.	
  Amit	
  Sheth,	
  Prof.	
  Krishnaprasad	
  Thirunarayan	
  
	
  
2	
  
Multimodal Manifestation of Real-World Events: Power Grid Scenario
Image	
  Credit:	
  Twi%er,	
  hUp://bit.ly/1SsE924	
  	
  
1Six	
  Degrees:	
  The	
  Science	
  of	
  Connected	
  Age,	
  Duncan	
  WaUs	
  
2One	
  of	
  four	
  main	
  reasons	
  of	
  failure.	
  Inves+ga+on	
  report	
  by	
  The	
  U.S.-­‐Canada	
  Power	
  System	
  Outage	
  Task	
  Force	
  	
  
	
  	
  
August	
  14,	
  2003	
  Blackout	
  in	
  the	
  Midwest	
  U.S.	
  
"failed	
  to	
  manage	
  adequately	
  tree	
  growth	
  in	
  
its	
  transmission	
  right-­‐of-­‐way.”	
  2	
  
	
  
August	
  10,	
  1996	
  Blackout	
  in	
  the	
  West	
  U.S.	
  
“	
  …	
  inadequate	
  understanding	
  of	
  the	
  
interdependencies	
  present	
  in	
  the	
  system.”	
  1	
  
	
  
Power	
  Grid	
  related	
  events	
  manifest	
  in	
  physical,	
  cyber,	
  and	
  social	
  (PCS)	
  modali+es	
  
3	
  
Multimodal Manifestations of Real-World Events: Asthma Scenario
Image	
  Credit:	
  hUp://www.rtmagazine.com/2015/10/brown-­‐univ-­‐fight-­‐childhood-­‐asthma-­‐au+sm-­‐obesity/	
  	
  
NODE Sensor
(exhaled Nitric Oxide)
Fitbit ChargeHR
(Activity, sleep quality)
Sensordrone
(Carbon monoxide,
temperature, humidity)
Pollen level
Temperature & Humidity
Air	
  Quality	
  
Prevalence of Asthma
Personal	
  
Level	
  Signals	
  
Popula+on	
  
Level	
  Signals	
  
Asthma	
  related	
  events	
  manifest	
  in	
  physical,	
  cyber,	
  and	
  social	
  (PCS)	
  modali+es	
  
Multimodal Manifestation of Real-World Events: Traffic Scenario
4	
  
Traffic	
  related	
  events	
  manifest	
  in	
  physical,	
  cyber,	
  and	
  social	
  (PCS)	
  modali+es	
  
Amit	
  Sheth,	
  Pramod	
  Anantharam,	
  Cory	
  Henson,	
  'Physical-­‐Cyber-­‐Social	
  Compu+ng:	
  An	
  Early	
  21st	
  Century	
  Approach,'	
  IEEE	
  Intelligent	
  Systems,	
  vol.	
  28,	
  no.	
  1,	
  pp.	
  
78-­‐82,	
  Jan.-­‐Feb.,	
  2013.	
  hUp://doi.ieeecomputersociety.org/10.1109/MIS.2013.20	
  	
  
Processing Multimodal Manifestations of Real-World Events
5	
  
“Informa3on	
  is	
  a	
  source	
  of	
  learning.	
  But	
  unless	
  it	
  is	
  organized,	
  processed,	
  and	
  available	
  to	
  
the	
  right	
  people	
  in	
  a	
  format	
  for	
  decision	
  making,	
  it	
  is	
  a	
  burden,	
  not	
  a	
  benefit.”	
  
	
   	
  	
   	
   	
  	
  	
   	
   	
  	
  	
  —	
  William	
  Pollard,	
  (1828	
  –	
  1893)	
  
“…the	
  OODA	
  Loop	
  is	
  an	
  explicit	
  representa+on	
  of	
  the	
  process	
  that	
  human	
  beings	
  and	
  
organiza+ons	
  use	
  to	
  learn,	
  grow,	
  and	
  thrive	
  in	
  a	
  rapidly	
  changing	
  environment	
  —	
  be	
  it	
  
in	
  war,	
  business,	
  or	
  life.”1	
  
1The	
  Tao	
  of	
  Boyd:	
  How	
  to	
  Master	
  the	
  OODA	
  Loop:	
  hUp://www.artofmanliness.com/2014/09/15/ooda-­‐loop/	
  	
  
Observe	
   Orient	
   Decide	
   Act	
  
John	
  Boyd’s	
  Observe,	
  Orient,	
  Decide,	
  and	
  Act	
  (OODA)	
  Loop	
  for	
  organizing,	
  processing,	
  
and	
  decision	
  making:	
  
Feedback	
  
Feed	
  
Forward	
  
Feed	
  
Forward	
  
Feed	
  
Forward	
  
Processing Multimodal Manifestations in PCS Systems
6	
  
The	
  Tao	
  of	
  Boyd:	
  How	
  to	
  Master	
  the	
  OODA	
  Loop:	
  hUp://www.artofmanliness.com/2014/09/15/ooda-­‐loop/	
  	
  
Observe	
   Orient	
   Decide	
   Act	
  
Feedback	
  
Feed	
  
Forward	
  
Feed	
  
Forward	
  
Feed	
  
Forward	
  
PCS	
  Event	
  	
  
Extrac3on	
  
PCS	
  Event	
  	
  
Understanding	
  
PCS	
  Ac3on	
  	
  
Recommenda3on	
  
Observe	
  –	
  Collect	
  as	
  much	
  informa+on	
  as	
  possible	
  from	
  the	
  environment	
  
Orient	
  –	
  Assimilate	
  all	
  the	
  informa+on	
  to	
  understand	
  the	
  environment	
  
Decide	
  –	
  Determine	
  the	
  course	
  of	
  ac+on	
  based	
  on	
  an	
  objec+ve	
  
Act	
  –	
  Follow	
  through	
  the	
  course	
  of	
  ac+on	
  
7	
  
Thesis Statement
Observa3ons	
   from	
   diverse	
   modali3es	
   can	
   provide	
   complementary,	
   corrobora3ve,	
   and	
  
3mely	
  informa+on	
  about	
  events	
  in	
  Physical-­‐Cyber-­‐Social	
  systems.	
  Probabilis3c	
  Graphical	
  
Models	
  with	
  the	
  help	
  of	
  declara3ve	
  domain	
  knowledge	
  provide	
  an	
  effec+ve	
  mechanism	
  to:	
  
(a)	
  uncover	
  and	
  interpret	
  mul3modal	
  event	
  manifesta3ons	
  in	
  textual	
  and	
  numerical	
  data,	
  
(b)	
   explore	
   event	
   interac3ons	
   and	
   dynamics,	
   and	
   (c)	
   formalize	
   op3mal	
   ac3on	
  
recommenda3on	
  in	
  Physical-­‐Cyber-­‐Social	
  systems.	
  
8	
  
“Graphical	
  models	
  are	
  a	
  marriage	
  between	
  probability	
  theory	
  and	
  graph	
  theory.	
  They	
  
provide	
  a	
  natural	
  tool	
  for	
  dealing	
  with	
  two	
  problems	
  that	
  occur	
  throughout	
  applied	
  
mathema3cs	
  and	
  engineering	
  -­‐-­‐	
  uncertainty	
  and	
  complexity	
  …”	
  	
  
	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  -­‐	
  Michael	
  Jordan,	
  UC	
  Berkley,	
  1998.	
  
What are Probabilistic Graphical Models (PGMs)?
Alex	
  wants	
  to	
  model	
  the	
  reasons	
  for	
  asthma	
  a%acks.	
  
Random	
  Variables:	
  AUack	
  (A),	
  Medica+on	
  (M),	
  Steps	
  (S),	
  Pollen	
  (P)	
  
Joint	
  Probability	
  distribu3on:	
  p(A,	
  M,	
  S,	
  P)	
  
Parameters:	
  For	
  four	
  binary	
  variables,	
  there	
  are	
  24	
  =	
  16	
  probability	
  assignments1	
  	
  
p(A,	
  M,	
  S,	
  P)	
  =	
  p(A	
  |	
  M,	
  S,	
  P)	
  p(M,	
  S,	
  P)	
  
	
   	
  	
  	
  	
  	
  	
  =	
  p	
  (A	
  |	
  M,	
  S,	
  P)	
  p(M	
  |	
  S,	
  P)	
  p(S,	
  P)	
  
	
   	
  	
  	
  	
  	
  	
  =	
  p	
  (A	
  |	
  M,	
  S,	
  P)	
  p(M	
  |	
  S,	
  P)	
  p(S	
  |	
  P)	
  P(P)	
  	
  
	
   	
  	
  	
  	
  	
  	
  =	
  p	
  (A	
  |	
  M,	
  P)	
  p(M)	
  p(S	
  |	
  P)	
  p(P),	
  because,	
  
#	
  of	
  parameters	
  =	
  22	
  +	
  1	
  +	
  2	
  +	
  1	
  =	
  8	
  probability	
  assignments	
  
(A ! S),(M ! S),(M ! P)
A	
  
M P	
  
S
Structure:	
  
	
  
	
  
	
  
Parameters:	
  
(8	
  probability	
  assignments)	
  	
  	
  
1hUp://www.freemars.org/jeff/2exp100/powers.htm	
  	
  
p	
  (A	
  |	
  M,	
  P)	
  	
  
p(M)	
  
p(S	
  |	
  P)	
  	
  
p(P)	
  
9	
  
Example of Declarative Domain Knowledge
road	
  ice	
  
Causes	
  
accident	
  
Linked	
  Open	
  Data	
  
(Declara+ve	
  Knowledge	
  from	
  ConceptNet	
  5)	
  
Delay	
  
go	
  to	
  baseball	
  game	
  
traffic	
  jam	
  
traffic	
  accident	
  
traffic	
  jam	
  
Ac+veEvent	
  
ScheduledEvent	
  
Causes	
  
traffic	
  jam	
  
Causes	
  
traffic	
  jam	
  
CapableOf	
  
slow	
  traffic	
  
CapableOf	
  
occur	
  twice	
  each	
  day	
  
Causes	
  
is_a	
  
bad	
  weather	
  
CapableOf	
  	
  
slow	
  traffic	
  
TimeOfDay	
  
go	
  to	
  concert	
  
HasSubevent	
  
car	
  crash	
  
accident	
  
RelatedTo	
  
car	
  crash	
  
BadWeather	
  
Causes	
  
Causes	
  
is_a	
  
is_a	
  
is_a	
   is_a	
   is_a	
  
is_a	
  
is_a	
  
Processing Multimodal Manifestations in PCS Systems
10	
  
PCS	
  Event	
  	
  
Extrac3on	
  
PCS	
  Event	
  	
  
Understanding	
  
PCS	
  Ac3on	
  	
  
Recommenda3on	
  
•  What	
  are	
  the	
  events	
  of	
  interest?	
  	
  
•  How	
  do	
  they	
  manifest	
  in	
  observa+onal	
  data?	
  	
  
•  How	
  can	
  we	
  extract	
  events	
  from	
  observa+onal	
  data?	
  	
  
•  What	
  is	
  the	
  role	
  of	
  declara+ve	
  knowledge	
  in	
  event	
  extrac+on?	
  
•  How	
  do	
  events	
  influence	
  one	
  another?	
  
•  How	
  do	
  we	
  infer	
  the	
  interac3ons	
  from	
  observa3onal	
  data	
  across	
  
mul3ple	
  modali3es	
  (numerical	
  and	
  textual	
  data)?	
  	
  
•  What	
  is	
  the	
  role	
  of	
  declara+ve	
  knowledge	
  in	
  event	
  understanding?	
  
•  How	
  can	
  we	
  represent	
  tasks	
  and	
  ac+ons?	
  
•  How	
  can	
  we	
  u+lize	
  declara+ve	
  knowledge	
  to	
  recommend	
  ac+ons?	
  	
  
•  How	
  can	
  we	
  formalize	
  the	
  no+on	
  of	
  op+mal	
  ac+on?	
  
[ACM-­‐TIST-­‐15]	
  	
  
[ITS-­‐13]	
  	
  
[AAAI-­‐16]	
  [SDM-­‐13]	
  	
  	
  
[IEEE-­‐Int.-­‐Sys.-­‐13]	
  	
  
[IBM-­‐Tech.-­‐Rep.-­‐14]	
  	
  
[Bosch-­‐Internship-­‐14]	
  
Processing Multimodal Manifestations in PCS Systems
11	
  
PCS	
  Event	
  	
  
Extrac3on	
  
PCS	
  Event	
  	
  
Understanding	
  
PCS	
  Ac3on	
  	
  
Recommenda3on	
  
•  What	
  are	
  the	
  events	
  of	
  interest?	
  	
  
•  How	
  do	
  they	
  manifest	
  in	
  observa+onal	
  data?	
  	
  
•  How	
  can	
  we	
  extract	
  events	
  from	
  observa+onal	
  data?	
  	
  
•  What	
  is	
  the	
  role	
  of	
  declara+ve	
  knowledge	
  in	
  event	
  extrac+on?	
  
•  How	
  do	
  events	
  influence	
  one	
  another?	
  
•  How	
  do	
  we	
  infer	
  the	
  interac3ons	
  from	
  observa3onal	
  data	
  across	
  
mul3ple	
  modali3es	
  (numerical	
  and	
  textual	
  data)?	
  	
  
•  What	
  is	
  the	
  role	
  of	
  declara+ve	
  knowledge	
  in	
  event	
  understanding?	
  
•  How	
  do	
  we	
  u+lize	
  our	
  understanding	
  to	
  recommend	
  ac+ons?	
  	
  
•  How	
  can	
  we	
  recommend	
  best	
  possible	
  ac+on?	
  	
  
•  What	
  is	
  the	
  role	
  of	
  declara+ve	
  knowledge	
  and	
  PGMs	
  in	
  ac+on	
  
recommenda+on?	
  
[AAAI-­‐16]	
  [SDM-­‐13]	
  	
  	
  
[IEEE-­‐Int.-­‐Sys.-­‐13]	
  	
  
[ASG-­‐14]	
  	
  	
  
[AAAI-­‐16]	
  Understanding	
  City	
  Traffic	
  Dynamics	
  U+lizing	
  Sensor	
  and	
  Textual	
  Observa+ons.	
  The	
  Thir+eth	
  
AAAI	
  Conference	
  on	
  Ar+ficial	
  Intelligence,	
  2016	
  
[SDM-­‐13]	
  Traffic	
  Analy+cs	
  using	
  Probabilis+c	
  Graphical	
  Models	
  Enhanced	
  with	
  Knowledge	
  Bases,	
  2nd	
  
Interna+onal	
  Workshop	
  on	
  Analy+cs	
  for	
  Cyber-­‐Physical	
  Systems	
  (ACS-­‐2013)	
  at	
  SIAM	
  Interna+onal	
  
Conference	
  on	
  Data	
  Mining	
  (SDM13),	
  2013	
  
[IEEE-­‐Int.-­‐Sys.-­‐13]	
  Physical-­‐Cyber-­‐Social	
  Compu+ng:	
  An	
  Early	
  21st	
  Century	
  Approach,	
  IEEE	
  Intelligent	
  
Systems,	
  2013	
  
[ACM-­‐TIST-­‐15]	
  	
  
[ITS-­‐13]	
  	
  
•  Why?	
  
–  Explain/Interpret	
   average	
   speed	
   and	
   link	
   travel	
   +me	
  
varia+ons	
   using	
   events	
   provided	
   by	
   city	
   authori+es	
   and	
  
traffic	
  events	
  shared	
  on	
  TwiUer	
  
–  Prior	
  work:	
  Predict	
  conges+on	
  based	
  on	
  historical	
  sensor	
  
data	
  
•  What?	
  
–  Combine	
  
•  511.org	
  data	
  about	
  Bay	
  Area	
  Road	
  Network	
  Traffic	
  	
  
–  E.g.,	
  Average	
  speed	
  and	
  link	
  travel	
  +me	
  data	
  stream	
  (Sensor	
  data)	
  
–  E.g.,	
  (Happened	
  or	
  planned)	
  event	
  reports	
  (Textual	
  data)	
  
•  Tweets	
  that	
  report	
  traffic	
  related	
  events	
  (Textual	
  data)	
  
Multimodal Data Integration: Traffic Scenario
12	
  
•  How?	
  
o  Step	
  1:	
  Extract	
  textual	
  events	
  from	
  tweets	
  stream	
  
o  Step	
  2:	
  Build	
  sta+s+cal	
  models	
  of	
  normalcy,	
  and	
  thereby	
  
anomaly,	
  for	
  sensor	
  +me	
  series	
  data	
  
o  Step	
  3:	
  Correlate	
  mul3modal	
  streams,	
  using	
  spa+o-­‐
temporal	
  informa+on,	
  to	
  explain	
  “anomalies”	
  in	
  sensor	
  
+me	
  series	
  data	
  with	
  textual	
  events	
  
Multimodal Data Integration: Traffic Scenario
13	
  
•  How?	
  
o  Step	
  1:	
  Extract	
  textual	
  events	
  from	
  tweets	
  stream	
  
o  Step	
  2:	
  Build	
  sta+s+cal	
  models	
  of	
  normalcy,	
  and	
  thereby	
  
anomaly,	
  for	
  sensor	
  +me	
  series	
  data	
  
o  Step	
  3:	
  Correlate	
  mul3modal	
  streams,	
  using	
  spa+o-­‐
temporal	
  informa+on,	
  to	
  explain	
  “anomalies”	
  in	
  sensor	
  
+me	
  series	
  data	
  with	
  textual	
  events	
  
Multimodal Data Integration: Traffic Scenario
14	
  
Processing Multimodal Manifestations in PCS Systems
15	
  
PCS	
  Event	
  	
  
Extrac3on	
  
PCS	
  Event	
  	
  
Understanding	
  
PCS	
  Ac3on	
  	
  
Recommenda3on	
  
•  What	
  are	
  the	
  events	
  of	
  interest?	
  	
  
•  How	
  do	
  they	
  manifest	
  in	
  observa+onal	
  data?	
  	
  
•  How	
  can	
  we	
  extract	
  events	
  from	
  observa3onal	
  data?	
  	
  
•  What	
  is	
  the	
  role	
  of	
  declara+ve	
  knowledge	
  in	
  event	
  extrac+on?	
  
•  How	
  do	
  events	
  influence	
  one	
  another?	
  
•  How	
  do	
  we	
  infer	
  the	
  interac3ons	
  from	
  observa3onal	
  data	
  across	
  
mul3ple	
  modali3es	
  (numerical	
  and	
  textual	
  data)?	
  	
  
•  What	
  is	
  the	
  role	
  of	
  declara+ve	
  knowledge	
  and	
  PGMs	
  in	
  event	
  
understanding?	
  
•  How	
  can	
  we	
  represent	
  tasks	
  and	
  ac+ons?	
  
•  How	
  can	
  we	
  u+lize	
  declara+ve	
  knowledge	
  to	
  recommend	
  ac+ons?	
  	
  
•  How	
  can	
  we	
  formalize	
  the	
  no+on	
  of	
  op+mal	
  ac+on?	
  
[ACM-­‐TIST-­‐15]	
  	
  
[ITS-­‐13]	
  	
  
[AAAI-­‐15]	
  [SDM-­‐13]	
  	
  	
  
[IEEE-­‐Int.-­‐Sys.-­‐13]	
  	
  
[ACM-­‐TIST-­‐15]	
  Extrac+ng	
  City	
  Traffic	
  Events	
  from	
  Social	
  Streams.	
  ACM	
  Transac+ons	
  on	
  Intelligent	
  
Systems	
  and	
  Technology	
  Journal	
  2015.	
  
[ITS-­‐13]	
  City	
  No+fica+ons	
  as	
  a	
  Data	
  Source	
  for	
  Traffic	
  Management,	
  20th	
  ITS	
  World	
  Congress	
  2013.	
  
	
  
	
  
	
  
[IBM-­‐Tech.-­‐Rep.-­‐14]	
  	
  
[Bosch-­‐Internship-­‐14]	
  
16	
  
People Reporting Various Events in a City on Twitter
Public	
  Safety	
  
Urban	
  planning	
  
Gov.	
  &	
  agency	
  	
  
admin.	
  
Energy	
  &	
  water	
  
Environmental	
  
Transporta3on	
  
Social	
  Programs	
  
Healthcare	
  
Educa+on	
  
17	
  
Extracting City Events from Twitter: Proposed Solution
[ACM-­‐TIST-­‐15]	
  Extrac+ng	
  City	
  Traffic	
  Events	
  from	
  Social	
  Streams.	
  ACM	
  Transac+ons	
  on	
  Intelligent	
  Systems	
  and	
  Technology	
  Journal	
  2015.	
  
Event	
  Extrac+on	
  Tool	
  on	
  Open	
  Science	
  Founda+on:	
  hUps://osf.io/b4q2t/wiki/home/	
  	
  
18	
  
Label	
  image	
  sequence	
  of	
  Jus+n	
  Bieber’s	
  day	
  J	
  	
  
Sleeping	
   Driving	
   Exercising
Driving	
  
Sleeping	
   Singing	
  
This	
  image	
  of	
  concert	
  was	
  
Important	
  in	
  labeling	
  the	
  next	
  image	
  
Edwin	
  Chen’s	
  blog	
  on	
  CRF:	
  hUp://blog.echen.me/2012/01/03/introduc+on-­‐to-­‐condi+onal-­‐random-­‐fields/	
  	
  
Image	
  Credit:	
  hUp://bit.ly/1Th8CgL,	
  hUp://bit.ly/1Nzk5DR,	
  hUp://bit.ly/1VBbx7e,	
  hUp://bit.ly/1QkmBhb,	
  hUp://bit.ly/1SsyYzd,	
  
hUp://bit.ly/1Nzl7j7	
  	
  
City Event Annotation: Conditional Random Fields (CRFs) – Intuition
19	
  
The	
  global	
  normaliza+on	
  and	
  the	
  discrimina+ve	
  nature	
  of	
  the	
  model	
  dis+nguishes	
  
CRFs	
  from	
  other	
  models	
  allowing	
  it	
  to	
  capture	
  long	
  distance	
  dependencies	
  	
  
City Event Annotation: Conditional Random Fields (CRFs) – Formalism
Last	
  O	
  night	
  O	
  I	
  O	
  was	
  O	
  in	
  O	
  CA...	
  O	
  (@	
  O	
  Half	
  B-­‐LOCATION	
  Moon	
  I-­‐LOCATION	
  Bay	
  B-­‐
LOCATION	
  Brewing	
  I-­‐LOCATION	
  Company	
  O	
  w/	
  O	
  8	
  O	
  others)	
  O	
  hUp://t.co/w0eGEJjApY	
  O	
  	
  
{B-­‐LOCATION,	
  I-­‐LOCATION,	
  B-­‐EVENT,	
  I-­‐EVENT,	
  O}	
  Tagset	
  =	
  
20	
  
0.6	
  miles	
  
Max-­‐lat	
  
Min-­‐lat	
  
Min-­‐long	
  
Max-­‐long	
  
0.38	
  miles	
  
37.7545166015625, -122.40966796875 	
  
37.7490234375, -122.40966796875	
  
37.7545166015625,	
  -122.420654296875	
  
37.7490234375, -122.420654296875	
  
4	
  
37.74933, -122.4106711	
  
Hierarchical	
  spa+al	
  structure	
  of	
  geohash	
  for	
  	
  
represen+ng	
  loca+ons	
  with	
  variable	
  precision.	
  
Here,	
  the	
  loca+on	
  string	
  is	
  5H34	
  
0	
   1	
   2	
   3	
   4	
   5	
   6	
  
7	
   8	
   9	
   B	
   C	
   D	
   E	
  
F	
   G	
   H	
   I	
   J	
   K	
   L	
  
0	
   1	
  
7	
  
2	
   3	
   4	
  
5	
   6	
   8	
   9	
  
0	
   1	
   2	
   3	
   4	
  
5	
   6	
   7	
  
0	
   1	
   2	
  
3	
   4	
   5	
  
6	
   7	
   8	
  
Geohashing	
  wiki:	
  hUp://wiki.xkcd.com/geohashing/	
  
Image	
  Credit:	
  Google	
  Maps	
  	
  
City Event Extraction: Spatio-Temporal-Thematic Aggregation
21	
  
•  City	
  Event	
  Annota+on	
  
–  Automated	
  crea+on	
  of	
  training	
  data	
  	
  
–  Annota+on	
  task	
  (our	
  CRF	
  model	
  vs.	
  baseline	
  CRF	
  model)	
  
•  City	
  Event	
  Extrac+on	
  
–  Use	
  aggrega+on	
  algorithm	
  for	
  event	
  extrac+on	
  
–  Extracted	
  events	
  vs.	
  ground	
  truth	
  
•  Dataset	
  (Aug	
  –	
  Nov	
  2013)	
  
–  Over	
  8	
  million	
  tweets	
  from	
  San	
  Francisco	
  Bay	
  Area	
  (extracted	
  
1042	
  events)	
  
–  311	
  ac+ve	
  events	
  and	
  170	
  scheduled	
  events	
  from	
  511.org	
  
(ground	
  truth)	
  
Evaluation: Extracting City Events from Twitter
Evaluation: City Event Annotation
22	
  
Baseline	
  Annota+on	
  Model	
  [RiUer	
  et	
  al.	
  2012]	
   Our	
  Annota+on	
  Model	
  
•  Baseline	
  CRF	
  model	
  (trained	
  on	
  a	
  huge	
  manually	
  created	
  data)	
  works	
  well	
  on	
  generic	
  
tasks	
  
•  Our	
  CRF	
  model	
  trained	
  on	
  automa+cally	
  generated	
  training	
  data	
  performs	
  on	
  par	
  
with	
  the	
  baseline	
  
•  Our	
  CRF	
  model	
  does	
  beUer	
  on	
  the	
  event	
  extrac+on	
  task	
  due	
  to	
  the	
  availability	
  of	
  
event	
  related	
  knowledge	
  
	
  
[RiUer	
  et	
  al.	
  2012]	
  Alan	
  RiUer,	
  Mausam,	
  Oren	
  Etzioni,	
  and	
  Sam	
  Clark	
  2012.	
  Open	
  domain	
  event	
  extrac+on	
  from	
  TwiUer.	
  In	
  Proceedings	
  of	
  
the	
  18th	
  ACM	
  SIGKDD	
  Interna+onal	
  Conference	
  on	
  Knowledge	
  Discovery	
  and	
  Data	
  Mining.	
  ACM,	
  New	
  York,	
  NY,	
  1104–1112.	
  
Complementary	
  Events	
  
Textual Events from Tweets vs. 511.org: Complementary
23	
  
traffic	
   incident;	
  road-­‐construc+on	
  
Textual Events from Tweets vs. 511.org: Corroborative
Corrobora+ve	
  Events	
  
24	
  
fog	
   visibility-­‐air-­‐quality;	
  fog	
  
Timeliness	
  
Textual Events from Tweets vs. 511.org: Timeliness
25	
  
concert	
   concert	
  
Extracting Textual Events from Tweets for Data from May-14 to May-15
1Event	
  Extrac+on	
  Tool	
  on	
  Open	
  Science	
  Founda+on:	
  hUps://osf.io/b4q2t/wiki/home/	
  	
  
NER	
  –	
  Named	
  En+ty	
  Recogni+on	
  
OSM	
  –	
  Open	
  Street	
  Maps	
  
39,208	
  traffic	
  related	
  incidents	
  extracted	
  from	
  over	
  20	
  million	
  tweets1	
  
26	
  
[ACM-­‐TIST-­‐15]	
  Extrac+ng	
  City	
  Traffic	
  Events	
  from	
  Social	
  Streams.	
  ACM	
  Transac+ons	
  on	
  Intelligent	
  Systems	
  and	
  Technology	
  Journal	
  2015.	
  
•  How?	
  
o  Step	
  1:	
  Extract	
  textual	
  events	
  from	
  tweets	
  stream	
  
o  Step	
  2:	
  Build	
  sta+s+cal	
  models	
  of	
  normalcy,	
  and	
  thereby	
  
anomaly,	
  for	
  sensor	
  +me	
  series	
  data	
  
o  Step	
  3:	
  Correlate	
  mul3modal	
  streams,	
  using	
  spa+o-­‐
temporal	
  informa+on,	
  to	
  explain	
  “anomalies”	
  in	
  sensor	
  
+me	
  series	
  data	
  with	
  textual	
  events	
  
Multimodal Data Integration: Traffic Scenario
27	
  
Image	
  credit:	
  hUp://traffic.511.org/index	
  	
  
Mul+ple	
  events	
  	
  
Varying	
  influence	
  	
  
Event	
  interac+ons	
  
Time	
  of	
  Day	
  (approx.	
  1	
  observa+on/minute)	
  Speed	
  in	
  km/h	
  
Building Normalcy Models of Traffic Dynamics*: Challenges
*Traffic	
  Dynamics	
  here	
  refers	
  to	
  speed	
  and	
  travel	
  +me	
  varia+ons	
  observed	
  in	
  sensor	
  data	
   28	
  
•  Temporal	
  landmarks	
  :	
  peak	
  hour	
  vs.	
  off-­‐peak	
  traffic	
  
vs.	
  weekend	
  traffic	
  
•  Effect	
  of	
  loca+on	
  
•  Scheduled	
  events	
  such	
  as	
  road	
  construc+on,	
  baseball	
  
game,	
  or	
  music	
  concert	
  
•  Unexpected	
   events	
   such	
   as	
   accidents,	
   heavy	
   rains,	
  
fog	
  
•  Random	
  varia+ons	
  (viz.,	
  stochas+city)	
  such	
  as	
  people	
  
visi+ng	
  downtown	
  by	
  mere	
  coincidence	
  	
  
Possible Causes of Nonlinearity in Traffic Dynamics
29	
  
Modeling City Traffic Dynamics: A Closer Look
Image	
  credits:	
  hUp://bit.ly/1N1wu5g,	
  hUp://bit.ly/1O8d9gn,	
  hUp://bit.ly/1N8L5•,	
  hUp://bit.ly/1HLDYui	
  	
  	
  	
  
Events	
  
People	
  
Influx	
  
Vehicle	
  
Influx	
  
Vehicle	
  
Speed	
  
Hidden	
  State	
  
Observed	
  Evidence	
  
30	
  
link1	
  
link2	
  
link3	
  
road1	
  =	
  [link1,link2,link3]	
  
Modeling City Traffic Dynamics: Nature of the Problem
Hidden	
  States	
   Observed	
  Evidence	
  1.	
  There	
  are	
  both	
  hidden	
  states	
  and	
  observed	
  evidence	
  
2.	
  Current	
  observed	
  evidence	
  indica3ve	
  of	
  	
  the	
  current	
  hidden	
  state	
  
3.	
  Current	
  hidden	
  states	
  depends	
  on	
  the	
  previous	
  hidden	
  states	
  
T	
  is	
  a	
  discrete	
  3me	
  step	
  in	
  the	
  
3me	
  series	
  data	
  being	
  modeled	
  
31	
  
Events	
  
People	
  
Influx	
  
Vehicle	
  
Influx	
  
Events	
  
(T)	
  
People	
  
Influx	
  
(T)	
  
Vehicle	
  
Influx	
  (T)	
  
Events	
  
(T)	
  
People	
  
Influx	
  
(T)	
  
Vehicle	
  
Influx	
  
(T)	
  
Events	
  
(T-­‐1)	
  
People	
  
Influx	
  
(T-­‐1)	
  
Vehicle	
  
Influx	
  
(T-­‐1)	
  
Vehicle	
  
Speed	
  
Vehicle	
  
Speed	
  
(T)	
  
Modeling the Problem as Linear Dynamical System (LDS)
1.	
  There	
  are	
  both	
  
hidden	
  states	
  and	
  
observed	
  evidence	
  
2.	
  Current	
  observed	
  
evidence	
  indica3ve	
  of	
  the	
  
current	
  hidden	
  state	
  
3.	
  Current	
  hidden	
  
state	
  depends	
  on	
  
the	
  previous	
  
hidden	
  state	
  
v1	
  
s1	
  
…	
  
…	
  
v2	
  
s1	
  
vT	
  
sT	
  
v1	
  
s1	
  
…	
  
…	
  
v2	
  
s1	
  
vT	
  
sT	
  
v1	
  
s1	
  
…	
  
…	
  
v2	
  
s1	
  
vT	
  
sT	
  
For	
  simplicity	
  of	
  explana+on,	
  we	
  
consider	
  vehicle	
  influx	
  as	
  a	
  
hidden	
  variable	
  and	
  the	
  observed	
  
speed	
  as	
  evidence	
  	
  
variable	
  
Vehicle	
  influx	
  at	
  a	
  certain	
  point	
  in	
  
+me	
  t	
  would	
  influence	
  speed	
  of	
  
vehicles	
  at	
  the	
  same	
  +me	
  t	
  
Vehicle	
  influx	
  at	
  a	
  certain	
  point	
  in	
  
+me	
  t	
  depends	
  only	
  on	
  the	
  
vehicle	
  influx	
  at	
  +me	
  t-­‐1	
  
32	
  
Probabilistic Reasoning Over Time: Discrete Variables
Russell,	
  Stuart,	
  and	
  Peter	
  Norvig.	
  "Ar+ficial	
  intelligence:	
  a	
  modern	
  approach."	
  (1995).	
  
Image	
  credits:	
  hUp://bit.ly/1Q9qmvk,	
  hUp://bit.ly/1lm9BAs,	
  hUp://bit.ly/1LXqOFd	
  	
  
Evidence	
  (U)	
  
States	
  (R)	
  
State	
  transi+on	
  model	
  is	
  given	
  by	
  	
  
With	
  First-­‐Order	
  Markov	
  assump3on,	
  
the	
  transi+on	
  model	
  is	
  	
  
Transi3on	
  model	
   Observa3on	
  model	
  
Observa+on	
  model	
  with	
  sensor	
  Markov	
  
assump3on	
  is	
  given	
  by	
  
P(Rt	
  |	
  R0:t-­‐1)	
  
P(Rt	
  |	
  Rt-­‐1)	
  
P(Ut	
  |	
  R0:t,U0:t-­‐1)	
  =	
  P(Ut	
  |	
  Rt)	
  	
  
Specifying	
  t	
  transi+on	
  and	
  observa+on	
  models	
  
is	
  imprac+cal.	
  So,	
  another	
  assump+on:	
  
sta3onary	
  process	
  
Rt-­‐1	
  	
  	
  	
  P(Rt)	
  
t	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  0.7	
  
f	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  0.3	
  
Rt	
  	
  	
  	
  P(Ut)	
  
t	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  0.9	
  
f	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  0.1	
   33	
  
Probabilistic Reasoning Over Time: Continuous Variables
v1	
  
s1	
  
…	
  
…	
  
v2	
  
s1	
  
vT	
  
sT	
  
Linear	
  Dynamical	
  System	
  (LDS):	
  Replacing	
  
discrete	
  valued	
  state	
  and	
  observa+on	
  nodes	
  
(previous	
  slide)	
  with	
  conHnuous	
  valued	
  states	
  
and	
  observa+ons,	
  we	
  get	
  an	
  LDS	
  model	
  
The	
  transi3on	
  model	
  is	
  specified	
  by	
  At	
  
and	
  the	
  observa3on	
  model	
  is	
  specified	
  by	
  
Bt	
  along	
  with	
  associated	
  Gaussian	
  noise	
  
The	
  joint	
  distribu+on	
  over	
  all	
  the	
  hidden	
  
and	
  observed	
  variables	
  is	
  shown	
  along	
  
with	
  the	
  condi+onal	
  distribu+ons	
  
Barber,	
  David.	
  Bayesian	
  reasoning	
  and	
  machine	
  learning.	
  Cambridge	
  University	
  Press,	
  2012.	
  
34	
  
Hourly Link Speed Dynamics Over all Mondays between Aug-14 to Jan-15
x-­‐axis:	
  observa3on	
  number	
  for	
  each	
  hour	
  of	
  day	
  
y-­‐axis:	
  average	
  speed	
  of	
  vehicles	
  in	
  km/h	
  	
  
35	
  
36	
  
Switching Linear Dynamical Systems
v1	
  
s1	
  
…	
  
…	
  
v2	
  
s1	
  
vT	
  
sT	
  
h1	
   h2	
   hT	
  …	
   Switching	
  Linear	
  Dynamical	
  System	
  (SLDS):	
  A	
  
discrete	
  switch	
  variable	
  at	
  each	
  +me	
  t	
  describes	
  
the	
  appropriate	
  LDS	
  to	
  be	
  used.	
  SLDS	
  can	
  capture	
  
jumps	
  between	
  mul3ple	
  linear	
  dynamics.	
  	
  
v1	
  
s1	
  
…	
  
…	
  
v2	
  
s1	
  
vT	
  
sT	
  
h1	
   h2	
   hT	
  …	
  
Restricted	
  Switching	
  Linear	
  Dynamical	
  System	
  
(RSLDS):	
  Restric+ng	
  the	
  switch	
  variable	
  transi+ons	
  in	
  
SLDS,	
  we	
  proposed	
  RSLDS	
  [AAAI-­‐16]	
  which	
  captures	
  
the	
  switching	
  behavior	
  based	
  on	
  hour	
  of	
  the	
  day	
  and	
  
day	
  of	
  the	
  week.	
  
The	
  transi3on	
  model	
  is	
  specified	
  by	
  At(ht)	
  and	
  the	
  
observa3on	
  model	
  is	
  specified	
  by	
  Bt(ht)	
  
[AAAI-­‐16]	
  Understanding	
  City	
  Traffic	
  Dynamics	
  U+lizing	
  Sensor	
  and	
  Textual	
  Observa+ons.	
  The	
  Thir+eth	
  
AAAI	
  Conference	
  on	
  Ar+ficial	
  Intelligence,	
  2016	
  
Modeling City Traffic Dynamics: Choosing a Suitable Model
"All	
  models	
  are	
  wrong,	
  but	
  some	
  are	
  useful.”	
  -­‐	
  George	
  Box	
  
•  Differen+ate	
  various	
  traffic	
  dynamics	
  
–  Gaussian	
  mixture	
  model	
  does	
  not	
  discriminate	
  between	
  
increasing	
  speed	
  vs.	
  decreasing	
  speed	
  dynamics	
  
•  Account	
  for	
  unobserved	
  factors	
  
–  Autoregressive	
  models	
  cannot	
  capture	
  unobserved	
  factors	
  
•  E.g.,	
  “Unobservable”	
  traffic	
  volume	
  dictates	
  event	
  manifesta+ons	
  
in	
  link	
  speed	
  and	
  travel	
  +me	
  varia+ons	
  
–  Linear	
  Dynamical	
  System	
  introduces	
  latent	
  state-­‐based	
  
model	
  
•  E.g.,	
  Traffic	
  volume,	
  road	
  lane	
  closures,	
  and	
  weather	
  condi+ons	
  	
  
•  Emission/Transi+on	
  matrix	
  and	
  Gaussian	
  noise	
  captures	
  
stochas+city	
  
37	
  
38	
  
Learning Context Specific LDS Models
7	
  ×	
  24	
  
LDS(1,1),	
  LDS(1,2)	
  	
  	
  ,….,	
  LDS(1,24)	
  
LDS(7,1),	
  LDS(7,2)	
  	
  	
  ,….,	
  LDS(7,24)	
  
.	
  
.	
  
.	
  
di	
  
hj	
  
Mon.
Tue.
Wed.
Thu.
Fri.
Sat.
Sun.
Mon.
Tue.
Wed.
Thu.
Fri.
Sat.
Sun.Speed/travel-­‐+me	
  +me	
  	
  
series	
  data	
  from	
  a	
  link	
  
Time	
  series	
  data	
  for	
  
each	
  hour	
  of	
  day	
  (1-­‐24)	
  
for	
  each	
  day	
  of	
  week	
  
(Monday	
  –	
  Sunday)	
  
Mean	
  +me	
  series	
  
computed	
  for	
  each	
  day	
  
of	
  week	
  and	
  hour	
  of	
  day	
  
along	
  with	
  the	
  medoid	
  
168	
  LDS	
  models	
  for	
  
each	
  link;	
  Total	
  models	
  
learned	
  =	
  425,712	
  i.e.,	
  
(2,534	
  links	
  ×	
  168	
  
models	
  per	
  link)	
  	
  
	
  
Step	
  1:	
  Index	
  data	
  for	
  each	
  
link	
  for	
  day	
  of	
  week	
  and	
  hour	
  
of	
  day	
  u+lizing	
  the	
  traffic	
  
domain	
  knowledge	
  for	
  piece-­‐
wise	
  linear	
  approxima+on	
  
Step	
  2:	
  Find	
  the	
  “typical”	
  
dynamics	
  by	
  compu+ng	
  the	
  
mean	
  and	
  choosing	
  the	
  
medoid	
  for	
  each	
  hour	
  of	
  day	
  
and	
  day	
  of	
  week	
  
Step	
  3:	
  Learn	
  LDS	
  parameters	
  
for	
  the	
  medoid	
  for	
  each	
  hour	
  
of	
  day	
  (24	
  hours)	
  and	
  each	
  day	
  
of	
  week	
  (7	
  days)	
  resul+ng	
  in	
  
24	
  ×	
  7	
  =	
  168	
  models	
  for	
  each	
  
link	
  
Learning Normalcy for Each Link, Day of Week, and Hour of Day
Log-­‐likelihood	
  	
  
	
  score	
  
39	
  
Five-­‐number	
  summary	
  of	
  log-­‐likelihood	
  scores	
  for	
  a	
  link,	
  day	
  of	
  week,	
  hour	
  of	
  day	
  
40	
  
Tagging Anomalies using Context Specific LDS Models
Compute	
  Log	
  Likelihood	
  for	
  	
  
each	
  hour	
  of	
  observed	
  data	
  
(di,hj)	
   LDS(hj,di)	
  
7	
  ×	
  24	
  
Lik(1,1),	
  Lik(1,2)	
  	
  	
  ,….,	
  Lik(1,24)	
  
Lik(7,1),	
  Lik(7,2)	
  	
  	
  ,….,	
  Lik(7,24)	
  
.	
  
.	
  
.	
  
Train
?	
  
Yes	
  (Training	
  phase)	
  
Tag	
  Anomalous	
  hours	
  using	
  the	
  
Log	
  Likelihood	
  Range	
  
No	
  
(di,hj)	
   (min.	
  likelihood)	
  
Anomalies	
  
L	
  =	
  
Par33on	
  based	
  on	
  (di,hj)	
  
Speed	
  and	
  travel-­‐+me	
  +me	
  	
  
Observa+ons	
  from	
  a	
  link	
  
Log	
  likelihood	
  min.	
  and	
  	
  
max.	
  values	
  obtained	
  from	
  	
  
five	
  number	
  summary	
  
Par33on	
  based	
  on	
  (di,hj)	
  
7	
  ×	
  24	
  
LDS(1,1),	
  LDS(1,2)	
  	
  	
  ,….,	
  LDS(1,24)	
  
LDS(7,1),	
  LDS(7,2)	
  	
  	
  ,….,	
  LDS(7,24)	
  
.	
  
.	
  
.	
  
di	
  
hj	
  
(Input)	
  
(Output)	
  
•  How?	
  
o  Step	
  1:	
  Extract	
  textual	
  events	
  from	
  tweets	
  stream	
  
o  Step	
  2:	
  Build	
  sta+s+cal	
  models	
  of	
  normalcy,	
  and	
  thereby	
  
anomaly,	
  for	
  sensor	
  +me	
  series	
  data	
  
o  Step	
  3:	
  Correlate	
  mul3modal	
  streams,	
  using	
  spa+o-­‐
temporal	
  informa+on,	
  to	
  explain	
  “anomalies”	
  in	
  sensor	
  
+me	
  series	
  data	
  with	
  textual	
  events	
  
Multimodal Data Integration: Traffic Scenario
41	
  
 
•  Anomaly	
  in	
  link	
  data	
  during	
  +me	
  period	
  [ast,aet],	
  is	
  
explained	
  by	
  an	
  event	
  if	
  the	
  event	
  occurs	
  within	
  
0.5km	
  radius	
  and	
  during	
  [ast-­‐1,	
  aet+1].	
  
•  CAVEAT:	
  An	
  anomaly	
  may	
  not	
  be	
  explained	
  because	
  
of	
  missing	
  data.	
  	
  
Explaining Anomalies in Sensor Data using Textual Events
42	
  
Anomalies	
  
⟨et,	
  el,	
  est,	
  eet,	
  ei⟩	
  
Explained_by	
  	
  
Link	
  sensor	
  data	
  
City	
  tweets	
  
⟨ast,	
  aet⟩	
  
Δte	
  =	
  est	
  ~	
  eet	
  
Δta	
  =	
  (ast	
  –	
  1)	
  ~	
  (aet	
  +	
  1)	
  
Explains	
  
(if	
  there	
  is	
  an	
  overlap	
  	
  
between	
  Δte	
  and	
  Δta)	
  
PCS	
  Event	
  	
  
Extrac3on	
  
•  Data	
  collected	
  from	
  San	
  Francisco	
  Bay	
  Area	
  between	
  
May	
  2014	
  to	
  May	
  2015	
  
–  511.org:	
  (1)	
  1,638	
  traffic	
  incident	
  reports	
  (2)	
  1.4	
  billion	
  
speed	
  and	
  travel	
  +me	
  observa+ons	
  
–  TwiUer	
  Data:	
  39,208	
  traffic	
  related	
  incidents	
  extracted	
  
from	
  over	
  20	
  million	
  tweets	
  
•  Learning	
  normalcy	
  model	
  for	
  one	
  link	
  takes	
  40	
  
minutes1	
  (~	
  2	
  months	
  for	
  processing	
  2,534	
  links)	
  
•  Scalable	
  implementa+on	
  on	
  Apache	
  Spark2	
  resulted	
  
in	
  learning	
  normalcy	
  models	
  for	
  2,534	
  links	
  within	
  24	
  
hours	
  
Real-World Dataset and Scalability Issues
43	
  
12.66	
  GHz,	
  Intel	
  Core	
  2	
  Duo	
  with	
  8	
  GB	
  main	
  memory	
  machine	
  
2Cluster	
  used	
  for	
  evalua+on	
  had	
  865	
  cores	
  and	
  17TB	
  main	
  memory	
  
Multimodal Data Integration: Evaluation
44	
  
•  Examined	
  the	
  theore3cal	
  nature	
  of	
  the	
  problem	
  of	
  
modeling	
  traffic	
  dynamics	
  to	
  systema+cally	
  
recommend	
  Linear	
  Dynamical	
  Systems	
  (LDS)	
  
•  Formalized	
  nonlinear	
  traffic	
  dynamics	
  using	
  
piecewise	
  linear	
  approxima+on	
  derived	
  from	
  traffic	
  
domain	
  knowledge	
  
•  Created	
  normalcy	
  models	
  based	
  on	
  log-­‐likelihood	
  
scores	
  for	
  spo‡ng	
  traffic	
  anomalies	
  in	
  sensor	
  data	
  
•  Evaluated	
  our	
  approach	
  over	
  a	
  real-­‐world	
  dataset	
  
collected	
  from	
  511.org	
  and	
  TwiUer	
  for	
  over	
  a	
  year	
  
(May-­‐2014	
  to	
  May	
  2015)	
  with	
  promising	
  results	
  
45	
  
Multimodal Data Integration: Conclusion
Processing Multimodal Manifestations in PCS Systems
46	
  
PCS	
  Event	
  	
  
Extrac3on	
  
PCS	
  Event	
  	
  
Understanding	
  
PCS	
  Ac3on	
  	
  
Recommenda3on	
  
•  What	
  are	
  the	
  events	
  of	
  interest?	
  	
  
•  How	
  do	
  they	
  manifest	
  in	
  observa+onal	
  data?	
  	
  
•  How	
  can	
  we	
  extract	
  events	
  from	
  observa3onal	
  data?	
  	
  
•  What	
  is	
  the	
  role	
  of	
  declara+ve	
  knowledge	
  and	
  PGMs	
  in	
  event	
  
extrac+on?	
  
•  How	
  do	
  events	
  influence	
  one	
  another?	
  
•  How	
  do	
  we	
  infer	
  the	
  interac3ons	
  from	
  observa3onal	
  data	
  across	
  
mul3ple	
  modali3es	
  (numerical	
  and	
  textual	
  data)?	
  	
  
•  What	
  is	
  the	
  role	
  of	
  declara+ve	
  knowledge	
  and	
  PGMs	
  in	
  event	
  
understanding?	
  
•  How	
  can	
  we	
  represent	
  tasks	
  and	
  ac+ons?	
  
•  How	
  can	
  we	
  u+lize	
  declara+ve	
  knowledge	
  to	
  recommend	
  ac+ons?	
  	
  
•  How	
  can	
  we	
  formalize	
  the	
  no+on	
  of	
  op+mal	
  ac+on?	
  
[ATMSB-­‐15]	
  [ATS-­‐13]	
  	
  	
  
[SAH-­‐13]	
  	
  
[IBM-­‐Tech.-­‐Rep.-­‐14]	
  	
  
[Bosch-­‐Internship-­‐14]	
  
	
  
	
  
	
  
[IBM-­‐Tech.-­‐Rep.-­‐14]
Dynamic	
  Update	
  of	
  Public	
  Transport	
  Schedules	
  in	
  Ci+es	
  Lacking	
  Traffic	
  Instrumenta+on,	
  IBM	
  
Research	
  Technical	
  Report	
  2014.	
  
[Bosch-­‐Internship-­‐14]	
  Task	
  Assistance	
  within	
  IoTS	
  Network,	
  Bosch	
  Summer	
  Internship	
  Work,	
  2014.	
  
[ACM-­‐TIST-­‐15]	
  	
  
[ITS-­‐13]	
  	
  
•  Contributed	
  to	
  a	
  language	
  to	
  represent	
  tasks	
  
–  Using	
  Seman+c	
  Web	
  based	
  representa+on	
  for	
  
•  Reusing	
  knowledge	
  on	
  the	
  web	
  
•  Integra+on	
  of	
  knowledge	
  in	
  distributed	
  environments	
  
	
  	
  	
  (like	
  the	
  web	
  and	
  UhU1	
  /	
  IoTS	
  network)	
  
•  Developed	
  algorithms	
  to	
  recommend	
  tasks	
  	
  
–  Formulated	
  the	
  problem	
  of	
  recommending	
  op+mal	
  ac+on	
  
toward	
  a	
  goal2	
  by	
  handling	
  task	
  failure	
  in	
  a	
  robust	
  manner	
  
•  Developed	
  a	
  framework	
  to	
  evaluate	
  task	
  
recommenda+on	
  
–  Using	
  a	
  simulator	
  for	
  world	
  states	
  and	
  user	
  ac+ons	
  
47	
  
Do-It-Yourself (DIY) Task Recommendation: Bosch Internship, 2014
1Bosch	
  IoT	
  middleware	
  
2	
  Op+mal	
  ac+on	
  is	
  formulated	
  as	
  a	
  Markov	
  Decision	
  Process	
  with	
  transi+on	
  and	
  cost	
  matrices	
  ini+alized	
  using	
  declara+ve	
  knowledge	
  of	
  tasks	
  	
  
Revisiting the Thesis Statement
48	
  
PCS	
  Event	
  	
  
Extrac3on	
  
PCS	
  Event	
  	
  
Understanding	
  
PCS	
  Ac3on	
  	
  
Recommenda3on	
  
[ACM-­‐TIST-­‐15]	
  	
  
[ITS-­‐13]	
  	
  
[AAAI-­‐16]	
  [SDM-­‐13]	
  	
  	
  
[IEEE-­‐Int.-­‐Sys.-­‐13]	
  	
  
[IBM-­‐Tech.-­‐Rep.-­‐14]	
  	
  
[Bosch-­‐Internship-­‐14]	
  
U3lize	
  declara3ve	
  knowledge	
  
of	
  loca3ons	
  and	
  events	
  to	
  
train	
  sequence	
  labeling	
  models	
  
for	
  annota3on	
  and	
  event	
  
extrac3on	
  
U3lize	
  declara3ve	
  knowledge	
  
of	
  ac3ons	
  to	
  formulate	
  the	
  
problem	
  of	
  op3mal	
  ac3on	
  
recommenda3on	
  as	
  a	
  
sequen3al	
  decision	
  problem	
  	
  
	
  
U3lize	
  textual	
  events	
  to	
  
explain	
  varia3ons	
  in	
  sensor	
  
data	
  modeled	
  using	
  context	
  
(link,	
  loca3on,	
  3me)	
  specific	
  
probabilis3c	
  3me	
  series	
  
models	
  	
  
Observa3ons	
   from	
   diverse	
   modali3es	
   can	
   provide	
   complementary,	
   corrobora3ve,	
   and	
  
3mely	
  informa+on	
  about	
  events	
  in	
  Physical-­‐Cyber-­‐Social	
  systems.	
  Probabilis3c	
  Graphical	
  
Models	
  with	
  the	
  help	
  of	
  declara3ve	
  domain	
  knowledge	
  provide	
  an	
  effec+ve	
  mechanism	
  to:	
  
(a)	
  uncover	
  and	
  interpret	
  mul3modal	
  event	
  manifesta3ons	
  in	
  textual	
  and	
  numerical	
  data,	
  
(b)	
   explore	
   event	
   interac3ons	
   and	
   dynamics,	
   and	
   (c)	
   formalize	
   op3mal	
   ac3on	
  
recommenda3on	
  in	
  Physical-­‐Cyber-­‐Social	
  systems.	
  
49	
  
Conclusion
•  Observa+ons	
  from	
  people	
  can	
  provide	
  complementary,	
  
corrobora3ve,	
  and	
  3mely	
  informa+on	
  in	
  PCS	
  systems.	
  
•  We	
  demonstrated	
  that	
  probabilis+c	
  graphical	
  models	
  
(PGMs)	
  are	
  a	
  natural	
  fit	
  to	
  deal	
  with	
  PCS	
  challenges.	
  
•  We	
  found	
  that	
  declara3ve	
  domain	
  knowledge	
  can	
  
complement	
  PGMs	
  in	
  
–  Automa+c	
  crea+on	
  of	
  large	
  training	
  data	
  for	
  training	
  sequence	
  
labeling	
  models	
  
–  Knowledge-­‐driven	
  piecewise	
  linear	
  approxima+on	
  of	
  nonlinear	
  
+me	
  series	
  dynamics	
  using	
  Linear	
  Dynamical	
  Systems	
  (LDS)	
  
–  Bayesian	
  Network	
  structure	
  refinement	
  using	
  ConceptNet5	
  
–  Transforming	
  knowledge	
  of	
  goals	
  and	
  ac+ons	
  into	
  a	
  Markov	
  
Decision	
  Process	
  (MDP)	
  formalism	
  
50	
  
Probabilistic Graphical Models, Declarative Knowledge, and PCS Systems
Declara+ve	
  
Knowledge	
  
Data	
  
Textual	
   Numerical	
  
Parameters	
  
Annotate	
  
Parameters	
   Structure	
  
PGMs	
  (e.g.,	
  CRF,	
  BN,	
  LDS,	
  MDP)	
  
PCS	
  Applica+ons	
  (e.g.,	
  SmartCity,	
  SmartHealth,	
  DIY	
  Task	
  Recommenda+on)	
  
Commonsense	
  	
  
Knowledge	
  
Domain	
  Ontologies	
  	
  
and	
  Open	
  Data	
  
Mul+modal	
  Data	
  
Top-­‐down	
  
Bokom-­‐up	
  
PCS	
  Event	
  	
  
Extrac3on	
  
PCS	
  Event	
  	
  
Understanding	
  
PCS	
  Ac3on	
  	
  
Recommenda3on	
  
[ACM-­‐TIST-­‐15]	
  	
  
[AAAI-­‐16]	
  	
  
[ACM-­‐TIST-­‐15]	
  	
  
[Bosch-­‐Internship-­‐14]	
  
[SDM-­‐13]	
  
CRF	
  –	
  Condi+onal	
  Random	
  Field	
  
BN	
  –	
  Bayesian	
  Network	
  
LDS	
  –	
  Linear	
  Dynamical	
  Systems	
  
MDP	
  –	
  Markov	
  Decision	
  Process	
  
Structure	
  
[SDM-­‐13]	
  
[AAAI-­‐16]	
  	
  
[Bosch-­‐Internship-­‐14]	
  
51	
  
Personalized Digital Health for Asthma Management in Children
Sensordrone
(Carbon monoxide,
temperature, humidity)
Sensor Platforms
Android Device
(w/ kHealth App)
Node Sensor
(exhaled Nitric Oxide)
Fitbit ChargeHR
(Activity, sleep quality)
Pollen level Air	
  Quality	
   Temperature & Humidity
kHealth	
  for	
  asthma	
  project	
  page:	
  hUp://wiki.knoesis.org/index.php/Asthma	
  	
  
kHealth	
  project	
  page:	
  hUp://knoesis.org/projects/khealth	
  	
  
52	
  
PhD @ Kno.e.sis
Awards	
  and	
  Recogni3on	
  
2016	
  Outstanding	
  Graduate	
  Student	
  Award	
  in	
  the	
  PhD	
  in	
  Computer	
  Science	
  and	
  
Engineering	
  Program.	
  
2015	
  Selected	
  to	
  par+cipate	
  in	
  the	
  NSF-­‐funded	
  Data	
  Science	
  Workshop	
  at	
  University	
  of	
  
Washington,	
  SeaUle,	
  Aug	
  5–7.	
  
2014	
  Offered	
  the	
  Eric	
  &	
  Wendy	
  Schmidt	
  Data	
  Science	
  for	
  Social	
  Good	
  Fellowship.	
  
2013	
  A	
  short	
  ar+cle	
  on	
  my	
  research	
  appeared	
  in	
  Wright	
  State	
  University	
  newsroom.	
  
2013	
  Invited	
  to	
  aUend	
  Dagstuhl	
  Seminar	
  on	
  Physical-­‐Cyber-­‐Social	
  Compu+ng.	
  
2012	
  Best	
  research	
  showcase	
  award	
  for	
  my	
  internship	
  work	
  at	
  IBM	
  Research,	
  India.	
  
Professional	
  Experience	
  
•  2014	
  Internship	
  at	
  Bosch	
  Research	
  and	
  Technology	
  Center	
  
•  2013	
  Visi+ng	
  Doctoral	
  Student	
  at	
  University	
  of	
  Surrey	
  
•  2011,	
  2012	
  Internships	
  at	
  IBM	
  Research	
  	
  
Published	
  in	
  ACM	
  TIST	
  Journal,	
  AAAI,	
  ACM	
  Web	
  
Science,	
  and	
  IEEE	
  Computer	
  
Program	
  Commikee	
  (PC)	
  member	
  of	
  
conferences	
  such	
  as	
  WWW-­‐16,	
  WWW-­‐15,	
  
WWW-­‐14,	
  ISWC-­‐15,	
  ISWC-­‐14,	
  ISWC-­‐13,	
  ESWC-­‐16,	
  
IJCAI-­‐13	
  
	
  	
  
Tutorials	
  	
  
•  Data	
  Processing	
  and	
  Seman+cs	
  for	
  Advanced	
  Internet	
  of	
  Things	
  (IoT)	
  Applica+ons:	
  modeling,	
  annota+on,	
  integra+on,	
  
and	
  percep+on,	
  Tutorial	
  Presenta+on	
  at	
  The	
  3rd	
  Interna+onal	
  Conference	
  on	
  Web	
  Intelligence,	
  Mining	
  and	
  
Seman+cs	
  (WIMS	
  '13),	
  Madrid,	
  Spain.	
  
•  Trust	
  Networks:	
  Interpersonal,	
  Sensor,	
  and	
  Social,	
  Tutorial	
  Presenta+on	
  at	
  Interna+onal	
  Conference	
  on	
  Collabora+ve	
  
Technologies	
  and	
  Systems	
  (CTS	
  2011),	
  Philadelphia,	
  Pennsylvania,	
  USA.	
  
Proposals	
  
NSF:	
  Contributed	
  to	
  mul+ple,	
  out	
  
of	
  which,	
  one	
  collabora+ve	
  
proposal	
  was	
  funded	
  ($1.9	
  million).	
  
NIH:	
  Lead	
  one	
  proposal	
  which	
  is	
  
recommended	
  for	
  funding	
  ($900K).	
  
EU	
  FP7:	
  Contributed	
  to	
  CityPulse,	
  a	
  
mul+-­‐ins+tu+on	
  IoT	
  based	
  Smart	
  
City	
  project	
  (€2.5	
  million).	
  
Patents	
  
•  US20150006644	
  A1:	
  Assessing	
  Impact	
  of	
  Events	
  on	
  Public	
  Transporta+on	
  Network	
  
•  US20140372364	
  A1:	
  A	
  System	
  and	
  Method	
  for	
  U+lity-­‐Based	
  Evolu+on	
  in	
  a	
  Constrained	
  Ontology	
  
[AAAI-­‐16]	
  Pramod	
  Anantharam,	
  Krishnaprasad	
  Thirunarayan,	
  Surendra	
  Marupudi,	
  Amit	
  Sheth,	
  Tanvi	
  Banerjee.	
  (2016)	
  
Understanding	
  City	
  Traffic	
  Dynamics	
  U+lizing	
  Sensor	
  and	
  Textual	
  Observa+ons.	
  at	
  The	
  Thir+eth	
  AAAI	
  Conference	
  on	
  
Ar+ficial	
  Intelligence	
  (AAAI-­‐16),	
  February	
  12-­‐-­‐17,	
  Phoenix,	
  Arizona,	
  USA	
  (accepted)	
  
[ACM-­‐TIST-­‐15]	
  Pramod	
  Anantharam,	
  Payam	
  Barnaghi,	
  Krishnaprasad	
  Thirunarayan,	
  and	
  Amit	
  Sheth.	
  2015.	
  
Extrac+ng	
  City	
  Traffic	
  Events	
  from	
  Social	
  Streams.	
  ACM	
  Trans.	
  Intell.	
  Syst.	
  Technol.	
  6,	
  4,	
  Ar+cle	
  43	
  (July	
  2015),	
  27	
  pages.	
  
DOI=10.1145/2717317	
  hUp://doi.acm.org/10.1145/2717317	
  	
  	
  
[IBM-­‐Tech.-­‐Rep.-­‐14]	
  Pramod	
  Anantharam,	
  Biplav	
  Srivastava,	
  Raj	
  Gupta.	
  
Dynamic	
  Update	
  of	
  Public	
  Transport	
  Schedules	
  in	
  Ci+es	
  Lacking	
  Traffic	
  Instrumenta+on,	
  IBM	
  Research	
  Technical	
  Report	
  
2014.	
  
[ITS-­‐13]	
  Pramod	
  Anantharam	
  and	
  Biplav	
  Srivastava,	
  City	
  No+fica+ons	
  as	
  a	
  Data	
  Source	
  for	
  Traffic	
  Management,	
  In	
  
Proceedings	
  of	
  the	
  20th	
  ITS	
  World	
  Congress	
  2013,	
  October	
  14-­‐18,	
  2013,	
  Tokyo,	
  Japan.	
  
[SDM-­‐13]	
  Pramod	
  Anantharam,	
  Krishnaprasad	
  Thirunarayan,	
  and	
  Amit	
  Sheth,	
  
Traffic	
  Analy+cs	
  using	
  Probabilis+c	
  Graphical	
  Models	
  Enhanced	
  with	
  Knowledge	
  Bases,	
  2nd	
  Interna+onal	
  Workshop	
  on	
  
Analy+cs	
  for	
  Cyber-­‐Physical	
  Systems	
  (ACS-­‐2013)	
  at	
  SIAM	
  Interna+onal	
  Conference	
  on	
  Data	
  Mining	
  (SDM13),	
  Texas,	
  USA,	
  
May	
  2-­‐4,	
  2013.	
  
[ACM-­‐WebScience-­‐12]	
  Pramod	
  Anantharam,	
  Krishnaprasad	
  Thirunarayan,	
  and	
  Amit	
  Sheth,	
  
Topical	
  Anomaly	
  Detec+on	
  from	
  TwiUer	
  Stream,	
  Research	
  Note:	
  In	
  the	
  Proceedings	
  of	
  ACM	
  Web	
  Science	
  2012,	
  Evanston,	
  
Illinois,	
  pp.	
  23-­‐26,	
  June	
  22-­‐24,	
  2012.	
  
[IEEE-­‐Int.-­‐Sys.-­‐13]	
  Amit	
  Sheth,	
  Pramod	
  Anantharam,	
  Cory	
  Henson,	
  
Physical-­‐Cyber-­‐Social	
  Compu+ng:	
  An	
  Early	
  21st	
  Century	
  Approach,	
  IEEE	
  Intelligent	
  Systems,	
  vol.	
  28,	
  no.	
  1,	
  pp.	
  78-­‐82,	
  Jan.-­‐
Feb.,	
  2013.	
  	
  	
  hUp://doi.ieeecomputersociety.org/10.1109/MIS.2013.20	
  	
  
[FCGS-­‐13]	
  Krishnaprasad	
  Thirunarayan,	
  Pramod	
  Anantharam,	
  Cory	
  Henson,	
  and	
  Amit	
  Sheth,	
  
Compara+ve	
  Trust	
  Management	
  with	
  Applica+ons:	
  Bayesian	
  Approaches	
  Emphasis,	
  In	
  the	
  Journal	
  of	
  Future	
  Genera+on	
  
Computer	
  Systems	
  (FGCS),	
  Elsevier,	
  25	
  pages,	
  May	
  2013,	
  hUp://dx.doi.org/10.1016/j.future.2013.05.006	
  	
  
[Bosch-­‐Internship-­‐14]	
  Task	
  Assistance	
  within	
  IoTS	
  Network,	
  Bosch	
  Internship	
  Work,	
  Summer	
  2014.	
  
53	
  
Selected Publications
54	
  
Dr.	
  Payam	
  Barnaghi	
   Dr.	
  Biplav	
  Srivastava	
  
Dr.	
  Cory	
  Henson	
   Dr.	
  Shalini	
  Forbis,	
  MD,	
  MPH	
  
Prof.	
  Amit	
  Sheth	
  
(Advisor)	
  
Prof.	
  Krishnaprasad	
  	
  
Thirunarayan	
  
(Advisor)	
  
Prof.	
  Shaojun	
  Wang	
  
Acknowledgements
Thank you J
55	
  
kHealth	
  Team	
  
Dr.	
  Tanvi	
  Banerjee	
  
Surendra	
  Marupudi	
  
Vaikunth	
  Sridharan	
  	
  
Dan	
  Vanuch	
  
Sujan	
  Perera	
  
And	
  all	
  my	
  colleagues	
  and	
  friends…	
  
Vahid	
  Taslimi	
  
Kno.e.sis,	
  Data	
  Mining	
  Lab	
  

Weitere ähnliche Inhalte

Was ist angesagt?

Smart Data for you and me: Personalized and Actionable Physical Cyber Social ...
Smart Data for you and me: Personalized and Actionable Physical Cyber Social ...Smart Data for you and me: Personalized and Actionable Physical Cyber Social ...
Smart Data for you and me: Personalized and Actionable Physical Cyber Social ...
Amit Sheth
 
Extracting City Traffic Events from Social Streams
 Extracting City Traffic Events from Social Streams Extracting City Traffic Events from Social Streams
Extracting City Traffic Events from Social Streams
Pramod Anantharam
 
Semantics based Summarization of Entities in Knowledge Graphs
Semantics based Summarization of Entities in Knowledge GraphsSemantics based Summarization of Entities in Knowledge Graphs
Semantics based Summarization of Entities in Knowledge Graphs
Artificial Intelligence Institute at UofSC
 
Semantics-empowered Approaches to Big Data Processing for Physical-Cyber-Soci...
Semantics-empowered Approaches to Big Data Processing for Physical-Cyber-Soci...Semantics-empowered Approaches to Big Data Processing for Physical-Cyber-Soci...
Semantics-empowered Approaches to Big Data Processing for Physical-Cyber-Soci...
Artificial Intelligence Institute at UofSC
 
Kno.e.sis Approach to Impactful Research & Training for Exceptional Careers
Kno.e.sis Approach to Impactful Research & Training for Exceptional CareersKno.e.sis Approach to Impactful Research & Training for Exceptional Careers
Kno.e.sis Approach to Impactful Research & Training for Exceptional Careers
Amit Sheth
 
Transforming Big Data into Smart Data for Smart Energy: Deriving Value via ha...
Transforming Big Data into Smart Data for Smart Energy: Deriving Value via ha...Transforming Big Data into Smart Data for Smart Energy: Deriving Value via ha...
Transforming Big Data into Smart Data for Smart Energy: Deriving Value via ha...
Amit Sheth
 
Physical Cyber Social Computing: An early 21st century approach to Computing ...
Physical Cyber Social Computing: An early 21st century approach to Computing ...Physical Cyber Social Computing: An early 21st century approach to Computing ...
Physical Cyber Social Computing: An early 21st century approach to Computing ...
Amit Sheth
 

Was ist angesagt? (20)

Smart Data for you and me: Personalized and Actionable Physical Cyber Social ...
Smart Data for you and me: Personalized and Actionable Physical Cyber Social ...Smart Data for you and me: Personalized and Actionable Physical Cyber Social ...
Smart Data for you and me: Personalized and Actionable Physical Cyber Social ...
 
Extracting City Traffic Events from Social Streams
 Extracting City Traffic Events from Social Streams Extracting City Traffic Events from Social Streams
Extracting City Traffic Events from Social Streams
 
TRANSFORMING BIG DATA INTO SMART DATA: Deriving Value via Harnessing Volume, ...
TRANSFORMING BIG DATA INTO SMART DATA: Deriving Value via Harnessing Volume, ...TRANSFORMING BIG DATA INTO SMART DATA: Deriving Value via Harnessing Volume, ...
TRANSFORMING BIG DATA INTO SMART DATA: Deriving Value via Harnessing Volume, ...
 
Semantics based Summarization of Entities in Knowledge Graphs
Semantics based Summarization of Entities in Knowledge GraphsSemantics based Summarization of Entities in Knowledge Graphs
Semantics based Summarization of Entities in Knowledge Graphs
 
Semantics-empowered Approaches to Big Data Processing for Physical-Cyber-Soci...
Semantics-empowered Approaches to Big Data Processing for Physical-Cyber-Soci...Semantics-empowered Approaches to Big Data Processing for Physical-Cyber-Soci...
Semantics-empowered Approaches to Big Data Processing for Physical-Cyber-Soci...
 
Smart IoT for Connected Manufacturing
Smart IoT for Connected ManufacturingSmart IoT for Connected Manufacturing
Smart IoT for Connected Manufacturing
 
Web and Complex Systems Lab @ Kno.e.sis
Web and Complex Systems Lab @ Kno.e.sisWeb and Complex Systems Lab @ Kno.e.sis
Web and Complex Systems Lab @ Kno.e.sis
 
Citizen Sensor Data Mining, Social Media Analytics and Applications
Citizen Sensor Data Mining, Social Media Analytics and ApplicationsCitizen Sensor Data Mining, Social Media Analytics and Applications
Citizen Sensor Data Mining, Social Media Analytics and Applications
 
Computing for Human Experience [v4]: Keynote @ OnTheMove Federated Conferences
Computing for Human Experience [v4]: Keynote @ OnTheMove Federated ConferencesComputing for Human Experience [v4]: Keynote @ OnTheMove Federated Conferences
Computing for Human Experience [v4]: Keynote @ OnTheMove Federated Conferences
 
Physical Cyber Social Computing
Physical Cyber Social ComputingPhysical Cyber Social Computing
Physical Cyber Social Computing
 
Urban Data Science at UW
Urban Data Science at UWUrban Data Science at UW
Urban Data Science at UW
 
PhD thesis defense of Christopher Thomas
PhD thesis defense of Christopher ThomasPhD thesis defense of Christopher Thomas
PhD thesis defense of Christopher Thomas
 
Kno.e.sis Approach to Impactful Research & Training for Exceptional Careers
Kno.e.sis Approach to Impactful Research & Training for Exceptional CareersKno.e.sis Approach to Impactful Research & Training for Exceptional Careers
Kno.e.sis Approach to Impactful Research & Training for Exceptional Careers
 
Big Data Talent in Academic and Industry R&D
Big Data Talent in Academic and Industry R&DBig Data Talent in Academic and Industry R&D
Big Data Talent in Academic and Industry R&D
 
Transforming Big Data into Smart Data for Smart Energy: Deriving Value via ha...
Transforming Big Data into Smart Data for Smart Energy: Deriving Value via ha...Transforming Big Data into Smart Data for Smart Energy: Deriving Value via ha...
Transforming Big Data into Smart Data for Smart Energy: Deriving Value via ha...
 
Data Science and Urban Science @ UW
Data Science and Urban Science @ UWData Science and Urban Science @ UW
Data Science and Urban Science @ UW
 
2015 Kno.e.sis Center Annual Review
2015 Kno.e.sis Center Annual Review2015 Kno.e.sis Center Annual Review
2015 Kno.e.sis Center Annual Review
 
Social and Physical Sensing Enabled Decision Support for Disaster Management ...
Social and Physical Sensing Enabled Decision Support for Disaster Management ...Social and Physical Sensing Enabled Decision Support for Disaster Management ...
Social and Physical Sensing Enabled Decision Support for Disaster Management ...
 
Physical Cyber Social Computing: An early 21st century approach to Computing ...
Physical Cyber Social Computing: An early 21st century approach to Computing ...Physical Cyber Social Computing: An early 21st century approach to Computing ...
Physical Cyber Social Computing: An early 21st century approach to Computing ...
 
The UVA School of Data Science
The UVA School of Data ScienceThe UVA School of Data Science
The UVA School of Data Science
 

Ähnlich wie Knowledge-empowered Probabilistic Graphical Models for Physical-Cyber-Social Systems

Aaas Data Intensive Science And Grid
Aaas Data Intensive Science And GridAaas Data Intensive Science And Grid
Aaas Data Intensive Science And Grid
Ian Foster
 
Black Box Learning Analytics? Beyond Algorithmic Transparency
Black Box Learning Analytics? Beyond Algorithmic TransparencyBlack Box Learning Analytics? Beyond Algorithmic Transparency
Black Box Learning Analytics? Beyond Algorithmic Transparency
Simon Buckingham Shum
 
Ed Fox on Learning Technologies
Ed Fox on Learning TechnologiesEd Fox on Learning Technologies
Ed Fox on Learning Technologies
Gardner Campbell
 

Ähnlich wie Knowledge-empowered Probabilistic Graphical Models for Physical-Cyber-Social Systems (20)

Thoughts on Knowledge Graphs & Deeper Provenance
Thoughts on Knowledge Graphs  & Deeper ProvenanceThoughts on Knowledge Graphs  & Deeper Provenance
Thoughts on Knowledge Graphs & Deeper Provenance
 
Mo games stem_it_arts
Mo games stem_it_artsMo games stem_it_arts
Mo games stem_it_arts
 
New and Emerging Forms of Data
New and Emerging Forms of DataNew and Emerging Forms of Data
New and Emerging Forms of Data
 
algorithmic-decisions, fairness, machine learning, provenance, transparency
algorithmic-decisions, fairness, machine learning, provenance, transparencyalgorithmic-decisions, fairness, machine learning, provenance, transparency
algorithmic-decisions, fairness, machine learning, provenance, transparency
 
Machine learning pour les données massives algorithmes randomis´es, en ligne ...
Machine learning pour les données massives algorithmes randomis´es, en ligne ...Machine learning pour les données massives algorithmes randomis´es, en ligne ...
Machine learning pour les données massives algorithmes randomis´es, en ligne ...
 
New Data `New Computation
New Data `New ComputationNew Data `New Computation
New Data `New Computation
 
Data Provenance for Data Science
Data Provenance for Data ScienceData Provenance for Data Science
Data Provenance for Data Science
 
An Ontological Framework For Structuring Process Knowledge Specified For The ...
An Ontological Framework For Structuring Process Knowledge Specified For The ...An Ontological Framework For Structuring Process Knowledge Specified For The ...
An Ontological Framework For Structuring Process Knowledge Specified For The ...
 
Aaas Data Intensive Science And Grid
Aaas Data Intensive Science And GridAaas Data Intensive Science And Grid
Aaas Data Intensive Science And Grid
 
20220203 jim spohrer purdue v12
20220203 jim spohrer purdue v1220220203 jim spohrer purdue v12
20220203 jim spohrer purdue v12
 
Black Box Learning Analytics? Beyond Algorithmic Transparency
Black Box Learning Analytics? Beyond Algorithmic TransparencyBlack Box Learning Analytics? Beyond Algorithmic Transparency
Black Box Learning Analytics? Beyond Algorithmic Transparency
 
Emerging Forms of Data and Analytics
Emerging Forms of Data and AnalyticsEmerging Forms of Data and Analytics
Emerging Forms of Data and Analytics
 
Crowdsourcing Approaches for Smart City Open Data Management
Crowdsourcing Approaches for Smart City Open Data ManagementCrowdsourcing Approaches for Smart City Open Data Management
Crowdsourcing Approaches for Smart City Open Data Management
 
La résolution de problèmes à l'aide de graphes
La résolution de problèmes à l'aide de graphesLa résolution de problèmes à l'aide de graphes
La résolution de problèmes à l'aide de graphes
 
Data Science and AI in Biomedicine: The World has Changed
Data Science and AI in Biomedicine: The World has ChangedData Science and AI in Biomedicine: The World has Changed
Data Science and AI in Biomedicine: The World has Changed
 
An expanding and expansive view of computing research
An expanding and expansive view of computing researchAn expanding and expansive view of computing research
An expanding and expansive view of computing research
 
Introduction to Data and Computation: Essential capabilities for everyone in ...
Introduction to Data and Computation: Essential capabilities for everyone in ...Introduction to Data and Computation: Essential capabilities for everyone in ...
Introduction to Data and Computation: Essential capabilities for everyone in ...
 
Augmented intelligence as a response to the crisis of artificial intelligence
Augmented intelligence as a response to the crisis of artificial intelligenceAugmented intelligence as a response to the crisis of artificial intelligence
Augmented intelligence as a response to the crisis of artificial intelligence
 
Ed Fox on Learning Technologies
Ed Fox on Learning TechnologiesEd Fox on Learning Technologies
Ed Fox on Learning Technologies
 
introduction to machin learning
introduction to machin learningintroduction to machin learning
introduction to machin learning
 

Kürzlich hochgeladen

Kürzlich hochgeladen (20)

Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
A Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusA Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source Milvus
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelNavi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 

Knowledge-empowered Probabilistic Graphical Models for Physical-Cyber-Social Systems

  • 1. Knowledge-­‐empowered  Probabilis3c  Graphical   Models  for  Physical-­‐Cyber-­‐Social  Systems   Pramod  Anantharam   PhD  Disserta+on  Defense   April  14,  2016   The  Ohio  Center  of  Excellence  in  Knowledge-­‐enabled  Compu+ng  (Kno.e.sis),   Wright  State  University     Commi%ee:  Dr.  Payam  Barnaghi  (University  of  Surrey),  Dr.  Shalini  Forbis  (BoonshoP  School   of  Medicine),  Dr.  Cory  Henson  (Bosch  Research),  Dr.  Biplav  Srivastava  (IBM  Research),     Prof.  Shaojun  Wang  (Wright  State  University/Alibaba)   Advisors:  Prof.  Amit  Sheth,  Prof.  Krishnaprasad  Thirunarayan    
  • 2. 2   Multimodal Manifestation of Real-World Events: Power Grid Scenario Image  Credit:  Twi%er,  hUp://bit.ly/1SsE924     1Six  Degrees:  The  Science  of  Connected  Age,  Duncan  WaUs   2One  of  four  main  reasons  of  failure.  Inves+ga+on  report  by  The  U.S.-­‐Canada  Power  System  Outage  Task  Force         August  14,  2003  Blackout  in  the  Midwest  U.S.   "failed  to  manage  adequately  tree  growth  in   its  transmission  right-­‐of-­‐way.”  2     August  10,  1996  Blackout  in  the  West  U.S.   “  …  inadequate  understanding  of  the   interdependencies  present  in  the  system.”  1     Power  Grid  related  events  manifest  in  physical,  cyber,  and  social  (PCS)  modali+es  
  • 3. 3   Multimodal Manifestations of Real-World Events: Asthma Scenario Image  Credit:  hUp://www.rtmagazine.com/2015/10/brown-­‐univ-­‐fight-­‐childhood-­‐asthma-­‐au+sm-­‐obesity/     NODE Sensor (exhaled Nitric Oxide) Fitbit ChargeHR (Activity, sleep quality) Sensordrone (Carbon monoxide, temperature, humidity) Pollen level Temperature & Humidity Air  Quality   Prevalence of Asthma Personal   Level  Signals   Popula+on   Level  Signals   Asthma  related  events  manifest  in  physical,  cyber,  and  social  (PCS)  modali+es  
  • 4. Multimodal Manifestation of Real-World Events: Traffic Scenario 4   Traffic  related  events  manifest  in  physical,  cyber,  and  social  (PCS)  modali+es   Amit  Sheth,  Pramod  Anantharam,  Cory  Henson,  'Physical-­‐Cyber-­‐Social  Compu+ng:  An  Early  21st  Century  Approach,'  IEEE  Intelligent  Systems,  vol.  28,  no.  1,  pp.   78-­‐82,  Jan.-­‐Feb.,  2013.  hUp://doi.ieeecomputersociety.org/10.1109/MIS.2013.20    
  • 5. Processing Multimodal Manifestations of Real-World Events 5   “Informa3on  is  a  source  of  learning.  But  unless  it  is  organized,  processed,  and  available  to   the  right  people  in  a  format  for  decision  making,  it  is  a  burden,  not  a  benefit.”                        —  William  Pollard,  (1828  –  1893)   “…the  OODA  Loop  is  an  explicit  representa+on  of  the  process  that  human  beings  and   organiza+ons  use  to  learn,  grow,  and  thrive  in  a  rapidly  changing  environment  —  be  it   in  war,  business,  or  life.”1   1The  Tao  of  Boyd:  How  to  Master  the  OODA  Loop:  hUp://www.artofmanliness.com/2014/09/15/ooda-­‐loop/     Observe   Orient   Decide   Act   John  Boyd’s  Observe,  Orient,  Decide,  and  Act  (OODA)  Loop  for  organizing,  processing,   and  decision  making:   Feedback   Feed   Forward   Feed   Forward   Feed   Forward  
  • 6. Processing Multimodal Manifestations in PCS Systems 6   The  Tao  of  Boyd:  How  to  Master  the  OODA  Loop:  hUp://www.artofmanliness.com/2014/09/15/ooda-­‐loop/     Observe   Orient   Decide   Act   Feedback   Feed   Forward   Feed   Forward   Feed   Forward   PCS  Event     Extrac3on   PCS  Event     Understanding   PCS  Ac3on     Recommenda3on   Observe  –  Collect  as  much  informa+on  as  possible  from  the  environment   Orient  –  Assimilate  all  the  informa+on  to  understand  the  environment   Decide  –  Determine  the  course  of  ac+on  based  on  an  objec+ve   Act  –  Follow  through  the  course  of  ac+on  
  • 7. 7   Thesis Statement Observa3ons   from   diverse   modali3es   can   provide   complementary,   corrobora3ve,   and   3mely  informa+on  about  events  in  Physical-­‐Cyber-­‐Social  systems.  Probabilis3c  Graphical   Models  with  the  help  of  declara3ve  domain  knowledge  provide  an  effec+ve  mechanism  to:   (a)  uncover  and  interpret  mul3modal  event  manifesta3ons  in  textual  and  numerical  data,   (b)   explore   event   interac3ons   and   dynamics,   and   (c)   formalize   op3mal   ac3on   recommenda3on  in  Physical-­‐Cyber-­‐Social  systems.  
  • 8. 8   “Graphical  models  are  a  marriage  between  probability  theory  and  graph  theory.  They   provide  a  natural  tool  for  dealing  with  two  problems  that  occur  throughout  applied   mathema3cs  and  engineering  -­‐-­‐  uncertainty  and  complexity  …”                                      -­‐  Michael  Jordan,  UC  Berkley,  1998.   What are Probabilistic Graphical Models (PGMs)? Alex  wants  to  model  the  reasons  for  asthma  a%acks.   Random  Variables:  AUack  (A),  Medica+on  (M),  Steps  (S),  Pollen  (P)   Joint  Probability  distribu3on:  p(A,  M,  S,  P)   Parameters:  For  four  binary  variables,  there  are  24  =  16  probability  assignments1     p(A,  M,  S,  P)  =  p(A  |  M,  S,  P)  p(M,  S,  P)                =  p  (A  |  M,  S,  P)  p(M  |  S,  P)  p(S,  P)                =  p  (A  |  M,  S,  P)  p(M  |  S,  P)  p(S  |  P)  P(P)                  =  p  (A  |  M,  P)  p(M)  p(S  |  P)  p(P),  because,   #  of  parameters  =  22  +  1  +  2  +  1  =  8  probability  assignments   (A ! S),(M ! S),(M ! P) A   M P   S Structure:         Parameters:   (8  probability  assignments)       1hUp://www.freemars.org/jeff/2exp100/powers.htm     p  (A  |  M,  P)     p(M)   p(S  |  P)     p(P)  
  • 9. 9   Example of Declarative Domain Knowledge road  ice   Causes   accident   Linked  Open  Data   (Declara+ve  Knowledge  from  ConceptNet  5)   Delay   go  to  baseball  game   traffic  jam   traffic  accident   traffic  jam   Ac+veEvent   ScheduledEvent   Causes   traffic  jam   Causes   traffic  jam   CapableOf   slow  traffic   CapableOf   occur  twice  each  day   Causes   is_a   bad  weather   CapableOf     slow  traffic   TimeOfDay   go  to  concert   HasSubevent   car  crash   accident   RelatedTo   car  crash   BadWeather   Causes   Causes   is_a   is_a   is_a   is_a   is_a   is_a   is_a  
  • 10. Processing Multimodal Manifestations in PCS Systems 10   PCS  Event     Extrac3on   PCS  Event     Understanding   PCS  Ac3on     Recommenda3on   •  What  are  the  events  of  interest?     •  How  do  they  manifest  in  observa+onal  data?     •  How  can  we  extract  events  from  observa+onal  data?     •  What  is  the  role  of  declara+ve  knowledge  in  event  extrac+on?   •  How  do  events  influence  one  another?   •  How  do  we  infer  the  interac3ons  from  observa3onal  data  across   mul3ple  modali3es  (numerical  and  textual  data)?     •  What  is  the  role  of  declara+ve  knowledge  in  event  understanding?   •  How  can  we  represent  tasks  and  ac+ons?   •  How  can  we  u+lize  declara+ve  knowledge  to  recommend  ac+ons?     •  How  can  we  formalize  the  no+on  of  op+mal  ac+on?   [ACM-­‐TIST-­‐15]     [ITS-­‐13]     [AAAI-­‐16]  [SDM-­‐13]       [IEEE-­‐Int.-­‐Sys.-­‐13]     [IBM-­‐Tech.-­‐Rep.-­‐14]     [Bosch-­‐Internship-­‐14]  
  • 11. Processing Multimodal Manifestations in PCS Systems 11   PCS  Event     Extrac3on   PCS  Event     Understanding   PCS  Ac3on     Recommenda3on   •  What  are  the  events  of  interest?     •  How  do  they  manifest  in  observa+onal  data?     •  How  can  we  extract  events  from  observa+onal  data?     •  What  is  the  role  of  declara+ve  knowledge  in  event  extrac+on?   •  How  do  events  influence  one  another?   •  How  do  we  infer  the  interac3ons  from  observa3onal  data  across   mul3ple  modali3es  (numerical  and  textual  data)?     •  What  is  the  role  of  declara+ve  knowledge  in  event  understanding?   •  How  do  we  u+lize  our  understanding  to  recommend  ac+ons?     •  How  can  we  recommend  best  possible  ac+on?     •  What  is  the  role  of  declara+ve  knowledge  and  PGMs  in  ac+on   recommenda+on?   [AAAI-­‐16]  [SDM-­‐13]       [IEEE-­‐Int.-­‐Sys.-­‐13]     [ASG-­‐14]       [AAAI-­‐16]  Understanding  City  Traffic  Dynamics  U+lizing  Sensor  and  Textual  Observa+ons.  The  Thir+eth   AAAI  Conference  on  Ar+ficial  Intelligence,  2016   [SDM-­‐13]  Traffic  Analy+cs  using  Probabilis+c  Graphical  Models  Enhanced  with  Knowledge  Bases,  2nd   Interna+onal  Workshop  on  Analy+cs  for  Cyber-­‐Physical  Systems  (ACS-­‐2013)  at  SIAM  Interna+onal   Conference  on  Data  Mining  (SDM13),  2013   [IEEE-­‐Int.-­‐Sys.-­‐13]  Physical-­‐Cyber-­‐Social  Compu+ng:  An  Early  21st  Century  Approach,  IEEE  Intelligent   Systems,  2013   [ACM-­‐TIST-­‐15]     [ITS-­‐13]    
  • 12. •  Why?   –  Explain/Interpret   average   speed   and   link   travel   +me   varia+ons   using   events   provided   by   city   authori+es   and   traffic  events  shared  on  TwiUer   –  Prior  work:  Predict  conges+on  based  on  historical  sensor   data   •  What?   –  Combine   •  511.org  data  about  Bay  Area  Road  Network  Traffic     –  E.g.,  Average  speed  and  link  travel  +me  data  stream  (Sensor  data)   –  E.g.,  (Happened  or  planned)  event  reports  (Textual  data)   •  Tweets  that  report  traffic  related  events  (Textual  data)   Multimodal Data Integration: Traffic Scenario 12  
  • 13. •  How?   o  Step  1:  Extract  textual  events  from  tweets  stream   o  Step  2:  Build  sta+s+cal  models  of  normalcy,  and  thereby   anomaly,  for  sensor  +me  series  data   o  Step  3:  Correlate  mul3modal  streams,  using  spa+o-­‐ temporal  informa+on,  to  explain  “anomalies”  in  sensor   +me  series  data  with  textual  events   Multimodal Data Integration: Traffic Scenario 13  
  • 14. •  How?   o  Step  1:  Extract  textual  events  from  tweets  stream   o  Step  2:  Build  sta+s+cal  models  of  normalcy,  and  thereby   anomaly,  for  sensor  +me  series  data   o  Step  3:  Correlate  mul3modal  streams,  using  spa+o-­‐ temporal  informa+on,  to  explain  “anomalies”  in  sensor   +me  series  data  with  textual  events   Multimodal Data Integration: Traffic Scenario 14  
  • 15. Processing Multimodal Manifestations in PCS Systems 15   PCS  Event     Extrac3on   PCS  Event     Understanding   PCS  Ac3on     Recommenda3on   •  What  are  the  events  of  interest?     •  How  do  they  manifest  in  observa+onal  data?     •  How  can  we  extract  events  from  observa3onal  data?     •  What  is  the  role  of  declara+ve  knowledge  in  event  extrac+on?   •  How  do  events  influence  one  another?   •  How  do  we  infer  the  interac3ons  from  observa3onal  data  across   mul3ple  modali3es  (numerical  and  textual  data)?     •  What  is  the  role  of  declara+ve  knowledge  and  PGMs  in  event   understanding?   •  How  can  we  represent  tasks  and  ac+ons?   •  How  can  we  u+lize  declara+ve  knowledge  to  recommend  ac+ons?     •  How  can  we  formalize  the  no+on  of  op+mal  ac+on?   [ACM-­‐TIST-­‐15]     [ITS-­‐13]     [AAAI-­‐15]  [SDM-­‐13]       [IEEE-­‐Int.-­‐Sys.-­‐13]     [ACM-­‐TIST-­‐15]  Extrac+ng  City  Traffic  Events  from  Social  Streams.  ACM  Transac+ons  on  Intelligent   Systems  and  Technology  Journal  2015.   [ITS-­‐13]  City  No+fica+ons  as  a  Data  Source  for  Traffic  Management,  20th  ITS  World  Congress  2013.         [IBM-­‐Tech.-­‐Rep.-­‐14]     [Bosch-­‐Internship-­‐14]  
  • 16. 16   People Reporting Various Events in a City on Twitter Public  Safety   Urban  planning   Gov.  &  agency     admin.   Energy  &  water   Environmental   Transporta3on   Social  Programs   Healthcare   Educa+on  
  • 17. 17   Extracting City Events from Twitter: Proposed Solution [ACM-­‐TIST-­‐15]  Extrac+ng  City  Traffic  Events  from  Social  Streams.  ACM  Transac+ons  on  Intelligent  Systems  and  Technology  Journal  2015.   Event  Extrac+on  Tool  on  Open  Science  Founda+on:  hUps://osf.io/b4q2t/wiki/home/    
  • 18. 18   Label  image  sequence  of  Jus+n  Bieber’s  day  J     Sleeping   Driving   Exercising Driving   Sleeping   Singing   This  image  of  concert  was   Important  in  labeling  the  next  image   Edwin  Chen’s  blog  on  CRF:  hUp://blog.echen.me/2012/01/03/introduc+on-­‐to-­‐condi+onal-­‐random-­‐fields/     Image  Credit:  hUp://bit.ly/1Th8CgL,  hUp://bit.ly/1Nzk5DR,  hUp://bit.ly/1VBbx7e,  hUp://bit.ly/1QkmBhb,  hUp://bit.ly/1SsyYzd,   hUp://bit.ly/1Nzl7j7     City Event Annotation: Conditional Random Fields (CRFs) – Intuition
  • 19. 19   The  global  normaliza+on  and  the  discrimina+ve  nature  of  the  model  dis+nguishes   CRFs  from  other  models  allowing  it  to  capture  long  distance  dependencies     City Event Annotation: Conditional Random Fields (CRFs) – Formalism Last  O  night  O  I  O  was  O  in  O  CA...  O  (@  O  Half  B-­‐LOCATION  Moon  I-­‐LOCATION  Bay  B-­‐ LOCATION  Brewing  I-­‐LOCATION  Company  O  w/  O  8  O  others)  O  hUp://t.co/w0eGEJjApY  O     {B-­‐LOCATION,  I-­‐LOCATION,  B-­‐EVENT,  I-­‐EVENT,  O}  Tagset  =  
  • 20. 20   0.6  miles   Max-­‐lat   Min-­‐lat   Min-­‐long   Max-­‐long   0.38  miles   37.7545166015625, -122.40966796875   37.7490234375, -122.40966796875   37.7545166015625,  -122.420654296875   37.7490234375, -122.420654296875   4   37.74933, -122.4106711   Hierarchical  spa+al  structure  of  geohash  for     represen+ng  loca+ons  with  variable  precision.   Here,  the  loca+on  string  is  5H34   0   1   2   3   4   5   6   7   8   9   B   C   D   E   F   G   H   I   J   K   L   0   1   7   2   3   4   5   6   8   9   0   1   2   3   4   5   6   7   0   1   2   3   4   5   6   7   8   Geohashing  wiki:  hUp://wiki.xkcd.com/geohashing/   Image  Credit:  Google  Maps     City Event Extraction: Spatio-Temporal-Thematic Aggregation
  • 21. 21   •  City  Event  Annota+on   –  Automated  crea+on  of  training  data     –  Annota+on  task  (our  CRF  model  vs.  baseline  CRF  model)   •  City  Event  Extrac+on   –  Use  aggrega+on  algorithm  for  event  extrac+on   –  Extracted  events  vs.  ground  truth   •  Dataset  (Aug  –  Nov  2013)   –  Over  8  million  tweets  from  San  Francisco  Bay  Area  (extracted   1042  events)   –  311  ac+ve  events  and  170  scheduled  events  from  511.org   (ground  truth)   Evaluation: Extracting City Events from Twitter
  • 22. Evaluation: City Event Annotation 22   Baseline  Annota+on  Model  [RiUer  et  al.  2012]   Our  Annota+on  Model   •  Baseline  CRF  model  (trained  on  a  huge  manually  created  data)  works  well  on  generic   tasks   •  Our  CRF  model  trained  on  automa+cally  generated  training  data  performs  on  par   with  the  baseline   •  Our  CRF  model  does  beUer  on  the  event  extrac+on  task  due  to  the  availability  of   event  related  knowledge     [RiUer  et  al.  2012]  Alan  RiUer,  Mausam,  Oren  Etzioni,  and  Sam  Clark  2012.  Open  domain  event  extrac+on  from  TwiUer.  In  Proceedings  of   the  18th  ACM  SIGKDD  Interna+onal  Conference  on  Knowledge  Discovery  and  Data  Mining.  ACM,  New  York,  NY,  1104–1112.  
  • 23. Complementary  Events   Textual Events from Tweets vs. 511.org: Complementary 23   traffic   incident;  road-­‐construc+on  
  • 24. Textual Events from Tweets vs. 511.org: Corroborative Corrobora+ve  Events   24   fog   visibility-­‐air-­‐quality;  fog  
  • 25. Timeliness   Textual Events from Tweets vs. 511.org: Timeliness 25   concert   concert  
  • 26. Extracting Textual Events from Tweets for Data from May-14 to May-15 1Event  Extrac+on  Tool  on  Open  Science  Founda+on:  hUps://osf.io/b4q2t/wiki/home/     NER  –  Named  En+ty  Recogni+on   OSM  –  Open  Street  Maps   39,208  traffic  related  incidents  extracted  from  over  20  million  tweets1   26   [ACM-­‐TIST-­‐15]  Extrac+ng  City  Traffic  Events  from  Social  Streams.  ACM  Transac+ons  on  Intelligent  Systems  and  Technology  Journal  2015.  
  • 27. •  How?   o  Step  1:  Extract  textual  events  from  tweets  stream   o  Step  2:  Build  sta+s+cal  models  of  normalcy,  and  thereby   anomaly,  for  sensor  +me  series  data   o  Step  3:  Correlate  mul3modal  streams,  using  spa+o-­‐ temporal  informa+on,  to  explain  “anomalies”  in  sensor   +me  series  data  with  textual  events   Multimodal Data Integration: Traffic Scenario 27  
  • 28. Image  credit:  hUp://traffic.511.org/index     Mul+ple  events     Varying  influence     Event  interac+ons   Time  of  Day  (approx.  1  observa+on/minute)  Speed  in  km/h   Building Normalcy Models of Traffic Dynamics*: Challenges *Traffic  Dynamics  here  refers  to  speed  and  travel  +me  varia+ons  observed  in  sensor  data   28  
  • 29. •  Temporal  landmarks  :  peak  hour  vs.  off-­‐peak  traffic   vs.  weekend  traffic   •  Effect  of  loca+on   •  Scheduled  events  such  as  road  construc+on,  baseball   game,  or  music  concert   •  Unexpected   events   such   as   accidents,   heavy   rains,   fog   •  Random  varia+ons  (viz.,  stochas+city)  such  as  people   visi+ng  downtown  by  mere  coincidence     Possible Causes of Nonlinearity in Traffic Dynamics 29  
  • 30. Modeling City Traffic Dynamics: A Closer Look Image  credits:  hUp://bit.ly/1N1wu5g,  hUp://bit.ly/1O8d9gn,  hUp://bit.ly/1N8L5•,  hUp://bit.ly/1HLDYui         Events   People   Influx   Vehicle   Influx   Vehicle   Speed   Hidden  State   Observed  Evidence   30   link1   link2   link3   road1  =  [link1,link2,link3]  
  • 31. Modeling City Traffic Dynamics: Nature of the Problem Hidden  States   Observed  Evidence  1.  There  are  both  hidden  states  and  observed  evidence   2.  Current  observed  evidence  indica3ve  of    the  current  hidden  state   3.  Current  hidden  states  depends  on  the  previous  hidden  states   T  is  a  discrete  3me  step  in  the   3me  series  data  being  modeled   31   Events   People   Influx   Vehicle   Influx   Events   (T)   People   Influx   (T)   Vehicle   Influx  (T)   Events   (T)   People   Influx   (T)   Vehicle   Influx   (T)   Events   (T-­‐1)   People   Influx   (T-­‐1)   Vehicle   Influx   (T-­‐1)   Vehicle   Speed   Vehicle   Speed   (T)  
  • 32. Modeling the Problem as Linear Dynamical System (LDS) 1.  There  are  both   hidden  states  and   observed  evidence   2.  Current  observed   evidence  indica3ve  of  the   current  hidden  state   3.  Current  hidden   state  depends  on   the  previous   hidden  state   v1   s1   …   …   v2   s1   vT   sT   v1   s1   …   …   v2   s1   vT   sT   v1   s1   …   …   v2   s1   vT   sT   For  simplicity  of  explana+on,  we   consider  vehicle  influx  as  a   hidden  variable  and  the  observed   speed  as  evidence     variable   Vehicle  influx  at  a  certain  point  in   +me  t  would  influence  speed  of   vehicles  at  the  same  +me  t   Vehicle  influx  at  a  certain  point  in   +me  t  depends  only  on  the   vehicle  influx  at  +me  t-­‐1   32  
  • 33. Probabilistic Reasoning Over Time: Discrete Variables Russell,  Stuart,  and  Peter  Norvig.  "Ar+ficial  intelligence:  a  modern  approach."  (1995).   Image  credits:  hUp://bit.ly/1Q9qmvk,  hUp://bit.ly/1lm9BAs,  hUp://bit.ly/1LXqOFd     Evidence  (U)   States  (R)   State  transi+on  model  is  given  by     With  First-­‐Order  Markov  assump3on,   the  transi+on  model  is     Transi3on  model   Observa3on  model   Observa+on  model  with  sensor  Markov   assump3on  is  given  by   P(Rt  |  R0:t-­‐1)   P(Rt  |  Rt-­‐1)   P(Ut  |  R0:t,U0:t-­‐1)  =  P(Ut  |  Rt)     Specifying  t  transi+on  and  observa+on  models   is  imprac+cal.  So,  another  assump+on:   sta3onary  process   Rt-­‐1        P(Rt)   t                    0.7   f                    0.3   Rt        P(Ut)   t                    0.9   f                    0.1   33  
  • 34. Probabilistic Reasoning Over Time: Continuous Variables v1   s1   …   …   v2   s1   vT   sT   Linear  Dynamical  System  (LDS):  Replacing   discrete  valued  state  and  observa+on  nodes   (previous  slide)  with  conHnuous  valued  states   and  observa+ons,  we  get  an  LDS  model   The  transi3on  model  is  specified  by  At   and  the  observa3on  model  is  specified  by   Bt  along  with  associated  Gaussian  noise   The  joint  distribu+on  over  all  the  hidden   and  observed  variables  is  shown  along   with  the  condi+onal  distribu+ons   Barber,  David.  Bayesian  reasoning  and  machine  learning.  Cambridge  University  Press,  2012.   34  
  • 35. Hourly Link Speed Dynamics Over all Mondays between Aug-14 to Jan-15 x-­‐axis:  observa3on  number  for  each  hour  of  day   y-­‐axis:  average  speed  of  vehicles  in  km/h     35  
  • 36. 36   Switching Linear Dynamical Systems v1   s1   …   …   v2   s1   vT   sT   h1   h2   hT  …   Switching  Linear  Dynamical  System  (SLDS):  A   discrete  switch  variable  at  each  +me  t  describes   the  appropriate  LDS  to  be  used.  SLDS  can  capture   jumps  between  mul3ple  linear  dynamics.     v1   s1   …   …   v2   s1   vT   sT   h1   h2   hT  …   Restricted  Switching  Linear  Dynamical  System   (RSLDS):  Restric+ng  the  switch  variable  transi+ons  in   SLDS,  we  proposed  RSLDS  [AAAI-­‐16]  which  captures   the  switching  behavior  based  on  hour  of  the  day  and   day  of  the  week.   The  transi3on  model  is  specified  by  At(ht)  and  the   observa3on  model  is  specified  by  Bt(ht)   [AAAI-­‐16]  Understanding  City  Traffic  Dynamics  U+lizing  Sensor  and  Textual  Observa+ons.  The  Thir+eth   AAAI  Conference  on  Ar+ficial  Intelligence,  2016  
  • 37. Modeling City Traffic Dynamics: Choosing a Suitable Model "All  models  are  wrong,  but  some  are  useful.”  -­‐  George  Box   •  Differen+ate  various  traffic  dynamics   –  Gaussian  mixture  model  does  not  discriminate  between   increasing  speed  vs.  decreasing  speed  dynamics   •  Account  for  unobserved  factors   –  Autoregressive  models  cannot  capture  unobserved  factors   •  E.g.,  “Unobservable”  traffic  volume  dictates  event  manifesta+ons   in  link  speed  and  travel  +me  varia+ons   –  Linear  Dynamical  System  introduces  latent  state-­‐based   model   •  E.g.,  Traffic  volume,  road  lane  closures,  and  weather  condi+ons     •  Emission/Transi+on  matrix  and  Gaussian  noise  captures   stochas+city   37  
  • 38. 38   Learning Context Specific LDS Models 7  ×  24   LDS(1,1),  LDS(1,2)      ,….,  LDS(1,24)   LDS(7,1),  LDS(7,2)      ,….,  LDS(7,24)   .   .   .   di   hj   Mon. Tue. Wed. Thu. Fri. Sat. Sun. Mon. Tue. Wed. Thu. Fri. Sat. Sun.Speed/travel-­‐+me  +me     series  data  from  a  link   Time  series  data  for   each  hour  of  day  (1-­‐24)   for  each  day  of  week   (Monday  –  Sunday)   Mean  +me  series   computed  for  each  day   of  week  and  hour  of  day   along  with  the  medoid   168  LDS  models  for   each  link;  Total  models   learned  =  425,712  i.e.,   (2,534  links  ×  168   models  per  link)       Step  1:  Index  data  for  each   link  for  day  of  week  and  hour   of  day  u+lizing  the  traffic   domain  knowledge  for  piece-­‐ wise  linear  approxima+on   Step  2:  Find  the  “typical”   dynamics  by  compu+ng  the   mean  and  choosing  the   medoid  for  each  hour  of  day   and  day  of  week   Step  3:  Learn  LDS  parameters   for  the  medoid  for  each  hour   of  day  (24  hours)  and  each  day   of  week  (7  days)  resul+ng  in   24  ×  7  =  168  models  for  each   link  
  • 39. Learning Normalcy for Each Link, Day of Week, and Hour of Day Log-­‐likelihood      score   39   Five-­‐number  summary  of  log-­‐likelihood  scores  for  a  link,  day  of  week,  hour  of  day  
  • 40. 40   Tagging Anomalies using Context Specific LDS Models Compute  Log  Likelihood  for     each  hour  of  observed  data   (di,hj)   LDS(hj,di)   7  ×  24   Lik(1,1),  Lik(1,2)      ,….,  Lik(1,24)   Lik(7,1),  Lik(7,2)      ,….,  Lik(7,24)   .   .   .   Train ?   Yes  (Training  phase)   Tag  Anomalous  hours  using  the   Log  Likelihood  Range   No   (di,hj)   (min.  likelihood)   Anomalies   L  =   Par33on  based  on  (di,hj)   Speed  and  travel-­‐+me  +me     Observa+ons  from  a  link   Log  likelihood  min.  and     max.  values  obtained  from     five  number  summary   Par33on  based  on  (di,hj)   7  ×  24   LDS(1,1),  LDS(1,2)      ,….,  LDS(1,24)   LDS(7,1),  LDS(7,2)      ,….,  LDS(7,24)   .   .   .   di   hj   (Input)   (Output)  
  • 41. •  How?   o  Step  1:  Extract  textual  events  from  tweets  stream   o  Step  2:  Build  sta+s+cal  models  of  normalcy,  and  thereby   anomaly,  for  sensor  +me  series  data   o  Step  3:  Correlate  mul3modal  streams,  using  spa+o-­‐ temporal  informa+on,  to  explain  “anomalies”  in  sensor   +me  series  data  with  textual  events   Multimodal Data Integration: Traffic Scenario 41  
  • 42.   •  Anomaly  in  link  data  during  +me  period  [ast,aet],  is   explained  by  an  event  if  the  event  occurs  within   0.5km  radius  and  during  [ast-­‐1,  aet+1].   •  CAVEAT:  An  anomaly  may  not  be  explained  because   of  missing  data.     Explaining Anomalies in Sensor Data using Textual Events 42   Anomalies   ⟨et,  el,  est,  eet,  ei⟩   Explained_by     Link  sensor  data   City  tweets   ⟨ast,  aet⟩   Δte  =  est  ~  eet   Δta  =  (ast  –  1)  ~  (aet  +  1)   Explains   (if  there  is  an  overlap     between  Δte  and  Δta)   PCS  Event     Extrac3on  
  • 43. •  Data  collected  from  San  Francisco  Bay  Area  between   May  2014  to  May  2015   –  511.org:  (1)  1,638  traffic  incident  reports  (2)  1.4  billion   speed  and  travel  +me  observa+ons   –  TwiUer  Data:  39,208  traffic  related  incidents  extracted   from  over  20  million  tweets   •  Learning  normalcy  model  for  one  link  takes  40   minutes1  (~  2  months  for  processing  2,534  links)   •  Scalable  implementa+on  on  Apache  Spark2  resulted   in  learning  normalcy  models  for  2,534  links  within  24   hours   Real-World Dataset and Scalability Issues 43   12.66  GHz,  Intel  Core  2  Duo  with  8  GB  main  memory  machine   2Cluster  used  for  evalua+on  had  865  cores  and  17TB  main  memory  
  • 44. Multimodal Data Integration: Evaluation 44  
  • 45. •  Examined  the  theore3cal  nature  of  the  problem  of   modeling  traffic  dynamics  to  systema+cally   recommend  Linear  Dynamical  Systems  (LDS)   •  Formalized  nonlinear  traffic  dynamics  using   piecewise  linear  approxima+on  derived  from  traffic   domain  knowledge   •  Created  normalcy  models  based  on  log-­‐likelihood   scores  for  spo‡ng  traffic  anomalies  in  sensor  data   •  Evaluated  our  approach  over  a  real-­‐world  dataset   collected  from  511.org  and  TwiUer  for  over  a  year   (May-­‐2014  to  May  2015)  with  promising  results   45   Multimodal Data Integration: Conclusion
  • 46. Processing Multimodal Manifestations in PCS Systems 46   PCS  Event     Extrac3on   PCS  Event     Understanding   PCS  Ac3on     Recommenda3on   •  What  are  the  events  of  interest?     •  How  do  they  manifest  in  observa+onal  data?     •  How  can  we  extract  events  from  observa3onal  data?     •  What  is  the  role  of  declara+ve  knowledge  and  PGMs  in  event   extrac+on?   •  How  do  events  influence  one  another?   •  How  do  we  infer  the  interac3ons  from  observa3onal  data  across   mul3ple  modali3es  (numerical  and  textual  data)?     •  What  is  the  role  of  declara+ve  knowledge  and  PGMs  in  event   understanding?   •  How  can  we  represent  tasks  and  ac+ons?   •  How  can  we  u+lize  declara+ve  knowledge  to  recommend  ac+ons?     •  How  can  we  formalize  the  no+on  of  op+mal  ac+on?   [ATMSB-­‐15]  [ATS-­‐13]       [SAH-­‐13]     [IBM-­‐Tech.-­‐Rep.-­‐14]     [Bosch-­‐Internship-­‐14]         [IBM-­‐Tech.-­‐Rep.-­‐14] Dynamic  Update  of  Public  Transport  Schedules  in  Ci+es  Lacking  Traffic  Instrumenta+on,  IBM   Research  Technical  Report  2014.   [Bosch-­‐Internship-­‐14]  Task  Assistance  within  IoTS  Network,  Bosch  Summer  Internship  Work,  2014.   [ACM-­‐TIST-­‐15]     [ITS-­‐13]    
  • 47. •  Contributed  to  a  language  to  represent  tasks   –  Using  Seman+c  Web  based  representa+on  for   •  Reusing  knowledge  on  the  web   •  Integra+on  of  knowledge  in  distributed  environments        (like  the  web  and  UhU1  /  IoTS  network)   •  Developed  algorithms  to  recommend  tasks     –  Formulated  the  problem  of  recommending  op+mal  ac+on   toward  a  goal2  by  handling  task  failure  in  a  robust  manner   •  Developed  a  framework  to  evaluate  task   recommenda+on   –  Using  a  simulator  for  world  states  and  user  ac+ons   47   Do-It-Yourself (DIY) Task Recommendation: Bosch Internship, 2014 1Bosch  IoT  middleware   2  Op+mal  ac+on  is  formulated  as  a  Markov  Decision  Process  with  transi+on  and  cost  matrices  ini+alized  using  declara+ve  knowledge  of  tasks    
  • 48. Revisiting the Thesis Statement 48   PCS  Event     Extrac3on   PCS  Event     Understanding   PCS  Ac3on     Recommenda3on   [ACM-­‐TIST-­‐15]     [ITS-­‐13]     [AAAI-­‐16]  [SDM-­‐13]       [IEEE-­‐Int.-­‐Sys.-­‐13]     [IBM-­‐Tech.-­‐Rep.-­‐14]     [Bosch-­‐Internship-­‐14]   U3lize  declara3ve  knowledge   of  loca3ons  and  events  to   train  sequence  labeling  models   for  annota3on  and  event   extrac3on   U3lize  declara3ve  knowledge   of  ac3ons  to  formulate  the   problem  of  op3mal  ac3on   recommenda3on  as  a   sequen3al  decision  problem       U3lize  textual  events  to   explain  varia3ons  in  sensor   data  modeled  using  context   (link,  loca3on,  3me)  specific   probabilis3c  3me  series   models     Observa3ons   from   diverse   modali3es   can   provide   complementary,   corrobora3ve,   and   3mely  informa+on  about  events  in  Physical-­‐Cyber-­‐Social  systems.  Probabilis3c  Graphical   Models  with  the  help  of  declara3ve  domain  knowledge  provide  an  effec+ve  mechanism  to:   (a)  uncover  and  interpret  mul3modal  event  manifesta3ons  in  textual  and  numerical  data,   (b)   explore   event   interac3ons   and   dynamics,   and   (c)   formalize   op3mal   ac3on   recommenda3on  in  Physical-­‐Cyber-­‐Social  systems.  
  • 49. 49   Conclusion •  Observa+ons  from  people  can  provide  complementary,   corrobora3ve,  and  3mely  informa+on  in  PCS  systems.   •  We  demonstrated  that  probabilis+c  graphical  models   (PGMs)  are  a  natural  fit  to  deal  with  PCS  challenges.   •  We  found  that  declara3ve  domain  knowledge  can   complement  PGMs  in   –  Automa+c  crea+on  of  large  training  data  for  training  sequence   labeling  models   –  Knowledge-­‐driven  piecewise  linear  approxima+on  of  nonlinear   +me  series  dynamics  using  Linear  Dynamical  Systems  (LDS)   –  Bayesian  Network  structure  refinement  using  ConceptNet5   –  Transforming  knowledge  of  goals  and  ac+ons  into  a  Markov   Decision  Process  (MDP)  formalism  
  • 50. 50   Probabilistic Graphical Models, Declarative Knowledge, and PCS Systems Declara+ve   Knowledge   Data   Textual   Numerical   Parameters   Annotate   Parameters   Structure   PGMs  (e.g.,  CRF,  BN,  LDS,  MDP)   PCS  Applica+ons  (e.g.,  SmartCity,  SmartHealth,  DIY  Task  Recommenda+on)   Commonsense     Knowledge   Domain  Ontologies     and  Open  Data   Mul+modal  Data   Top-­‐down   Bokom-­‐up   PCS  Event     Extrac3on   PCS  Event     Understanding   PCS  Ac3on     Recommenda3on   [ACM-­‐TIST-­‐15]     [AAAI-­‐16]     [ACM-­‐TIST-­‐15]     [Bosch-­‐Internship-­‐14]   [SDM-­‐13]   CRF  –  Condi+onal  Random  Field   BN  –  Bayesian  Network   LDS  –  Linear  Dynamical  Systems   MDP  –  Markov  Decision  Process   Structure   [SDM-­‐13]   [AAAI-­‐16]     [Bosch-­‐Internship-­‐14]  
  • 51. 51   Personalized Digital Health for Asthma Management in Children Sensordrone (Carbon monoxide, temperature, humidity) Sensor Platforms Android Device (w/ kHealth App) Node Sensor (exhaled Nitric Oxide) Fitbit ChargeHR (Activity, sleep quality) Pollen level Air  Quality   Temperature & Humidity kHealth  for  asthma  project  page:  hUp://wiki.knoesis.org/index.php/Asthma     kHealth  project  page:  hUp://knoesis.org/projects/khealth    
  • 52. 52   PhD @ Kno.e.sis Awards  and  Recogni3on   2016  Outstanding  Graduate  Student  Award  in  the  PhD  in  Computer  Science  and   Engineering  Program.   2015  Selected  to  par+cipate  in  the  NSF-­‐funded  Data  Science  Workshop  at  University  of   Washington,  SeaUle,  Aug  5–7.   2014  Offered  the  Eric  &  Wendy  Schmidt  Data  Science  for  Social  Good  Fellowship.   2013  A  short  ar+cle  on  my  research  appeared  in  Wright  State  University  newsroom.   2013  Invited  to  aUend  Dagstuhl  Seminar  on  Physical-­‐Cyber-­‐Social  Compu+ng.   2012  Best  research  showcase  award  for  my  internship  work  at  IBM  Research,  India.   Professional  Experience   •  2014  Internship  at  Bosch  Research  and  Technology  Center   •  2013  Visi+ng  Doctoral  Student  at  University  of  Surrey   •  2011,  2012  Internships  at  IBM  Research     Published  in  ACM  TIST  Journal,  AAAI,  ACM  Web   Science,  and  IEEE  Computer   Program  Commikee  (PC)  member  of   conferences  such  as  WWW-­‐16,  WWW-­‐15,   WWW-­‐14,  ISWC-­‐15,  ISWC-­‐14,  ISWC-­‐13,  ESWC-­‐16,   IJCAI-­‐13       Tutorials     •  Data  Processing  and  Seman+cs  for  Advanced  Internet  of  Things  (IoT)  Applica+ons:  modeling,  annota+on,  integra+on,   and  percep+on,  Tutorial  Presenta+on  at  The  3rd  Interna+onal  Conference  on  Web  Intelligence,  Mining  and   Seman+cs  (WIMS  '13),  Madrid,  Spain.   •  Trust  Networks:  Interpersonal,  Sensor,  and  Social,  Tutorial  Presenta+on  at  Interna+onal  Conference  on  Collabora+ve   Technologies  and  Systems  (CTS  2011),  Philadelphia,  Pennsylvania,  USA.   Proposals   NSF:  Contributed  to  mul+ple,  out   of  which,  one  collabora+ve   proposal  was  funded  ($1.9  million).   NIH:  Lead  one  proposal  which  is   recommended  for  funding  ($900K).   EU  FP7:  Contributed  to  CityPulse,  a   mul+-­‐ins+tu+on  IoT  based  Smart   City  project  (€2.5  million).   Patents   •  US20150006644  A1:  Assessing  Impact  of  Events  on  Public  Transporta+on  Network   •  US20140372364  A1:  A  System  and  Method  for  U+lity-­‐Based  Evolu+on  in  a  Constrained  Ontology  
  • 53. [AAAI-­‐16]  Pramod  Anantharam,  Krishnaprasad  Thirunarayan,  Surendra  Marupudi,  Amit  Sheth,  Tanvi  Banerjee.  (2016)   Understanding  City  Traffic  Dynamics  U+lizing  Sensor  and  Textual  Observa+ons.  at  The  Thir+eth  AAAI  Conference  on   Ar+ficial  Intelligence  (AAAI-­‐16),  February  12-­‐-­‐17,  Phoenix,  Arizona,  USA  (accepted)   [ACM-­‐TIST-­‐15]  Pramod  Anantharam,  Payam  Barnaghi,  Krishnaprasad  Thirunarayan,  and  Amit  Sheth.  2015.   Extrac+ng  City  Traffic  Events  from  Social  Streams.  ACM  Trans.  Intell.  Syst.  Technol.  6,  4,  Ar+cle  43  (July  2015),  27  pages.   DOI=10.1145/2717317  hUp://doi.acm.org/10.1145/2717317       [IBM-­‐Tech.-­‐Rep.-­‐14]  Pramod  Anantharam,  Biplav  Srivastava,  Raj  Gupta.   Dynamic  Update  of  Public  Transport  Schedules  in  Ci+es  Lacking  Traffic  Instrumenta+on,  IBM  Research  Technical  Report   2014.   [ITS-­‐13]  Pramod  Anantharam  and  Biplav  Srivastava,  City  No+fica+ons  as  a  Data  Source  for  Traffic  Management,  In   Proceedings  of  the  20th  ITS  World  Congress  2013,  October  14-­‐18,  2013,  Tokyo,  Japan.   [SDM-­‐13]  Pramod  Anantharam,  Krishnaprasad  Thirunarayan,  and  Amit  Sheth,   Traffic  Analy+cs  using  Probabilis+c  Graphical  Models  Enhanced  with  Knowledge  Bases,  2nd  Interna+onal  Workshop  on   Analy+cs  for  Cyber-­‐Physical  Systems  (ACS-­‐2013)  at  SIAM  Interna+onal  Conference  on  Data  Mining  (SDM13),  Texas,  USA,   May  2-­‐4,  2013.   [ACM-­‐WebScience-­‐12]  Pramod  Anantharam,  Krishnaprasad  Thirunarayan,  and  Amit  Sheth,   Topical  Anomaly  Detec+on  from  TwiUer  Stream,  Research  Note:  In  the  Proceedings  of  ACM  Web  Science  2012,  Evanston,   Illinois,  pp.  23-­‐26,  June  22-­‐24,  2012.   [IEEE-­‐Int.-­‐Sys.-­‐13]  Amit  Sheth,  Pramod  Anantharam,  Cory  Henson,   Physical-­‐Cyber-­‐Social  Compu+ng:  An  Early  21st  Century  Approach,  IEEE  Intelligent  Systems,  vol.  28,  no.  1,  pp.  78-­‐82,  Jan.-­‐ Feb.,  2013.      hUp://doi.ieeecomputersociety.org/10.1109/MIS.2013.20     [FCGS-­‐13]  Krishnaprasad  Thirunarayan,  Pramod  Anantharam,  Cory  Henson,  and  Amit  Sheth,   Compara+ve  Trust  Management  with  Applica+ons:  Bayesian  Approaches  Emphasis,  In  the  Journal  of  Future  Genera+on   Computer  Systems  (FGCS),  Elsevier,  25  pages,  May  2013,  hUp://dx.doi.org/10.1016/j.future.2013.05.006     [Bosch-­‐Internship-­‐14]  Task  Assistance  within  IoTS  Network,  Bosch  Internship  Work,  Summer  2014.   53   Selected Publications
  • 54. 54   Dr.  Payam  Barnaghi   Dr.  Biplav  Srivastava   Dr.  Cory  Henson   Dr.  Shalini  Forbis,  MD,  MPH   Prof.  Amit  Sheth   (Advisor)   Prof.  Krishnaprasad     Thirunarayan   (Advisor)   Prof.  Shaojun  Wang   Acknowledgements
  • 55. Thank you J 55   kHealth  Team   Dr.  Tanvi  Banerjee   Surendra  Marupudi   Vaikunth  Sridharan     Dan  Vanuch   Sujan  Perera   And  all  my  colleagues  and  friends…   Vahid  Taslimi   Kno.e.sis,  Data  Mining  Lab