SlideShare ist ein Scribd-Unternehmen logo
1 von 60
ADAM.S
M.TECH COMPUTATIONAL BIOLOGY
 Introduction
 Landmarks
 Vaccine types
 Traditional Vaccine Preparation
 Modern ( rDNA tech)
 Peptide vaccines
 Vector vaccines
 AIDS vaccine development
 Cancer vaccine
 Edible vaccine
What is a vaccine?
 The word “vaccine” originates from the Latin Variolae
vaccinae (cowpox), which Edward Jenner demonstrated in
1798 could prevent smallpox in humans.
 Today the term ‘vaccine’ applies to all biological preparations,
produced from living organisms, that enhance immunity
against disease and either prevent (prophylactic vaccines) or,
in some cases, treat disease (therapeutic vaccines).
 Vaccines are administered in liquid form, either by injection,
by oral, or by intranasal routes
Some important discoveries that chronicle the development of modern vaccine technology.
Many of the initial landmark discoveries that underpinned our understanding of immunity and
vaccination were made at the turn of the last century
•A.D. 23 Romans investigate the possibility that liver extracts from rabid dogs could protect
against rabies
•1790s Edward Genner uses Cowpox virus to successfully vaccinate against smallpox
•1880s Louis Pasteur develops first effective rabies vaccine
•1890s Emil von Behring and Kitasato Shibasaburo develop diphtheria and tetanus vaccines
•1900s Typhoid and cholera vaccines are first developed
•1910s Tetanus vaccine becomes widely available
•1920s Tuberculosis vaccine becomes available
•1930s Diphtheria and yellow fever vaccines come on stream
•1940s Influenza and pertussis vaccines are developed
•1950s Poliomyelitis vaccines (oral Sabin vaccine and injectable Salk vaccine) developed
•1960s Measles, mumps and rubella vaccines developed
•1970s Meningococcal vaccines developed
•1980s Initial subunit vaccines (e.g. hepatitis B) produced by recombinant DNA technology
•1990s Ongoing development of subunit vaccines and vaccines against autoimmune disease
and cancer.
•Production of vaccines in recombinant viral vectors
 When inactivated or weakened disease-causing microorganisms
enter the body, they initiate an immune response.
 This response mimics the body’s natural response to infection.
 But unlike disease-causing organisms, vaccines are made of
components that have limited ability, or are completely unable, to
cause disease The components of the disease-causing organisms
or the vaccine components that trigger the immune response are
known as “antigens”.
 These antigens trigger the production of “antibodies” by the immune
system.
 Antibodies bind to corresponding antigens and induce their
destruction by other immune cells
• The term ‘traditional’ refers to those vaccines whose development predated the advent of
recombinant DNA technology.
• Approximately 30 such vaccines remain in medical use.
• These can largely be categorized into one of several groups, including:
1. Live, attenuated bacteria, e.g. Bacillus Calmette–Gue´rin (BCG) used to immunize
against tuberculosis.
2. Dead or inactivated bacteria, e.g. cholera and pertussis (whooping cough) vaccines.
3. Live attenuated viruses, e.g. measles, mumps and yellow fever viral vaccines.
4. Inactivated viruses, e.g. hepatitis A and poliomyelitis (Salk) viral vaccines.
5. Toxoids, e.g. diphtheria and tetanus vaccines.
6. Pathogen-derived antigens, e.g. hepatitis B, meningococcal, pneumococcal and
Haemophilus influenzae vaccines
 These vaccines are composed of live, attenuated microorganisms that cause a
limited infection in their hosts sufficient to induce an immune response, but
insufficient to cause disease.
 To make an attenuated vaccine, the pathogen is grown in foreign host such as
animals, embryonated eggs or tissue culture, under conditions that make it less
virulent.
 The strains are altered to a non-pathogenic form; for example, its tropism has been
altered so that it no longer grows at a site that can cause disease. Some mutants will
be selected that have a better ability to grow in the foreign host.
 These tend to be less virulent for the original host. These vaccines may be given by
injection or by the oral route.
 A major advantage of live virus vaccines is that because they cause infection, the
vaccine very closely reproduces the natural stimulus to the immune system.
• Attenuation (bacterial or viral) represents the process of elimination or
greatly reducing the virulence of a pathogen.
• This is traditionally achieved by, for example, chemical treatment or heat,
growing under adverse conditions or propagation in an unnatural host.
• Although rarely occurring in practice, a theoretical danger exists in some
cases that the attenuated pathogen might revert to its pathogenic state.
Methods usually employed to inactivate bacteria or viruses subsequently used
as dead/inactivated vaccine preparations
• Heat treatment
• Treatment with formaldehyde or acetone
• Treatment with phenol or phenol and heat
• Treatment with propiolactone
 When it is unsafe to use live microorganisms to prepare vaccines,
they are killed or inactivated.
 These are preparations of the normal (wild type) infectious,
pathogenic microorganisms that have been rendered
nonpathogenic, usually by treatment with using heat, formaldehyde
or gamma irradiation so that they cannot replicate at all.
 Such killed vaccines vary greatly in their efficacy.
An attenuated bacterial vaccine is represented by Bacillus
Calmette–Gue´rin (BCG), which is a strain of tubercule
bacillus (Mycobacterium bovis) that fails to cause tuberculosis
but retains much of the antigenicity of the pathogen.
• It is a vaccine against tuberculosis that is prepared from a strain of
the attenuated (virulence-reduced) live bovine tuberculosis bacillus,
Mycobacterium bovis, that has lost its virulence in humans by being
specially subcultured in a culture medium, usually Middlebrook 7H9
. Because the living bacilli evolve to make the best use of available
nutrients, they become less well-adapted to human blood and can no
longer induce disease when introduced into a human host. Still, they
are similar enough to their wild ancestors to provide some degree of
immunity against human tuberculosis
 To be effective, the inactivated product must retain
much of the immunological characteristics of the active
pathogen.
 The killing or inactivation method must be consistently
100% effective in order to prevent accidental
transmission of live pathogens.
 Cholera vaccines, for example, are sterile aqueous
suspensions of killed Vibrio cholerae, selected for high
antigenic efficiency.
 The preparation often consists of a mixture of smooth
strains of the two main cholera serological types: Inaba
and Ogawa.
 A 1.0 ml typical dose usually contains not less than 8
billion V. cholerae particles and phenol (up to 0.5%)
may be added as preservative.
 The vaccine can also be prepared in freeze-dried form.
When stored refrigerated, the liquid vaccine displays a
usual shelf-life of 18 months, while that of the dried
product is 5 years.
• Viral particles destined for use as vaccines are generally propagated in a
suitable animal cell culture system.
• While true cell culture systems are sometimes employed, many viral particles
are grown in fertilized eggs, or cultures of chick embryo tissue
Some cell culture systems in which viral particles destined for use as viral vaccines
are propagated
Viral particle/vaccine - Typical cell culture system
• Yellow fever virus - Chick egg embryos
• Measles virus (attenuated) - Chick egg embryo cells
• Mumps virus (attenuated) - Chick egg embryo cells
• Polio virus (live, oral, i.e. Sabin
and inactivated injectable, i.e.
Salk) - Monkey kidney tissue culture
• Rubella vaccine - Duck embryo tissue culture, human
tissue culture
• Hepatitis A viral vaccine - Human diploid fibroblasts
• Varicella-zoster vaccines
• (chicken pox vaccine) - Human diploid cells
 Mumps vaccine consists of live
attenuated strains of Paramyxovirus
parotitidis.
 In many world regions, it is used to
routinely vaccinate children, often a part
of a combined measles, mumps and
rubella (MMR) vaccine.
 Several attenuated strains have been
developed for use in vaccine
preparations.
 The most commonly used is the Jeryl
Linn strain of the mumps vaccine, which
is propagated in chick embryo cell
culture.
 This vaccine has been administered to
well over 50 million people worldwide
and, typically, results in seroconversion
rates of over 97%.
 The Sabin (oral poliomyelitis) vaccine consists of an aqueous
suspension of poliomyelitis virus, usually grown in cultures of
monkey kidney tissue.
 It contains approximately 1 million particles of poliomyelitis strains 1,
2 or 3 or a combination of all three strains.
Hepatitis A vaccine exemplifies vaccine preparations containing
inactivated viral particles. It consists of a formaldehyde-inactivated
preparation of the HM 175 strain of hepatitis A virus.
 Viral particles are normally propagated initially in human fibroblasts.
Advantages Disadvantages
 Infectious microbes can stimulate generation of memory
cellular as well as humoral immune responses. Since
these can multiply in the host, fewer quantities must be
injected to induce protection.
 A single administration of vaccine often has a high
efficacy in producing long-lived immunity.
 Multiple booster doses may not be required.
 Whole microbes stimulate response to antigens in their
natural conformation.
 They raise immune response to all protective antigens.
 Some live vaccines can be given orally; such vaccines
induce mucosal immunity and IgA synthesis, which
gives more protection at the normal site of entry.
 Oral preparations are less expensive than giving
injections.
 They can lead to elimination of wild type virus from the
community
 May very rarely revert to its virulent
form and cause disease.
 Live vaccines cannot be given
safely to immunosuppressed
individuals.
 Administration of live attenuated
vaccines to people with impaired
immune function can cause serious
illness or death in the vaccine
recipient.
 Since they are live and because
their activity depends on their
viability, proper storage is critical.
LIVE ATTENUATED VACCINELIVE ATTENUATED VACCINE
Advantages Disadvantages
 Safe to use and can be given to
immunodeficient and pregnant
individuals.
 Cheaper than live attenuated vaccine
 Storage not as critical as live vaccine
 Since the microorganisms cannot multiply, a large
number are required to stimulate immunity.
 Periodic boosters must be given to maintain
immunity.
 Only humoral immunity can be induced.
 Most killed vaccines have to be injected.
 Some vaccines such as Bordetella pertussis induce
ill effects like postvaccinial encephalomyelitis.
 Anaphylactic reaction to neomycin or streptomycin
may occur in (Inactivated Polio Vaccine) recipients.
 Anaphylactic hypersensitivity to eggs may occur in
recipients of influenza vaccine.
 Inactivation, such as by formaldehyde in the case
of the Salk vaccine, may alter antigenicity.
 Presence of some un-inactivated microbes can
lead to vaccine-associated disease
 Subunit vaccines contain purified antigens instead of whole
organisms. Such a preparation consists of only those antigens that
elicit protective immunity.
 Subunit vaccines are composed of toxoids, subcellular fragments,
or surface antigens.
 Administration of whole organism, as in case of pertussis was found
unfavorable immune reactions resulting in severe side effects.
 The effectiveness of subunit vaccines in increased by giving them in
adjuvants.
 Adjuvants slow antigen release for a more sustained immune
stimulation.
Some vaccine preparations that consist not of intact
attenuated/inactivated pathogens but of surface antigens derived from
such pathogens
•Anthrax vaccines - Antigen found in the sterile filtrate of Bacillus
anthracis
•Haemophilus influenzae vaccines - Purified capsular polysaccharide of
Haemophilus influenzae type B
•Hepatitis B vaccines - Hepatitis B surface antigen (HBsAg) purified
from plasma of hepatitis B carriers
•Meningococcal vaccines - Purified (surface) polysaccharides from
Neisseria meningitidis (groups A or C)
•Pneumococcal vaccines - Purified polysaccharide capsular antigen
from up to 23 serotypes of Streptococcus pneumoniae
Advantages Disadvantages
 They can safely be given to
immuno suppressed people
 They are less likely to induce
side effects.
 Antigens may not retain
their native conformation,
so that antibodies produced
against the subunit may not
recognize the same protein
on the pathogen surface.
 Isolated protein does not
stimulate the immune
system as well as a whole
organism vaccine
 Diphtheria and tetanus vaccine are two commonly used toxoid-based vaccine
preparations.
 The initial stages of diphtheria vaccine production entails the growth of
Corynebacterium diphtheriae.
 The toxoid is then prepared by treating the active toxin produced with
formaldehyde.
 The product is normally sold as a sterile aqueous preparation.
 Tetanus vaccine production follows a similar approach; Clostridium tetani is
cultured in appropriate media, the toxin is recovered and inactivated by
formaldehyde treatment.
 Again, it is usually marketed as a sterile aqueous-based product.
 Poor immunological responses are thus often associated with administration of
carbohydrate polymers to humans, particularly to infants.
 The antigenicity of these substances can be improved by chemically coupling
(conjugating) them to a protein-based antigen.
 Peptide vaccine consists of those peptides from the microbial antigen that stimulates protective
immunity.
 Synthetic peptides are produced by automated machines rather than by microorganisms.
 Peptide immunogenicity can be increased by giving them in ISCOMS, lipid micelles that transport
the peptides directly into the cytoplasm of dendritic cells for presentation on Class I MHC.
 Injected peptides, which are much smaller than the original virus protein, induce an IgG
response.
 Example: spf66 anti-malarial vaccine
 Advantages
 • If the peptide that induces protective immunity is identified, it can be synthesized easily on a
large scale.
 • It is safe and can be administered to immunodeficient and pregnant individuals.
 Disadvantage
 • Poor antigenicity. Peptide fragments do not stimulate the immune system as well as a whole
organism vaccine.
 • Since peptides are closely associated with HLA alleles, some peptides may not be universally
effective at inducing protective immunity.
 Conjugate vaccines are primarily developed against capsulated bacteria. While the
purified capsular antigen can act as subunit vaccine, they stimulate only humoral
immunity.
 Polysaccharide antigens are T independent, they generate short-lived immunity.
 Immunity to these organisms requires opsonizing antibodies. Infants cannot mount
good T-independent responses to polysaccharide antigens.
 By covalently linking the polysaccharides to protein carriers, they are converted into
T-dependent antigens and protective immunity is induced.
 Examples: Haemophilus influenzae HiB polysaccharide is complexed with
diphtheria toxoid.
 Tetramune vaccine, which combines the tetanus and diphtheria toxoids, whole-cell
pertussis vaccine, and H. influenzae type b conjugate vaccine.
 The advent of recombinant DNA technology has rendered possible the large-
scale production of polypeptides normally present on the surface of virtually any
pathogen.
 These polypeptides, when purified from the producer organism (e.g.
Escherichia coli, Saccharomyces cerevisiae) can then be used as ‘sub-unit’
vaccines.
This method of vaccine production exhibits several advantages over conventional
vaccine production methodologies. These include:
 Production of a clinically safe product; the pathogen-derived polypeptide now
being expressed in a non-pathogenic recombinant host. This all but precludes
the possibility that the final product could harbour undetected pathogen.
 Production of subunit vaccine in an unlimited supply. Previously, production of
some vaccines was limited by supply of raw material (e.g. hepatitis B surface
antigen; see below).
 Consistent production of a defined product which would thus be less likely to
cause unexpected side effects.
 The first such product was that of hepatitis B surface antigen (rHBsAg),
which gained marketing approval from the FDA in 1986.
 Prior to its approval, hepatitis B vaccines consisted of HBsAg purified
directly from the blood of hepatitis B sufferers.
 When present in blood, HBsAg exists not in monomeric form, but in
characteristic polymeric structures of 22 mm diameter.
Production of hepatitis B vaccine by direct extraction from blood suffered from
two major disadvantages:
 The supply of finished vaccine was restricted by the availability of infected
human plasma.
 The starting material will likely be contaminated by intact, viable hepatitis B
viral particles (and perhaps additional viruses, such as HIV). This
necessitates introduction of stringent purification procedures to ensure
complete removal of any intact viral particles from the product stream. A
final product QC test to confirm this entails a 6 month safety test on
chimpanzees.
The HBsAg gene has been cloned
and expressed in a variety of
expression systems, including
E. coli, S. cerevisiae and a
number of mammalian cell
lines.
• The product used commercially
is produced in S. cerevisiae.
• The yeast cells are not only
capable of expressing the gene,
but also assembling the
resultant polypeptide product
into particles quite similar to
those found in the blood of
infected individuals.
• This product proved safe and
effective when administered to
both animals and humans.
RECOMBIVAX HBRECOMBIVAX HB
 The vaccines are produced using recombinant DNA technology or genetic
engineering.
 Recombinant vaccines are those in which genes for desired antigens of a
microbe are inserted into a vector.
 Different strategies are: Using the engineered vector (e.g., Vaccinia virus)
that is expressing desired antigen as a vaccine The engineered vector (e.g.,
yeast) is made to express the antigen, such is vector is grown and the
antigen is purified and injected as a subunit vaccine.
 Other expression vectors include the bacteria Escherichia coli, mutant
Salmonella spp., and BCG.
 Introduction of a mutation by deleting a portion of DNA such that they are
unlikely to revert can create an attenuated live vaccine.
 Live attenuated vaccines can also be produced by reassortment of
genomes of virulent and avirulent strains.
 Genes coding for significant antigens are introduced into plants, such that
the fruits produced bear foreign antigens.
 This is edible vaccine and is still in experimental stage.
 Hepatitis B Virus (HBV) vaccine is a recombinant subunit vaccine. Hepatitis B surface
antigen is produced from a gene transfected into yeast (Saccharomyces cerevisiae) cells
and purified for injection.
 Vaccinia virus may be engineered to express protein antigens of HIV, rabies etc. Foreign
genes cloned into the viral genome are expressed on the surface of infected cells in
association with class I MHC molecules.
 The antigen-MHC complex induces a Tc cell response. B subunit of cholera toxin, the B
subunit of heat-labile E. coli enterotoxin (LT), and one of the glycoprotein
 membrane antigens of the malarial parasite are being developed using this technique.
 Salmonella typhimurium engineered to express antigens of Vibrio cholerae.
 Bacille Calmette-Guérin vaccine strain engineered to express genes of HIV-1.
 Reassortment of genomes between human and avian strains to create Influenza vaccine.
 Human and swine strains to create Rotavirus vaccine.
• An alternative approach to the
development of novel vaccine
products entails the use of
livevaccine vectors.
• The strategy followed involves
incorporation of a gene/cDNA
coding for a pathogen-derived
antigen into a non-pathogenic
species.
• If the resultant recombinant
vector expresses the gene
product on its surface, it may
be used to immunize against
the pathogen of interest
 A number of factors render vaccinia virus a particularly attractive vector system.
These include:
 capacity to successfully assimilate large quantities of DNA in its genome;
 prior history of widespread and successful use as a vaccination agent;
 ability to elicit long-lasting immunity;
 ease of production and low production costs;
 stability of freeze-dried finished vaccine product.
 Integration of foreign genes must occur in regions of the viral genome not essential for
viral replication. Two such sites are most often used.
 One is towards the left end of its genome, while the second is located within the thymidine
kinase gene.
 Adenoviruses also display potential as vaccine vectors. These double-stranded DNA
viruses display a genome consisting of ca. 36 000 base pairs, encoding approximately 50
viral genes.
 Several antigenically distinct human adenovirus serotypes have been characterized and
these viral species are endemic throughout the world.
 They can prompt respiratory tract infections and, to a lesser extent, gastrointestinal and
genitourinary tract infections.
Advantages Disadvantages
 Those vectors that are not
only safe but also easy to grow
and store can be chosen.
 Antigens which do not elicit
protective immunity or which
elicit damaging responses can
be eliminated from the
vaccine.
 Example Cholera toxin A can
be safely removed from
cholera toxin.
 Since the genes for the
desired antigens must be
located, cloned, and
expressed efficiently in the
new vector, the cost of
production is high.
 When engineered vaccinia
virus is used to vaccinate,
care must be taken to spare
immunodeficient
 These vaccines are still in experimental stage. Like recombinant vaccines, genes for the desired antigens are located and
cloned.
 The DNA is injected into the muscle of the animal being vaccinated, usually with a "gene gun“ that uses compressed gas to
blow the DNA into the muscle cells.
 DNA can be introduced into tissues by bombarding the skin with DNA-coated gold particles. It is also possible to introduce
DNA into nasal tissue in nose drops.
 Some muscle cells express the pathogen DNA to stimulate the immune system. DNA vaccines have induced both humoral
and cellular immunity.
Advantages:
 DNA is very stable, it resists extreme temperature and hence storage and transport are easy.
 A DNA sequence can be changed easily in the laboratory. The inserted DNA does not replicate and encodes only the
proteins of interest.
 There is no protein component and so there will be no immune response against the vector itself.
 Because of the way the antigen is presented, there is a cell-mediated response that may be directed against any antigen in
the pathogen.
 Disadvantages:
 Potential integration of DNA into host genome leading to insertional mutagenesis.
 Induction of autoimmune responses: anti-DNA antibodies may be produced against introduced DNA.
 Induction of immunologic tolerance: The expression of the antigen in the host may lead to specific nonresponsiveness to that
antigen.
 An antigen binding site in an antibody (paratope) is a reflection of the three-dimensional structure of part of the
antigen (epitope).
 This unique amino acid structure in the antibody is known as the idiotype, which can be considered as a mirror of
the epitope in the antigen.
 Antibodies can be raised against the idiotype by injecting the antibody into another animal. This anti-idiotype
antibody mimics part of the three dimensional structure of the antigen.
 This can be used as a vaccine. When the anti-idiotype antibody is injected into a vaccinee, antibodies (antianti-
idiotype antiobodies) are formed that recognize a structure similar to part of the virus and might potentially
neutralize the virus.
Advantage:
 Antibodies against potentially significant antigen can be produced.
Disadvantages:
 Only humoral immunity is produced. There is no cellular immunity and poor memory.
 Identification and preparation of idiotypes is labor intensive and difficult.
 All of the vaccine preparations discussed thus far are bacterial or viral-based.
 Typhus vaccine, on the other hand, targets a parasitic disease. Typhus (spotted
fever) refers to a group of infections caused by Rickettsia (small, non-motile
parasites).
 The disease is characterized by severe rash and headache, high fever and
delirium.
 The most common form is that of epidemic typhus (‘classical’ or ‘louse-borne’
typhus). This is associated particularly with crowded, unsanitary conditions.
 Without appropriate antibiotic treatment, fatality rates can approach 100%. The
causative agent of epidemic typhus is Rickettsia prowazekii.
 Typhus vaccine consists of a sterile aqueous suspension of killed R. prowazekii
which has been propagated in either yolk sacs of embryonated eggs, rodent
lungs or the peritoneal cavity of gerbils.
 To date, no effective vaccine has been developed for many parasites, notably
the malaria-causing parasitic protozoa Plasmodium. One of the major difficulties
in such instances is that parasites go through a complex life cycle, often
spanning at least two different hosts.
TYPHUS VACCINE
 Acquired immune deficiency
syndrome (AIDS) was initially
described in the USA in 1981,
although sporadic cases
probably occurred for at least
two decades prior to this.
 By 1983, the causative agent,
now termed human
immunodeficiency virus (HIV),
was identified.
 It is a member of the lentivirus
subfamily of retroviruses.
• It is a spherical, enveloped particle,
100– 150 nm in diameter, and
contains RNA as its genetic material
(Figure 10.16).
• The viral surface protein, gp120, is
capable of binding to a specific site on
the CD4 molecule,
• found on the surface of susceptible
cells .
• Some CD4-negative (CD4 ) cells may
• (rarely) also become infected,
indicating the existence of an entry
mechanism independent of CD4.
• Infection of CD4+ cells commences
via interaction between gp120 and the
CD4 glycoprotein, which effectively
acts as the viral receptor.
 Entry of the virus into the cell, which
appears to require some additional
cellular components, occurs via
endocytosis and/or fusion of the viral
and cellular membranes.
 The gp41 transmembrane protein
plays an essential role in this
process.
 Once released into the cell, the viral
RNA is transcribed (by the
associated viral reverse
transcriptase) into double-stranded
DNA.
 The retroviral DNA can then
integrate into the host cell genome
(or, in some instances, remain
unintegrated).
 Aggressive expression of viral genes
usually leads to cell death.
Entry in to human cell
Initial viral replication (Lasts few weeks)
High level viraemia & p24 antigen can be
detected in blood
Clinical symptoms (influenza-like illness, joint
pains and general enlargement of the lymph
nodes)
primary viraemia under control within 3–4 weeks
by HIV-specific cytotoxic T lymphocytes
(importance of cell mediated immunity in bringing
the initial infection under control)
initial phase of infection subsides, the free viral
load in the blood declines( 0 level)
latent phase may last for anything up to 10 years
or more.
there does seem to be continuous synthesis
and destruction of viral particles.
high turnover rate of (CD4+) T helper
lymphocytes
T lymphocytes decline with time, as do
antibody levels specific for viral proteins
circulating viral load often increases as a
result and the depletion of T helper cells
compromises general immune function.
As the immune system fails, classical
symptoms of
AIDS-related complex (ARC) and, finally, full-
blown AIDS begin to develop.
 A number of attributes of HIV and its mode of infection conspire to render development of an effective vaccine
less than straightforward.
These factors include:
 HIV displays extensive genetic variation, often even within a single individual. Such genetic variation is
particularly prominent in the viral env gene whose product, gp160, is subsequently proteolytically processed
yielding gp120 and gp41.
 HIV infects and destroys T helper lymphocytes, i.e. it directly attacks an essential component of the immune
system itself.
 Although infected individuals display a wide range of anti-viral immunological responses, these ultimately fail to
destroy the virus. A greater understanding of what elements of immunity are most effective in combating HIV
infection is required.
 After initial virulence subsides, large numbers of cells harbour unexpressed proviral DNA. The immune system
has no way of identifying such cells. An effective vaccine must thus induce the immune system to:
(a) bring the viral infection under control before cellular infection occurs; or
(b) destroy cells once they begin to produce viral particles and destroy the viral particles released.
 The infection may often be spread, not via transmission of free viral particles, but via direct transmission of
infected cells harbouring the proviral DNA.
 A number of approaches are being assessed with regard to developing an
effective AIDS vaccine.
 No safe attenuated form of the virus has been recognized to date or is likely to
be developed in the foreseeable future.
 The high level of mutation associated with HIV would, in any case, heighten
fears that spontaneous reversion of any such product to virulence would be
possible.
 The potential of inactivated viral particles as effective vaccines has gained some
attention but again, fears of accidental transmission of disease if inactivation
methods are not consistently 100% effective have dampened enthusiasm for
such an approach.
 In addition, the stringent containment conditions required to produce large
quantities of the virus renders such production processes expensive.
 Most of the recombinant subunit vaccines currently being tested employ
gp120 or gp160 expressed in yeast, insect or mammalian (mainly CHO) cell
lines
 Much work has been invested into identification of which viral antigens are
capable of producing the most effective anti-viral (i.e. neutralizing)
antibodies.
 Such antibodies are mostly directed against gp120. Further studies have
pinpointed the principal neutralizing domain of gp120.
 This short stretch of the polypeptide backbone is known as the V3 loop and
it is located within one of the five hypervariable regions of gp120.
 Thus, while anti-V3 antibodies likely represent the most effective HIV-
neutralizing species, these antibodies will also likely be strainspecific.
 Although the primary objective of any vaccine is its prophylactic use
(i.e. prevention of future occurrence of a disease), AIDS vaccines
may also be of therapeutic value.
 This supposition is based upon the fact that the immune system
controls the viral infection for a time period.
 Hence, any agent capable of enhancing the anti-HIV immune
response may prolong this effect.
 By mid-2002 a preventitive AIDS vaccine ‘AIDS VAX’ (its trade
name) had reached phase III clinical trials.
 The product, developed by a spin-off company of Genentech called
Vaxgen is a recombinant gp120 glycoprotein produced in a CHO
cell line.
 The identification of tumour-associated antigens could pave the way for the
development of a range of cancer vaccines. A number of tumour-associated
antigens have already been characterized, as previously described.
 Theoretically, administration of tumour-associated antigens may effectively
immunize an individual against any cancer type characterized by expression of
the tumour-associated antigen in question.
 Co-administration of a strong adjuvant would be advantageous, as it would
stimulate an enhanced immune response.
 This is important as many tumour-associated antigens appear to be weak
immunogens.
 Administration of subunit-based tumor-associated antigen vaccines would
primarily stimulate a humoral immune response.
 The use of viral vectors may ultimately prove more effective, as a T cell
response appears to be central to the immunological destruction of cancer cells.
DENDRITIC CELL VACCINEDENDRITIC CELL VACCINE
N
E
E
D
L
E
P
H
O
B
I
A
N
E
E
D
L
E
P
H
O
B
I
A
 These types of vaccines are antigenic proteins that are
genetically engineered into a consumable crop. The
strategy is that the plant food product haves the protein
witch is obtained from some disease causing pathogen.
“Any thing is not easy, but everything is possible……”“Any thing is not easy, but everything is possible……”

Weitere ähnliche Inhalte

Was ist angesagt?

Vaccine design and devolepment
Vaccine design and devolepmentVaccine design and devolepment
Vaccine design and devolepmentSubin E K
 
Recombinant vaccines
Recombinant vaccinesRecombinant vaccines
Recombinant vaccinesSristiRajput1
 
SYNTHETIC PEPTIDE VACCINES AND RECOMBINANT ANTIGEN VACCINE
SYNTHETIC PEPTIDE  VACCINES  AND RECOMBINANT  ANTIGEN VACCINESYNTHETIC PEPTIDE  VACCINES  AND RECOMBINANT  ANTIGEN VACCINE
SYNTHETIC PEPTIDE VACCINES AND RECOMBINANT ANTIGEN VACCINED.R. Chandravanshi
 
Biotransformation of steroids
Biotransformation of steroidsBiotransformation of steroids
Biotransformation of steroidssudha rajput
 
Vaccine and adjuvants
Vaccine and adjuvantsVaccine and adjuvants
Vaccine and adjuvantsjonesomens
 
Presentation on conventional vaccine (Quality Control and Production aspects)
Presentation on conventional vaccine (Quality Control and Production aspects)Presentation on conventional vaccine (Quality Control and Production aspects)
Presentation on conventional vaccine (Quality Control and Production aspects)Sunny Rathee
 
Secondary screening of industrial important microbes
Secondary screening of industrial important microbes   Secondary screening of industrial important microbes
Secondary screening of industrial important microbes DhruviSuvagiya
 
Contamination in Cultured Cells
Contamination in Cultured CellsContamination in Cultured Cells
Contamination in Cultured CellsSaniyaMulani1
 
Vaccines production
Vaccines productionVaccines production
Vaccines productionAmjad Afridi
 

Was ist angesagt? (20)

Synthetic peptide vaccines.pptx
Synthetic peptide vaccines.pptxSynthetic peptide vaccines.pptx
Synthetic peptide vaccines.pptx
 
Recombinant Vaccines
Recombinant VaccinesRecombinant Vaccines
Recombinant Vaccines
 
Vaccine design and devolepment
Vaccine design and devolepmentVaccine design and devolepment
Vaccine design and devolepment
 
Recombinant vaccines
Recombinant vaccinesRecombinant vaccines
Recombinant vaccines
 
SYNTHETIC PEPTIDE VACCINES AND RECOMBINANT ANTIGEN VACCINE
SYNTHETIC PEPTIDE  VACCINES  AND RECOMBINANT  ANTIGEN VACCINESYNTHETIC PEPTIDE  VACCINES  AND RECOMBINANT  ANTIGEN VACCINE
SYNTHETIC PEPTIDE VACCINES AND RECOMBINANT ANTIGEN VACCINE
 
Exprssion vector
Exprssion vectorExprssion vector
Exprssion vector
 
DNA Vaccine
DNA VaccineDNA Vaccine
DNA Vaccine
 
Vaccines
VaccinesVaccines
Vaccines
 
Sv 40
Sv 40Sv 40
Sv 40
 
DNA Vaccine.pptx
DNA Vaccine.pptxDNA Vaccine.pptx
DNA Vaccine.pptx
 
Biotransformation of steroids
Biotransformation of steroidsBiotransformation of steroids
Biotransformation of steroids
 
Vaccine and adjuvants
Vaccine and adjuvantsVaccine and adjuvants
Vaccine and adjuvants
 
Vaccines
VaccinesVaccines
Vaccines
 
Presentation on conventional vaccine (Quality Control and Production aspects)
Presentation on conventional vaccine (Quality Control and Production aspects)Presentation on conventional vaccine (Quality Control and Production aspects)
Presentation on conventional vaccine (Quality Control and Production aspects)
 
Secondary screening of industrial important microbes
Secondary screening of industrial important microbes   Secondary screening of industrial important microbes
Secondary screening of industrial important microbes
 
Immunotoxins
ImmunotoxinsImmunotoxins
Immunotoxins
 
Lamda phage
Lamda phageLamda phage
Lamda phage
 
Contamination in Cultured Cells
Contamination in Cultured CellsContamination in Cultured Cells
Contamination in Cultured Cells
 
Vaccine production techniques
Vaccine production techniquesVaccine production techniques
Vaccine production techniques
 
Vaccines production
Vaccines productionVaccines production
Vaccines production
 

Ähnlich wie VACCINE TECHNOLOGY (20)

Vaccination
VaccinationVaccination
Vaccination
 
Industri vaksin
Industri vaksinIndustri vaksin
Industri vaksin
 
Vaccine development (1).pptx
Vaccine development (1).pptxVaccine development (1).pptx
Vaccine development (1).pptx
 
Vaccine technology
Vaccine technologyVaccine technology
Vaccine technology
 
Vaccinology
VaccinologyVaccinology
Vaccinology
 
Vaccinology
Vaccinology Vaccinology
Vaccinology
 
Vaccine in Nepal
Vaccine in NepalVaccine in Nepal
Vaccine in Nepal
 
Vaccine
VaccineVaccine
Vaccine
 
vaccines and anti-viral drugs
vaccines and anti-viral drugsvaccines and anti-viral drugs
vaccines and anti-viral drugs
 
Nisha revrse vaccinology
Nisha revrse vaccinology Nisha revrse vaccinology
Nisha revrse vaccinology
 
Edible vaccine
Edible vaccineEdible vaccine
Edible vaccine
 
pravinediblevaccine-140314110129-phpapp02.pdf
pravinediblevaccine-140314110129-phpapp02.pdfpravinediblevaccine-140314110129-phpapp02.pdf
pravinediblevaccine-140314110129-phpapp02.pdf
 
Edible vaccines
Edible vaccinesEdible vaccines
Edible vaccines
 
Vaccination ppt
Vaccination pptVaccination ppt
Vaccination ppt
 
Vaccine as immunotheraputic agent
Vaccine as immunotheraputic agent Vaccine as immunotheraputic agent
Vaccine as immunotheraputic agent
 
Immunity and vaccine technology
Immunity  and  vaccine technologyImmunity  and  vaccine technology
Immunity and vaccine technology
 
IMMUNIZATION LECTURE.ppt
IMMUNIZATION LECTURE.pptIMMUNIZATION LECTURE.ppt
IMMUNIZATION LECTURE.ppt
 
Vaccines
VaccinesVaccines
Vaccines
 
Vaccines.pptx
Vaccines.pptxVaccines.pptx
Vaccines.pptx
 
David Haselwood | How vaccines prevent diseases
David Haselwood | How vaccines prevent diseasesDavid Haselwood | How vaccines prevent diseases
David Haselwood | How vaccines prevent diseases
 

Mehr von ADAM S

Structure based drug design
Structure based drug designStructure based drug design
Structure based drug designADAM S
 
GADV- PROTEIN WORLD HYPOTHESIS (ORIGIN OF LIFE)
GADV- PROTEIN WORLD HYPOTHESIS (ORIGIN OF LIFE)GADV- PROTEIN WORLD HYPOTHESIS (ORIGIN OF LIFE)
GADV- PROTEIN WORLD HYPOTHESIS (ORIGIN OF LIFE)ADAM S
 
Pharmaceutical substances as plant origin
Pharmaceutical substances as plant originPharmaceutical substances as plant origin
Pharmaceutical substances as plant originADAM S
 
Solid waste management
Solid waste managementSolid waste management
Solid waste managementADAM S
 
THE PATENT INFRINGEMENT CASE - NEXIUM
THE PATENT INFRINGEMENT CASE - NEXIUMTHE PATENT INFRINGEMENT CASE - NEXIUM
THE PATENT INFRINGEMENT CASE - NEXIUMADAM S
 
INTRODUCTION TO BIOTRANSFORMATION OF DRUG (METABOLISM OF PHENYTOIN AND CODEINE)
INTRODUCTION TO BIOTRANSFORMATION OF DRUG  (METABOLISM OF PHENYTOIN AND CODEINE)INTRODUCTION TO BIOTRANSFORMATION OF DRUG  (METABOLISM OF PHENYTOIN AND CODEINE)
INTRODUCTION TO BIOTRANSFORMATION OF DRUG (METABOLISM OF PHENYTOIN AND CODEINE)ADAM S
 

Mehr von ADAM S (6)

Structure based drug design
Structure based drug designStructure based drug design
Structure based drug design
 
GADV- PROTEIN WORLD HYPOTHESIS (ORIGIN OF LIFE)
GADV- PROTEIN WORLD HYPOTHESIS (ORIGIN OF LIFE)GADV- PROTEIN WORLD HYPOTHESIS (ORIGIN OF LIFE)
GADV- PROTEIN WORLD HYPOTHESIS (ORIGIN OF LIFE)
 
Pharmaceutical substances as plant origin
Pharmaceutical substances as plant originPharmaceutical substances as plant origin
Pharmaceutical substances as plant origin
 
Solid waste management
Solid waste managementSolid waste management
Solid waste management
 
THE PATENT INFRINGEMENT CASE - NEXIUM
THE PATENT INFRINGEMENT CASE - NEXIUMTHE PATENT INFRINGEMENT CASE - NEXIUM
THE PATENT INFRINGEMENT CASE - NEXIUM
 
INTRODUCTION TO BIOTRANSFORMATION OF DRUG (METABOLISM OF PHENYTOIN AND CODEINE)
INTRODUCTION TO BIOTRANSFORMATION OF DRUG  (METABOLISM OF PHENYTOIN AND CODEINE)INTRODUCTION TO BIOTRANSFORMATION OF DRUG  (METABOLISM OF PHENYTOIN AND CODEINE)
INTRODUCTION TO BIOTRANSFORMATION OF DRUG (METABOLISM OF PHENYTOIN AND CODEINE)
 

Kürzlich hochgeladen

GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdflior mazor
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Zilliz
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...apidays
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodJuan lago vázquez
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...Zilliz
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelNavi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelDeepika Singh
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbuapidays
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 

Kürzlich hochgeladen (20)

GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelNavi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 

VACCINE TECHNOLOGY

  • 2.  Introduction  Landmarks  Vaccine types  Traditional Vaccine Preparation  Modern ( rDNA tech)  Peptide vaccines  Vector vaccines  AIDS vaccine development  Cancer vaccine  Edible vaccine
  • 3. What is a vaccine?  The word “vaccine” originates from the Latin Variolae vaccinae (cowpox), which Edward Jenner demonstrated in 1798 could prevent smallpox in humans.  Today the term ‘vaccine’ applies to all biological preparations, produced from living organisms, that enhance immunity against disease and either prevent (prophylactic vaccines) or, in some cases, treat disease (therapeutic vaccines).  Vaccines are administered in liquid form, either by injection, by oral, or by intranasal routes
  • 4. Some important discoveries that chronicle the development of modern vaccine technology. Many of the initial landmark discoveries that underpinned our understanding of immunity and vaccination were made at the turn of the last century •A.D. 23 Romans investigate the possibility that liver extracts from rabid dogs could protect against rabies •1790s Edward Genner uses Cowpox virus to successfully vaccinate against smallpox •1880s Louis Pasteur develops first effective rabies vaccine •1890s Emil von Behring and Kitasato Shibasaburo develop diphtheria and tetanus vaccines •1900s Typhoid and cholera vaccines are first developed •1910s Tetanus vaccine becomes widely available •1920s Tuberculosis vaccine becomes available •1930s Diphtheria and yellow fever vaccines come on stream •1940s Influenza and pertussis vaccines are developed •1950s Poliomyelitis vaccines (oral Sabin vaccine and injectable Salk vaccine) developed •1960s Measles, mumps and rubella vaccines developed •1970s Meningococcal vaccines developed •1980s Initial subunit vaccines (e.g. hepatitis B) produced by recombinant DNA technology •1990s Ongoing development of subunit vaccines and vaccines against autoimmune disease and cancer. •Production of vaccines in recombinant viral vectors
  • 5.  When inactivated or weakened disease-causing microorganisms enter the body, they initiate an immune response.  This response mimics the body’s natural response to infection.  But unlike disease-causing organisms, vaccines are made of components that have limited ability, or are completely unable, to cause disease The components of the disease-causing organisms or the vaccine components that trigger the immune response are known as “antigens”.  These antigens trigger the production of “antibodies” by the immune system.  Antibodies bind to corresponding antigens and induce their destruction by other immune cells
  • 6.
  • 7. • The term ‘traditional’ refers to those vaccines whose development predated the advent of recombinant DNA technology. • Approximately 30 such vaccines remain in medical use. • These can largely be categorized into one of several groups, including: 1. Live, attenuated bacteria, e.g. Bacillus Calmette–Gue´rin (BCG) used to immunize against tuberculosis. 2. Dead or inactivated bacteria, e.g. cholera and pertussis (whooping cough) vaccines. 3. Live attenuated viruses, e.g. measles, mumps and yellow fever viral vaccines. 4. Inactivated viruses, e.g. hepatitis A and poliomyelitis (Salk) viral vaccines. 5. Toxoids, e.g. diphtheria and tetanus vaccines. 6. Pathogen-derived antigens, e.g. hepatitis B, meningococcal, pneumococcal and Haemophilus influenzae vaccines
  • 8.  These vaccines are composed of live, attenuated microorganisms that cause a limited infection in their hosts sufficient to induce an immune response, but insufficient to cause disease.  To make an attenuated vaccine, the pathogen is grown in foreign host such as animals, embryonated eggs or tissue culture, under conditions that make it less virulent.  The strains are altered to a non-pathogenic form; for example, its tropism has been altered so that it no longer grows at a site that can cause disease. Some mutants will be selected that have a better ability to grow in the foreign host.  These tend to be less virulent for the original host. These vaccines may be given by injection or by the oral route.  A major advantage of live virus vaccines is that because they cause infection, the vaccine very closely reproduces the natural stimulus to the immune system.
  • 9. • Attenuation (bacterial or viral) represents the process of elimination or greatly reducing the virulence of a pathogen. • This is traditionally achieved by, for example, chemical treatment or heat, growing under adverse conditions or propagation in an unnatural host. • Although rarely occurring in practice, a theoretical danger exists in some cases that the attenuated pathogen might revert to its pathogenic state. Methods usually employed to inactivate bacteria or viruses subsequently used as dead/inactivated vaccine preparations • Heat treatment • Treatment with formaldehyde or acetone • Treatment with phenol or phenol and heat • Treatment with propiolactone
  • 10.  When it is unsafe to use live microorganisms to prepare vaccines, they are killed or inactivated.  These are preparations of the normal (wild type) infectious, pathogenic microorganisms that have been rendered nonpathogenic, usually by treatment with using heat, formaldehyde or gamma irradiation so that they cannot replicate at all.  Such killed vaccines vary greatly in their efficacy.
  • 11.
  • 12.
  • 13. An attenuated bacterial vaccine is represented by Bacillus Calmette–Gue´rin (BCG), which is a strain of tubercule bacillus (Mycobacterium bovis) that fails to cause tuberculosis but retains much of the antigenicity of the pathogen. • It is a vaccine against tuberculosis that is prepared from a strain of the attenuated (virulence-reduced) live bovine tuberculosis bacillus, Mycobacterium bovis, that has lost its virulence in humans by being specially subcultured in a culture medium, usually Middlebrook 7H9 . Because the living bacilli evolve to make the best use of available nutrients, they become less well-adapted to human blood and can no longer induce disease when introduced into a human host. Still, they are similar enough to their wild ancestors to provide some degree of immunity against human tuberculosis
  • 14.  To be effective, the inactivated product must retain much of the immunological characteristics of the active pathogen.  The killing or inactivation method must be consistently 100% effective in order to prevent accidental transmission of live pathogens.  Cholera vaccines, for example, are sterile aqueous suspensions of killed Vibrio cholerae, selected for high antigenic efficiency.  The preparation often consists of a mixture of smooth strains of the two main cholera serological types: Inaba and Ogawa.  A 1.0 ml typical dose usually contains not less than 8 billion V. cholerae particles and phenol (up to 0.5%) may be added as preservative.  The vaccine can also be prepared in freeze-dried form. When stored refrigerated, the liquid vaccine displays a usual shelf-life of 18 months, while that of the dried product is 5 years.
  • 15. • Viral particles destined for use as vaccines are generally propagated in a suitable animal cell culture system. • While true cell culture systems are sometimes employed, many viral particles are grown in fertilized eggs, or cultures of chick embryo tissue Some cell culture systems in which viral particles destined for use as viral vaccines are propagated Viral particle/vaccine - Typical cell culture system • Yellow fever virus - Chick egg embryos • Measles virus (attenuated) - Chick egg embryo cells • Mumps virus (attenuated) - Chick egg embryo cells • Polio virus (live, oral, i.e. Sabin and inactivated injectable, i.e. Salk) - Monkey kidney tissue culture • Rubella vaccine - Duck embryo tissue culture, human tissue culture • Hepatitis A viral vaccine - Human diploid fibroblasts • Varicella-zoster vaccines • (chicken pox vaccine) - Human diploid cells
  • 16.  Mumps vaccine consists of live attenuated strains of Paramyxovirus parotitidis.  In many world regions, it is used to routinely vaccinate children, often a part of a combined measles, mumps and rubella (MMR) vaccine.  Several attenuated strains have been developed for use in vaccine preparations.  The most commonly used is the Jeryl Linn strain of the mumps vaccine, which is propagated in chick embryo cell culture.  This vaccine has been administered to well over 50 million people worldwide and, typically, results in seroconversion rates of over 97%.
  • 17.  The Sabin (oral poliomyelitis) vaccine consists of an aqueous suspension of poliomyelitis virus, usually grown in cultures of monkey kidney tissue.  It contains approximately 1 million particles of poliomyelitis strains 1, 2 or 3 or a combination of all three strains. Hepatitis A vaccine exemplifies vaccine preparations containing inactivated viral particles. It consists of a formaldehyde-inactivated preparation of the HM 175 strain of hepatitis A virus.  Viral particles are normally propagated initially in human fibroblasts.
  • 18. Advantages Disadvantages  Infectious microbes can stimulate generation of memory cellular as well as humoral immune responses. Since these can multiply in the host, fewer quantities must be injected to induce protection.  A single administration of vaccine often has a high efficacy in producing long-lived immunity.  Multiple booster doses may not be required.  Whole microbes stimulate response to antigens in their natural conformation.  They raise immune response to all protective antigens.  Some live vaccines can be given orally; such vaccines induce mucosal immunity and IgA synthesis, which gives more protection at the normal site of entry.  Oral preparations are less expensive than giving injections.  They can lead to elimination of wild type virus from the community  May very rarely revert to its virulent form and cause disease.  Live vaccines cannot be given safely to immunosuppressed individuals.  Administration of live attenuated vaccines to people with impaired immune function can cause serious illness or death in the vaccine recipient.  Since they are live and because their activity depends on their viability, proper storage is critical. LIVE ATTENUATED VACCINELIVE ATTENUATED VACCINE
  • 19. Advantages Disadvantages  Safe to use and can be given to immunodeficient and pregnant individuals.  Cheaper than live attenuated vaccine  Storage not as critical as live vaccine  Since the microorganisms cannot multiply, a large number are required to stimulate immunity.  Periodic boosters must be given to maintain immunity.  Only humoral immunity can be induced.  Most killed vaccines have to be injected.  Some vaccines such as Bordetella pertussis induce ill effects like postvaccinial encephalomyelitis.  Anaphylactic reaction to neomycin or streptomycin may occur in (Inactivated Polio Vaccine) recipients.  Anaphylactic hypersensitivity to eggs may occur in recipients of influenza vaccine.  Inactivation, such as by formaldehyde in the case of the Salk vaccine, may alter antigenicity.  Presence of some un-inactivated microbes can lead to vaccine-associated disease
  • 20.
  • 21.  Subunit vaccines contain purified antigens instead of whole organisms. Such a preparation consists of only those antigens that elicit protective immunity.  Subunit vaccines are composed of toxoids, subcellular fragments, or surface antigens.  Administration of whole organism, as in case of pertussis was found unfavorable immune reactions resulting in severe side effects.  The effectiveness of subunit vaccines in increased by giving them in adjuvants.  Adjuvants slow antigen release for a more sustained immune stimulation.
  • 22. Some vaccine preparations that consist not of intact attenuated/inactivated pathogens but of surface antigens derived from such pathogens •Anthrax vaccines - Antigen found in the sterile filtrate of Bacillus anthracis •Haemophilus influenzae vaccines - Purified capsular polysaccharide of Haemophilus influenzae type B •Hepatitis B vaccines - Hepatitis B surface antigen (HBsAg) purified from plasma of hepatitis B carriers •Meningococcal vaccines - Purified (surface) polysaccharides from Neisseria meningitidis (groups A or C) •Pneumococcal vaccines - Purified polysaccharide capsular antigen from up to 23 serotypes of Streptococcus pneumoniae
  • 23. Advantages Disadvantages  They can safely be given to immuno suppressed people  They are less likely to induce side effects.  Antigens may not retain their native conformation, so that antibodies produced against the subunit may not recognize the same protein on the pathogen surface.  Isolated protein does not stimulate the immune system as well as a whole organism vaccine
  • 24.  Diphtheria and tetanus vaccine are two commonly used toxoid-based vaccine preparations.  The initial stages of diphtheria vaccine production entails the growth of Corynebacterium diphtheriae.  The toxoid is then prepared by treating the active toxin produced with formaldehyde.  The product is normally sold as a sterile aqueous preparation.  Tetanus vaccine production follows a similar approach; Clostridium tetani is cultured in appropriate media, the toxin is recovered and inactivated by formaldehyde treatment.  Again, it is usually marketed as a sterile aqueous-based product.  Poor immunological responses are thus often associated with administration of carbohydrate polymers to humans, particularly to infants.  The antigenicity of these substances can be improved by chemically coupling (conjugating) them to a protein-based antigen.
  • 25.  Peptide vaccine consists of those peptides from the microbial antigen that stimulates protective immunity.  Synthetic peptides are produced by automated machines rather than by microorganisms.  Peptide immunogenicity can be increased by giving them in ISCOMS, lipid micelles that transport the peptides directly into the cytoplasm of dendritic cells for presentation on Class I MHC.  Injected peptides, which are much smaller than the original virus protein, induce an IgG response.  Example: spf66 anti-malarial vaccine  Advantages  • If the peptide that induces protective immunity is identified, it can be synthesized easily on a large scale.  • It is safe and can be administered to immunodeficient and pregnant individuals.  Disadvantage  • Poor antigenicity. Peptide fragments do not stimulate the immune system as well as a whole organism vaccine.  • Since peptides are closely associated with HLA alleles, some peptides may not be universally effective at inducing protective immunity.
  • 26.  Conjugate vaccines are primarily developed against capsulated bacteria. While the purified capsular antigen can act as subunit vaccine, they stimulate only humoral immunity.  Polysaccharide antigens are T independent, they generate short-lived immunity.  Immunity to these organisms requires opsonizing antibodies. Infants cannot mount good T-independent responses to polysaccharide antigens.  By covalently linking the polysaccharides to protein carriers, they are converted into T-dependent antigens and protective immunity is induced.  Examples: Haemophilus influenzae HiB polysaccharide is complexed with diphtheria toxoid.  Tetramune vaccine, which combines the tetanus and diphtheria toxoids, whole-cell pertussis vaccine, and H. influenzae type b conjugate vaccine.
  • 27.  The advent of recombinant DNA technology has rendered possible the large- scale production of polypeptides normally present on the surface of virtually any pathogen.  These polypeptides, when purified from the producer organism (e.g. Escherichia coli, Saccharomyces cerevisiae) can then be used as ‘sub-unit’ vaccines. This method of vaccine production exhibits several advantages over conventional vaccine production methodologies. These include:  Production of a clinically safe product; the pathogen-derived polypeptide now being expressed in a non-pathogenic recombinant host. This all but precludes the possibility that the final product could harbour undetected pathogen.  Production of subunit vaccine in an unlimited supply. Previously, production of some vaccines was limited by supply of raw material (e.g. hepatitis B surface antigen; see below).  Consistent production of a defined product which would thus be less likely to cause unexpected side effects.
  • 28.  The first such product was that of hepatitis B surface antigen (rHBsAg), which gained marketing approval from the FDA in 1986.  Prior to its approval, hepatitis B vaccines consisted of HBsAg purified directly from the blood of hepatitis B sufferers.  When present in blood, HBsAg exists not in monomeric form, but in characteristic polymeric structures of 22 mm diameter. Production of hepatitis B vaccine by direct extraction from blood suffered from two major disadvantages:  The supply of finished vaccine was restricted by the availability of infected human plasma.  The starting material will likely be contaminated by intact, viable hepatitis B viral particles (and perhaps additional viruses, such as HIV). This necessitates introduction of stringent purification procedures to ensure complete removal of any intact viral particles from the product stream. A final product QC test to confirm this entails a 6 month safety test on chimpanzees.
  • 29. The HBsAg gene has been cloned and expressed in a variety of expression systems, including E. coli, S. cerevisiae and a number of mammalian cell lines. • The product used commercially is produced in S. cerevisiae. • The yeast cells are not only capable of expressing the gene, but also assembling the resultant polypeptide product into particles quite similar to those found in the blood of infected individuals. • This product proved safe and effective when administered to both animals and humans. RECOMBIVAX HBRECOMBIVAX HB
  • 30.  The vaccines are produced using recombinant DNA technology or genetic engineering.  Recombinant vaccines are those in which genes for desired antigens of a microbe are inserted into a vector.  Different strategies are: Using the engineered vector (e.g., Vaccinia virus) that is expressing desired antigen as a vaccine The engineered vector (e.g., yeast) is made to express the antigen, such is vector is grown and the antigen is purified and injected as a subunit vaccine.  Other expression vectors include the bacteria Escherichia coli, mutant Salmonella spp., and BCG.  Introduction of a mutation by deleting a portion of DNA such that they are unlikely to revert can create an attenuated live vaccine.  Live attenuated vaccines can also be produced by reassortment of genomes of virulent and avirulent strains.  Genes coding for significant antigens are introduced into plants, such that the fruits produced bear foreign antigens.  This is edible vaccine and is still in experimental stage.
  • 31.  Hepatitis B Virus (HBV) vaccine is a recombinant subunit vaccine. Hepatitis B surface antigen is produced from a gene transfected into yeast (Saccharomyces cerevisiae) cells and purified for injection.  Vaccinia virus may be engineered to express protein antigens of HIV, rabies etc. Foreign genes cloned into the viral genome are expressed on the surface of infected cells in association with class I MHC molecules.  The antigen-MHC complex induces a Tc cell response. B subunit of cholera toxin, the B subunit of heat-labile E. coli enterotoxin (LT), and one of the glycoprotein  membrane antigens of the malarial parasite are being developed using this technique.  Salmonella typhimurium engineered to express antigens of Vibrio cholerae.  Bacille Calmette-Guérin vaccine strain engineered to express genes of HIV-1.  Reassortment of genomes between human and avian strains to create Influenza vaccine.  Human and swine strains to create Rotavirus vaccine.
  • 32. • An alternative approach to the development of novel vaccine products entails the use of livevaccine vectors. • The strategy followed involves incorporation of a gene/cDNA coding for a pathogen-derived antigen into a non-pathogenic species. • If the resultant recombinant vector expresses the gene product on its surface, it may be used to immunize against the pathogen of interest
  • 33.  A number of factors render vaccinia virus a particularly attractive vector system. These include:  capacity to successfully assimilate large quantities of DNA in its genome;  prior history of widespread and successful use as a vaccination agent;  ability to elicit long-lasting immunity;  ease of production and low production costs;  stability of freeze-dried finished vaccine product.  Integration of foreign genes must occur in regions of the viral genome not essential for viral replication. Two such sites are most often used.  One is towards the left end of its genome, while the second is located within the thymidine kinase gene.  Adenoviruses also display potential as vaccine vectors. These double-stranded DNA viruses display a genome consisting of ca. 36 000 base pairs, encoding approximately 50 viral genes.  Several antigenically distinct human adenovirus serotypes have been characterized and these viral species are endemic throughout the world.  They can prompt respiratory tract infections and, to a lesser extent, gastrointestinal and genitourinary tract infections.
  • 34. Advantages Disadvantages  Those vectors that are not only safe but also easy to grow and store can be chosen.  Antigens which do not elicit protective immunity or which elicit damaging responses can be eliminated from the vaccine.  Example Cholera toxin A can be safely removed from cholera toxin.  Since the genes for the desired antigens must be located, cloned, and expressed efficiently in the new vector, the cost of production is high.  When engineered vaccinia virus is used to vaccinate, care must be taken to spare immunodeficient
  • 35.  These vaccines are still in experimental stage. Like recombinant vaccines, genes for the desired antigens are located and cloned.  The DNA is injected into the muscle of the animal being vaccinated, usually with a "gene gun“ that uses compressed gas to blow the DNA into the muscle cells.  DNA can be introduced into tissues by bombarding the skin with DNA-coated gold particles. It is also possible to introduce DNA into nasal tissue in nose drops.  Some muscle cells express the pathogen DNA to stimulate the immune system. DNA vaccines have induced both humoral and cellular immunity. Advantages:  DNA is very stable, it resists extreme temperature and hence storage and transport are easy.  A DNA sequence can be changed easily in the laboratory. The inserted DNA does not replicate and encodes only the proteins of interest.  There is no protein component and so there will be no immune response against the vector itself.  Because of the way the antigen is presented, there is a cell-mediated response that may be directed against any antigen in the pathogen.  Disadvantages:  Potential integration of DNA into host genome leading to insertional mutagenesis.  Induction of autoimmune responses: anti-DNA antibodies may be produced against introduced DNA.  Induction of immunologic tolerance: The expression of the antigen in the host may lead to specific nonresponsiveness to that antigen.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.  An antigen binding site in an antibody (paratope) is a reflection of the three-dimensional structure of part of the antigen (epitope).  This unique amino acid structure in the antibody is known as the idiotype, which can be considered as a mirror of the epitope in the antigen.  Antibodies can be raised against the idiotype by injecting the antibody into another animal. This anti-idiotype antibody mimics part of the three dimensional structure of the antigen.  This can be used as a vaccine. When the anti-idiotype antibody is injected into a vaccinee, antibodies (antianti- idiotype antiobodies) are formed that recognize a structure similar to part of the virus and might potentially neutralize the virus. Advantage:  Antibodies against potentially significant antigen can be produced. Disadvantages:  Only humoral immunity is produced. There is no cellular immunity and poor memory.  Identification and preparation of idiotypes is labor intensive and difficult.
  • 42.
  • 43.  All of the vaccine preparations discussed thus far are bacterial or viral-based.  Typhus vaccine, on the other hand, targets a parasitic disease. Typhus (spotted fever) refers to a group of infections caused by Rickettsia (small, non-motile parasites).  The disease is characterized by severe rash and headache, high fever and delirium.  The most common form is that of epidemic typhus (‘classical’ or ‘louse-borne’ typhus). This is associated particularly with crowded, unsanitary conditions.  Without appropriate antibiotic treatment, fatality rates can approach 100%. The causative agent of epidemic typhus is Rickettsia prowazekii.  Typhus vaccine consists of a sterile aqueous suspension of killed R. prowazekii which has been propagated in either yolk sacs of embryonated eggs, rodent lungs or the peritoneal cavity of gerbils.  To date, no effective vaccine has been developed for many parasites, notably the malaria-causing parasitic protozoa Plasmodium. One of the major difficulties in such instances is that parasites go through a complex life cycle, often spanning at least two different hosts. TYPHUS VACCINE
  • 44.  Acquired immune deficiency syndrome (AIDS) was initially described in the USA in 1981, although sporadic cases probably occurred for at least two decades prior to this.  By 1983, the causative agent, now termed human immunodeficiency virus (HIV), was identified.  It is a member of the lentivirus subfamily of retroviruses.
  • 45. • It is a spherical, enveloped particle, 100– 150 nm in diameter, and contains RNA as its genetic material (Figure 10.16). • The viral surface protein, gp120, is capable of binding to a specific site on the CD4 molecule, • found on the surface of susceptible cells . • Some CD4-negative (CD4 ) cells may • (rarely) also become infected, indicating the existence of an entry mechanism independent of CD4. • Infection of CD4+ cells commences via interaction between gp120 and the CD4 glycoprotein, which effectively acts as the viral receptor.
  • 46.  Entry of the virus into the cell, which appears to require some additional cellular components, occurs via endocytosis and/or fusion of the viral and cellular membranes.  The gp41 transmembrane protein plays an essential role in this process.  Once released into the cell, the viral RNA is transcribed (by the associated viral reverse transcriptase) into double-stranded DNA.  The retroviral DNA can then integrate into the host cell genome (or, in some instances, remain unintegrated).  Aggressive expression of viral genes usually leads to cell death.
  • 47. Entry in to human cell Initial viral replication (Lasts few weeks) High level viraemia & p24 antigen can be detected in blood Clinical symptoms (influenza-like illness, joint pains and general enlargement of the lymph nodes) primary viraemia under control within 3–4 weeks by HIV-specific cytotoxic T lymphocytes (importance of cell mediated immunity in bringing the initial infection under control) initial phase of infection subsides, the free viral load in the blood declines( 0 level) latent phase may last for anything up to 10 years or more.
  • 48. there does seem to be continuous synthesis and destruction of viral particles. high turnover rate of (CD4+) T helper lymphocytes T lymphocytes decline with time, as do antibody levels specific for viral proteins circulating viral load often increases as a result and the depletion of T helper cells compromises general immune function. As the immune system fails, classical symptoms of AIDS-related complex (ARC) and, finally, full- blown AIDS begin to develop.
  • 49.  A number of attributes of HIV and its mode of infection conspire to render development of an effective vaccine less than straightforward. These factors include:  HIV displays extensive genetic variation, often even within a single individual. Such genetic variation is particularly prominent in the viral env gene whose product, gp160, is subsequently proteolytically processed yielding gp120 and gp41.  HIV infects and destroys T helper lymphocytes, i.e. it directly attacks an essential component of the immune system itself.  Although infected individuals display a wide range of anti-viral immunological responses, these ultimately fail to destroy the virus. A greater understanding of what elements of immunity are most effective in combating HIV infection is required.  After initial virulence subsides, large numbers of cells harbour unexpressed proviral DNA. The immune system has no way of identifying such cells. An effective vaccine must thus induce the immune system to: (a) bring the viral infection under control before cellular infection occurs; or (b) destroy cells once they begin to produce viral particles and destroy the viral particles released.  The infection may often be spread, not via transmission of free viral particles, but via direct transmission of infected cells harbouring the proviral DNA.
  • 50.  A number of approaches are being assessed with regard to developing an effective AIDS vaccine.  No safe attenuated form of the virus has been recognized to date or is likely to be developed in the foreseeable future.  The high level of mutation associated with HIV would, in any case, heighten fears that spontaneous reversion of any such product to virulence would be possible.  The potential of inactivated viral particles as effective vaccines has gained some attention but again, fears of accidental transmission of disease if inactivation methods are not consistently 100% effective have dampened enthusiasm for such an approach.  In addition, the stringent containment conditions required to produce large quantities of the virus renders such production processes expensive.
  • 51.  Most of the recombinant subunit vaccines currently being tested employ gp120 or gp160 expressed in yeast, insect or mammalian (mainly CHO) cell lines  Much work has been invested into identification of which viral antigens are capable of producing the most effective anti-viral (i.e. neutralizing) antibodies.  Such antibodies are mostly directed against gp120. Further studies have pinpointed the principal neutralizing domain of gp120.  This short stretch of the polypeptide backbone is known as the V3 loop and it is located within one of the five hypervariable regions of gp120.  Thus, while anti-V3 antibodies likely represent the most effective HIV- neutralizing species, these antibodies will also likely be strainspecific.
  • 52.  Although the primary objective of any vaccine is its prophylactic use (i.e. prevention of future occurrence of a disease), AIDS vaccines may also be of therapeutic value.  This supposition is based upon the fact that the immune system controls the viral infection for a time period.  Hence, any agent capable of enhancing the anti-HIV immune response may prolong this effect.  By mid-2002 a preventitive AIDS vaccine ‘AIDS VAX’ (its trade name) had reached phase III clinical trials.  The product, developed by a spin-off company of Genentech called Vaxgen is a recombinant gp120 glycoprotein produced in a CHO cell line.
  • 53.  The identification of tumour-associated antigens could pave the way for the development of a range of cancer vaccines. A number of tumour-associated antigens have already been characterized, as previously described.  Theoretically, administration of tumour-associated antigens may effectively immunize an individual against any cancer type characterized by expression of the tumour-associated antigen in question.  Co-administration of a strong adjuvant would be advantageous, as it would stimulate an enhanced immune response.  This is important as many tumour-associated antigens appear to be weak immunogens.  Administration of subunit-based tumor-associated antigen vaccines would primarily stimulate a humoral immune response.  The use of viral vectors may ultimately prove more effective, as a T cell response appears to be central to the immunological destruction of cancer cells.
  • 56.  These types of vaccines are antigenic proteins that are genetically engineered into a consumable crop. The strategy is that the plant food product haves the protein witch is obtained from some disease causing pathogen.
  • 57.
  • 58.
  • 59.
  • 60. “Any thing is not easy, but everything is possible……”“Any thing is not easy, but everything is possible……”