SlideShare ist ein Scribd-Unternehmen logo
1 von 25
Downloaden Sie, um offline zu lesen
GUÍA METODOLÓGICA DE SEGURIDAD
PARA PROYECTOS DE VENTILACIÓN DE
MINAS

Antecedentes según Decreto Supremo Nº 72, “Reglamento de
Seguridad Minera", del año 1985, cuyo texto refundido, coordinado y
sistematizado fue fijado mediante D.S. Nº 132, de 2002, del Ministerio
de Minería.

Departamento de Seguridad Minera,
2008

1
GUÍA METODOLÓGICA DE SEGURIDAD PARA
VENTILACIÓN DE MINAS

SERVICIO NACIONAL DE GEOLOGÍA Y MINERÍA
Avenida Santa María N° 0104
Providencia, Santiago de Chile
Elaborado por:
Ing. Sergio Andrade Gallardo
Departamento de Seguridad Minera
Diseño Multimedia:
Depto. de Informática
SERNAGEOMIN

2
3
INDICE DE MATERIAS
1.

PROYECTOS DE VENTILACION EN MINAS SUBTERRANEAS ......................05
1.1. Recomendaciones Generales ...................................................................05
1.2. Presentación de proyectos ........................................................................06
1.3. Índice del Proyecto.....................................................................................06
1.4. Resumen Ejecutivo del Proyecto................................................................06
1.5. Descripción General del Proyecto ..............................................................07
1.5.1 Antecedentes Técnicos Generales del Proyecto de Ventilación .....07
1.5.2 Antecedentes Técnicos Específicos del Proyecto de Ventilación.....08

2.

DESCRIPCION GENERAL DE LOS METODOS DE VENTILACION DE
MINAS SUBTERRANEAS...................................................................................09
2.1. Ventilación Natural ......................................................................................09
2.2. Ventilación Auxiliar ......................................................................................10
2.3. Uso de Aire Comprimido .............................................................................11
Fig.1. Esquema de tipos básicos de Ventilación Auxiliar....................................12
Fig.2. Art. 141, D.S. N° 72 .................................................................................13

3.

CALCULO DE LOS CAUDALES REQUERIDOS ............................................13
3.1. Generalidades .............................................................................................13
3.2. Requerimientos de aire ...............................................................................15
3.3. Cálculo de caudales parciales de aire por cada operación .........................15
3.4. Flujo de aire en Galerías o Ductos (Ley de Atkinson) .................................17

4.

SELECCIÓN DE VENTILADORES ...................................................................17
4.1. Punto de operación del sistema ..................................................................17
4.2. Potencia del Motor ......................................................................................18

5.

LEYES DEL VENTILADOR ...............................................................................19

6.

CIRCUITOS COMPLEJOS..................................................................................20
6.1. Software de equilibrio de redes de ventilación ............................................20
6.2. Sistema de monitoreo y control centralizado...............................................21

ANEXO A:
.........................................................................................................22
Requerimientos de aire ...............................................................................................22
a) Caudal requerido por el número de personas .....................................................22
b) Caudal requerido por desprendimiento de gases................................................22
c) Caudal requerido por temperatura ......................................................................23
d) Caudal requerido por el polvo en suspensión .....................................................23
e) Caudal requerido por la producción ....................................................................23
f)
Caudal requerido por consumo de explosivo ......................................................24
g) Caudal requerido por Equipo Diesel....................................................................25

4
1. PROYECTOS DE VENTILACIÓN EN MINAS SUBTERRÁNEAS:
SERNAGEOMIN, consciente de la importancia de incorporar la variable seguridad a los
proyectos mineros del país, ha desarrollado estas guías metodológicas, con el
propósito de que los empresarios mineros cuenten con un apoyo que les permita la
aplicación correcta de la legislación vigente en materias de seguridad minera, en cada
uno de sus proyectos, y a su vez logren un desempeño eficiente en la tramitación de
ellos. Esta guía en particular, contiene, por lo tanto, las indicaciones necesarias para
orientar al proponente en su trabajo de ventilación de las labores mineras, en el sentido
de que su trabajo se enmarque dentro de la reglamentación contenida en el
“Reglamento de Seguridad Minera” (RSM).

DE RE METALLICA
1.1. Recomendación General:
En todos los casos, la información presentada en los proyectos, debe ser lo
suficientemente detallada para que el lector o revisor comprenda totalmente la
naturaleza y extensión del proyecto propuesto, a fin de contar con los detalles
suficientes que permitan una adecuada evaluación.
Los planos y mapas que se presenten, deben ir ubicados dentro del informe, de
manera que el acceso a ellos sea fácil, y a una escala adecuada.

5
Puede presentarse una copia reducida que se incluya dentro del capítulo de
descripción, adjuntando en el apéndice los planos tamaño original.
El nivel de profundidad con que se debe desarrollar cada tema dependerá de la etapa
en que se encuentre; de la magnitud del proyecto, y de su nivel de complejidad.
1.2. Presentación de proyectos:
La presente guía se basa en la experiencia acumulada por el Servicio a través del
tiempo, en manuales especializados de ventilación, y en algunas experiencias
extranjeras que han sido consultadas.
Para cumplir con lo establecido en el "Reglamento de Seguridad Minera", respecto a la
presentación del proyecto, SERNAGEOMIN espera que la presentación contenga, al
menos, lo siguiente:
♦ Índice
♦ Resumen Ejecutivo
♦ Descripción del Proyecto

1.3. Índice del Proyecto:
Para una mejor lectura y una fácil ubicación de algún punto específico, al comienzo del
proyecto, se debe agregar un Índice de las materias que contiene, con indicación del
número, en la página correspondiente.
1.4. Resumen Ejecutivo del Proyecto:
♦ Etapa de construcción:
Se deben describir los requerimientos necesarios para materializar las obras
físicas.
♦ Etapa de operación:
Se deben detallar las acciones, requerimientos, manejo de materiales e insumos y
todos los aspectos necesarios para el funcionamiento adecuado de la ventilación,
incluyendo sus medidas de control, conservación y monitoreo.

6
1.5. Descripción General del Proyecto:
La descripción del proyecto proporciona la base sobre la cual se lleva a cabo la revisión
de las normas que protegen la vida y salud de los trabajadores, las instalaciones e
infraestructura que hacen posible las operaciones mineras y la continuidad de sus
procesos. Por tanto, se debe incluir una descripción completa y detallada del sistema
propuesto, basado en la experiencia del minero y los estudios realizados.
La descripción del sistema de ventilación debe incluir una descripción resumida del
método de explotación y los equipos necesarios. Normalmente, es una parte del
Proyecto de Explotación y en tal caso en términos generales, la descripción del sistema
deberá contener, si correspondiere, la siguiente información:
♦ Nombre de la mina u obra y objetivo de ello.
♦ Ubicación geográfica y política, de la mina u obra.
♦ Nombre del establecimiento.
♦ Nombre y ubicación de las pertenencias que amparan los lugares de trabajo,
cuando corresponda.
♦ Nombre del propietario y representante legal de la empresa.
♦ Método o Métodos de explotación proyectados y sus parámetros principales.
♦ Profesionales mineros que firman el proyecto y profesional minero
responsable de la faena.
1.5.1

Antecedentes Técnicos Generales del Proyecto de Ventilación:

a) Se deberá calcular la cantidad de aire requerido, considerando los siguientes
aspectos:
♦ Velocidad del aire a la entrada del túnel
♦ Cantidad de aire para el equipo Diesel
♦ Cantidad de aire para la gente
♦ Aire necesario para diluir o remover los gases y el polvo
♦ Cantidad de aire adecuado para enfriar u otras necesidades.
b) Cálculo de la caída de presión del sistema:
♦ Pérdidas por fricción y pérdidas por choque.
7
c) Plano detallado de la mina u obra, indicando los sectores en que serán ubicados
los equipos.
d) Listado de equipos seleccionados.
1.5.2. Antecedentes Técnicos Específicos del Proyecto de Ventilación:
a) Cálculo de los caudales parciales de aire por cada operación.
♦ Perforación.
♦ Carguío de explosivos, acuñaduras y trabajos varios al interior de la mina.
♦ Tronadura de avance y producción.
♦ Caudal requerido para carguío y transporte.
b) Considerar en el cálculo de las pérdidas, las siguientes restricciones físicas:
♦ Espacio existente entre los equipos de carguío y transporte y la labor.
♦ Longitud del ducto.
♦ Problemas con el manejo de insumos o material suspendido en la labor.
♦ Daños potenciales de la tronadura y otras actividades.
c) Otras consideraciones:
♦ Los ductos y ventiladores deben ser calculados de manera
ventiladores puedan mover el aire requerido.

que los

♦ Señalar las direcciones preferentes del flujo de aire (succión y soplado).
d) Potencia y eficiencia de los ventiladores, más ductería empleada.

8
2. DESCRIPCIÓN GENERAL DE LOS MÉTODOS DE VENTILACIÓN DE MINAS:
El sistema escogido será probablemente una combinación de los métodos que
presentamos a continuación:
2.1. Ventilación Natural:
La energía más barata y abundante en la naturaleza es el aire natural, que se utiliza en
la ventilación para minas subterráneas.
Este aire se introduce por la bocamina principal de ingreso, recorriendo el flujo del aire
por la totalidad del circuito de ventilación, hasta la salida del aire por la otra bocamina.
Para que funcione la ventilación natural tiene que existir una diferencia de alturas entre
las bocaminas de entrada y salida. En realidad, más importante que la profundidad de
la mina es el intercambio termodinámico que se produce entre la superficie y el
interior. La energía térmica agregada al sistema se transforma a energía de presión,
susceptible de producir un flujo de aire (el aire caliente desplaza al aire frío produciendo
circulación).
La ventilación natural es muy cambiante, depende de la época del año, incluso, en
algunos casos, de la noche y el día.

Dado que, la VENTILACIÓN NATURAL es un fenómeno de naturaleza inestable y
fluctuante, en ninguna faena subterránea moderna debe utilizarse como un medio
único y confiable para ventilar sus operaciones.

9
2.2. Ventilación Auxiliar:
Como ventilación auxiliar o secundaria, definimos aquellos sistemas que, haciendo uso
de ductos y ventiladores auxiliares, ventilan áreas restringidas de las minas
subterráneas, empleando para ello circuitos de alimentación de aire fresco y de
evacuación del aire viciado que les proporciona el sistema de ventilación general.
Por extensión, esta definición la aplicamos al laboreo de túneles desde la superficie,
aún cuando en estos casos no exista un sistema de ventilación general.
Los sistemas de ventilación auxiliar que pueden emplearse en el desarrollo de galerías
horizontales, utilizando ductos y ventiladores auxiliares son:
♦ Sistema impelente: El aire es impulsado dentro del ducto y sale por la galería en
desarrollo ya viciado.
Para galerías horizontales de poca longitud y sección (menores a 400 metros y
de 3.0 x 3.0 metros de sección), lo conveniente es usar un sistema impelente de
mediana o baja capacidad, dependiendo del equipo a utilizar en el desarrollo y de la
localización de la alimentación y evacuación de aire del circuito general de
ventilación de la zona. (Ver figura 1).
♦ Sistema aspirante: El aire fresco ingresa a la frente por la galería y el contaminado
es extraído por la ductería.
Para ventilar desarrollos de túneles desde la superficie, es el sistema aspirante
el preferido para su ventilación, aún cuando se requieren elementos auxiliares para
remover el aire de la zona muerta, comprendida entre la frente y el extremo de la
ductería de aspiración. (Ver figura 1.-).
♦ Un tercer sistema es el combinado, aspirante-impelente, que emplea dos tendidos
de ductería, una para extraer aire y el segundo para impulsar aire limpio a la frente
en avance. Este sistema reúne las ventajas de los dos tipos básicos, en cuanto a
mantener la galería y la frente en desarrollo con una renovación constante de aire
limpio y en la velocidad de la extracción de los gases de disparos, con la desventaja
de su mayor costo de instalación y manutención.
Para galerías de mayor sección (mayor a 12 m2), y con una longitud sobre los
400 metros, el uso de un sistema aspirante o combinado es más recomendable
para mantener las galerías limpias y con buena visibilidad para el tráfico de
vehículos, sobre todo si éste es equipo diesel. (Ver figura 1.-). Hoy día, es la
ventilación impelente la que más se usa, ya que el ducto es una manga totalmente
flexible, fácil de trasladar, colocar y sacar. En este caso, el ventilador al soplar infla
la manga y mueve el aire. En el caso de la ventilación aspirante, estas mangas
deben tener un anillado en espiral rígido lo que las hace muy caras.
10
El uso de sistemas combinados, aspirante – impelentes, para ventilar el desarrollo
de piques verticales, es también de aplicación práctica cuando éstos se
desarrollan en forma descendente y la marina se extrae por medio de baldes.
En estos casos, el uso de un tendido de mangas que haga llegar aire fresco al
fondo del pique en avance es imprescindible para refrescar el ambiente.
La aplicación de sistemas auxiliares para desarrollar galerías verticales está limitada
a su empleo para ventilar la galería donde se inicia el desarrollo de la chimenea o
pique, dado que la destrucción de los tendidos de ductos dentro de la labor vertical
por la caída de la roca en los disparos es inevitable (en su reemplazo se utiliza el
aire comprimido).
2.3. Uso de Aire Comprimido:
Por su alto costo, en relación a la ventilación mecanizada, el uso del aire comprimido
para atender la aireación de desarrollos debe limitarse exclusivamente a aquellas
aplicaciones donde no es posible por razones prácticas el utilizar sistemas auxiliares de
ventilación como es el caso particular del desarrollo manual de chimeneas o piques
inclinados.

11
FIGURA 1.-

12
El uso de sopladores de aire comprimido para ventilar los desarrollos horizontales, se
debe limitar a aquellas galerías de pequeña sección que por la falta de espacio físico
no hacen posible los tendidos de mangas de ventilación y para acelerar la salida de los
gases en los sistemas aspirantes, instalando los sopladores en el extremo de la
cañería de aire comprimido cercana a las frentes (zona muerta), siempre que no sea
posible el uso de ventiladores eléctricos portátiles con manga lisa que impulse aire a
la frente en avance.
ART. 141, DS 72: En las galerías en desarrollo donde se use ventilación auxiliar, el
extremo de la tubería no deberá estar a más de 30 metros de la frente (ver figura 2).
FIGURA 2.-

3. CALCULOS DE LOS CAUDALES REQUERIDOS:
3.1. Generalidades:
El objetivo principal de un estudio de ventilación de minas, es determinar la cantidad y
calidad del aire que debe circular dentro de ella.
Los factores que influyen en la determinación de este caudal, dependen de las
condiciones propias de cada operación y del método de explotación utilizado.
13
El caudal necesario, para satisfacer las necesidades tanto del personal como de los
equipos que en conjunto laboran al interior de la mina, se establecen de acuerdo a los
requerimientos legales, normas de confort y eficiencia del trabajo.
Este caudal debe garantizar la dilución de los gases generados tanto por los equipos y
maquinarias de combustión interna (Diesel), como los gases provenientes de la
tronadura y los polvos asociados a las distintas operaciones.
La normativa a cumplir en Chile, son el Reglamento de Seguridad Minera D.S. N° 72,
del Ministerio de Minería, artículos desde el N° 132 al N° 151 y el artículo N° 66 del
D.S. N° 594, Reglamento sobre condiciones ambientales básicas en lugares de
trabajo, del Ministerio de Salud.
El aire, al pasar por una mina sufre cambios en su composición, principalmente de
disminución de oxígeno. En minas poco profundas, el clima dentro de las minas, no
presenta mayores preocupaciones, pero cuando tienen profundidades superiores a
1.000 metros, éste es un problema que debe ser atendido.
La acción de temperaturas elevadas sobre el personal, pueden incluso provocar la
muerte.

Ventiladores Minas de Carbón en Virginia, U.S.A.

14
3.2. Requerimientos de aire:
Las necesidades de aire al interior de la mina, deben ser determinadas en base al
personal y el número de equipos que trabajan al interior de las labores en los niveles
que componen la mina, además de conocer el método de explotación.
El cálculo de las necesidades, permitirá ventilar las labores mineras en forma eficiente,
mediante un control de flujos tanto de inyección de aire fresco, como de extracción de
aire viciado. Esto permite diluir y extraer el polvo en suspensión, gases producto de la
tronadura o de la combustión de los vehículos.
Para determinar el requerimiento de aire total se utilizan los siguientes parámetros
operacionales:
♦ Caudal requerido por el número de personas.
♦ Caudal requerido por desprendimiento de gases según Norma Chilena
♦ Caudal requerido por temperatura.
♦ Caudal requerido por el polvo en suspensión
♦ Caudal requerido por la producción.
♦ Caudal requerido por consumo de explosivos
♦ Caudal requerido por equipo Diesel

3.3. Cálculo de los caudales parciales de aire por cada operación:
a) Perforación Mecanizada (Jumbo)
b) Carguío de explosivos, acuñaduras y trabajos varios interior mina.
c) Tronadura de avance (tiempo de dilución de 30 minutos)
d) Tronadura de banqueo (tiempo de dilución 180 minutos)
e) Caudal requerido por la producción.
f) Caudal requerido por carguío y transporte

15
El caudal parcial para cada operación se deberá calcular, de acuerdo a normativa de
suministrar 2.83 m3/min. por cada HP motor de todo equipo diesel en operación
(equivalente a 100 pie3/min. por cada HP motor) (Art. 132, D.S. Nº 72).
Al caudal de aire obtenido, según flota diesel operativa, se le debe agregar el caudal
requerido por la totalidad de personas trabajando al interior de la mina (Art. 132 y 138,
D.S. Nº 72).
Una vez calculados los caudales, según los distintos aspectos considerados (puntos a)
hasta f), se debe efectuar un análisis para determinar cuál caudal se debe considerar y
cuál suma de ellos. Luego, a la cantidad determinada es aconsejable considerar un
porcentaje de aumento a causa de pérdidas y filtraciones, por ejemplo, un 30 %.
Q filtraciones = 30% de Q req
Por lo tanto:
Q TOTAL = [Q req + Q filtraciones]

VENTILADORES MINA EL SALVADOR

16
3.4. Flujo de aire en Galerías o Ductos (Ley de Atkinson)
Cuando el aire fluye a través de un ducto o galería minera, la presión requerida para
mover el aire a través de él depende no sólo de la fricción interna, sino también del
tamaño, longitud, forma del ducto, velocidad y densidad del aire.
Todos estos factores son considerados en la ecuación de J. Atkinson, denominada
“Ley de Atkinson”
P = K C L V² / A
Donde P =
K=
C=
L=
V=
A=

Pérdida de presión [Pa]
Factor de fricción [Ns² / m4]
Perímetro [metros]
Longitud [m.]
Velocidad [m / seg.]
Área [ m² ]

A partir de esta ley, se pueden calcular K y la caída de presión estática.
En adelante, se usará la letra P para el cálculo de potencia y la caída de presión
(pérdida de presión) se pasará a llamar H.
Conocidos el Caudal (Q) y la Caída de Presión (H) a cierta densidad del aire (W), se
establece el punto operacional para el sistema.
4. SELECCIÓN DE VENTILADORES:
Para ventilar una mina se necesitan ciertas cantidades de flujo de aire, con una caída
de presión determinada, a cierta densidad del aire. Conocidas la caída y el caudal de la
mina (Punto de operación del sistema), existen casi un número infinito de ventiladores
en el mundo que satisfacen el punto operacional adecuado.
Se deberá especificar el punto de operación (Q vs. H Sist.) del ventilador requerido, a
fin de que los proveedores coticen la unidad ventiladora con la potencia de motor
eléctrico correspondiente, que satisfaga dicho punto. La especificación debe incluir
además, la altura geográfica en donde se instalará dicho equipo.
4.1. Punto de Operación del Sistema:
Existen cientos de ventiladores que satisfacen cada Caída-Caudal característica.
Además, cada ventilador puede variar su velocidad (RPM), las paletas o el diámetro.
Todas estas características, esenciales para la selección del ventilador adecuado,
pueden ser obtenidas de los fabricantes.
17
Las curvas de funcionamiento vienen trazadas en función de las variables
operacionales principales: Caídas de Presión (H), Caudal (Q), Potencia (P) y Eficiencia
(η) a densidad de aire normal, que a nivel del mar es de [¨1.2 Kg. / m³] (W)
A una altura de 3.600 m.s.n.m. por ejemplo, la densidad del aire es de [0.866 Kg. / m³],
razón por la que la densidad debe corregirse por aquélla en donde se desempeñará la
unidad.
La forma habitual del trazado de curvas es graficar el Caudal versus las demás
variables (caída estática, caída total, potencia al freno, eficiencia estática y eficiencia
total).
Normalmente, se logra una ventilación efectiva cuando se emplean varios ventiladores
principales, los que se ubican de preferencia en las galerías principales de ventilación o
en piques en la superficie y se distribuyen de manera que la carga o caída de presión
del sistema esté dividido en forma equitativa entre los ventiladores.
4.2 Potencia del motor:
La potencia que se debe instalar, con un factor de servicio de al menos 1.15, es mayor
que la Potencia a consumir
Las consideraciones que deben hacerse para calcular la potencia del motor son:
Q=
H=
P=
η=

Caudal de aire en m³/seg.
Depresión del circuito en Pa (presión estática en Pascales)
Potencia del motor en Kw.
Eficiencia del ventilador, la cual varía entre 70 a 85% (dependiendo de la
fabricación, tamaño y punto de trabajo).

AHP = Potencia necesaria para mover el caudal Q de aire en un circuito cuya
depresión es H, en Kw.
BHP = Potencia al freno del ventilador, en Kw.
DE = Eficiencia de la transmisión, la cual varía entre 90% para transmisión por
poleas y correas, y 100% para transmisión directa.
ME = Eficiencia del motor, la cual varía entre 85% a 95%.

18
Como la Potencia del motor es directamente proporcional a la cantidad de aire y a la
pérdida de presión del circuito se tendrá que:
1)
2)
3)

AHP = Q x H / 1000
BHP = Q x H / 1000 x η
P = Q x H / 1000 x η x DE x ME

5.- LEYES DEL VENTILADOR:
Se considera N = la velocidad de rotación del ventilador. La forma en que afecta al
volumen de aire movido, a la presión capaz de producir y a la energía absorbida
por el ventilador, constituyen las leyes de rendimiento básico de cualquier ventilador.
Estas relaciones son:
Q ≈ N
H ≈ N²
P ≈ N³
Estas leyes se aplican prescindiendo del sistema de unidades usadas, siempre que
sean consistentes. Su importancia radica en que si la resistencia del sistema contra el
cual está operando el ventilador no cambia, aunque aumentamos la velocidad del
ventilador, por ejemplo al doble:
Q1/Q2 = N1/N2
H1/H2 = (N1/N2)²
P1/P2 = (N1/N2)³

= ½ > Q2 = 2 x Q1 (El Caudal aumenta al doble)
= ¼ > H2 = 4 x H1 (La Presión aumenta 4 veces)
= 1/8 > P2 = 8 x P1 (La Potencia aumenta 8 veces)

Esto indica que la decisión de aumentar la velocidad del ventilador tiene efectos
considerables en la energía requerida.

DUCTERIA MINA EL SALVADOR
19
6. CIRCUITOS COMPLEJOS:
Cuando la conexión entre las galerías se hace más complicada, no pudiendo reconocer
en el circuito conexiones en paralelo, serie o diagonal, se debe recurrir a otros métodos
de cálculo más complejos que, generalmente, requieren ayuda de instrumentos y/o
computadores.
6.1 Software de equilibrio de redes de ventilación:
Una vez resuelto el caudal resultante, se puede realizar una simulación de la malla
definitiva del proyecto, imponiendo en la rama que representa la estocada en que se
instalará el ventilador principal, el caudal de aire de diseño y la presión estática del
punto. El trazado estará compuesto además por la vía principal de aire fresco y la
chimenea de extracción general conectada con la superficie.
Para imputar los datos de cada una de las ramas, se define una malla equivalente
tomando como soporte por ejemplo, el dibujo en AutoCad del circuito asociado al
Proyecto. Se carga el software con la malla real del circuito, asignando las cotas y
largos reales a cada tramo.
Para la simulación, se requieren los siguientes parámetros generales:
♦ Densidad del aire
: 1,2 Kg./ m³ (sin factor de corrección)
♦ Eficiencia del Ventilador : 75% (por defecto)
♦ Coeficientes de fricción : K
Para abordar las distintas situaciones a las que se verá enfrentada la explotación del
proyecto, se generan varios escenarios representativos. Cuando se desea evitar que el
caudal de aire aumente en demasía en una dirección, se deberá adecuar un regulador
cuya dimensión variará de acuerdo a cada escenario.
El escenario más desfavorable o de mayor resistencia debe sensibilizarse con los
valores del consumo de energía y de la construcción. Entre dos alternativas que
presenten un gasto combinado energético y de construcción similar, se preferirá
aquélla que acepte mayor caudal de aire, por si las condiciones de explotación de otro
sector así lo necesitan.
De acuerdo al resultado de esta simulación, que entrega como producto final el “punto
de operación del sistema” (ejemplo: Caudal Q = 1.600 m³/min. y Caída de presión
Ps = 127 mm. de columna de agua), se seleccionarán los ventiladores de la instalación.
6.2. Sistema de monitoreo y control centralizado:
20
Dado que la instalación de ventiladores de mediana capacidad, actuando como
reforzadores para atender niveles de producción, reducción y hundimiento, es una
opción de alta probabilidad de implementación futura, es necesario que, en la
eventualidad de proponer la instalación y operación masiva de un alto número de tales
ventiladores al interior de los sectores, se considere la implementación de un Sistema
de Monitoreo y Control Centralizado (del tipo Inteligente ó Semi-inteligente) del estado
y operación de estos equipos.
El mismo concepto es válido para la eventualidad de que, al interior del proyecto se
proponga instalar reguladores de flujos de aire, los cuales además de poder ser
operados en forma manual (control local), puedan también ser conectados a un sistema
de monitoreo y control a distancia (actuación de tipo tele comandado).

21
ANEXO A:
Requerimientos de aire:
Las necesidades de aire al interior de la mina, deben ser determinadas en base al
personal y el número de equipos que trabajan al interior de las labores en los niveles
que componen la mina, además de conocer el método de explotación.
El cálculo de las necesidades, permitirá ventilar las labores mineras en forma eficiente,
mediante un control de flujos tanto de inyección de aire fresco, como de extracción de
aire viciado. Esto permite diluir y extraer el polvo en suspensión, gases producto de la
tronadura o de la combustión de los vehículos.
Para determinar el requerimiento de aire total se utilizan los siguientes parámetros
operacionales:
a) Caudal requerido por el número de personas:
El Art. N° 138 del D.S. N° 72., exige una corriente de aire fresco de no menos de tres
metros cúbicos por minuto (3 m³/ min.) por persona, en cualquier sitio del interior de la
mina.
Q= F x N (m³/ min.)
Donde:
Q = Caudal total para “n” personas que trabajen en interior mina (m³/ min.)
F = Caudal mínimo por persona (3 m³/ min.)
N = Número de personas en el lugar.
A pesar que este método es utilizado con frecuencia, se debe considerar “F” sólo como
referencia, pues no toma en cuenta otros factores consumidores de oxígeno, como lo
son la putrefacción de la madera, la descomposición de la roca, la combustión de los
equipos, etc.
b) Caudal requerido por desprendimiento de gases Según Norma Chilena:
Q= 0.23 x q (m³/ min.)
Donde:
♦ Q = Caudal de aire requerido por desprendimiento de gases durante 24 horas
♦ q = volumen de gas que se desprende en la mina durante las 24 horas

22
c) Caudal requerido por temperatura:
La legislación chilena señala que la temperatura húmeda máxima en el interior de
la mina no podrá exceder de 30 º C, para jornadas de trabajo de 8 horas.
Como norma para el cálculo del aire respecto a la temperatura, se dan los siguientes
valores:
HUMEDAD
RELATIVA
< ó = 85 %
>
85 %

TEMPERATURA
SECA
24 a 30 º C
> 30 º C

VELOCIDAD
MINIMA
30 m./min.
120 m./min.

Para una labor de
20 m² (5 X 4 m.)
600 m³/min.
2240 m³/min.

d) Caudal requerido por el polvo en suspensión:
El criterio más aceptado es hacer pasar una velocidad de aire determinado por las
áreas contaminadas y arrastrar el polvo, a zonas donde no cause problemas.
Según el Art. N° 138 D.S. N° 72 la velocidad promedio en los lugares de trabajo no
debe ser inferior a los quince metros por minuto (15 m./min.). Para lugares con alta
generación de polvo, este valor puede ser considerado hasta un 100% mayor.
Hasta ahora, no hay método de cálculo aceptado por todos, que tome en cuenta el
polvo en suspensión. Pero, velocidades entre 30 a 45 m./min. son suficientes para
mantener las áreas despejadas.
En Chile, la velocidad máxima permitida en galerías con circulación de personal es de
150 m/min. Reglamento de Seguridad Minera (“RSM”).
e) Caudal requerido por la producción:
Este método es usado generalmente en minas de carbón. Para minas metálicas, se
debe tomar en cuenta el consumo de madera, ya que ésta fijará el porcentaje de CO2
existente en la atmósfera.
El cálculo se basa sobre la suposición de que la cantidad de gas (CH4 y CO2) que se
desprende es proporcional a la producción, expresado en forma matemática:
Q= T xu

(m3/min.)

23
Donde:
Q = Caudal requerido por toneladas de producción diaria (m3/min.)
u = norma de aire por tonelada de producción diaria expresada en (m3/min.)
T = Producción diaria en toneladas.
Para minas de carbón, "u" varía generalmente entre 1 a 1,7 (m3/min.).
En minas metálicas, con poco consumo de madera, varía entre 0,6 a 1 (m3/min.). Si el
consumo de madera es alto, puede llegar hasta 1,25 (m3/min.)
Un buen criterio es SUMAR el caudal necesario calculado según el personal que
trabaja en la mina, con el caudal necesario calculado según el equipo Diesel y
aumentar este total en un 20% o más por cortocircuitos o pérdidas.
f) Caudal requerido por consumo de explosivo:
La fórmula que se conoce para este cálculo puede ser criticada, ya que no toma en
cuenta varios factores que se expondrán después de presentarla.
Al tratarse de minas metálicas, este método es el que más se usa. Toma en cuenta la
formación de productos tóxicos por la detonación de explosivos, el tiempo que se
estima para despejar las galerías de gases y la cantidad máxima permitida, según
normas de seguridad, de gases en la atmósfera.
Para el cálculo de este caudal, se emplea la siguiente relación empírica:
Q = 100 x A x a
dxt

(m3/min.)

Donde:
Q =
A =
a =
a =
d =

Caudal de aire requerido por consumo de explosivo detonado (m3/min.)
Cantidad de explosivo detonado, equivalente a dinamita 60% (Kg.)
Volumen de gases generados por cada Kg. de explosivo.
0.04 (m³/Kg. de explosivo); valor tomado como norma general
% de dilución de los gases en la atmósfera, deben ser diluidos a no menos de
0.008 % y se aproxima a 0.01 %
t
= tiempo de dilución de los gases (minutos); generalmente, este tiempo no es
mayor de 30 minutos, cuando se trata de detonaciones corrientes.
Reemplazando en la fórmula tendremos: Q = (0,04 x A x100)/(30 x 0,008) m3/min.
Entonces, tendríamos finalmente: Q = 16,67 x A (m3/min)
La fórmula trata este caso como si fuera a diluir los gases dentro de un espacio
cerrado, lo que no es el caso de una mina donde parte de los gases se eliminan
24
continuamente de la frente por el volumen de aire que entra. Además, los gases
tóxicos se diluyen continuamente con la nube de gases en movimiento con el aire
limpio. Por último, cada gas tóxico que se produce tiene propiedades distintas a las
demás, luego necesitan diferentes porcentaje de dilución, entonces "d" dependerá del
explosivo que se esté usando.
g) Caudal requerido por equipo Diesel:
El art. N° 132 del “R.S.M.” (D.S. N° 72) recomienda un mínimo de 2.83 (m3/min) por
HP al freno del equipo para máquinas en buenas condiciones.
Se debe aclarar que los 2,83 m³/min. del art. N° 132 son el mínimo caudal de aire
requerido y no acepta factores de corrección. Por lo demás, se pide la potencia al freno
o potencia bruta, que es la máxima potencia proporcionada por el motor sin tener en
cuenta las pérdidas por transmisión, si es que no se cuenta con la curva de potencia
entregada por el fabricante (gráfico KW vs. RPM) o con una recomendación de
ventilación para el equipo proporcionada por el fabricante y certificada por algún
organismo confiable.
Para aclarar mejor el punto anterior, se debe calcular el requerimiento de aire de cada
equipo diesel, multiplicando 2,83 por la potencia y por el número de equipos que
trabajan en el momento de máxima producción, eliminando aquéllos que están
fuera de la mina, en reserva o en mantención.
Se puede además, determinar con suficiente aproximación, la cantidad necesaria de
aire normal para diluir un componente cualquiera del gas de escape diesel a la
concentración permisible, a partir de la siguiente fórmula:
Q = V x c ( m3/min.)
y
Donde:
Q = volumen de aire necesario para la ventilación (m3/min.);
V = volumen de gas de escape producido por el motor (m3/min.);
c = concentración del componente tóxico, del gas de escape, que se considera
en particular (% en volumen);
y = concentración máxima, higiénicamente segura, para el componente tóxico
que se está considerando (% en volumen).
Este método necesita de un estudio previo para determinar el volumen de gases y la
concentración del toxico. El máximo volumen determinado se multiplica por 2 para
establecer una ventilación segura.

25

Weitere ähnliche Inhalte

Was ist angesagt?

Clase10 minado subterraneo-ejercicios
Clase10 minado subterraneo-ejerciciosClase10 minado subterraneo-ejercicios
Clase10 minado subterraneo-ejerciciosjuliossh
 
Ventilacion de-minas
Ventilacion de-minasVentilacion de-minas
Ventilacion de-minasSaul Macedo
 
Calculo matematico de los parametros de voladura
Calculo matematico de los parametros de voladuraCalculo matematico de los parametros de voladura
Calculo matematico de los parametros de voladuramirrochan
 
2. CLASE 01 INTRUMENTACION MINERA - ETAPAS PROYECTO MINERO Y OPERACIONES UNIT...
2. CLASE 01 INTRUMENTACION MINERA - ETAPAS PROYECTO MINERO Y OPERACIONES UNIT...2. CLASE 01 INTRUMENTACION MINERA - ETAPAS PROYECTO MINERO Y OPERACIONES UNIT...
2. CLASE 01 INTRUMENTACION MINERA - ETAPAS PROYECTO MINERO Y OPERACIONES UNIT...AdanFranckAlfaroAvil
 
230965139 1-carguio-y-transporte-subterraneo-1
230965139 1-carguio-y-transporte-subterraneo-1230965139 1-carguio-y-transporte-subterraneo-1
230965139 1-carguio-y-transporte-subterraneo-1Yeison Maldonado
 
OPTIMIZACION ECONOMICA A CIELO ABIERTO
OPTIMIZACION ECONOMICA A CIELO ABIERTO OPTIMIZACION ECONOMICA A CIELO ABIERTO
OPTIMIZACION ECONOMICA A CIELO ABIERTO LuisnArmandoLenCndor1
 
Como se calcula el valor de los concentrados de minerales
Como se calcula el valor de los concentrados de mineralesComo se calcula el valor de los concentrados de minerales
Como se calcula el valor de los concentrados de mineralesEdwin Díaz Camacho
 
Exploracion y labores de acceso
Exploracion y labores de accesoExploracion y labores de acceso
Exploracion y labores de accesomarcela_h
 
Costo propiedad operacion de equipo minero
Costo propiedad operacion de equipo mineroCosto propiedad operacion de equipo minero
Costo propiedad operacion de equipo mineroJose Luis Vega Farfan
 
Camaras y pilares minas 2015 2 v
Camaras y pilares minas 2015 2 vCamaras y pilares minas 2015 2 v
Camaras y pilares minas 2015 2 vAdriel Soto
 

Was ist angesagt? (20)

Clase10 minado subterraneo-ejercicios
Clase10 minado subterraneo-ejerciciosClase10 minado subterraneo-ejercicios
Clase10 minado subterraneo-ejercicios
 
Perforadoras
PerforadorasPerforadoras
Perforadoras
 
Ventilacion de-minas
Ventilacion de-minasVentilacion de-minas
Ventilacion de-minas
 
Calculo matematico de los parametros de voladura
Calculo matematico de los parametros de voladuraCalculo matematico de los parametros de voladura
Calculo matematico de los parametros de voladura
 
2. CLASE 01 INTRUMENTACION MINERA - ETAPAS PROYECTO MINERO Y OPERACIONES UNIT...
2. CLASE 01 INTRUMENTACION MINERA - ETAPAS PROYECTO MINERO Y OPERACIONES UNIT...2. CLASE 01 INTRUMENTACION MINERA - ETAPAS PROYECTO MINERO Y OPERACIONES UNIT...
2. CLASE 01 INTRUMENTACION MINERA - ETAPAS PROYECTO MINERO Y OPERACIONES UNIT...
 
Metodo de explotacion shrinkage stoping
Metodo de explotacion shrinkage stopingMetodo de explotacion shrinkage stoping
Metodo de explotacion shrinkage stoping
 
230965139 1-carguio-y-transporte-subterraneo-1
230965139 1-carguio-y-transporte-subterraneo-1230965139 1-carguio-y-transporte-subterraneo-1
230965139 1-carguio-y-transporte-subterraneo-1
 
OPTIMIZACION ECONOMICA A CIELO ABIERTO
OPTIMIZACION ECONOMICA A CIELO ABIERTO OPTIMIZACION ECONOMICA A CIELO ABIERTO
OPTIMIZACION ECONOMICA A CIELO ABIERTO
 
Ejercicio 1
Ejercicio 1Ejercicio 1
Ejercicio 1
 
Cap.4 perforacion y voladura
Cap.4    perforacion y voladuraCap.4    perforacion y voladura
Cap.4 perforacion y voladura
 
Manual de voladura konya rev
Manual de voladura   konya revManual de voladura   konya rev
Manual de voladura konya rev
 
Square set stoping
Square set stopingSquare set stoping
Square set stoping
 
Como se calcula el valor de los concentrados de minerales
Como se calcula el valor de los concentrados de mineralesComo se calcula el valor de los concentrados de minerales
Como se calcula el valor de los concentrados de minerales
 
Diseno mallas-perforacion-y-voladura-subterranea
Diseno mallas-perforacion-y-voladura-subterraneaDiseno mallas-perforacion-y-voladura-subterranea
Diseno mallas-perforacion-y-voladura-subterranea
 
Exploracion y labores de acceso
Exploracion y labores de accesoExploracion y labores de acceso
Exploracion y labores de acceso
 
Método lópez jimeno
Método lópez jimenoMétodo lópez jimeno
Método lópez jimeno
 
Ppt.perfo y voladura
Ppt.perfo y voladuraPpt.perfo y voladura
Ppt.perfo y voladura
 
Costo propiedad operacion de equipo minero
Costo propiedad operacion de equipo mineroCosto propiedad operacion de equipo minero
Costo propiedad operacion de equipo minero
 
Camaras y pilares minas 2015 2 v
Camaras y pilares minas 2015 2 vCamaras y pilares minas 2015 2 v
Camaras y pilares minas 2015 2 v
 
Planeamiento i unidad
Planeamiento i unidadPlaneamiento i unidad
Planeamiento i unidad
 

Andere mochten auch

Ventilacion en mineria_subterranea_cap_i
Ventilacion en mineria_subterranea_cap_iVentilacion en mineria_subterranea_cap_i
Ventilacion en mineria_subterranea_cap_ipitechu
 
Servicio de minas (ventilacion de minas)
Servicio de minas (ventilacion de minas)Servicio de minas (ventilacion de minas)
Servicio de minas (ventilacion de minas)Franklin_Malave
 
1 intro ventilacion-de_minas
1 intro ventilacion-de_minas1 intro ventilacion-de_minas
1 intro ventilacion-de_minasjoel1alexandro
 
Planeamiento de minado
Planeamiento de minadoPlaneamiento de minado
Planeamiento de minadoluis Rojas
 
proyecto: planeamiento de Minas
proyecto: planeamiento de Minasproyecto: planeamiento de Minas
proyecto: planeamiento de MinasFredy Cruzado
 
Expo n° 3 - subtarranea metodos
Expo n°   3 - subtarranea metodosExpo n°   3 - subtarranea metodos
Expo n° 3 - subtarranea metodossaulito141267
 
Diseño de métodos de explotación subterránea en mineria
Diseño de métodos de explotación subterránea en mineriaDiseño de métodos de explotación subterránea en mineria
Diseño de métodos de explotación subterránea en mineriayveswilmer
 
Resumen métodos de explotación varios
Resumen métodos de explotación variosResumen métodos de explotación varios
Resumen métodos de explotación variosCarlos Eyquem
 
01 introduccion de siseño de mina subterraneas
01 introduccion de siseño de mina subterraneas01 introduccion de siseño de mina subterraneas
01 introduccion de siseño de mina subterraneasHamilton Flores Zavaleta
 
1.1. proyecto de plan de minado temerario -2014
1.1.  proyecto de plan de minado temerario -20141.1.  proyecto de plan de minado temerario -2014
1.1. proyecto de plan de minado temerario -2014Fernando Atencio
 
Plan de minado detallado antimonio minera sanchez
Plan de minado detallado antimonio   minera sanchezPlan de minado detallado antimonio   minera sanchez
Plan de minado detallado antimonio minera sanchezAland Bravo Vecorena
 
PLANEAMIENTO EN PERFORACION Y VOLADURA II
PLANEAMIENTO EN PERFORACION Y VOLADURA IIPLANEAMIENTO EN PERFORACION Y VOLADURA II
PLANEAMIENTO EN PERFORACION Y VOLADURA IIBequer Inocente Ocho
 
Planeamiento de minado tajo abierto julio 2013
Planeamiento de minado tajo abierto julio 2013Planeamiento de minado tajo abierto julio 2013
Planeamiento de minado tajo abierto julio 2013Daniel Vasquez Cristobal
 
CALCULO DE VENTILACION
CALCULO DE VENTILACIONCALCULO DE VENTILACION
CALCULO DE VENTILACIONBIlly Santoyo
 
72419841 diseno-de-una-malla-de-perforacion-en-mineria-subterranea-parte-2
72419841 diseno-de-una-malla-de-perforacion-en-mineria-subterranea-parte-272419841 diseno-de-una-malla-de-perforacion-en-mineria-subterranea-parte-2
72419841 diseno-de-una-malla-de-perforacion-en-mineria-subterranea-parte-2ادريان ادريان ادريان
 
Formalizacion de la pequeña mineria y mineria artesanal
Formalizacion de la pequeña mineria y mineria artesanalFormalizacion de la pequeña mineria y mineria artesanal
Formalizacion de la pequeña mineria y mineria artesanalguilleramos190682
 

Andere mochten auch (20)

Ventilacion en mineria_subterranea_cap_i
Ventilacion en mineria_subterranea_cap_iVentilacion en mineria_subterranea_cap_i
Ventilacion en mineria_subterranea_cap_i
 
Servicio de minas (ventilacion de minas)
Servicio de minas (ventilacion de minas)Servicio de minas (ventilacion de minas)
Servicio de minas (ventilacion de minas)
 
1 intro ventilacion-de_minas
1 intro ventilacion-de_minas1 intro ventilacion-de_minas
1 intro ventilacion-de_minas
 
Ventilación en Minas
Ventilación en MinasVentilación en Minas
Ventilación en Minas
 
Planeamiento de minado
Planeamiento de minadoPlaneamiento de minado
Planeamiento de minado
 
proyecto: planeamiento de Minas
proyecto: planeamiento de Minasproyecto: planeamiento de Minas
proyecto: planeamiento de Minas
 
Venti minas i
Venti minas  iVenti minas  i
Venti minas i
 
Expo n° 3 - subtarranea metodos
Expo n°   3 - subtarranea metodosExpo n°   3 - subtarranea metodos
Expo n° 3 - subtarranea metodos
 
Diseño de métodos de explotación subterránea en mineria
Diseño de métodos de explotación subterránea en mineriaDiseño de métodos de explotación subterránea en mineria
Diseño de métodos de explotación subterránea en mineria
 
Introducción métodos de explotación
Introducción métodos de explotaciónIntroducción métodos de explotación
Introducción métodos de explotación
 
Resumen métodos de explotación varios
Resumen métodos de explotación variosResumen métodos de explotación varios
Resumen métodos de explotación varios
 
01 introduccion de siseño de mina subterraneas
01 introduccion de siseño de mina subterraneas01 introduccion de siseño de mina subterraneas
01 introduccion de siseño de mina subterraneas
 
1.1. proyecto de plan de minado temerario -2014
1.1.  proyecto de plan de minado temerario -20141.1.  proyecto de plan de minado temerario -2014
1.1. proyecto de plan de minado temerario -2014
 
Plan de minado detallado antimonio minera sanchez
Plan de minado detallado antimonio   minera sanchezPlan de minado detallado antimonio   minera sanchez
Plan de minado detallado antimonio minera sanchez
 
Labores mineras
Labores minerasLabores mineras
Labores mineras
 
PLANEAMIENTO EN PERFORACION Y VOLADURA II
PLANEAMIENTO EN PERFORACION Y VOLADURA IIPLANEAMIENTO EN PERFORACION Y VOLADURA II
PLANEAMIENTO EN PERFORACION Y VOLADURA II
 
Planeamiento de minado tajo abierto julio 2013
Planeamiento de minado tajo abierto julio 2013Planeamiento de minado tajo abierto julio 2013
Planeamiento de minado tajo abierto julio 2013
 
CALCULO DE VENTILACION
CALCULO DE VENTILACIONCALCULO DE VENTILACION
CALCULO DE VENTILACION
 
72419841 diseno-de-una-malla-de-perforacion-en-mineria-subterranea-parte-2
72419841 diseno-de-una-malla-de-perforacion-en-mineria-subterranea-parte-272419841 diseno-de-una-malla-de-perforacion-en-mineria-subterranea-parte-2
72419841 diseno-de-una-malla-de-perforacion-en-mineria-subterranea-parte-2
 
Formalizacion de la pequeña mineria y mineria artesanal
Formalizacion de la pequeña mineria y mineria artesanalFormalizacion de la pequeña mineria y mineria artesanal
Formalizacion de la pequeña mineria y mineria artesanal
 

Ähnlich wie 200812 guiaventilacionminas

INGENIERIA_POZOS_PETROLEO_Y_GAS_Vol-2_LM1B5T2R0-20200323.pdf
INGENIERIA_POZOS_PETROLEO_Y_GAS_Vol-2_LM1B5T2R0-20200323.pdfINGENIERIA_POZOS_PETROLEO_Y_GAS_Vol-2_LM1B5T2R0-20200323.pdf
INGENIERIA_POZOS_PETROLEO_Y_GAS_Vol-2_LM1B5T2R0-20200323.pdfCesarPastenSoza
 
Guia metodologica ventilacion sernageomin
Guia metodologica ventilacion   sernageominGuia metodologica ventilacion   sernageomin
Guia metodologica ventilacion sernageominElisa_Rutth
 
Seguridad en la Industria Petrolera
Seguridad en la Industria PetroleraSeguridad en la Industria Petrolera
Seguridad en la Industria PetroleraMario Salazar
 
Pfc marta perez_rodriguez
Pfc marta perez_rodriguezPfc marta perez_rodriguez
Pfc marta perez_rodriguezWilson Ochoa
 
Diseño y calculo de la estructura metalica y de la cimentacion de una nave in...
Diseño y calculo de la estructura metalica y de la cimentacion de una nave in...Diseño y calculo de la estructura metalica y de la cimentacion de una nave in...
Diseño y calculo de la estructura metalica y de la cimentacion de una nave in...Darlin Danilo Ruiz Mendez
 
Chile decreto 72 mineria
Chile decreto 72 mineriaChile decreto 72 mineria
Chile decreto 72 mineriaDoug Fernández
 
Charla de Especificación de Bombas Centrifugas.ppt
Charla de Especificación de Bombas Centrifugas.pptCharla de Especificación de Bombas Centrifugas.ppt
Charla de Especificación de Bombas Centrifugas.pptBoris518712
 
Estudio de Metodos y tiempos en el proceso de Extrusion de Tuberia Corrugada.pdf
Estudio de Metodos y tiempos en el proceso de Extrusion de Tuberia Corrugada.pdfEstudio de Metodos y tiempos en el proceso de Extrusion de Tuberia Corrugada.pdf
Estudio de Metodos y tiempos en el proceso de Extrusion de Tuberia Corrugada.pdfAsierFlores
 
280202034 soldar tuberías de polietileno por termofusión a socket
280202034 soldar tuberías de polietileno por termofusión a socket280202034 soldar tuberías de polietileno por termofusión a socket
280202034 soldar tuberías de polietileno por termofusión a socketJohn Arley Muñoz
 

Ähnlich wie 200812 guiaventilacionminas (20)

INGENIERIA_POZOS_PETROLEO_Y_GAS_Vol-2_LM1B5T2R0-20200323.pdf
INGENIERIA_POZOS_PETROLEO_Y_GAS_Vol-2_LM1B5T2R0-20200323.pdfINGENIERIA_POZOS_PETROLEO_Y_GAS_Vol-2_LM1B5T2R0-20200323.pdf
INGENIERIA_POZOS_PETROLEO_Y_GAS_Vol-2_LM1B5T2R0-20200323.pdf
 
Guia metodologica ventilacion sernageomin
Guia metodologica ventilacion   sernageominGuia metodologica ventilacion   sernageomin
Guia metodologica ventilacion sernageomin
 
Ventilación de Minas
Ventilación de Minas Ventilación de Minas
Ventilación de Minas
 
Seguridad en la Industria Petrolera
Seguridad en la Industria PetroleraSeguridad en la Industria Petrolera
Seguridad en la Industria Petrolera
 
Especificaciones tecnicas
Especificaciones tecnicasEspecificaciones tecnicas
Especificaciones tecnicas
 
Pfc marta perez_rodriguez
Pfc marta perez_rodriguezPfc marta perez_rodriguez
Pfc marta perez_rodriguez
 
Tesis 2
Tesis 2Tesis 2
Tesis 2
 
Diseño y calculo de la estructura metalica y de la cimentacion de una nave in...
Diseño y calculo de la estructura metalica y de la cimentacion de una nave in...Diseño y calculo de la estructura metalica y de la cimentacion de una nave in...
Diseño y calculo de la estructura metalica y de la cimentacion de una nave in...
 
Diseño metalica
Diseño metalicaDiseño metalica
Diseño metalica
 
C1 (2)_GRUPO_01.docx
C1 (2)_GRUPO_01.docxC1 (2)_GRUPO_01.docx
C1 (2)_GRUPO_01.docx
 
Chile decreto 72 mineria
Chile decreto 72 mineriaChile decreto 72 mineria
Chile decreto 72 mineria
 
Charla de Especificación de Bombas Centrifugas.ppt
Charla de Especificación de Bombas Centrifugas.pptCharla de Especificación de Bombas Centrifugas.ppt
Charla de Especificación de Bombas Centrifugas.ppt
 
Unidad II Planeación y diseño de la perforación
Unidad II Planeación y diseño de la perforaciónUnidad II Planeación y diseño de la perforación
Unidad II Planeación y diseño de la perforación
 
Estudio de Metodos y tiempos en el proceso de Extrusion de Tuberia Corrugada.pdf
Estudio de Metodos y tiempos en el proceso de Extrusion de Tuberia Corrugada.pdfEstudio de Metodos y tiempos en el proceso de Extrusion de Tuberia Corrugada.pdf
Estudio de Metodos y tiempos en el proceso de Extrusion de Tuberia Corrugada.pdf
 
Expte. 1235 peas - 67
Expte. 1235   peas - 67Expte. 1235   peas - 67
Expte. 1235 peas - 67
 
Xst11001 spc-oc-201 geomemb
Xst11001 spc-oc-201 geomembXst11001 spc-oc-201 geomemb
Xst11001 spc-oc-201 geomemb
 
Tesis.desbloqueado
Tesis.desbloqueadoTesis.desbloqueado
Tesis.desbloqueado
 
280202034 soldar tuberías de polietileno por termofusión a socket
280202034 soldar tuberías de polietileno por termofusión a socket280202034 soldar tuberías de polietileno por termofusión a socket
280202034 soldar tuberías de polietileno por termofusión a socket
 
903 hm120-p09-gud-023
903 hm120-p09-gud-023903 hm120-p09-gud-023
903 hm120-p09-gud-023
 
Capitulo 9 Proyectos Electromecanicos.
Capitulo 9 Proyectos Electromecanicos.Capitulo 9 Proyectos Electromecanicos.
Capitulo 9 Proyectos Electromecanicos.
 

Kürzlich hochgeladen

ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...JAVIER SOLIS NOYOLA
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoFundación YOD YOD
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arteRaquel Martín Contreras
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Lourdes Feria
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSjlorentemartos
 
la unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscala unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscaeliseo91
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.amayarogel
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxjosetrinidadchavez
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...JonathanCovena1
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxlclcarmen
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdfBaker Publishing Company
 
Ecosistemas Natural, Rural y urbano 2021.pptx
Ecosistemas Natural, Rural y urbano  2021.pptxEcosistemas Natural, Rural y urbano  2021.pptx
Ecosistemas Natural, Rural y urbano 2021.pptxolgakaterin
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 

Kürzlich hochgeladen (20)

ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativo
 
Sesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronósticoSesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronóstico
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arte
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
 
la unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscala unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fisca
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
 
Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf
 
Ecosistemas Natural, Rural y urbano 2021.pptx
Ecosistemas Natural, Rural y urbano  2021.pptxEcosistemas Natural, Rural y urbano  2021.pptx
Ecosistemas Natural, Rural y urbano 2021.pptx
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 

200812 guiaventilacionminas

  • 1. GUÍA METODOLÓGICA DE SEGURIDAD PARA PROYECTOS DE VENTILACIÓN DE MINAS Antecedentes según Decreto Supremo Nº 72, “Reglamento de Seguridad Minera", del año 1985, cuyo texto refundido, coordinado y sistematizado fue fijado mediante D.S. Nº 132, de 2002, del Ministerio de Minería. Departamento de Seguridad Minera, 2008 1
  • 2. GUÍA METODOLÓGICA DE SEGURIDAD PARA VENTILACIÓN DE MINAS SERVICIO NACIONAL DE GEOLOGÍA Y MINERÍA Avenida Santa María N° 0104 Providencia, Santiago de Chile Elaborado por: Ing. Sergio Andrade Gallardo Departamento de Seguridad Minera Diseño Multimedia: Depto. de Informática SERNAGEOMIN 2
  • 3. 3
  • 4. INDICE DE MATERIAS 1. PROYECTOS DE VENTILACION EN MINAS SUBTERRANEAS ......................05 1.1. Recomendaciones Generales ...................................................................05 1.2. Presentación de proyectos ........................................................................06 1.3. Índice del Proyecto.....................................................................................06 1.4. Resumen Ejecutivo del Proyecto................................................................06 1.5. Descripción General del Proyecto ..............................................................07 1.5.1 Antecedentes Técnicos Generales del Proyecto de Ventilación .....07 1.5.2 Antecedentes Técnicos Específicos del Proyecto de Ventilación.....08 2. DESCRIPCION GENERAL DE LOS METODOS DE VENTILACION DE MINAS SUBTERRANEAS...................................................................................09 2.1. Ventilación Natural ......................................................................................09 2.2. Ventilación Auxiliar ......................................................................................10 2.3. Uso de Aire Comprimido .............................................................................11 Fig.1. Esquema de tipos básicos de Ventilación Auxiliar....................................12 Fig.2. Art. 141, D.S. N° 72 .................................................................................13 3. CALCULO DE LOS CAUDALES REQUERIDOS ............................................13 3.1. Generalidades .............................................................................................13 3.2. Requerimientos de aire ...............................................................................15 3.3. Cálculo de caudales parciales de aire por cada operación .........................15 3.4. Flujo de aire en Galerías o Ductos (Ley de Atkinson) .................................17 4. SELECCIÓN DE VENTILADORES ...................................................................17 4.1. Punto de operación del sistema ..................................................................17 4.2. Potencia del Motor ......................................................................................18 5. LEYES DEL VENTILADOR ...............................................................................19 6. CIRCUITOS COMPLEJOS..................................................................................20 6.1. Software de equilibrio de redes de ventilación ............................................20 6.2. Sistema de monitoreo y control centralizado...............................................21 ANEXO A: .........................................................................................................22 Requerimientos de aire ...............................................................................................22 a) Caudal requerido por el número de personas .....................................................22 b) Caudal requerido por desprendimiento de gases................................................22 c) Caudal requerido por temperatura ......................................................................23 d) Caudal requerido por el polvo en suspensión .....................................................23 e) Caudal requerido por la producción ....................................................................23 f) Caudal requerido por consumo de explosivo ......................................................24 g) Caudal requerido por Equipo Diesel....................................................................25 4
  • 5. 1. PROYECTOS DE VENTILACIÓN EN MINAS SUBTERRÁNEAS: SERNAGEOMIN, consciente de la importancia de incorporar la variable seguridad a los proyectos mineros del país, ha desarrollado estas guías metodológicas, con el propósito de que los empresarios mineros cuenten con un apoyo que les permita la aplicación correcta de la legislación vigente en materias de seguridad minera, en cada uno de sus proyectos, y a su vez logren un desempeño eficiente en la tramitación de ellos. Esta guía en particular, contiene, por lo tanto, las indicaciones necesarias para orientar al proponente en su trabajo de ventilación de las labores mineras, en el sentido de que su trabajo se enmarque dentro de la reglamentación contenida en el “Reglamento de Seguridad Minera” (RSM). DE RE METALLICA 1.1. Recomendación General: En todos los casos, la información presentada en los proyectos, debe ser lo suficientemente detallada para que el lector o revisor comprenda totalmente la naturaleza y extensión del proyecto propuesto, a fin de contar con los detalles suficientes que permitan una adecuada evaluación. Los planos y mapas que se presenten, deben ir ubicados dentro del informe, de manera que el acceso a ellos sea fácil, y a una escala adecuada. 5
  • 6. Puede presentarse una copia reducida que se incluya dentro del capítulo de descripción, adjuntando en el apéndice los planos tamaño original. El nivel de profundidad con que se debe desarrollar cada tema dependerá de la etapa en que se encuentre; de la magnitud del proyecto, y de su nivel de complejidad. 1.2. Presentación de proyectos: La presente guía se basa en la experiencia acumulada por el Servicio a través del tiempo, en manuales especializados de ventilación, y en algunas experiencias extranjeras que han sido consultadas. Para cumplir con lo establecido en el "Reglamento de Seguridad Minera", respecto a la presentación del proyecto, SERNAGEOMIN espera que la presentación contenga, al menos, lo siguiente: ♦ Índice ♦ Resumen Ejecutivo ♦ Descripción del Proyecto 1.3. Índice del Proyecto: Para una mejor lectura y una fácil ubicación de algún punto específico, al comienzo del proyecto, se debe agregar un Índice de las materias que contiene, con indicación del número, en la página correspondiente. 1.4. Resumen Ejecutivo del Proyecto: ♦ Etapa de construcción: Se deben describir los requerimientos necesarios para materializar las obras físicas. ♦ Etapa de operación: Se deben detallar las acciones, requerimientos, manejo de materiales e insumos y todos los aspectos necesarios para el funcionamiento adecuado de la ventilación, incluyendo sus medidas de control, conservación y monitoreo. 6
  • 7. 1.5. Descripción General del Proyecto: La descripción del proyecto proporciona la base sobre la cual se lleva a cabo la revisión de las normas que protegen la vida y salud de los trabajadores, las instalaciones e infraestructura que hacen posible las operaciones mineras y la continuidad de sus procesos. Por tanto, se debe incluir una descripción completa y detallada del sistema propuesto, basado en la experiencia del minero y los estudios realizados. La descripción del sistema de ventilación debe incluir una descripción resumida del método de explotación y los equipos necesarios. Normalmente, es una parte del Proyecto de Explotación y en tal caso en términos generales, la descripción del sistema deberá contener, si correspondiere, la siguiente información: ♦ Nombre de la mina u obra y objetivo de ello. ♦ Ubicación geográfica y política, de la mina u obra. ♦ Nombre del establecimiento. ♦ Nombre y ubicación de las pertenencias que amparan los lugares de trabajo, cuando corresponda. ♦ Nombre del propietario y representante legal de la empresa. ♦ Método o Métodos de explotación proyectados y sus parámetros principales. ♦ Profesionales mineros que firman el proyecto y profesional minero responsable de la faena. 1.5.1 Antecedentes Técnicos Generales del Proyecto de Ventilación: a) Se deberá calcular la cantidad de aire requerido, considerando los siguientes aspectos: ♦ Velocidad del aire a la entrada del túnel ♦ Cantidad de aire para el equipo Diesel ♦ Cantidad de aire para la gente ♦ Aire necesario para diluir o remover los gases y el polvo ♦ Cantidad de aire adecuado para enfriar u otras necesidades. b) Cálculo de la caída de presión del sistema: ♦ Pérdidas por fricción y pérdidas por choque. 7
  • 8. c) Plano detallado de la mina u obra, indicando los sectores en que serán ubicados los equipos. d) Listado de equipos seleccionados. 1.5.2. Antecedentes Técnicos Específicos del Proyecto de Ventilación: a) Cálculo de los caudales parciales de aire por cada operación. ♦ Perforación. ♦ Carguío de explosivos, acuñaduras y trabajos varios al interior de la mina. ♦ Tronadura de avance y producción. ♦ Caudal requerido para carguío y transporte. b) Considerar en el cálculo de las pérdidas, las siguientes restricciones físicas: ♦ Espacio existente entre los equipos de carguío y transporte y la labor. ♦ Longitud del ducto. ♦ Problemas con el manejo de insumos o material suspendido en la labor. ♦ Daños potenciales de la tronadura y otras actividades. c) Otras consideraciones: ♦ Los ductos y ventiladores deben ser calculados de manera ventiladores puedan mover el aire requerido. que los ♦ Señalar las direcciones preferentes del flujo de aire (succión y soplado). d) Potencia y eficiencia de los ventiladores, más ductería empleada. 8
  • 9. 2. DESCRIPCIÓN GENERAL DE LOS MÉTODOS DE VENTILACIÓN DE MINAS: El sistema escogido será probablemente una combinación de los métodos que presentamos a continuación: 2.1. Ventilación Natural: La energía más barata y abundante en la naturaleza es el aire natural, que se utiliza en la ventilación para minas subterráneas. Este aire se introduce por la bocamina principal de ingreso, recorriendo el flujo del aire por la totalidad del circuito de ventilación, hasta la salida del aire por la otra bocamina. Para que funcione la ventilación natural tiene que existir una diferencia de alturas entre las bocaminas de entrada y salida. En realidad, más importante que la profundidad de la mina es el intercambio termodinámico que se produce entre la superficie y el interior. La energía térmica agregada al sistema se transforma a energía de presión, susceptible de producir un flujo de aire (el aire caliente desplaza al aire frío produciendo circulación). La ventilación natural es muy cambiante, depende de la época del año, incluso, en algunos casos, de la noche y el día. Dado que, la VENTILACIÓN NATURAL es un fenómeno de naturaleza inestable y fluctuante, en ninguna faena subterránea moderna debe utilizarse como un medio único y confiable para ventilar sus operaciones. 9
  • 10. 2.2. Ventilación Auxiliar: Como ventilación auxiliar o secundaria, definimos aquellos sistemas que, haciendo uso de ductos y ventiladores auxiliares, ventilan áreas restringidas de las minas subterráneas, empleando para ello circuitos de alimentación de aire fresco y de evacuación del aire viciado que les proporciona el sistema de ventilación general. Por extensión, esta definición la aplicamos al laboreo de túneles desde la superficie, aún cuando en estos casos no exista un sistema de ventilación general. Los sistemas de ventilación auxiliar que pueden emplearse en el desarrollo de galerías horizontales, utilizando ductos y ventiladores auxiliares son: ♦ Sistema impelente: El aire es impulsado dentro del ducto y sale por la galería en desarrollo ya viciado. Para galerías horizontales de poca longitud y sección (menores a 400 metros y de 3.0 x 3.0 metros de sección), lo conveniente es usar un sistema impelente de mediana o baja capacidad, dependiendo del equipo a utilizar en el desarrollo y de la localización de la alimentación y evacuación de aire del circuito general de ventilación de la zona. (Ver figura 1). ♦ Sistema aspirante: El aire fresco ingresa a la frente por la galería y el contaminado es extraído por la ductería. Para ventilar desarrollos de túneles desde la superficie, es el sistema aspirante el preferido para su ventilación, aún cuando se requieren elementos auxiliares para remover el aire de la zona muerta, comprendida entre la frente y el extremo de la ductería de aspiración. (Ver figura 1.-). ♦ Un tercer sistema es el combinado, aspirante-impelente, que emplea dos tendidos de ductería, una para extraer aire y el segundo para impulsar aire limpio a la frente en avance. Este sistema reúne las ventajas de los dos tipos básicos, en cuanto a mantener la galería y la frente en desarrollo con una renovación constante de aire limpio y en la velocidad de la extracción de los gases de disparos, con la desventaja de su mayor costo de instalación y manutención. Para galerías de mayor sección (mayor a 12 m2), y con una longitud sobre los 400 metros, el uso de un sistema aspirante o combinado es más recomendable para mantener las galerías limpias y con buena visibilidad para el tráfico de vehículos, sobre todo si éste es equipo diesel. (Ver figura 1.-). Hoy día, es la ventilación impelente la que más se usa, ya que el ducto es una manga totalmente flexible, fácil de trasladar, colocar y sacar. En este caso, el ventilador al soplar infla la manga y mueve el aire. En el caso de la ventilación aspirante, estas mangas deben tener un anillado en espiral rígido lo que las hace muy caras. 10
  • 11. El uso de sistemas combinados, aspirante – impelentes, para ventilar el desarrollo de piques verticales, es también de aplicación práctica cuando éstos se desarrollan en forma descendente y la marina se extrae por medio de baldes. En estos casos, el uso de un tendido de mangas que haga llegar aire fresco al fondo del pique en avance es imprescindible para refrescar el ambiente. La aplicación de sistemas auxiliares para desarrollar galerías verticales está limitada a su empleo para ventilar la galería donde se inicia el desarrollo de la chimenea o pique, dado que la destrucción de los tendidos de ductos dentro de la labor vertical por la caída de la roca en los disparos es inevitable (en su reemplazo se utiliza el aire comprimido). 2.3. Uso de Aire Comprimido: Por su alto costo, en relación a la ventilación mecanizada, el uso del aire comprimido para atender la aireación de desarrollos debe limitarse exclusivamente a aquellas aplicaciones donde no es posible por razones prácticas el utilizar sistemas auxiliares de ventilación como es el caso particular del desarrollo manual de chimeneas o piques inclinados. 11
  • 13. El uso de sopladores de aire comprimido para ventilar los desarrollos horizontales, se debe limitar a aquellas galerías de pequeña sección que por la falta de espacio físico no hacen posible los tendidos de mangas de ventilación y para acelerar la salida de los gases en los sistemas aspirantes, instalando los sopladores en el extremo de la cañería de aire comprimido cercana a las frentes (zona muerta), siempre que no sea posible el uso de ventiladores eléctricos portátiles con manga lisa que impulse aire a la frente en avance. ART. 141, DS 72: En las galerías en desarrollo donde se use ventilación auxiliar, el extremo de la tubería no deberá estar a más de 30 metros de la frente (ver figura 2). FIGURA 2.- 3. CALCULOS DE LOS CAUDALES REQUERIDOS: 3.1. Generalidades: El objetivo principal de un estudio de ventilación de minas, es determinar la cantidad y calidad del aire que debe circular dentro de ella. Los factores que influyen en la determinación de este caudal, dependen de las condiciones propias de cada operación y del método de explotación utilizado. 13
  • 14. El caudal necesario, para satisfacer las necesidades tanto del personal como de los equipos que en conjunto laboran al interior de la mina, se establecen de acuerdo a los requerimientos legales, normas de confort y eficiencia del trabajo. Este caudal debe garantizar la dilución de los gases generados tanto por los equipos y maquinarias de combustión interna (Diesel), como los gases provenientes de la tronadura y los polvos asociados a las distintas operaciones. La normativa a cumplir en Chile, son el Reglamento de Seguridad Minera D.S. N° 72, del Ministerio de Minería, artículos desde el N° 132 al N° 151 y el artículo N° 66 del D.S. N° 594, Reglamento sobre condiciones ambientales básicas en lugares de trabajo, del Ministerio de Salud. El aire, al pasar por una mina sufre cambios en su composición, principalmente de disminución de oxígeno. En minas poco profundas, el clima dentro de las minas, no presenta mayores preocupaciones, pero cuando tienen profundidades superiores a 1.000 metros, éste es un problema que debe ser atendido. La acción de temperaturas elevadas sobre el personal, pueden incluso provocar la muerte. Ventiladores Minas de Carbón en Virginia, U.S.A. 14
  • 15. 3.2. Requerimientos de aire: Las necesidades de aire al interior de la mina, deben ser determinadas en base al personal y el número de equipos que trabajan al interior de las labores en los niveles que componen la mina, además de conocer el método de explotación. El cálculo de las necesidades, permitirá ventilar las labores mineras en forma eficiente, mediante un control de flujos tanto de inyección de aire fresco, como de extracción de aire viciado. Esto permite diluir y extraer el polvo en suspensión, gases producto de la tronadura o de la combustión de los vehículos. Para determinar el requerimiento de aire total se utilizan los siguientes parámetros operacionales: ♦ Caudal requerido por el número de personas. ♦ Caudal requerido por desprendimiento de gases según Norma Chilena ♦ Caudal requerido por temperatura. ♦ Caudal requerido por el polvo en suspensión ♦ Caudal requerido por la producción. ♦ Caudal requerido por consumo de explosivos ♦ Caudal requerido por equipo Diesel 3.3. Cálculo de los caudales parciales de aire por cada operación: a) Perforación Mecanizada (Jumbo) b) Carguío de explosivos, acuñaduras y trabajos varios interior mina. c) Tronadura de avance (tiempo de dilución de 30 minutos) d) Tronadura de banqueo (tiempo de dilución 180 minutos) e) Caudal requerido por la producción. f) Caudal requerido por carguío y transporte 15
  • 16. El caudal parcial para cada operación se deberá calcular, de acuerdo a normativa de suministrar 2.83 m3/min. por cada HP motor de todo equipo diesel en operación (equivalente a 100 pie3/min. por cada HP motor) (Art. 132, D.S. Nº 72). Al caudal de aire obtenido, según flota diesel operativa, se le debe agregar el caudal requerido por la totalidad de personas trabajando al interior de la mina (Art. 132 y 138, D.S. Nº 72). Una vez calculados los caudales, según los distintos aspectos considerados (puntos a) hasta f), se debe efectuar un análisis para determinar cuál caudal se debe considerar y cuál suma de ellos. Luego, a la cantidad determinada es aconsejable considerar un porcentaje de aumento a causa de pérdidas y filtraciones, por ejemplo, un 30 %. Q filtraciones = 30% de Q req Por lo tanto: Q TOTAL = [Q req + Q filtraciones] VENTILADORES MINA EL SALVADOR 16
  • 17. 3.4. Flujo de aire en Galerías o Ductos (Ley de Atkinson) Cuando el aire fluye a través de un ducto o galería minera, la presión requerida para mover el aire a través de él depende no sólo de la fricción interna, sino también del tamaño, longitud, forma del ducto, velocidad y densidad del aire. Todos estos factores son considerados en la ecuación de J. Atkinson, denominada “Ley de Atkinson” P = K C L V² / A Donde P = K= C= L= V= A= Pérdida de presión [Pa] Factor de fricción [Ns² / m4] Perímetro [metros] Longitud [m.] Velocidad [m / seg.] Área [ m² ] A partir de esta ley, se pueden calcular K y la caída de presión estática. En adelante, se usará la letra P para el cálculo de potencia y la caída de presión (pérdida de presión) se pasará a llamar H. Conocidos el Caudal (Q) y la Caída de Presión (H) a cierta densidad del aire (W), se establece el punto operacional para el sistema. 4. SELECCIÓN DE VENTILADORES: Para ventilar una mina se necesitan ciertas cantidades de flujo de aire, con una caída de presión determinada, a cierta densidad del aire. Conocidas la caída y el caudal de la mina (Punto de operación del sistema), existen casi un número infinito de ventiladores en el mundo que satisfacen el punto operacional adecuado. Se deberá especificar el punto de operación (Q vs. H Sist.) del ventilador requerido, a fin de que los proveedores coticen la unidad ventiladora con la potencia de motor eléctrico correspondiente, que satisfaga dicho punto. La especificación debe incluir además, la altura geográfica en donde se instalará dicho equipo. 4.1. Punto de Operación del Sistema: Existen cientos de ventiladores que satisfacen cada Caída-Caudal característica. Además, cada ventilador puede variar su velocidad (RPM), las paletas o el diámetro. Todas estas características, esenciales para la selección del ventilador adecuado, pueden ser obtenidas de los fabricantes. 17
  • 18. Las curvas de funcionamiento vienen trazadas en función de las variables operacionales principales: Caídas de Presión (H), Caudal (Q), Potencia (P) y Eficiencia (η) a densidad de aire normal, que a nivel del mar es de [¨1.2 Kg. / m³] (W) A una altura de 3.600 m.s.n.m. por ejemplo, la densidad del aire es de [0.866 Kg. / m³], razón por la que la densidad debe corregirse por aquélla en donde se desempeñará la unidad. La forma habitual del trazado de curvas es graficar el Caudal versus las demás variables (caída estática, caída total, potencia al freno, eficiencia estática y eficiencia total). Normalmente, se logra una ventilación efectiva cuando se emplean varios ventiladores principales, los que se ubican de preferencia en las galerías principales de ventilación o en piques en la superficie y se distribuyen de manera que la carga o caída de presión del sistema esté dividido en forma equitativa entre los ventiladores. 4.2 Potencia del motor: La potencia que se debe instalar, con un factor de servicio de al menos 1.15, es mayor que la Potencia a consumir Las consideraciones que deben hacerse para calcular la potencia del motor son: Q= H= P= η= Caudal de aire en m³/seg. Depresión del circuito en Pa (presión estática en Pascales) Potencia del motor en Kw. Eficiencia del ventilador, la cual varía entre 70 a 85% (dependiendo de la fabricación, tamaño y punto de trabajo). AHP = Potencia necesaria para mover el caudal Q de aire en un circuito cuya depresión es H, en Kw. BHP = Potencia al freno del ventilador, en Kw. DE = Eficiencia de la transmisión, la cual varía entre 90% para transmisión por poleas y correas, y 100% para transmisión directa. ME = Eficiencia del motor, la cual varía entre 85% a 95%. 18
  • 19. Como la Potencia del motor es directamente proporcional a la cantidad de aire y a la pérdida de presión del circuito se tendrá que: 1) 2) 3) AHP = Q x H / 1000 BHP = Q x H / 1000 x η P = Q x H / 1000 x η x DE x ME 5.- LEYES DEL VENTILADOR: Se considera N = la velocidad de rotación del ventilador. La forma en que afecta al volumen de aire movido, a la presión capaz de producir y a la energía absorbida por el ventilador, constituyen las leyes de rendimiento básico de cualquier ventilador. Estas relaciones son: Q ≈ N H ≈ N² P ≈ N³ Estas leyes se aplican prescindiendo del sistema de unidades usadas, siempre que sean consistentes. Su importancia radica en que si la resistencia del sistema contra el cual está operando el ventilador no cambia, aunque aumentamos la velocidad del ventilador, por ejemplo al doble: Q1/Q2 = N1/N2 H1/H2 = (N1/N2)² P1/P2 = (N1/N2)³ = ½ > Q2 = 2 x Q1 (El Caudal aumenta al doble) = ¼ > H2 = 4 x H1 (La Presión aumenta 4 veces) = 1/8 > P2 = 8 x P1 (La Potencia aumenta 8 veces) Esto indica que la decisión de aumentar la velocidad del ventilador tiene efectos considerables en la energía requerida. DUCTERIA MINA EL SALVADOR 19
  • 20. 6. CIRCUITOS COMPLEJOS: Cuando la conexión entre las galerías se hace más complicada, no pudiendo reconocer en el circuito conexiones en paralelo, serie o diagonal, se debe recurrir a otros métodos de cálculo más complejos que, generalmente, requieren ayuda de instrumentos y/o computadores. 6.1 Software de equilibrio de redes de ventilación: Una vez resuelto el caudal resultante, se puede realizar una simulación de la malla definitiva del proyecto, imponiendo en la rama que representa la estocada en que se instalará el ventilador principal, el caudal de aire de diseño y la presión estática del punto. El trazado estará compuesto además por la vía principal de aire fresco y la chimenea de extracción general conectada con la superficie. Para imputar los datos de cada una de las ramas, se define una malla equivalente tomando como soporte por ejemplo, el dibujo en AutoCad del circuito asociado al Proyecto. Se carga el software con la malla real del circuito, asignando las cotas y largos reales a cada tramo. Para la simulación, se requieren los siguientes parámetros generales: ♦ Densidad del aire : 1,2 Kg./ m³ (sin factor de corrección) ♦ Eficiencia del Ventilador : 75% (por defecto) ♦ Coeficientes de fricción : K Para abordar las distintas situaciones a las que se verá enfrentada la explotación del proyecto, se generan varios escenarios representativos. Cuando se desea evitar que el caudal de aire aumente en demasía en una dirección, se deberá adecuar un regulador cuya dimensión variará de acuerdo a cada escenario. El escenario más desfavorable o de mayor resistencia debe sensibilizarse con los valores del consumo de energía y de la construcción. Entre dos alternativas que presenten un gasto combinado energético y de construcción similar, se preferirá aquélla que acepte mayor caudal de aire, por si las condiciones de explotación de otro sector así lo necesitan. De acuerdo al resultado de esta simulación, que entrega como producto final el “punto de operación del sistema” (ejemplo: Caudal Q = 1.600 m³/min. y Caída de presión Ps = 127 mm. de columna de agua), se seleccionarán los ventiladores de la instalación. 6.2. Sistema de monitoreo y control centralizado: 20
  • 21. Dado que la instalación de ventiladores de mediana capacidad, actuando como reforzadores para atender niveles de producción, reducción y hundimiento, es una opción de alta probabilidad de implementación futura, es necesario que, en la eventualidad de proponer la instalación y operación masiva de un alto número de tales ventiladores al interior de los sectores, se considere la implementación de un Sistema de Monitoreo y Control Centralizado (del tipo Inteligente ó Semi-inteligente) del estado y operación de estos equipos. El mismo concepto es válido para la eventualidad de que, al interior del proyecto se proponga instalar reguladores de flujos de aire, los cuales además de poder ser operados en forma manual (control local), puedan también ser conectados a un sistema de monitoreo y control a distancia (actuación de tipo tele comandado). 21
  • 22. ANEXO A: Requerimientos de aire: Las necesidades de aire al interior de la mina, deben ser determinadas en base al personal y el número de equipos que trabajan al interior de las labores en los niveles que componen la mina, además de conocer el método de explotación. El cálculo de las necesidades, permitirá ventilar las labores mineras en forma eficiente, mediante un control de flujos tanto de inyección de aire fresco, como de extracción de aire viciado. Esto permite diluir y extraer el polvo en suspensión, gases producto de la tronadura o de la combustión de los vehículos. Para determinar el requerimiento de aire total se utilizan los siguientes parámetros operacionales: a) Caudal requerido por el número de personas: El Art. N° 138 del D.S. N° 72., exige una corriente de aire fresco de no menos de tres metros cúbicos por minuto (3 m³/ min.) por persona, en cualquier sitio del interior de la mina. Q= F x N (m³/ min.) Donde: Q = Caudal total para “n” personas que trabajen en interior mina (m³/ min.) F = Caudal mínimo por persona (3 m³/ min.) N = Número de personas en el lugar. A pesar que este método es utilizado con frecuencia, se debe considerar “F” sólo como referencia, pues no toma en cuenta otros factores consumidores de oxígeno, como lo son la putrefacción de la madera, la descomposición de la roca, la combustión de los equipos, etc. b) Caudal requerido por desprendimiento de gases Según Norma Chilena: Q= 0.23 x q (m³/ min.) Donde: ♦ Q = Caudal de aire requerido por desprendimiento de gases durante 24 horas ♦ q = volumen de gas que se desprende en la mina durante las 24 horas 22
  • 23. c) Caudal requerido por temperatura: La legislación chilena señala que la temperatura húmeda máxima en el interior de la mina no podrá exceder de 30 º C, para jornadas de trabajo de 8 horas. Como norma para el cálculo del aire respecto a la temperatura, se dan los siguientes valores: HUMEDAD RELATIVA < ó = 85 % > 85 % TEMPERATURA SECA 24 a 30 º C > 30 º C VELOCIDAD MINIMA 30 m./min. 120 m./min. Para una labor de 20 m² (5 X 4 m.) 600 m³/min. 2240 m³/min. d) Caudal requerido por el polvo en suspensión: El criterio más aceptado es hacer pasar una velocidad de aire determinado por las áreas contaminadas y arrastrar el polvo, a zonas donde no cause problemas. Según el Art. N° 138 D.S. N° 72 la velocidad promedio en los lugares de trabajo no debe ser inferior a los quince metros por minuto (15 m./min.). Para lugares con alta generación de polvo, este valor puede ser considerado hasta un 100% mayor. Hasta ahora, no hay método de cálculo aceptado por todos, que tome en cuenta el polvo en suspensión. Pero, velocidades entre 30 a 45 m./min. son suficientes para mantener las áreas despejadas. En Chile, la velocidad máxima permitida en galerías con circulación de personal es de 150 m/min. Reglamento de Seguridad Minera (“RSM”). e) Caudal requerido por la producción: Este método es usado generalmente en minas de carbón. Para minas metálicas, se debe tomar en cuenta el consumo de madera, ya que ésta fijará el porcentaje de CO2 existente en la atmósfera. El cálculo se basa sobre la suposición de que la cantidad de gas (CH4 y CO2) que se desprende es proporcional a la producción, expresado en forma matemática: Q= T xu (m3/min.) 23
  • 24. Donde: Q = Caudal requerido por toneladas de producción diaria (m3/min.) u = norma de aire por tonelada de producción diaria expresada en (m3/min.) T = Producción diaria en toneladas. Para minas de carbón, "u" varía generalmente entre 1 a 1,7 (m3/min.). En minas metálicas, con poco consumo de madera, varía entre 0,6 a 1 (m3/min.). Si el consumo de madera es alto, puede llegar hasta 1,25 (m3/min.) Un buen criterio es SUMAR el caudal necesario calculado según el personal que trabaja en la mina, con el caudal necesario calculado según el equipo Diesel y aumentar este total en un 20% o más por cortocircuitos o pérdidas. f) Caudal requerido por consumo de explosivo: La fórmula que se conoce para este cálculo puede ser criticada, ya que no toma en cuenta varios factores que se expondrán después de presentarla. Al tratarse de minas metálicas, este método es el que más se usa. Toma en cuenta la formación de productos tóxicos por la detonación de explosivos, el tiempo que se estima para despejar las galerías de gases y la cantidad máxima permitida, según normas de seguridad, de gases en la atmósfera. Para el cálculo de este caudal, se emplea la siguiente relación empírica: Q = 100 x A x a dxt (m3/min.) Donde: Q = A = a = a = d = Caudal de aire requerido por consumo de explosivo detonado (m3/min.) Cantidad de explosivo detonado, equivalente a dinamita 60% (Kg.) Volumen de gases generados por cada Kg. de explosivo. 0.04 (m³/Kg. de explosivo); valor tomado como norma general % de dilución de los gases en la atmósfera, deben ser diluidos a no menos de 0.008 % y se aproxima a 0.01 % t = tiempo de dilución de los gases (minutos); generalmente, este tiempo no es mayor de 30 minutos, cuando se trata de detonaciones corrientes. Reemplazando en la fórmula tendremos: Q = (0,04 x A x100)/(30 x 0,008) m3/min. Entonces, tendríamos finalmente: Q = 16,67 x A (m3/min) La fórmula trata este caso como si fuera a diluir los gases dentro de un espacio cerrado, lo que no es el caso de una mina donde parte de los gases se eliminan 24
  • 25. continuamente de la frente por el volumen de aire que entra. Además, los gases tóxicos se diluyen continuamente con la nube de gases en movimiento con el aire limpio. Por último, cada gas tóxico que se produce tiene propiedades distintas a las demás, luego necesitan diferentes porcentaje de dilución, entonces "d" dependerá del explosivo que se esté usando. g) Caudal requerido por equipo Diesel: El art. N° 132 del “R.S.M.” (D.S. N° 72) recomienda un mínimo de 2.83 (m3/min) por HP al freno del equipo para máquinas en buenas condiciones. Se debe aclarar que los 2,83 m³/min. del art. N° 132 son el mínimo caudal de aire requerido y no acepta factores de corrección. Por lo demás, se pide la potencia al freno o potencia bruta, que es la máxima potencia proporcionada por el motor sin tener en cuenta las pérdidas por transmisión, si es que no se cuenta con la curva de potencia entregada por el fabricante (gráfico KW vs. RPM) o con una recomendación de ventilación para el equipo proporcionada por el fabricante y certificada por algún organismo confiable. Para aclarar mejor el punto anterior, se debe calcular el requerimiento de aire de cada equipo diesel, multiplicando 2,83 por la potencia y por el número de equipos que trabajan en el momento de máxima producción, eliminando aquéllos que están fuera de la mina, en reserva o en mantención. Se puede además, determinar con suficiente aproximación, la cantidad necesaria de aire normal para diluir un componente cualquiera del gas de escape diesel a la concentración permisible, a partir de la siguiente fórmula: Q = V x c ( m3/min.) y Donde: Q = volumen de aire necesario para la ventilación (m3/min.); V = volumen de gas de escape producido por el motor (m3/min.); c = concentración del componente tóxico, del gas de escape, que se considera en particular (% en volumen); y = concentración máxima, higiénicamente segura, para el componente tóxico que se está considerando (% en volumen). Este método necesita de un estudio previo para determinar el volumen de gases y la concentración del toxico. El máximo volumen determinado se multiplica por 2 para establecer una ventilación segura. 25