SlideShare ist ein Scribd-Unternehmen logo
1 von 2
Downloaden Sie, um offline zu lesen
ENVIRONMENTAL CHANGES OF THE LAST 30,000 YEARS
                                                                                             IN THE GAS HYDRATE AREA OF JOETSU BASIN
                                                                                                   EASTERN MARGIN OF JAPAN SEA
6th International Conference on Gas Hydrates
The Fairmont Hotel Vancouver                               Antonio Fernando Menezes Freire*1,2, Eiichi Takeuchi*2, Akinori Nagasaka*2, Akihiro Hiruta*2, Osamu Ishizaki*2, Toshihiko Sugai*1, Ryo Matsumoto*2
Vancouver, BC, CANADA July 6-10, 2008                                                                                                   fernando@nenv.k.u-tokyo.ac.jp
                                                                           *1
                                                                                Department of Natural Environmental Studies, University of Tokyo, 524, Environmental Bldg. 5-1-5, Kashiwanoha Campus, Chiba 277-8563 Japan
                                                                                        *2
                                                                                           Department of Earth and Planetary Science, University of Tokyo, 7-3-1, Hongo Campus, Bunkyo-ku, Tokyo 113-0033 - Japan
                                                                                                                                                                                                                                                                                    1/2

                                               CORE LOCATIONS
                                               CORE LOCATIONS MAP                                                                                                                                                                   GAS HYDRATE STUDY AREA
                                                                                                                      MAIN PURPOSES
                                                                                                                      A) To understand the sedimentar history of the Late Quaternary
                                                                                                                         using the stratigraphic and geochemical records from piston-
                                                                                                                         cores collected on a gas hydrate area located on the Eastern
                                                                                                                         Margin of Japan Sea, south of the Sado Islands (Figs. 01 and 02)
                                                                                                                      B) To make a correlation between these records on Japan Sea
                                                                                                                         and those observed on the drilling core CK-06 on the Eastern
                                                JAPAN SEA              CK-06                                             Margin of the Pacifc Ocean, east of Shimokita Peninsula (Fig. 01).
                                                                       (SHIMOKITA PENINSULA )                         C) To infer the methane flux variations along the geologic time
                                                  UT-07/NT-07-20                                                         using geochemical data.
                                               PC-701
                                                                                  PACIFIC OCEAN




                                                                                                                                                                                                                              Fig. 02: Map of the study area showing Joetsu Knoll and
                                                                                                                                                                                                                              Umitaka Spur gas hydrate areas. Also this map shows
                                                                                                                                                                                                                              piston coring location.
    Fig. 01: Core location map. UT-07 (Umitaka Maru) cruise and NT-07-20 (Natsushima Cruise) are located
                                                                                                                                                                                                                        13
    over Umitaka Spur and Joetsu Knoll gas hydrate areas. PC-701 is a reference site and belongs to UT-07
    cruise. CK-06 (Chikyo) cruise is located at Pacific Ocean and is a refence to make correlation.
                                                                                                                                                               TOTAL ORGANIC CARBON AND d C CONCENTRATIONS
                                                                                                                                                               The Holocene/Pleistocene Boundary
                                                                                                                                                               Piston cores data from the study area shows a clear upward increasing of both TOC and
    ABSTRACT                                                                                                                                                   d13C contents. It is possible to identify a shift on TOC curve, from 1.3% to 2.0% and from
    Recently, we recognized active methane venting and gas hydrates, which are widely distributed on just below                                                -26‰ to -22‰ on d13C curve, around 3.5 m depth in reference piston core PC-701 graph
    the sea floor in the Joestu basin, eastern margin of Japan Sea. This study has the intention to give support                                               (Figure 03a). The same increased pattern can be observed in piston cores PC-702
    for future works, understanding the Late Quaternary history of the study area.                                                                             (Figure 03b) and PC-706 (Figure 03c), respectively located over Joetsu Knoll and Umitaka
    Interbedded dark gray thinly laminites and dark brown to gray bioturbated units are common throughout the                                                  Spur gas hydrate areas, but at different depths. These shift depths represent important
    Quaternary sediments of Japan Sea, and have been often explained in terms of glacio-eustatic sea-level                                                     changes on environmental conditions in the study area: Below occurs a relative small TOC
    changes. These layers have a very good correlation because they occur in all Japan Sea. We used total                                                      production with d13C values around -26‰ and, above this shift, occurs a higher TOC
    organic carbon (TOC) content and carbon isotopic composition of the gas hydrates bearing-sediments in                                                      production with heavier d13C isotopic composition.
    order to identify the nature of the organic matters present in the study area and to make a correlation with                                               CK-06 and GISP-2 (Figure 04) TOC and d13C profiles have very similar pattern and are
    samples collected in the Pacific Ocean. Associated with XRD analysis, these data helped us to locate the                                                   very easily correlated with Japan Sea study area. The conclusion is that both Japan Sea
    Holocene/Pleistocene boundary, to identify key stratigraphic surfaces, and to recognize sulfate-methane                                                    and Pacific Ocean had the same changes on organic matter production, and the
    interfaces. Different SMI occurs due methane flux variation with the geologic time.                                                                        boundary Holocene/Pleistocene is very well marked using this criteria.
                                                             d                                                                                                               d                        d
                                                                                                                                                                                                                                                   d
                                                                                                                     d


                TL-1                      14
                          Foraminifera C (10.9~7.4Ka)                                                                                                                                          d
                                                                                                                                             TL-1
                                                                                      TL-1

                                                                                                                                             TL-2
                TL-2

                          Foraminifera C14 (19.6~15.8Ka)
                                                                                      TL-2                                         Fig. 03c: PC-706 located over Umitaka Spur gas hydrate
        Vvvvv                   AT ash layer (~30Ka)                                                                               site. Curves show the same pattern.
                                                                          Fig. 03b: PC-702 located over Joetsu Knoll gas hydrate                                                                                    d                                             d
                                                                          site.The same pattern can be seen in both TOC and d13C
Fig. 03a: PC-701 reference piston core. Both TOC and d13C curves show and both thin laminated -1 (TL-1) and TL-2 are present.
a shift around 3.5m and it represents changes on organic matter production.
This depth is here interpretated like the boundary between Holocene and
Pleistocene and it is confirmed by C14 dating from foraminifera tests and
the occurrence of AT tephra layer (~30Ka).



      THE NATURE OF ORGANIC MATTER: MARINE vs. TERRESTRIAL                                                                                                                            Fig. 04: Correlation between CK-06 drilling core and GISP-2 ice core. The same increased pattern
                                                                                                                                                                                      on both TOC and d13C curves, associated with foraminifera C14 dating indicate the boundary
      TOC and d13C content indicate the origin and intensity of organic matter production. The warmer of the sea water and the rise
                                                                                                                                                                                      Holocene/Pleistocene. The d18O curve from GISP-2 indicates warmer conditions at Holocene
      of the sea level during Holocene induced the free communication between Japan Sea and the Pacific Ocean because the                                                             time and the TOC curve shows that a more effective organic matter production occurs. Also,
      straits are more deep and large. Because this condition, more warm-water species of diatom and radiolaria became more                                                           the d13C curve indicate heavier isotope compositions and, according Burdige, 2006, it reflects a
                                                                                                     12                                                                               marine organic matter production. Pacific Ocean curves are very easily correlated with Japan Sea
      present at Japan Sea [Oba et al. 1991]. As organic matter, generated by plankton, removes C selectively from the surface
                   13                                                                                 13                                                                              curves and both have the same signature.
      water, the d C of planktonic foraminiferal tests becomes heavier. According Burdige [2006], d C of TOC, in association with
      nitrogen content can potentially be used to differentiate sources of organic matter. Organic matter produced by phytoplankton
      has very different d13C values from that produced by land plants because of differences in the isotopic composition of their
      carbon source [Burdige, 2006]. The primary carbon source for marine phytoplankton is seawater bicarbonate, with a d13C of
      ~0‰. In contrast, land plants use atmospheric CO2 as their carbon source, with d13C of around -7‰ [Burdige, 2006]. Differences
      in the mechanisms of CO2 uptake by terrestrial plants (CO2 diffusion) versus marine plants (active uptake of bicarbonate in most
      cases) also lead to some additional amounts of carbon fractionation during photosynthesis. As a result of all of these factors,
                                                13
      marine organic matter generally has a d C of around -17‰ to -22‰ and terrestrial organic matter of around -25‰ to -28‰
      [Burdige, 2006].
      Marine organic matter generally has a C/N ratio between 5 and 10 and fresh terrestrial organic matter has a C/N ratio >20.
      These differences are a result of dissimilarities in the structural components of marine versus terrestrial plants: carbon-rich
      lignocelluloses in the latter and nitrogen-containing proteins in the former.
      While the Holocene is characterized by a higher marine organic matter production, Pleistocene is characterized by lower
                                               13
      organic matter production with lighter d C isotopic composition due to terrestrial organic matter source. The anoxic layer
      TL-2 in this time are due the lower water circulation because sea level drops on LGM. During this time, when the sea level was
      120m below present sea level, the coastal line was very close present shelf broken and the shallow and narrow straits (Figure
      05) reduced drastically the sea water circulation causing clay minerals and organic matter to stay more time at suspension
      inducing strong anoxic conditions and the occurrence of dark-gray thin laminated mud. The crossplot with data from both CK-06
      and UT-07 cruise shows three groups of organic matter values (Figure 06a) and, according Burdige [2006] criteria, it is possible
      to infer the nature of organic matter production at each geologic time. Comparing to Japan Sea study area, the samples from
      Pacific Ocean have more relation with marine production. Crossplot with samples only from Japan Sea study area (Figure 06b)
      shows that, excepting PC-701, organic matter has a terrestrial or mixing source. Umitaka Spur and Joetsu Knoll (Figures 02
      and 05) are closer to shore line than PC-701 and, at Pleistocene, the “bay” stage induced weak circulation.
                                                                                                                                                                                      Fig. 05: Coastal and bathymetric map of Joetsu basin, south of Sado Islands frompresent and
                                                                                                                                                                                      during the LGM time, when the sea level dropped around 120m than present sea level. The
                                                                                                                                                                                      narrow and shallow strait between Sado Islands and the western coast of Japan limited the
                                                                                                                                                                                      circulation of sea water currents making Joetsu basin like a big bay.




                                                                                                                                                                                                               FIGURE XX




          Fig. 06:a) Crossplot TOC x d13C data from CK-06 (crosses) and UT-07 (squares). Three groups can be seen: relative higher TOC values and d13C heavier than ~-22‰
          (marine phytoplankton production); relative medium TOC and d13C between ~-22‰ and ~-25‰ (mixed or non determinate); and relative lower TOC and d13C lighter
          than ~-25‰ (vascular land plants). According Burdige, 2006. b) Crossplot TOC x d13C data from UT-07 samples. PC-701, located far from the coastal line and into a
          typically depositional site, shows a large range of values and indicate both terrestrial and marine organic matter source. The other cores have a small range between
          terrestrial to mixed organic matter, according Burdige [2006].
ENVIRONMENTAL CHANGES OF THE LAST 30,000 YEARS
                                                                                              IN THE GAS HYDRATE AREA OF JOETSU BASIN
                                                                                                    EASTERN MARGIN OF JAPAN SEA
6th International Conference on Gas Hydrates
The Fairmont Hotel Vancouver                          Antonio Fernando Menezes Freire*1,2, Eiichi Takeuchi*2, Akinori Nagasaka*2, Akihiro Hiruta*2, Osamu Ishizaki*2, Toshihiko Sugai*1, Ryo Matsumoto*2
Vancouver, BC, CANADA July 6-10, 2008                                                                                                    fernando@nenv.k.u-tokyo.ac.jp
                                                                            *1
                                                                                 Department of Natural Environmental Studies, University of Tokyo, 524, Environmental Bldg. 5-1-5, Kashiwanoha Campus, Chiba 277-8563 Japan
                                                                                         *2
                                                                                            Department of Earth and Planetary Science, University of Tokyo, 7-3-1, Hongo Campus, Bunkyo-ku, Tokyo 113-0033 - Japan
                                                                                                                                                                                                                                                                                    2/2


   TERRIGENOUS MATERIAL INPUT
   The boundary between the Holocene and Pleistocene could be marked by TOC and d13C isotopic
   concentration how discussed before but, also, this boundary could be identified using clay minerals,
   quartz and feldspars content (Figures 08a and 08b). During the LGM, eustatic sea level lowering 120m
   below present sea level and would have severely restricted or completely blocked the inflow into the study
   area [Oba et al. 1991] (Figure 05). Because of this sea level dropping, the river`s mouths were very close to
   the edge of the shelf and the discharge form ice melting with sediments in suspension occurred directly on
   the slope. In particular, Joetsu basin coastal line was more than 20km sea ward during the LGM (Figure 05),
   and a very shallow and narrow strait was formed between the Sado Islands and the western Japan coastal
   line. The sea water flow through this pathway was very low and Joestu basin was a big bay. The poor sea
   water circulation could not spread fine grain floated sediments and it stays at suspension for more time.
   Little by little, clay minerals sunk to the sea floor. On the other hand, at the Holocene, the sea level rising
                                                                                                                                                             vvvv
   induced a good circulation and clay minerals were washed over. At the same time, the increasing of the
   weathering because to the melt of ice in response of warmer climate, induced quartz and feldspars
   transportation by rivers and rapidly precipitate to the sea floor. Quartz and feldspars have no porosity while
   clay minerals have a lot of porous. Because this, quartz and feldspars can not float for a long time and                                                   Figure 08. PC-701 clay minerals (a) and quartz, feldspars and quartz/feldspars ratio profiles. The boundary between the
   rapidly sink to the sea floor. The lower clay minerals content at Pleistocene coincides with the lower TOC                                                 Holocene and Pleistocene could be marked by TOC and d13C isotopic concentration how discussed before but, also, this
                                                                                                                                                              boundary could be identified using clay minerals, quartz and feldspars content.
   content (Figure 03a). It is because LGM time, when the weather was very cold and dry and, also, river’s
   mouth were more far from due low sea level condition.



                                                                                                                                 SULFATE OXIDATION OF METHANE

                                                                                                                                 Sea water and sediment pore water have a lot of ions dissolved. The sediment particles also have cations and
                                                                                                                                 anions adsorbed mainly on clay minerals. When a methane flux comes to the sea floor, both thermogenic or
                                                                                                                                                                                                     2-   2-
                                                                                                                                 biogenic origin, an oxidation of methane occurs (Figure 10). So4 , Co3 and H2S are not stable and the presence
                                                                                                                                 of cations dissolved in the interstitial water react with them and forming sulfates, carbonates and sulfides. Barite,
                                                                                                                                 calcaite, aragonite, dolomite and pyrite are commom authigenic minerals that precipitate around the sulfate-
                                                                                                                                 methane interface (SMI).
                                                                                                                                 Samples collected from UT-07 cruise shows some “fronts” of barite, calcite and pyrite (Figures 11, 12 and 13).
                                                                                                                                 Instead calcite and toral inorganic carbon (TIC) values can have association with foraminifera, sulfur, pyrite and
                                                                                                                                 barite have no relation with them and are good indicators of SMI. Because methane flux can vary with time, SMI
                                                                                                                                 can be shallower or deeper accoding the flux intensity. Depending on the time that SMI is stable at the same
                                                                                                                                 depth, the reaction will be more effective inducing more chemical precipitation. On the other hand, if methane
                                                                                                                                 flux oscillates very quickly, the reaction is not so strong and a poor amount of authigenic minerals will be formed.


                          Figure 10. Diagarm about sulfate-oxidation of methane oxidation and the formation
                          of the sulfate-methane interface (SMI).




 Figure 11. PC-701 SMI profile. TIC, calcite, barite, pyrire and sulfur curves show peaks at similar depths. Note that the present SMI is located
 at the depth where SO4 content is near zero and CH4 becomes high. A strong coincidence with this SMI with chemical peaks indicates
 that it is agood parameter to identify SMI. TIC and calcite can have influence of foraminifera, but barite, pyrite and sulfur have no contamination
 and can calibrate the data. Peaks above and below indicate fossil SMI, when methane flux was stronger (upper) and weaker (lower). This location
 is a refence site and no evidence about gas hydrate was found at this place. Instead of this, methane flux is present and its d13C around -87‰
 indicates biogenic origin.

 Figure 12. PC-702 SMI profile. This is a gas hydrate site located over Joetsu Knoll. Plumes and gas hydrate are present and were recovered
 and analysed. Also, gas chymineis and faults have been see on seismic data. A d13C around -50‰ indicates mixed origin. Note that present SMI
 is shallower than at PC-701, indicating that methane flux over Joetsu Knoll is stronger than at reference site.

 Figure 13. PC-707 SMI profile. Located over Umitaka Spur gas hydrate site, this piston core shows a very shallow present SMI. The same
 features occurred at Joetsu Knoll are present here and shallower positioning of present SMI and no occurrence of the upper fossil SMI indicate
 that methane flux is now stronger than at Joetsu Knoll. An erosion can be occurred and cut the upper SMI. High values of pyrite and sulfur near
 sea floor sugest erosion because the sea floor is predominatily oxidized.




   CONCLUSIONS
                                                                                                                                                       REFERENCES
                                                                                                                                                       Burdige D. Geochemistry of Marine Sediments. New Jersey, Princeton University press, 2006.
   The late Quaternary correlation between Japan Sea and the Pacific Ocean is possible using piston-
                          13
   coring data. TOC and d C increased pattern is very similar in both sites. It indicates more organic                                                 Dickens G. R. Sulfate Profiles and Barium Fronts in Sediment on the Blake Ridge: Present and
                                              13
   matter production during Holocene and the d C increased pattern upward suggests a phytoplankton                                                     Past Methane Flux Trough a Large Gas Hydrate Reservoir. Geochimica et Cosmochimica Acta.
   organic matter production.                                                                                                                          Elsevier Science Ltd. V.65, n.65, n.4, p.529-543, 2001.

   The poor sea water circulation at Pleistocene, due to the drop of sea level at LGM, caused a not                                                    Ken I. et al. 14C Age of Core Samples from Middle to South East Japan Sea by AMS. Bull. Geol.
   good spreading of clay minerals, and, little by little, it was sinking to the sea bottom. At Holocene,                                              Survey Japan. V.47(6), p.309-316, 1996.
   the rising of the sea level induced a good sea water circulation on Japan Sea and clay minerals
   were easily washed over seaward. At the same time, the climate warm increasing induced the snow                                                     Kennett J.P. et al. Methane Hydrates in Quaternary Climate Changes: The Clathrate Gum
   melt on the mountains located near the shoreline of Niigata Prefecture, causing the increasing of                                                   Hypotesis. Washington DC: American Geophysical Union, 2003.
   weathering. Because this, quartz and feldspars were delivered by rivers, arriving to Joetsu Basin
   and sinking to sea floor faster than clay minerals.                                                                                                 Matsumoto R., Ishida Y. Environmental Impact of Methane Seeps in Cold Waters: An Example
                                                                                                                                                       of Giant Methane Plumes from Eastern Margin of Japan Sea. 17th International Sedimentolo-
   Geochemical records of sulfate-oxidation of methane is present by several peaks of calcite, barite,                                                 gical Congress. Fukuoka, Japan. V.B, p.7, 2006.
   pyrite and sulfur. At least two sets of peaks are present and represent different stages of the sulfate
   methane interface (SMI). Present SMI and fossil SMI can be infered and it can infer that the flux                                                   Nakada M. et al. Late Pleistocene and Holocene Sea-Level Changes in Japan: Implications
   of methane was not constant withe the geologic time. The peaks above and below present SMI                                                          for Tectonic Histories and Mantle Rheology. Paleogeography, Paleoclimatology, Paleoecology.
   indicates that methane flux was stronger (upper) and weaker (lower) than present level.                                                             V.85, Elsevier. P.107-122, 1991.

                                                                                                                                                       Oba T. et al. Paleoenvironmental Changes in the Japan Sea During the Last 85,000 Yeras.
          AKNOWLEDGEMENTS                                                                                                                              Washington DC: American Geophysical Union. Paleoceanography. V.6, n.4, p.499-518, 1991.
          For our colleagues on both Department of Earth and Planetary Science and Department of
          Natural Environmental Studies that help us on analysis, discussions and other supports.

Weitere ähnliche Inhalte

Ähnlich wie Poster 6th ICGH 2008

D41037045
D41037045D41037045
D41037045inventy
 
TU4.T10.2.ppt
TU4.T10.2.pptTU4.T10.2.ppt
TU4.T10.2.pptgrssieee
 
Sammy.kayali
Sammy.kayaliSammy.kayali
Sammy.kayaliNASAPMC
 
Sammy.kayali
Sammy.kayaliSammy.kayali
Sammy.kayaliNASAPMC
 
Evidence of Geological Control on Reservoir Petrophysical Properties of “Beta...
Evidence of Geological Control on Reservoir Petrophysical Properties of “Beta...Evidence of Geological Control on Reservoir Petrophysical Properties of “Beta...
Evidence of Geological Control on Reservoir Petrophysical Properties of “Beta...Premier Publishers
 
OMONIYI_2008_B.TECH_PROJECT
OMONIYI_2008_B.TECH_PROJECTOMONIYI_2008_B.TECH_PROJECT
OMONIYI_2008_B.TECH_PROJECTOmoniyi Itamuko
 
B0362010014
B0362010014B0362010014
B0362010014theijes
 
3-D inversion of borehole-to-surface electrical data using a back-propagation...
3-D inversion of borehole-to-surface electrical data using a back-propagation...3-D inversion of borehole-to-surface electrical data using a back-propagation...
3-D inversion of borehole-to-surface electrical data using a back-propagation...DUSABEMARIYA
 
2012 water geochemistry and soil gas
2012 water geochemistry and soil gas2012 water geochemistry and soil gas
2012 water geochemistry and soil gasTara Shinta
 
The Impact of Seismic Facies Analysis on the Reservoir Architecture of “CHARL...
The Impact of Seismic Facies Analysis on the Reservoir Architecture of “CHARL...The Impact of Seismic Facies Analysis on the Reservoir Architecture of “CHARL...
The Impact of Seismic Facies Analysis on the Reservoir Architecture of “CHARL...IJSRED
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 

Ähnlich wie Poster 6th ICGH 2008 (11)

D41037045
D41037045D41037045
D41037045
 
TU4.T10.2.ppt
TU4.T10.2.pptTU4.T10.2.ppt
TU4.T10.2.ppt
 
Sammy.kayali
Sammy.kayaliSammy.kayali
Sammy.kayali
 
Sammy.kayali
Sammy.kayaliSammy.kayali
Sammy.kayali
 
Evidence of Geological Control on Reservoir Petrophysical Properties of “Beta...
Evidence of Geological Control on Reservoir Petrophysical Properties of “Beta...Evidence of Geological Control on Reservoir Petrophysical Properties of “Beta...
Evidence of Geological Control on Reservoir Petrophysical Properties of “Beta...
 
OMONIYI_2008_B.TECH_PROJECT
OMONIYI_2008_B.TECH_PROJECTOMONIYI_2008_B.TECH_PROJECT
OMONIYI_2008_B.TECH_PROJECT
 
B0362010014
B0362010014B0362010014
B0362010014
 
3-D inversion of borehole-to-surface electrical data using a back-propagation...
3-D inversion of borehole-to-surface electrical data using a back-propagation...3-D inversion of borehole-to-surface electrical data using a back-propagation...
3-D inversion of borehole-to-surface electrical data using a back-propagation...
 
2012 water geochemistry and soil gas
2012 water geochemistry and soil gas2012 water geochemistry and soil gas
2012 water geochemistry and soil gas
 
The Impact of Seismic Facies Analysis on the Reservoir Architecture of “CHARL...
The Impact of Seismic Facies Analysis on the Reservoir Architecture of “CHARL...The Impact of Seismic Facies Analysis on the Reservoir Architecture of “CHARL...
The Impact of Seismic Facies Analysis on the Reservoir Architecture of “CHARL...
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 

Mehr von Fernando Freire

Egg10086 aula 07-densidade e pe_2020-1
Egg10086 aula 07-densidade e pe_2020-1Egg10086 aula 07-densidade e pe_2020-1
Egg10086 aula 07-densidade e pe_2020-1Fernando Freire
 
Egg10086 aula 06-dipmeter_2020-1
Egg10086 aula 06-dipmeter_2020-1Egg10086 aula 06-dipmeter_2020-1
Egg10086 aula 06-dipmeter_2020-1Fernando Freire
 
Egg10086 aula 05-resistividade_2020-1
Egg10086 aula 05-resistividade_2020-1Egg10086 aula 05-resistividade_2020-1
Egg10086 aula 05-resistividade_2020-1Fernando Freire
 
Egg10086 aula 04-gr e gr espectral_2020-1
Egg10086 aula 04-gr e gr espectral_2020-1Egg10086 aula 04-gr e gr espectral_2020-1
Egg10086 aula 04-gr e gr espectral_2020-1Fernando Freire
 
Egg10086 aula 02-caliper_2020-1
Egg10086 aula 02-caliper_2020-1Egg10086 aula 02-caliper_2020-1
Egg10086 aula 02-caliper_2020-1Fernando Freire
 
Integrated Study Low Res
Integrated Study Low ResIntegrated Study Low Res
Integrated Study Low ResFernando Freire
 
Correlacao De Eventos Low Res
Correlacao De Eventos Low ResCorrelacao De Eventos Low Res
Correlacao De Eventos Low ResFernando Freire
 
http://www.46cbg.com.br/0510/terra/08h30_1_antonio_freire_05-10_slterra.pdf
http://www.46cbg.com.br/0510/terra/08h30_1_antonio_freire_05-10_slterra.pdfhttp://www.46cbg.com.br/0510/terra/08h30_1_antonio_freire_05-10_slterra.pdf
http://www.46cbg.com.br/0510/terra/08h30_1_antonio_freire_05-10_slterra.pdfFernando Freire
 

Mehr von Fernando Freire (9)

Egg10086 aula 07-densidade e pe_2020-1
Egg10086 aula 07-densidade e pe_2020-1Egg10086 aula 07-densidade e pe_2020-1
Egg10086 aula 07-densidade e pe_2020-1
 
Egg10086 aula 06-dipmeter_2020-1
Egg10086 aula 06-dipmeter_2020-1Egg10086 aula 06-dipmeter_2020-1
Egg10086 aula 06-dipmeter_2020-1
 
Egg10086 aula 05-resistividade_2020-1
Egg10086 aula 05-resistividade_2020-1Egg10086 aula 05-resistividade_2020-1
Egg10086 aula 05-resistividade_2020-1
 
Egg10086 aula 04-gr e gr espectral_2020-1
Egg10086 aula 04-gr e gr espectral_2020-1Egg10086 aula 04-gr e gr espectral_2020-1
Egg10086 aula 04-gr e gr espectral_2020-1
 
Egg10086 aula 02-caliper_2020-1
Egg10086 aula 02-caliper_2020-1Egg10086 aula 02-caliper_2020-1
Egg10086 aula 02-caliper_2020-1
 
Freire ALAGO 2017-06-21
Freire ALAGO 2017-06-21Freire ALAGO 2017-06-21
Freire ALAGO 2017-06-21
 
Integrated Study Low Res
Integrated Study Low ResIntegrated Study Low Res
Integrated Study Low Res
 
Correlacao De Eventos Low Res
Correlacao De Eventos Low ResCorrelacao De Eventos Low Res
Correlacao De Eventos Low Res
 
http://www.46cbg.com.br/0510/terra/08h30_1_antonio_freire_05-10_slterra.pdf
http://www.46cbg.com.br/0510/terra/08h30_1_antonio_freire_05-10_slterra.pdfhttp://www.46cbg.com.br/0510/terra/08h30_1_antonio_freire_05-10_slterra.pdf
http://www.46cbg.com.br/0510/terra/08h30_1_antonio_freire_05-10_slterra.pdf
 

Poster 6th ICGH 2008

  • 1. ENVIRONMENTAL CHANGES OF THE LAST 30,000 YEARS IN THE GAS HYDRATE AREA OF JOETSU BASIN EASTERN MARGIN OF JAPAN SEA 6th International Conference on Gas Hydrates The Fairmont Hotel Vancouver Antonio Fernando Menezes Freire*1,2, Eiichi Takeuchi*2, Akinori Nagasaka*2, Akihiro Hiruta*2, Osamu Ishizaki*2, Toshihiko Sugai*1, Ryo Matsumoto*2 Vancouver, BC, CANADA July 6-10, 2008 fernando@nenv.k.u-tokyo.ac.jp *1 Department of Natural Environmental Studies, University of Tokyo, 524, Environmental Bldg. 5-1-5, Kashiwanoha Campus, Chiba 277-8563 Japan *2 Department of Earth and Planetary Science, University of Tokyo, 7-3-1, Hongo Campus, Bunkyo-ku, Tokyo 113-0033 - Japan 1/2 CORE LOCATIONS CORE LOCATIONS MAP GAS HYDRATE STUDY AREA MAIN PURPOSES A) To understand the sedimentar history of the Late Quaternary using the stratigraphic and geochemical records from piston- cores collected on a gas hydrate area located on the Eastern Margin of Japan Sea, south of the Sado Islands (Figs. 01 and 02) B) To make a correlation between these records on Japan Sea and those observed on the drilling core CK-06 on the Eastern JAPAN SEA CK-06 Margin of the Pacifc Ocean, east of Shimokita Peninsula (Fig. 01). (SHIMOKITA PENINSULA ) C) To infer the methane flux variations along the geologic time UT-07/NT-07-20 using geochemical data. PC-701 PACIFIC OCEAN Fig. 02: Map of the study area showing Joetsu Knoll and Umitaka Spur gas hydrate areas. Also this map shows piston coring location. Fig. 01: Core location map. UT-07 (Umitaka Maru) cruise and NT-07-20 (Natsushima Cruise) are located 13 over Umitaka Spur and Joetsu Knoll gas hydrate areas. PC-701 is a reference site and belongs to UT-07 cruise. CK-06 (Chikyo) cruise is located at Pacific Ocean and is a refence to make correlation. TOTAL ORGANIC CARBON AND d C CONCENTRATIONS The Holocene/Pleistocene Boundary Piston cores data from the study area shows a clear upward increasing of both TOC and ABSTRACT d13C contents. It is possible to identify a shift on TOC curve, from 1.3% to 2.0% and from Recently, we recognized active methane venting and gas hydrates, which are widely distributed on just below -26‰ to -22‰ on d13C curve, around 3.5 m depth in reference piston core PC-701 graph the sea floor in the Joestu basin, eastern margin of Japan Sea. This study has the intention to give support (Figure 03a). The same increased pattern can be observed in piston cores PC-702 for future works, understanding the Late Quaternary history of the study area. (Figure 03b) and PC-706 (Figure 03c), respectively located over Joetsu Knoll and Umitaka Interbedded dark gray thinly laminites and dark brown to gray bioturbated units are common throughout the Spur gas hydrate areas, but at different depths. These shift depths represent important Quaternary sediments of Japan Sea, and have been often explained in terms of glacio-eustatic sea-level changes on environmental conditions in the study area: Below occurs a relative small TOC changes. These layers have a very good correlation because they occur in all Japan Sea. We used total production with d13C values around -26‰ and, above this shift, occurs a higher TOC organic carbon (TOC) content and carbon isotopic composition of the gas hydrates bearing-sediments in production with heavier d13C isotopic composition. order to identify the nature of the organic matters present in the study area and to make a correlation with CK-06 and GISP-2 (Figure 04) TOC and d13C profiles have very similar pattern and are samples collected in the Pacific Ocean. Associated with XRD analysis, these data helped us to locate the very easily correlated with Japan Sea study area. The conclusion is that both Japan Sea Holocene/Pleistocene boundary, to identify key stratigraphic surfaces, and to recognize sulfate-methane and Pacific Ocean had the same changes on organic matter production, and the interfaces. Different SMI occurs due methane flux variation with the geologic time. boundary Holocene/Pleistocene is very well marked using this criteria. d d d d d TL-1 14 Foraminifera C (10.9~7.4Ka) d TL-1 TL-1 TL-2 TL-2 Foraminifera C14 (19.6~15.8Ka) TL-2 Fig. 03c: PC-706 located over Umitaka Spur gas hydrate Vvvvv AT ash layer (~30Ka) site. Curves show the same pattern. Fig. 03b: PC-702 located over Joetsu Knoll gas hydrate d d site.The same pattern can be seen in both TOC and d13C Fig. 03a: PC-701 reference piston core. Both TOC and d13C curves show and both thin laminated -1 (TL-1) and TL-2 are present. a shift around 3.5m and it represents changes on organic matter production. This depth is here interpretated like the boundary between Holocene and Pleistocene and it is confirmed by C14 dating from foraminifera tests and the occurrence of AT tephra layer (~30Ka). THE NATURE OF ORGANIC MATTER: MARINE vs. TERRESTRIAL Fig. 04: Correlation between CK-06 drilling core and GISP-2 ice core. The same increased pattern on both TOC and d13C curves, associated with foraminifera C14 dating indicate the boundary TOC and d13C content indicate the origin and intensity of organic matter production. The warmer of the sea water and the rise Holocene/Pleistocene. The d18O curve from GISP-2 indicates warmer conditions at Holocene of the sea level during Holocene induced the free communication between Japan Sea and the Pacific Ocean because the time and the TOC curve shows that a more effective organic matter production occurs. Also, straits are more deep and large. Because this condition, more warm-water species of diatom and radiolaria became more the d13C curve indicate heavier isotope compositions and, according Burdige, 2006, it reflects a 12 marine organic matter production. Pacific Ocean curves are very easily correlated with Japan Sea present at Japan Sea [Oba et al. 1991]. As organic matter, generated by plankton, removes C selectively from the surface 13 13 curves and both have the same signature. water, the d C of planktonic foraminiferal tests becomes heavier. According Burdige [2006], d C of TOC, in association with nitrogen content can potentially be used to differentiate sources of organic matter. Organic matter produced by phytoplankton has very different d13C values from that produced by land plants because of differences in the isotopic composition of their carbon source [Burdige, 2006]. The primary carbon source for marine phytoplankton is seawater bicarbonate, with a d13C of ~0‰. In contrast, land plants use atmospheric CO2 as their carbon source, with d13C of around -7‰ [Burdige, 2006]. Differences in the mechanisms of CO2 uptake by terrestrial plants (CO2 diffusion) versus marine plants (active uptake of bicarbonate in most cases) also lead to some additional amounts of carbon fractionation during photosynthesis. As a result of all of these factors, 13 marine organic matter generally has a d C of around -17‰ to -22‰ and terrestrial organic matter of around -25‰ to -28‰ [Burdige, 2006]. Marine organic matter generally has a C/N ratio between 5 and 10 and fresh terrestrial organic matter has a C/N ratio >20. These differences are a result of dissimilarities in the structural components of marine versus terrestrial plants: carbon-rich lignocelluloses in the latter and nitrogen-containing proteins in the former. While the Holocene is characterized by a higher marine organic matter production, Pleistocene is characterized by lower 13 organic matter production with lighter d C isotopic composition due to terrestrial organic matter source. The anoxic layer TL-2 in this time are due the lower water circulation because sea level drops on LGM. During this time, when the sea level was 120m below present sea level, the coastal line was very close present shelf broken and the shallow and narrow straits (Figure 05) reduced drastically the sea water circulation causing clay minerals and organic matter to stay more time at suspension inducing strong anoxic conditions and the occurrence of dark-gray thin laminated mud. The crossplot with data from both CK-06 and UT-07 cruise shows three groups of organic matter values (Figure 06a) and, according Burdige [2006] criteria, it is possible to infer the nature of organic matter production at each geologic time. Comparing to Japan Sea study area, the samples from Pacific Ocean have more relation with marine production. Crossplot with samples only from Japan Sea study area (Figure 06b) shows that, excepting PC-701, organic matter has a terrestrial or mixing source. Umitaka Spur and Joetsu Knoll (Figures 02 and 05) are closer to shore line than PC-701 and, at Pleistocene, the “bay” stage induced weak circulation. Fig. 05: Coastal and bathymetric map of Joetsu basin, south of Sado Islands frompresent and during the LGM time, when the sea level dropped around 120m than present sea level. The narrow and shallow strait between Sado Islands and the western coast of Japan limited the circulation of sea water currents making Joetsu basin like a big bay. FIGURE XX Fig. 06:a) Crossplot TOC x d13C data from CK-06 (crosses) and UT-07 (squares). Three groups can be seen: relative higher TOC values and d13C heavier than ~-22‰ (marine phytoplankton production); relative medium TOC and d13C between ~-22‰ and ~-25‰ (mixed or non determinate); and relative lower TOC and d13C lighter than ~-25‰ (vascular land plants). According Burdige, 2006. b) Crossplot TOC x d13C data from UT-07 samples. PC-701, located far from the coastal line and into a typically depositional site, shows a large range of values and indicate both terrestrial and marine organic matter source. The other cores have a small range between terrestrial to mixed organic matter, according Burdige [2006].
  • 2. ENVIRONMENTAL CHANGES OF THE LAST 30,000 YEARS IN THE GAS HYDRATE AREA OF JOETSU BASIN EASTERN MARGIN OF JAPAN SEA 6th International Conference on Gas Hydrates The Fairmont Hotel Vancouver Antonio Fernando Menezes Freire*1,2, Eiichi Takeuchi*2, Akinori Nagasaka*2, Akihiro Hiruta*2, Osamu Ishizaki*2, Toshihiko Sugai*1, Ryo Matsumoto*2 Vancouver, BC, CANADA July 6-10, 2008 fernando@nenv.k.u-tokyo.ac.jp *1 Department of Natural Environmental Studies, University of Tokyo, 524, Environmental Bldg. 5-1-5, Kashiwanoha Campus, Chiba 277-8563 Japan *2 Department of Earth and Planetary Science, University of Tokyo, 7-3-1, Hongo Campus, Bunkyo-ku, Tokyo 113-0033 - Japan 2/2 TERRIGENOUS MATERIAL INPUT The boundary between the Holocene and Pleistocene could be marked by TOC and d13C isotopic concentration how discussed before but, also, this boundary could be identified using clay minerals, quartz and feldspars content (Figures 08a and 08b). During the LGM, eustatic sea level lowering 120m below present sea level and would have severely restricted or completely blocked the inflow into the study area [Oba et al. 1991] (Figure 05). Because of this sea level dropping, the river`s mouths were very close to the edge of the shelf and the discharge form ice melting with sediments in suspension occurred directly on the slope. In particular, Joetsu basin coastal line was more than 20km sea ward during the LGM (Figure 05), and a very shallow and narrow strait was formed between the Sado Islands and the western Japan coastal line. The sea water flow through this pathway was very low and Joestu basin was a big bay. The poor sea water circulation could not spread fine grain floated sediments and it stays at suspension for more time. Little by little, clay minerals sunk to the sea floor. On the other hand, at the Holocene, the sea level rising vvvv induced a good circulation and clay minerals were washed over. At the same time, the increasing of the weathering because to the melt of ice in response of warmer climate, induced quartz and feldspars transportation by rivers and rapidly precipitate to the sea floor. Quartz and feldspars have no porosity while clay minerals have a lot of porous. Because this, quartz and feldspars can not float for a long time and Figure 08. PC-701 clay minerals (a) and quartz, feldspars and quartz/feldspars ratio profiles. The boundary between the rapidly sink to the sea floor. The lower clay minerals content at Pleistocene coincides with the lower TOC Holocene and Pleistocene could be marked by TOC and d13C isotopic concentration how discussed before but, also, this boundary could be identified using clay minerals, quartz and feldspars content. content (Figure 03a). It is because LGM time, when the weather was very cold and dry and, also, river’s mouth were more far from due low sea level condition. SULFATE OXIDATION OF METHANE Sea water and sediment pore water have a lot of ions dissolved. The sediment particles also have cations and anions adsorbed mainly on clay minerals. When a methane flux comes to the sea floor, both thermogenic or 2- 2- biogenic origin, an oxidation of methane occurs (Figure 10). So4 , Co3 and H2S are not stable and the presence of cations dissolved in the interstitial water react with them and forming sulfates, carbonates and sulfides. Barite, calcaite, aragonite, dolomite and pyrite are commom authigenic minerals that precipitate around the sulfate- methane interface (SMI). Samples collected from UT-07 cruise shows some “fronts” of barite, calcite and pyrite (Figures 11, 12 and 13). Instead calcite and toral inorganic carbon (TIC) values can have association with foraminifera, sulfur, pyrite and barite have no relation with them and are good indicators of SMI. Because methane flux can vary with time, SMI can be shallower or deeper accoding the flux intensity. Depending on the time that SMI is stable at the same depth, the reaction will be more effective inducing more chemical precipitation. On the other hand, if methane flux oscillates very quickly, the reaction is not so strong and a poor amount of authigenic minerals will be formed. Figure 10. Diagarm about sulfate-oxidation of methane oxidation and the formation of the sulfate-methane interface (SMI). Figure 11. PC-701 SMI profile. TIC, calcite, barite, pyrire and sulfur curves show peaks at similar depths. Note that the present SMI is located at the depth where SO4 content is near zero and CH4 becomes high. A strong coincidence with this SMI with chemical peaks indicates that it is agood parameter to identify SMI. TIC and calcite can have influence of foraminifera, but barite, pyrite and sulfur have no contamination and can calibrate the data. Peaks above and below indicate fossil SMI, when methane flux was stronger (upper) and weaker (lower). This location is a refence site and no evidence about gas hydrate was found at this place. Instead of this, methane flux is present and its d13C around -87‰ indicates biogenic origin. Figure 12. PC-702 SMI profile. This is a gas hydrate site located over Joetsu Knoll. Plumes and gas hydrate are present and were recovered and analysed. Also, gas chymineis and faults have been see on seismic data. A d13C around -50‰ indicates mixed origin. Note that present SMI is shallower than at PC-701, indicating that methane flux over Joetsu Knoll is stronger than at reference site. Figure 13. PC-707 SMI profile. Located over Umitaka Spur gas hydrate site, this piston core shows a very shallow present SMI. The same features occurred at Joetsu Knoll are present here and shallower positioning of present SMI and no occurrence of the upper fossil SMI indicate that methane flux is now stronger than at Joetsu Knoll. An erosion can be occurred and cut the upper SMI. High values of pyrite and sulfur near sea floor sugest erosion because the sea floor is predominatily oxidized. CONCLUSIONS REFERENCES Burdige D. Geochemistry of Marine Sediments. New Jersey, Princeton University press, 2006. The late Quaternary correlation between Japan Sea and the Pacific Ocean is possible using piston- 13 coring data. TOC and d C increased pattern is very similar in both sites. It indicates more organic Dickens G. R. Sulfate Profiles and Barium Fronts in Sediment on the Blake Ridge: Present and 13 matter production during Holocene and the d C increased pattern upward suggests a phytoplankton Past Methane Flux Trough a Large Gas Hydrate Reservoir. Geochimica et Cosmochimica Acta. organic matter production. Elsevier Science Ltd. V.65, n.65, n.4, p.529-543, 2001. The poor sea water circulation at Pleistocene, due to the drop of sea level at LGM, caused a not Ken I. et al. 14C Age of Core Samples from Middle to South East Japan Sea by AMS. Bull. Geol. good spreading of clay minerals, and, little by little, it was sinking to the sea bottom. At Holocene, Survey Japan. V.47(6), p.309-316, 1996. the rising of the sea level induced a good sea water circulation on Japan Sea and clay minerals were easily washed over seaward. At the same time, the climate warm increasing induced the snow Kennett J.P. et al. Methane Hydrates in Quaternary Climate Changes: The Clathrate Gum melt on the mountains located near the shoreline of Niigata Prefecture, causing the increasing of Hypotesis. Washington DC: American Geophysical Union, 2003. weathering. Because this, quartz and feldspars were delivered by rivers, arriving to Joetsu Basin and sinking to sea floor faster than clay minerals. Matsumoto R., Ishida Y. Environmental Impact of Methane Seeps in Cold Waters: An Example of Giant Methane Plumes from Eastern Margin of Japan Sea. 17th International Sedimentolo- Geochemical records of sulfate-oxidation of methane is present by several peaks of calcite, barite, gical Congress. Fukuoka, Japan. V.B, p.7, 2006. pyrite and sulfur. At least two sets of peaks are present and represent different stages of the sulfate methane interface (SMI). Present SMI and fossil SMI can be infered and it can infer that the flux Nakada M. et al. Late Pleistocene and Holocene Sea-Level Changes in Japan: Implications of methane was not constant withe the geologic time. The peaks above and below present SMI for Tectonic Histories and Mantle Rheology. Paleogeography, Paleoclimatology, Paleoecology. indicates that methane flux was stronger (upper) and weaker (lower) than present level. V.85, Elsevier. P.107-122, 1991. Oba T. et al. Paleoenvironmental Changes in the Japan Sea During the Last 85,000 Yeras. AKNOWLEDGEMENTS Washington DC: American Geophysical Union. Paleoceanography. V.6, n.4, p.499-518, 1991. For our colleagues on both Department of Earth and Planetary Science and Department of Natural Environmental Studies that help us on analysis, discussions and other supports.