SlideShare ist ein Scribd-Unternehmen logo
1 von 54
Downloaden Sie, um offline zu lesen
CE 336- FOUNDATION ENGINEERING
SPRING 2021
28.04.21
Deep Foundations
Example 1:
A 400 mm square prestressed concrete pile is to be
driven 19 m into the soil profile shown in the figure.
a) Compute the net load transferred to the ground
through toe bearing
b) Compute the nominal side friction capacity
c) Compute the ASD downward load capacity using a
factor of safety of 2.8.
Solution 1:
𝐞 = 𝛜0 𝑂𝐶𝑅 + 𝛜1𝑁60
𝐞 = 5000 1 + 1200 ∗ 25 = 35000𝑘𝑃𝑎
𝐌𝑟 =
35000
2 1 + 0.3 ∗ 188 ∗ 𝑡𝑎𝑛36°
= 99
𝜎′𝑧𝐷 = 17.8 ∗ 3 + 18.2 − 9.81 ∗ 16 =188kPa
According to the figures,
𝑁𝛟
∗ = 15; 𝑁𝑞
∗ = 76
(a)
* *
' '
t ZD
q B N N
 
 
    
   
35000
114
2 1 ' tan ' 2 1 0.30 163 tan36
s
r
zD
E
I
v  
  
    ï‚Ž  ï‚Ž ï‚Ž 
Solution 1:
𝑞′𝑛 = 𝐵𝛟𝑁𝛟
∗ + 𝜎′𝑧𝐷𝑁𝑞
∗
𝑞′𝑛 = 0.4 ∗ 18.2 − 9.8 ∗ 15 + 188 ∗ 76 = 14338𝑘𝑃𝑎
𝑞′𝑛𝐎𝑡 = 14338 ∗ 0.42 = 2294𝑘𝑁
(b)
Solution 1:
𝐟0 = 1 − 𝑠𝑖𝑛𝜑′ 𝑂𝐶𝑅𝑠𝑖𝑛𝜑′
𝐟0 = 1 − 𝑠𝑖𝑛36 (1) 𝑠𝑖𝑛36
𝑡𝑜 1 − 𝑠𝑖𝑛36 (4) 𝑠𝑖𝑛36
𝐟0 = 0.41 𝑡𝑜 0.93
𝛜 = 𝐟0
𝐟
𝐟0
𝑡𝑎𝑛 𝜑′
𝜑𝑓
𝜑′
𝛜 = 0.41 ∗ 1.2 ∗ tan 36 ∗ 0.8 𝑡𝑜 0.93 ∗ 1.2 ∗ tan 36 ∗ 0.8 = 0.27 𝑡𝑜 0.61
(c) 𝑃𝑎 =
𝑞′𝑛𝐎𝑡 + σ 𝑓𝑛𝐎𝑠
𝐹
=
2294 + 1272
2.8
= 1274 𝑘𝑁
Example 2:
A straight drilled shaft of diameter 1 m is
installed in a soil profile, as shown in the figure.
SPT were performed at intervals of
approximately 1 m below the base. Determine
the toe bearing capacity.
Solution 2:
Use average N60 value over a depth of 2D from the base or tip.
O’Neill and Reese (1999)
Example 3:
The drilled shaft shown is to be designed
without the benefit of any on-site static load
tests. The soil conditions are uniform and the
site characterization program was average.
Unit weights of soil layers above the water
table are 17kN/m3 and below are 20kN/m3.
Compute the allowable downward load
capacity.
Solution 3:
We assume that;
Silt sand above groundwater table ɣ = 17 kN/m3
Silt sand below groundwater table ɣ = 20 kN/m3
Sand above groundwater table ɣ = 20 kN/m3
For Drilled Shaft
𝛜 = 1,5 − 0,245 𝑧
𝑓𝑠 = 𝛜 ∗ 𝜎′𝑧
Solution 3:
Layer z (m) β σ'z (kPa) fs (kPa) As (m2
) Ps (kN)
Silty sand above GWT 1 1.26 17.0 21.34 3.77 80.43
Silty sand below GWT 2.75 1.09 41.6 45.54 2.83 128.78
Sand below GWT (3.5m-9m) 6.25 0.89 77.3 68.61 10.37 711.30
Sand below GWT (9m-14m) 11.5 0.67 130.8 87.53 9.42 824.95
Total 1745.46
60
' 57.5* 57.5 22 1265
t
q N kPa
  ï‚Ž 
 
2
2
0.6
0.283
4
t
m
A m
 ï‚Ž
 
  2
' 1265 0.283 1745
701
3
t t s s
a
q A f A kPa m kN
P kN
FS
   ï‚Ž 
  

(For drilled shaft)
Example 4:
A concrete pile 40 cm in diameter and 10 m long is driven into a homogenous mass of clayey soil of medium
consistency. The water table is at the ground surface.The undrained shear strength is 80 kPa and the
adhesion factor α = 0.75. Compute the ultimate load bearing capacity.
Solution 4:
Example 5:
It is designed that the steel pile having a
diameter 40cm given in the figure below has
to have an allowable bearing capacity which
should be maximum 490 kN. Calculate the
length of the pile by considering the factor of
safety as 3.
Solution 5:
𝑄𝑢𝑙𝑡 = 𝑄𝑝 + 𝑄𝑠
𝑄𝑝 = 9 ∗ 𝑐𝑢 ∗ 𝐎𝑝 = 9 ∗ 125 ∗
0.42 ∗ 𝜋
4
= 141.4 𝑘𝑁
𝑄𝑠 = ෍ 𝑐𝑢 ∗ 𝛌 ∗ 𝑝 ∗ ∆𝑙
According to Randolph and Murphy (1985),
𝜎′𝑧𝐷 1 = 3 ∗ 17 = 51𝑘𝑃𝑎 →
𝑐𝑢
𝜎′
𝑧𝐷 1
=
50
51
≈ 1 → 𝛌1 ≈ 0.5 (𝑏𝑙𝑢𝑒)
𝜎′𝑧𝐷 2 = 6 ∗ 17 + 2 ∗ 19 − 9.8 = 120.4𝑘𝑃𝑎 →
𝑐𝑢
𝜎′
𝑧𝐷 2
=
50
120.4
≈ 0.41 → 𝛌2 ≈ 0.78 (𝑟𝑒𝑑)
Solution 5:
For safety, 𝐿 can be assumed zero while determining the lowest possible value of 𝛌3
𝑝 = 𝜋 ∗ 0.4 = 1.26 𝑚
𝑄𝑠 = 50 ∗ 0.5 ∗ 6 + 50 ∗ 0.78 ∗ 4 + 125 ∗ 0.52 ∗ L ∗ 1.26 = 385.56 + 81.9𝐿
𝜎′𝑧𝐷 3 = 6 ∗ 17 + 4 ∗ 19 − 9.8 +
𝐿
2
∗ 19.5 − 9.8 = 138.8 + 4.85𝐿
→
𝑐𝑢
𝜎′
𝑧𝐷 2
=
125
138.8
≈ 0.9 → 𝛌3 ≈ 0.52 (𝑔𝑟𝑒𝑒𝑛)
𝑄𝑎𝑙𝑙 = 500𝑘𝑁 → 𝑄𝑢𝑙𝑡 = 1500𝑘𝑁 → 141.4 + 385.56 + 81.9𝐿 = 1500 → 𝐿 = 11.2 𝑚
𝑃𝑖𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ = 6 + 4 + 11.2 = 21.2 ≈ 22𝑚
Example 6:
The load-settlement data shown in the figure were
obtained from a full-scale static load test on a 400mm
square, 17m long concrete pile (fÂŽc=40MPa). Use
Davisson’s method to compute the ultimate
downward load capacity.
Solution 6:
Interpratation of static load tests
Solution 6:
𝐞 = 4700 𝑓′𝑐 = 4700 40 𝑀𝑃𝑎 = 30000 𝑀𝑃𝑎
4𝑚𝑚 +
𝐵
120
+
𝑃𝐷
𝐎𝐞
= 4𝑚𝑚 +
40𝑚𝑚
120
+
𝑃 17000𝑚𝑚
0.42 ∗ 30000000𝑘𝑃𝑎
= 7.3𝑚𝑚 + 0.0035𝑃
𝑃𝑢𝑙𝑡 = 1650𝑘𝑁
Example 7:
Given that n1 = 4, n2 = 3, D = 305 mm, d = 1220 mm,
and L = 15 m. The piles are square in cross section
and embedded in a homogenous clay with ɣ = 15.5
kN/m3 and cu = 70 kN/m2. Using a factor of safety
equal to 4, determine the allowable load bearing
capacity of the group pile.
Solution 7:
Determine the ultimate capacity assuming that the piles in the group act as individual piles.
σ′𝑧 = ɣ × ൗ
𝐿
2 = 15.5 × ൗ
15
2 = 116.25𝑘𝑃𝑎
The average value for ΀
𝑐𝑢
σ′𝑧 = ΀
70
116.25 = 0.6
 
 
 
1 2
1 2
9
9
u p s
p p u
s u
u p u u
Q n n Q Q
Q A c
Q pc L
Q n n A c pc L


 

 
  


 
  
  
2
0.305 0.305 0.093 m
4 0.305 1.22 m
p
A
p
 
 
from figure for 70 kPa, 0.63
u
c 
 
           
 
4 3 9 0.093 70 0.63 1.22 70 15
12 58.59 807.03 10387 kN
ult
Q  
 
 
  

Solution 7:
Determine the ultimate capacity assuming that the piles in the group act as a block with dimensions
Lg x Bg x L.
 
 
   
* *
*
Skin resistance of the block:
2
Point bearing capacity :
Thus the ultimate load is equal to:
2
g u g g u
p p p u c g g u c
ult g g u c g g u
p c L L B c L
A Q A c N L B c N
Q L B c N L B c L
   
 
   
 
 
      
      
1
2
*
1 2 4 1 1.22 0.305 3.965 m
2
1 2 3 1 1.22 0.305 2.745 m
2
15 3.965
5.46 and 1.44
2.745 2.745
From figure, 8.6
g
g
g
g g
c
D
L n d
D
B n d
L
L
B B
N
 
      
 
 
 
      
 
 
   

Solution 7:
        
Block capacity 3.965 2.745 70 8.6 2 3.965 2.745 70 15
6552 14091 20643 kN
  
  
 
 
 
10387 kN 20643 kN
10387
2597 kN
4
g ult
g ult
g all
Q
Q
Q
FS
 
  
Example 8:
A group pile in clay is shown in the figure on
the right. Determine the consolidation
settlement of the pile groups.
Assume that all the clay layers are normally
consolidated.
Solution 8:
Because the lengths of the piles are 15 m each, the stress distribution starts at a depth of 10 m below
the top of the pile.
Settlement of Layer I
0(1) (1)
1
(1)
0(1) 0(1)
' '
log
1 '
c
c
C H
e
 


   
 
    
   

   
     
(1)
1 1
2000
' 51.6
3.3 3.5 2.2 3.5
g g
Q
kPa
L z B z

   
 
 
 
0(1)
' 2 16.2 12.5 18 9.81 134.8kPa
  ï‚Ž  ï‚Ž  
(1)
0.3 7 134.8 51.6
log 162.4
1 0.82 134.8
c mm

ï‚Ž 
   
 
   

   
Solution 8:
Settlement of Layer II
0(2) (2)
2
(2)
0(2) 0(2)
' '
log
1 '
c
c
C H
e
 


   
 
    
   

   
     
(2)
2 2
2000
' 14.52
3.3 9 2.2 9
g g
Q
kPa
L z B z

   
 
 
 
0(2)
' 2 16.2 16 18 9.81 181.62kPa
  ï‚Ž  ï‚Ž  
(2)
0.2 4 181.62 14.52
log 15.7
1 0.7 181.62
c mm

ï‚Ž 
   
 
   

   
Solution 8:
Settlement of Layer III
0(3) (3)
3
(3)
0(3) 0(3)
' '
log
1 '
c
c
C H
e
 


   
 
    
   

   
     
(3)
3 3
2000
' 9.2
3.3 12 2.2 12
g g
Q
kPa
L z B z

   
 
 
 
0(3)
' 2 16.2 19 18 9.81 208.99kPa
  ï‚Ž  ï‚Ž  
(3)
0.25 2 208.99 9.2
log 5.4
1 0.75 208.99
c mm

ï‚Ž 
   
 
   

   
Total settlement
( ) (1) (2) (3) 162.4 15.7 5.4 183.5
c T c c c mm
   
      
-Ultimate (fully mobilized) load capacity
Deep Foundations-Pile Load Transfer Mechanism
𝑻𝒐𝒕𝒂𝒍 𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚 = 𝑠ℎ𝑎𝑓𝑡 𝑠𝑘𝑖𝑛 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑡𝑖𝑝 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑊𝑝𝑖𝑙𝑒
𝑅 = 𝑄𝑢𝑙𝑡 = 𝑄𝑠 + 𝑄𝑏 − 𝑊
𝑝
Buoyancy effect
should be taken
into account
-Ultimate (fully mobilized) load capacity
Deep Foundations-Pile Load Transfer Mechanism
𝑻𝒐𝒕𝒂𝒍 𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚
=
𝑠𝑘𝑖𝑛 𝑠ℎ𝑎𝑓𝑡 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒
+
𝑡𝑖𝑝 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒
Friction pile
(clayey soil, adhesion)
End bearing pile
(rock formation)
𝑅 = 𝑄𝑢𝑙𝑡 = 𝑄𝑠 + 𝑄𝑏 − 𝑊
𝑝
End bearing pile
(granular soils)
>3 m
or
5B
-Ultimate (fully mobilized) load capacity
Deep Foundations-Pile Load Transfer Mechanism
𝑻𝒐𝒕𝒂𝒍 𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚 = 𝑠𝑘𝑖𝑛 𝑠ℎ𝑎𝑓𝑡 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑡𝑖𝑝 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛
to attain fully mobilised capacity
10 to 25% of the pile width
0.5 to 1% of the pile width
-Bearing resistance (Undrained condition, clayey soil, non-free draining)
Deep Foundations-Pile Axial Load Capacity
𝑄𝑏 = 𝐎𝑏 𝑠𝑐𝑁𝑐𝑐𝑢 + 𝑁𝑞σ′𝑞 (𝑏𝑜𝑟𝑒𝑑 𝑎𝑛𝑑 𝑑𝑟𝑖𝑣𝑒𝑛 𝑝𝑖𝑙𝑒𝑠)
Ab=cross-sectional area of the base of the pile
-Bearing resistance (Drained condition, granular soil, free draining)
𝑄𝑏 = 𝐎𝑏 𝑁𝑞σ′𝑞 (𝑏𝑜𝑟𝑒𝑑 𝑎𝑛𝑑 𝑑𝑟𝑖𝑣𝑒𝑛 𝑝𝑖𝑙𝑒𝑠)
𝑠𝑐𝑁𝑐 = 9.0 𝑓𝑜𝑟 𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑝𝑖𝑙𝑒
may be neglected (Nq=1)
Deep Foundations-Pile Axial Load Capacity
-Bearing resistance (Drained condition, granular soil, free draining)
𝑄𝑏 = 𝐎𝑏 𝑁𝑞σ′𝑞
φ Nq
20.00 12.40
21.00 13.80
22.00 15.50
23.00 17.90
24.00 21.40
25.00 26.00
26.00 29.50
27.00 34.00
28.00 39.70
29.00 46.50
30.00 56.70
31.00 68.20
32.00 81.00
33.00 96.00
34.00 115.00
35.00 143.00
36.00 168.00
37.00 194.00
38.00 231.00
39.00 276.00
40.00 346.00
41.00 420.00
42.00 525.00
43.00 650.00
44.00 780.00
45.00 930.00
𝐷
𝐵
𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠
𝐿𝑝𝑖𝑙𝑒
𝐵
𝑀𝑒𝑊𝑒𝑟ℎ𝑜𝑓
Deep Foundations-Pile Axial Load Capacity
-Shaft resistance (Undrained condition, clayey soil, non-free draining)
 α-method (𝑑𝑟𝑖𝑣𝑒𝑛 𝑝𝑖𝑙𝑒𝑠)
𝑄𝑠 = α(𝑐𝑢)𝐎𝑠
As= shaft area of the of the pile
α= adhesion factor and f(slenderness, shear strength)
𝐹𝑜𝑟
𝑐𝑢
σ′𝑣0
≀ 1; α = 0.5Fp
𝑐𝑢
σ′𝑣0
−0.5
≀ 1
𝐹𝑜𝑟
𝑐𝑢
σ′𝑣0
≥ 1; α = 0.5Fp
𝑐𝑢
σ′𝑣0
−0.25
Fp = 1.0 if
𝐿𝑝
𝐵
≀ 50
= 0.7if
𝐿𝑝
𝐵
≥ 120
Deep Foundations-Pile Axial Load Capacity
-Shaft resistance (Undrained condition, clayey soil, non-free draining)
 α-method (𝑏𝑜𝑟𝑒𝑑 𝑝𝑖𝑙𝑒𝑠)
𝑄𝑠 = α(𝑐𝑢)𝐎𝑠
As= shaft area of the of the pile
α= adhesion factor and f(shear strength)
α = 1.0 𝑓𝑜𝑟 𝑐𝑢 ≀ 30
α = 1. 16 −
𝑐𝑢
185
𝑓𝑜𝑟 30 < 𝑐𝑢 ≀ 150
α = 0.35 𝑓𝑜𝑟 𝑐𝑢 > 150
Deep Foundations-Pile Axial Load Capacity
-Shaft resistance (Drained condition, granular soil, free draining)
𝑄𝑠 = 𝐟𝑠σ′𝑣0 tan Ύ′ 𝐎𝑠 (𝑏𝑜𝑟𝑒𝑑 𝑎𝑛𝑑 𝑑𝑟𝑖𝑣𝑒𝑛 𝑝𝑖𝑙𝑒𝑠)
As= shaft area of the of the pile
Ks= coefficient of horizontal soil stress
ÎŽ'= the angle of friction b/w pile and soil
Ύ′ = ϕ = 0.75ϕ′
𝐟0 = 1 − 𝑠𝑖𝑛ϕ′
Deep Foundations-Pile Axial Load Capacity
-Shaft resistance (Drained condition, granular soil, free draining)
𝑄𝑠 = βσ′𝑣0𝐎𝑠
β=0.18+0.65Dr
Dr=relative density in decimal form
 β-method (𝑑𝑟𝑖𝑣𝑒𝑛 𝑝𝑖𝑙𝑒𝑠)
𝑄𝑠 = βσ′𝑣0𝐎𝑠
β=1.5-0.245 𝑧
z= depth to the mid-layer (m)
 β-method (𝑏𝑜𝑟𝑒𝑑 𝑝𝑖𝑙𝑒𝑠)
Ex1: A bridge pier is to be supported by 1.0 𝑚 diameter driven-cast in place concrete
piles. The design load per pile is determined as 700 𝑘𝑁 by the structural engineer.
Calculate the total pile length using a factor of safety of 3.0 against failure.
Deep Foundations- Single Pile Capacity
6 m Sand γ=17 kN/m3 ϕ'=36˚
Clay γ=20 kN/m3 cu=100 kPa
σ𝑣0 (𝑘𝑃𝑎) 𝑢 (𝑘𝑃𝑎) σ′𝑣0 (𝑘𝑃𝑎)
51
102
102 + 20ℎ𝑐𝑙𝑎𝑊 10ℎ𝑐𝑙𝑎𝑊
51
102
102 + 10ℎ𝑐𝑙𝑎𝑊
Ex1: A bridge pier is to be supported by 1.0 𝑚 diameter driven-cast in place concrete
piles. The design load per pile is determined as 700 𝑘𝑁 by the structural engineer.
Calculate the total pile length using a factor of safety of 3.0 against failure.
Deep Foundations- Single Pile Capacity
6 m Sand γ=17 kN/m3 ϕ'=36˚
Clay γ=20 kN/m3 cu=100 kPa
•
𝐿𝑝
𝐵
≥ 12, 𝑡ℎ𝑢𝑠 𝐿𝑝,𝑚𝑖𝑛 ≥ 12 𝑚
𝑻𝒐𝒕𝒂𝒍 𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚 𝑄𝑢𝑙𝑡 = ∑𝑄𝑠 + 𝑄𝑏
• 𝐹𝑜𝑟 𝑠𝑎𝑛𝑑 𝑙𝑎𝑊𝑒𝑟
𝑄𝑠 = 𝐟𝑠σ′𝑣0 tan Ύ′ 𝐎𝑠
𝐟𝑠 = 0.41 1.5 = 0.62 Ύ′ = ϕ = 0.75 ϕ′ = 27˚
𝐟0 = 1 − 𝑠𝑖𝑛ϕ′ = 0.41
Ex1 (cont.)
Deep Foundations- Single Pile Capacity
𝑄𝑠 = 𝐟𝑠σ′𝑣0 tan Ύ′ (π𝐷𝑙𝑠𝑎𝑛𝑑)
σ′𝑣0 @𝑧=3𝑚 = 3 17 = 51 kPa 𝑄𝑠,1 = 0.62 54 tan 27 π 1 6 = 303.7 𝑘𝑁
• 𝑭𝒐𝒓 𝒄𝒍𝒂𝒚 𝒍𝒂𝒚𝒆𝒓
𝑄𝑠 = α(𝑐𝑢)𝐎𝑠 𝐹𝑜𝑟
𝑐𝑢
σ′𝑣0
≀ 1; α = 0.5Fp
𝑐𝑢
σ′𝑣0
−0.5
≀ 1 Fp = 1.0 if
𝐿𝑝
𝐵
≀ 50
= 0.7if
𝐿𝑝
𝐵
≥ 120
σ′𝑣0 @𝑧=6𝑚 = 6 17 = 102 kPa
𝑐𝑢
σ′𝑣0
=
100
102
< 1 α = 0.5Fp
𝑐𝑢
σ′𝑣0
−0.5
= 0.5
100
102 + 20 − 10 𝑙𝑐𝑙𝑎𝑊
−0.5
𝑄𝑏 = 𝐎𝑏 𝑠𝑐𝑁𝑐𝑐𝑢 = π 0.5 2 9 100 = 706.9 𝑘𝑁
𝐎𝑠 = π𝐵(2𝑙𝑐𝑙𝑎𝑊)
𝑄𝑠,2 = 0.5
100
102 + 10 𝑙𝑐𝑙𝑎𝑊
−0.5
100 π(1)(2𝑙𝑐𝑙𝑎𝑊)
• 𝑭𝒐𝒓 𝒔𝒂𝒏𝒅 𝒍𝒂𝒚𝒆𝒓
Sand γ=17 kN/m3 ϕ'=36˚
Clay γ=20 kN/m3 cu=100 kPa 2𝑙𝑐𝑙𝑎𝑊
Ex1 (cont.)
Deep Foundations- Single Pile Capacity
• 𝑄𝑢𝑙𝑡 = 𝑄𝑠,1 + 𝑄𝑠,2 + 𝑄𝑏 − 𝑊
𝑝
303.7 + 𝑄𝑠,2 + 706.9 = π 0.5 2
25 ∗ 6 + 15 ∗ 2𝑙𝑐𝑙𝑎𝑊 + 700(3) 𝑇𝑟𝑖𝑎𝑙 𝑎𝑛𝑑 𝑒𝑟𝑟𝑜𝑟
𝑜𝑟 𝑒𝑞𝑛 𝑠𝑜𝑙𝑣𝑖𝑛𝑔
• 𝑄𝑎𝑙𝑙𝑜𝑀 =
𝑄𝑠,1+𝑄𝑠,2+𝑄𝑏
𝐹𝑆
− 𝑊
𝑝 = 700
1010.6 + 314.2
100
102 + 10 𝑙𝑐𝑙𝑎𝑊
−0.5
𝑙𝑐𝑙𝑎𝑊 = 117.8 + 23.6 𝑙𝑐𝑙𝑎𝑊 + 700(3)
1010.6 + 314.2
100
102 + 10 𝑙𝑐𝑙𝑎𝑊
−0.5
𝑙𝑐𝑙𝑎𝑊 = 2217.8 + 70.8𝑙𝑐𝑙𝑎𝑊
𝑙𝑚𝑖𝑑 𝑐𝑙𝑎𝑊 = 4 𝑚 𝐿𝑝 = 6 + 2 ∗ 4 = 𝟏𝟔 𝒎
Eqn is written
wrt. Midpoint
of clay layer
γ𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒′ = 25 − 10
γ𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 25 𝑘𝑁/𝑚3
𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑠𝑎𝑓𝑒𝑡𝑊
Ex2: A bridge pier is to be supported by bored-cast in place concrete piles (C30). The
design load per pile is determined as 2000 𝑘𝑁 by the structural engineer. Calculate the
total pile length using a factor of safety of 3.0 against failure.
Deep Foundations- Single Pile Capacity
6 m Sand γ=17 kN/m3 ϕ'=28˚
Clay γ=18 kN/m3 cu=30 kPa
σ𝑣0 (𝑘𝑃𝑎) 𝑢 (𝑘𝑃𝑎) σ′𝑣0 (𝑘𝑃𝑎)
51
102
210 60
Sand γ=19 kN/m3 ϕ' =38˚
Clay γ=18 kN/m3 cu=150 kPa
6 m
6 m
120
324
51
102
150
204
Ex2: A bridge pier is to be supported by bored-cast in place concrete piles (C30). The
design load per pile is determined as 2000 𝑘𝑁 by the structural engineer. Calculate the
total pile length using a factor of safety of 3.0 against failure.
Deep Foundations- Single Pile Capacity
6 m Sand γ=17 kN/m3 ϕ'=28˚
Clay γ=18 kN/m3 cu=30 kPa
σ𝑣0 (𝑘𝑃𝑎) 𝑢 (𝑘𝑃𝑎) σ′𝑣0 (𝑘𝑃𝑎)
51
102
210 60
Sand γ=19 kN/m3 ϕ' =38˚
Clay γ=18 kN/m3 cu=150 kPa
6 m
6 m
120
324
51
102
150
204
• 𝐞𝐶7 σ𝑝𝑖𝑙𝑒 𝑐𝑜𝑚𝑝 =
𝑄𝑝𝑖𝑙𝑒
𝐎𝑏
≀
σ𝑐,𝑘
4
σ𝑝𝑖𝑙𝑒 𝑐𝑜𝑚𝑝 ≀
30
4
= 7.5 𝑀𝑃𝑎
𝑄𝑝𝑖𝑙𝑒
𝐎𝑏
=
2000000
𝐎𝑏
= 7.5 𝑃𝑖𝑙𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 ⇒ 𝐵 = 600𝑚𝑚
Ex2 (cont.)
Deep Foundations- Single Pile Capacity
6 m Sand γ=17 kN/m3 ϕ'=28˚
Clay γ=18 kN/m3 cu=30 kPa
Sand γ=19 kN/m3 ϕ' =38˚
Clay γ=18 kN/m3 cu=150 kPa
6 m
6 m
• Embedment length>3 m or 5B= 3m
L=12+3=15 m
•
𝐿𝑝
𝐵
=
15
0.6
= 25 ≥ 12
<50
• 𝐹𝑜𝑟 𝑡ℎ𝑒 𝑠𝑎𝑛𝑑 𝑙𝑎𝑊𝑒𝑟 𝑎𝑡 𝑡ℎ𝑒 𝑡𝑜𝑝
𝑄𝑠 = 𝐟𝑠σ′𝑣0 tan Ύ′ 𝐎𝑠
ϕ = 0.75ϕ′ = 21.8˚
𝐟0 = 1 − 𝑠𝑖𝑛ϕ′
= 0.53 𝑎𝑛𝑑 𝐟𝑠 = 𝐟0 0.85 = 0.45
𝑄𝑠 = 𝐟𝑠σ′𝑣0 tan Ύ′ 𝐎𝑠 = 0.45 51 tan 21.8 π(0.6)6 = 103.8 𝑘𝑁
• 𝑄𝑢𝑙𝑡 = 𝑄𝑠,𝑠𝑎𝑛𝑑1 + 𝑄𝑠,𝑐𝑙𝑎𝑊 + 𝑄𝑠,𝑠𝑎𝑛𝑑2 + 𝑄𝑏 − 𝑊
𝑝
Ex2 (cont.)
Deep Foundations- Single Pile Capacity
6 m Sand γ=17 kN/m3 ϕ'=28˚
Clay γ=18 kN/m3 cu=30 kPa
Sand γ=19 kN/m3 ϕ' =38˚
Clay γ=18 kN/m3 cu=150 kPa
6 m
6 m
L=15 m
• 𝑄𝑢𝑙𝑡 = 𝑄𝑠,𝑠𝑎𝑛𝑑1 + 𝑄𝑠,𝑐𝑙𝑎𝑊 + 𝑄𝑠,𝑠𝑎𝑛𝑑2 + 𝑄𝑏 − 𝑊
𝑝
𝑄𝑠 = α(𝑐𝑢)𝐎𝑠 α = 1.0 𝑓𝑜𝑟 𝑐𝑢 ≀ 30
𝑄𝑠 = α(𝑐𝑢)𝐎𝑠 = 1 30 π 0.6 6 = 339.3 𝑘𝑁
• For clay layer
• 𝐹𝑜𝑟 𝑠𝑎𝑛𝑑 𝑙𝑎𝑊𝑒𝑟 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑜𝑡𝑡𝑜𝑚
𝑄𝑠 = 𝐟𝑠σ′𝑣0 tan Ύ′ 𝐎𝑠
𝑄𝑠 = 𝐟𝑠σ′𝑣0 tan Ύ′ 𝐎𝑠 = 0.33 163.5 tan 28.5 π 0.6 3 = 165.7 𝑘𝑁
𝑄𝑏 = 𝐎𝑏 𝑁𝑞σ′𝑞 = π0.32
120 177 = 6005.5 kN
• 𝑊
𝑝 = π 0.3 2 6 25 + 9 15 = 80.6 𝑘𝑁
𝑄𝑢𝑙𝑡 = 103.8 + 339.3 + 165.7 + 6005.5 − 80.6 = 6533.7 𝑘𝑁
𝑄𝑎𝑙𝑙 =
∑𝑄𝑠 + 𝑄𝑏
3
− 𝑊
𝑝 = 2124.2 ≥ 2000 𝑘𝑁
120
γ𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒′ = 25 − 10
-Load vs settlement: Load controlled test, to obtain ultimate load
 Load increment= 25% of working load
 Ultimate load= 200% of working load
Deep Foundations- Pile Load Test (Davisson Approach)
1) Clayey soil
2) Granular soil
Total
settlement
Elastic
settlement
Net settlement=Total settlement- pile elastic settlement
Ύ𝑝𝑖𝑙𝑒 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =
(𝑄𝑀𝑝+0.6𝑄𝑀𝑠)𝐿𝑝
𝐎𝑏𝐞𝑝𝑖𝑙𝑒
𝑄𝑀𝑝 = 𝑀𝑜𝑟𝑘𝑖𝑛𝑔 𝑙𝑜𝑎𝑑
𝑄𝑀𝑠 = 𝑠ℎ𝑎𝑓𝑡 𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑜𝑎𝑑 @𝑀𝑜𝑟𝑘𝑖𝑛𝑔
-Load vs settlement
 Use net settlement values
Deep Foundations- Pile Axial Load Test
Ύ𝑢𝑙𝑡 = 0.012 𝐵𝑟𝑒𝑓 + 0.1
𝐵
𝐵𝑟𝑒𝑓
+
𝑄𝑢𝐿𝑝
𝐎𝑏𝐞𝑝
K M
K
M
Net settlement (mm)
𝑄𝑢𝑙𝑡 = 𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑙𝑜𝑎𝑑 (𝑘𝑁)
𝐵 = 𝑃𝑖𝑙𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (𝑚𝑚)
𝐵𝑟𝑒𝑓 = 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑖𝑙𝑒 𝑀𝑖𝑑𝑡ℎ 𝑚𝑚
= 300 mm
𝐿𝑝 = 𝑃𝑖𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ (𝑚𝑚)
𝐎𝑏 = 𝐞𝑛𝑑 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑎𝑟𝑒𝑎 𝑚𝑚2
𝐞𝑝 = 𝑃𝑖𝑙𝑒 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 (𝐺𝑃𝑎)
Ύ𝑢𝑙𝑡
𝑄𝑢𝑙𝑡
-Ex3: Lp= 20 m, BxB=406x406 mm, Ep=30 GPa (C30 concrete), Qult ?
Deep Foundations- Pile Axial Load Test
Ύ𝑢𝑙𝑡 = 0.012 𝐵𝑟𝑒𝑓 + 0.1
𝐵
𝐵𝑟𝑒𝑓
+
𝑄𝑢𝐿𝑝
𝐎𝑏𝐞𝑝
K=3.735
Net settlement (mm)
Ύ𝑢𝑙𝑡 = 0.012 300 + 0.1
406
300
+
𝑄𝑢20000
(406)(406)(30)
𝑄𝑢𝑙𝑡 = 1460 𝑘𝑁
-Downdrag force acting on pile: force exerted by settling soil on pile (ÎŽsoil> ÎŽpile)
Deep Foundations- Negative Skin Friction
 Placement of fill (granular) settlement of the fill by selfweight
additional consolidation of soft clayey layers beneath fill
 Lowering of GWT σ' and settlement increases
additional
settlement
for the pile
-Downdrag force acting on pile
Deep Foundations- Negative Skin Friction
• 𝑄𝑝 = 𝑃0 + 𝑄𝑠𝑒𝑙𝑓 𝑀𝑒𝑖𝑔ℎ𝑡 + 𝑄𝑑𝑜𝑀𝑛𝑑𝑟𝑎𝑔
𝑄𝑑𝑜𝑀𝑛𝑑𝑟𝑎𝑔 = 0.25 σ′𝑣(π𝐵𝑙𝑐𝑙𝑎𝑊 𝑙𝑎𝑊𝑒𝑟)
• For clay layer upon consolidation
• For sand layer upon settling
𝑄𝑑𝑜𝑀𝑛𝑑𝑟𝑎𝑔 = 𝐟0σ′𝑣 tan Ύ′ (π𝐵𝑙𝑠𝑎𝑛𝑑)
Ύ′ = (0.6)ϕ′
Resistance
Load
Force
P0
Qb
𝐹𝑆 =
𝑄𝑠 + 𝑄𝑏
𝑃0 + 𝑄𝑠𝑒𝑙𝑓 𝑀𝑒𝑖𝑔ℎ𝑡 + 𝑄𝑑𝑜𝑀𝑛𝑑𝑟𝑎𝑔
≥ 2.0
𝑄𝑠 + 𝑄𝑏
Ex2 (cont.): 2 m height of a very large fill (γ=20 kN/m3) will be placed next to the pile
on the behalf of approach fill. Check whether adequate FS exists or not?
Deep Foundations- Negative Skin Friction
6 m Sand γ=17 kN/m3 ϕ'=28˚
6 m
6 m
Clay γ=18 kN/m3 cu=30 kPa
Sand γ=19 kN/m3 ϕ' =38˚
Clay γ=18 kN/m3 cu=150 kPa
• 𝐹𝑆 =
𝑄𝑠+𝑄𝑝
𝑃0+𝑄𝑠𝑒𝑙𝑓 𝑀𝑒𝑖𝑔ℎ𝑡+𝑄𝑑𝑜𝑀𝑛𝑑𝑟𝑎𝑔
≥ 2.0
𝐹𝑆 =
6614.3
2000 + 80.6 + 𝑄𝑑𝑜𝑀𝑛𝑑𝑟𝑎𝑔
𝑄𝑑𝑜𝑀𝑛𝑑𝑟𝑎𝑔 = 0.25 σ′𝑣(π𝐷𝑙𝑐𝑙𝑎𝑊 𝑙𝑎𝑊𝑒𝑟)
σ′𝑣0 =
102 + 150
2
+ (2)(20) = 166 𝑘𝑃𝑎
Fill
𝑄𝑑𝑜𝑀𝑛𝑑𝑟𝑎𝑔 = 0.25 166 π 0.6 6 = 469 𝑘𝑁
𝐹𝑆 =
6614.3
2000 + 80.6 + 469
= 2.59
Piles working under tension:
Deep Foundations- Uplift Capacity
• 𝐹𝑆 =
𝑄𝑠+𝑄𝑠𝑒𝑙𝑓 𝑀𝑒𝑖𝑔ℎ𝑡
𝑄𝑢𝑝𝑀𝑎𝑟𝑑
≥ 3.0~6.0
 Ship building docks  Wind turbines, chimneys or any structures
exposed to lateral loads
-Group action: zone of soil or rock which is stressed by the entire group extends to a
much greater width and depth than the zone beneath the single pile. Spacing (s) between
adjacent piles should be increased (>5B)
Deep Foundations- Piles in Group
 (# of piles) x Qult (single pile) > Qult (group) under same displacement
 Even though loading tests made on a single pile have indicated satisfactory performance, failure or
excessive settlement may take place
Friction pile
(clayey soil, adhesion)
End bearing pile
(granular soils)
-Group capacity:
Deep Foundations- Piles in Group
Group Efficiency Approach
Qult, group = (η) x (# of piles) x Qult (single pile)
η (efficiency)=1−ψ
[ 𝑚 − 1 𝑛 + 𝑛 − 1 𝑚]
90(𝑚)(𝑛)
ψ in degrees = tan−1
𝐵
𝑠
B
B
B
B B
𝑚 = 𝑛𝑜 𝑜𝑓 𝑟𝑜𝑀𝑠
𝑛 = 𝑛𝑜 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠
s = spacing b/w piles measured from center to center
-Group capacity:
Deep Foundations- Piles in Group
Terzaghi-Peck Block Approach
 shallow spread foundation
 Crucial for soil profiles consisting of soft clay layers (low cu values)
 𝑄𝑢𝑙𝑡 = ∑𝑄𝑠 + 𝑄𝑏
𝑄𝑠 = 2 𝐿𝑏𝑙𝑜𝑐𝑘 + 𝐵𝑏𝑙𝑜𝑐𝑘 ∑𝐷𝑖α(𝑐𝑢) or 𝑄𝑠 = 2 𝐿𝑏𝑙𝑜𝑐𝑘 + 𝐵𝑏𝑙𝑜𝑐𝑘 ∑𝐷𝑖𝐟𝑠σ′𝑣0 tan Ύ′
clayey soil granular soil
𝑄𝑏 = (𝐿𝑏𝑙𝑜𝑐𝑘𝐵𝑏𝑙𝑜𝑐𝑘) 𝑠𝑐𝑁𝑐𝑐𝑢 𝑄𝑏 = (𝐿𝑏𝑙𝑜𝑐𝑘𝐵𝑏𝑙𝑜𝑐𝑘) 𝑁𝑞σ′𝑞𝑠𝑞
clayey soil granular soil
𝐷 = 𝐿𝑝
-Ex4: A group of bored-cast in place piles are constructed in a deep layer of clay. Find
Qult, group? B=0.6 m
Deep Foundations- Piles in Group
𝐺𝑟𝑜𝑢𝑝 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑊 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ
s=1.8 m
• 𝑄𝑢𝑙𝑡,𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑖𝑙𝑒 = 𝑄𝑠 + 𝑄𝑏
σ′𝑣0 (𝑘𝑃𝑎)
114
228
𝑄𝑏 = 𝐎𝑏 𝑠𝑐𝑁𝑐𝑐𝑢 = π 0.3 2 9 60 = 152.7 𝑘𝑁
𝑄𝑠 = α(𝑐𝑢)𝐎𝑠 = 1.16 −
60
185
60 π 0.6 12 = 1134.2 𝑘𝑁 α = 1. 16 −
𝑐𝑢
185
𝑓𝑜𝑟 30 < 𝑐𝑢 ≀ 150
Pile layout
s=1.8 m
-Ex4: A group of bored-cast in place piles are constructed in a deep layer of clay. Find
Qult, group? B=0.6 m
Deep Foundations- Piles in Group
Pile layout
s=1.8 m
• Q𝑢𝑙𝑡,𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑖𝑙𝑒 = 𝑄𝑠 + 𝑄𝑏 = 152.7 + 1134.2 = 1286.9 𝑘𝑁
• Qult, group = (η) x (# of piles) x Qult (single pile)
η (efficiency)=1−ψ
[ 𝑚 − 1 𝑛 + 𝑛 − 1 𝑚]
90(𝑚)(𝑛)
ψ in degrees = tan−1
𝐵
𝑠
= tan−1
0.6
1.8
= 18.4˚
η =1−18.4
[ 3 − 1 4 + 4 − 1 3]
90(4)(3)
= 0.71
𝑚 = 3
𝑛 = 4
• Qult, group = (0.71)(12)(1286.9)=10964.4 kN
s=1.8 m
-Ex4: A group of bored-cast in place piles are constructed in a deep layer of clay. Find
Qult, group? B=0.6 m
Deep Foundations- Piles in Group
Pile layout
s=1.8 m
s=1.8 m
Terzaghi−Peck Block 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ
𝑄𝑠 = 2 𝐿𝑏𝑙𝑜𝑐𝑘 + 𝐵𝑏𝑙𝑜𝑐𝑘 α(𝑐𝑢)
 𝑄𝑢𝑙𝑡,𝑏𝑙𝑜𝑐𝑘 = 𝑄𝑠 + 𝑄𝑏
𝑄𝑠 = 2[ 1.8 3 + 1.8 2 12 0.84 60 = 10886.4 kN
α = 1. 16 −
𝑐𝑢
185
𝑓𝑜𝑟 30 < 𝑐𝑢 ≀ 150
𝑄𝑏 = 𝐿𝑏𝑙𝑜𝑐𝑘𝐵𝑏𝑙𝑜𝑐𝑘 𝑠𝑐𝑁𝑐𝑐𝑢 = 𝐿𝑏𝑙𝑜𝑐𝑘𝐵𝑏𝑙𝑜𝑐𝑘 9𝑐𝑢
𝑄𝑏 = 5.4 3.6 9 60 = 10497.6𝑘𝑁
 𝑄𝑢𝑙𝑡,𝑏𝑙𝑜𝑐𝑘 = 𝑄𝑠 + 𝑄𝑏 = 10886.4 + 10497.6 = 21384 𝑘𝑁
 𝑄𝑢𝑙𝑡,𝑏𝑙𝑜𝑐𝑘 = min 𝐺𝑟𝑜𝑢𝑝 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑊 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ, 𝑇𝑒𝑟𝑧𝑎𝑔ℎ𝑖 − 𝑃𝑒𝑐𝑘 𝑏𝑙𝑜𝑐𝑘 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ = 10694.4 𝑘𝑁

Weitere Àhnliche Inhalte

Was ist angesagt?

Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Muhammad Irfan
 
Unit 2 shallow foundations Hand written notes
Unit 2  shallow foundations Hand written notesUnit 2  shallow foundations Hand written notes
Unit 2 shallow foundations Hand written notesPRASANTHI PETLURU
 
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...Make Mannan
 
Standard penetration test(spt)
Standard penetration test(spt)Standard penetration test(spt)
Standard penetration test(spt)KHK karimi
 
Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)Mohammed Zakaria
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Muhammad Irfan
 
Lecture 3 foundation settlement
Lecture 3 foundation settlementLecture 3 foundation settlement
Lecture 3 foundation settlementDr.Abdulmannan Orabi
 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Muhammad Irfan
 
Bearing Capacity of Shallow Foundation SPT
Bearing Capacity of Shallow Foundation SPTBearing Capacity of Shallow Foundation SPT
Bearing Capacity of Shallow Foundation SPTLatif Hyder Wadho
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Muhammad Irfan
 
SPECIFIC GRAVITY TEST ON BITUMINOUS MATERIALS.
SPECIFIC GRAVITY TEST ON BITUMINOUS MATERIALS.SPECIFIC GRAVITY TEST ON BITUMINOUS MATERIALS.
SPECIFIC GRAVITY TEST ON BITUMINOUS MATERIALS.Sayed Sajid H.Zidani
 
shallow foundation, types and factor
shallow foundation, types and factorshallow foundation, types and factor
shallow foundation, types and factorSANJEEV Wazir
 
Design of RCC Column footing
Design of RCC Column footingDesign of RCC Column footing
Design of RCC Column footingArun Kurali
 
Plate load test ppt
Plate load test pptPlate load test ppt
Plate load test pptsayan sarkar
 
Plate load test observation and calculation Plate load test image (usefulsear...
Plate load test observation and calculation Plate load test image (usefulsear...Plate load test observation and calculation Plate load test image (usefulsear...
Plate load test observation and calculation Plate load test image (usefulsear...Make Mannan
 

Was ist angesagt? (20)

Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
 
Unit 2 shallow foundations Hand written notes
Unit 2  shallow foundations Hand written notesUnit 2  shallow foundations Hand written notes
Unit 2 shallow foundations Hand written notes
 
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
 
Standard penetration test(spt)
Standard penetration test(spt)Standard penetration test(spt)
Standard penetration test(spt)
 
Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
 
Lecture 3 foundation settlement
Lecture 3 foundation settlementLecture 3 foundation settlement
Lecture 3 foundation settlement
 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
 
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #28: Finite Slope Stability Analysis]
 
Bearing Capacity of Shallow Foundation SPT
Bearing Capacity of Shallow Foundation SPTBearing Capacity of Shallow Foundation SPT
Bearing Capacity of Shallow Foundation SPT
 
Pile settlement-ps
Pile settlement-psPile settlement-ps
Pile settlement-ps
 
Lecture 2 bearing capacity
Lecture 2 bearing capacityLecture 2 bearing capacity
Lecture 2 bearing capacity
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
 
SPECIFIC GRAVITY TEST ON BITUMINOUS MATERIALS.
SPECIFIC GRAVITY TEST ON BITUMINOUS MATERIALS.SPECIFIC GRAVITY TEST ON BITUMINOUS MATERIALS.
SPECIFIC GRAVITY TEST ON BITUMINOUS MATERIALS.
 
shallow foundation, types and factor
shallow foundation, types and factorshallow foundation, types and factor
shallow foundation, types and factor
 
Design of RCC Column footing
Design of RCC Column footingDesign of RCC Column footing
Design of RCC Column footing
 
Unit6 svd
Unit6 svdUnit6 svd
Unit6 svd
 
Plate load test ppt
Plate load test pptPlate load test ppt
Plate load test ppt
 
05 chapter 6 mat foundations
05 chapter 6 mat foundations05 chapter 6 mat foundations
05 chapter 6 mat foundations
 
Plate load test observation and calculation Plate load test image (usefulsear...
Plate load test observation and calculation Plate load test image (usefulsear...Plate load test observation and calculation Plate load test image (usefulsear...
Plate load test observation and calculation Plate load test image (usefulsear...
 

Ähnlich wie Foundationeng deep-foundations_ps

Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...Make Mannan
 
Problems on bearing capacity of soil
Problems on bearing capacity of soilProblems on bearing capacity of soil
Problems on bearing capacity of soilLatif Hyder Wadho
 
Examples on effective stress
Examples on effective stressExamples on effective stress
Examples on effective stressMalika khalil
 
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...Make Mannan
 
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...Make Mannan
 
Ejerciciosresueltosdinamicadefluidos2
Ejerciciosresueltosdinamicadefluidos2Ejerciciosresueltosdinamicadefluidos2
Ejerciciosresueltosdinamicadefluidos2Bruno Reyes A.
 
Presentation
PresentationPresentation
PresentationAli Abuzant
 
Examples on total consolidation
Examples on total  consolidationExamples on total  consolidation
Examples on total consolidationMalika khalil
 
Problems on piles and deep footing
Problems on piles and deep footingProblems on piles and deep footing
Problems on piles and deep footingLatif Hyder Wadho
 
Ref F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdfRef F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdfRobin Arthur Flores
 
Dinamica estructural 170614215831
Dinamica estructural 170614215831Dinamica estructural 170614215831
Dinamica estructural 170614215831Miguel Ángel
 
2 compression
2  compression2  compression
2 compressionAhmed Gamal
 
Numerical Problem and solution on Bearing Capacity ( Terzaghi and Meyerhof T...
Numerical Problem and solution on Bearing Capacity  ( Terzaghi and Meyerhof T...Numerical Problem and solution on Bearing Capacity  ( Terzaghi and Meyerhof T...
Numerical Problem and solution on Bearing Capacity ( Terzaghi and Meyerhof T...Make Mannan
 
Examples on stress distribution
Examples on stress distributionExamples on stress distribution
Examples on stress distributionMalika khalil
 
Pipe project daniel
Pipe project danielPipe project daniel
Pipe project danielDaniel Jalili
 
presentation_41.pptx
presentation_41.pptxpresentation_41.pptx
presentation_41.pptxShathaTaha2
 

Ähnlich wie Foundationeng deep-foundations_ps (20)

Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
 
Problems on bearing capacity of soil
Problems on bearing capacity of soilProblems on bearing capacity of soil
Problems on bearing capacity of soil
 
Examples on effective stress
Examples on effective stressExamples on effective stress
Examples on effective stress
 
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
Numerical problem on bearing capacity is code terzaghi water table (usefulsea...
 
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
 
Ejerciciosresueltosdinamicadefluidos2
Ejerciciosresueltosdinamicadefluidos2Ejerciciosresueltosdinamicadefluidos2
Ejerciciosresueltosdinamicadefluidos2
 
Presentation
PresentationPresentation
Presentation
 
Examples on total consolidation
Examples on total  consolidationExamples on total  consolidation
Examples on total consolidation
 
Ch.3-Examples 3.pdf
Ch.3-Examples 3.pdfCh.3-Examples 3.pdf
Ch.3-Examples 3.pdf
 
Problems on piles and deep footing
Problems on piles and deep footingProblems on piles and deep footing
Problems on piles and deep footing
 
Solucionario_Felder.pdf
Solucionario_Felder.pdfSolucionario_Felder.pdf
Solucionario_Felder.pdf
 
Ref F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdfRef F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdf
 
Ch.4-Examples 2.pdf
Ch.4-Examples 2.pdfCh.4-Examples 2.pdf
Ch.4-Examples 2.pdf
 
Dinamica estructural 170614215831
Dinamica estructural 170614215831Dinamica estructural 170614215831
Dinamica estructural 170614215831
 
2 compression
2  compression2  compression
2 compression
 
Numerical Problem and solution on Bearing Capacity ( Terzaghi and Meyerhof T...
Numerical Problem and solution on Bearing Capacity  ( Terzaghi and Meyerhof T...Numerical Problem and solution on Bearing Capacity  ( Terzaghi and Meyerhof T...
Numerical Problem and solution on Bearing Capacity ( Terzaghi and Meyerhof T...
 
Examples on stress distribution
Examples on stress distributionExamples on stress distribution
Examples on stress distribution
 
psad 1.pdf
psad 1.pdfpsad 1.pdf
psad 1.pdf
 
Pipe project daniel
Pipe project danielPipe project daniel
Pipe project daniel
 
presentation_41.pptx
presentation_41.pptxpresentation_41.pptx
presentation_41.pptx
 

KÃŒrzlich hochgeladen

PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 

KÃŒrzlich hochgeladen (20)

TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 

Foundationeng deep-foundations_ps

  • 1. CE 336- FOUNDATION ENGINEERING SPRING 2021 28.04.21 Deep Foundations
  • 2. Example 1: A 400 mm square prestressed concrete pile is to be driven 19 m into the soil profile shown in the figure. a) Compute the net load transferred to the ground through toe bearing b) Compute the nominal side friction capacity c) Compute the ASD downward load capacity using a factor of safety of 2.8.
  • 3. Solution 1: 𝐞 = 𝛜0 𝑂𝐶𝑅 + 𝛜1𝑁60 𝐞 = 5000 1 + 1200 ∗ 25 = 35000𝑘𝑃𝑎 𝐌𝑟 = 35000 2 1 + 0.3 ∗ 188 ∗ 𝑡𝑎𝑛36° = 99 𝜎′𝑧𝐷 = 17.8 ∗ 3 + 18.2 − 9.81 ∗ 16 =188kPa According to the figures, 𝑁𝛟 ∗ = 15; 𝑁𝑞 ∗ = 76 (a) * * ' ' t ZD q B N N              35000 114 2 1 ' tan ' 2 1 0.30 163 tan36 s r zD E I v          ï‚Ž  ï‚Ž ï‚Ž 
  • 4. Solution 1: 𝑞′𝑛 = 𝐵𝛟𝑁𝛟 ∗ + 𝜎′𝑧𝐷𝑁𝑞 ∗ 𝑞′𝑛 = 0.4 ∗ 18.2 − 9.8 ∗ 15 + 188 ∗ 76 = 14338𝑘𝑃𝑎 𝑞′𝑛𝐎𝑡 = 14338 ∗ 0.42 = 2294𝑘𝑁 (b)
  • 5. Solution 1: 𝐟0 = 1 − 𝑠𝑖𝑛𝜑′ 𝑂𝐶𝑅𝑠𝑖𝑛𝜑′ 𝐟0 = 1 − 𝑠𝑖𝑛36 (1) 𝑠𝑖𝑛36 𝑡𝑜 1 − 𝑠𝑖𝑛36 (4) 𝑠𝑖𝑛36 𝐟0 = 0.41 𝑡𝑜 0.93 𝛜 = 𝐟0 𝐟 𝐟0 𝑡𝑎𝑛 𝜑′ 𝜑𝑓 𝜑′ 𝛜 = 0.41 ∗ 1.2 ∗ tan 36 ∗ 0.8 𝑡𝑜 0.93 ∗ 1.2 ∗ tan 36 ∗ 0.8 = 0.27 𝑡𝑜 0.61 (c) 𝑃𝑎 = 𝑞′𝑛𝐎𝑡 + σ 𝑓𝑛𝐎𝑠 𝐹 = 2294 + 1272 2.8 = 1274 𝑘𝑁
  • 6. Example 2: A straight drilled shaft of diameter 1 m is installed in a soil profile, as shown in the figure. SPT were performed at intervals of approximately 1 m below the base. Determine the toe bearing capacity.
  • 7. Solution 2: Use average N60 value over a depth of 2D from the base or tip. O’Neill and Reese (1999)
  • 8. Example 3: The drilled shaft shown is to be designed without the benefit of any on-site static load tests. The soil conditions are uniform and the site characterization program was average. Unit weights of soil layers above the water table are 17kN/m3 and below are 20kN/m3. Compute the allowable downward load capacity.
  • 9. Solution 3: We assume that; Silt sand above groundwater table É£ = 17 kN/m3 Silt sand below groundwater table É£ = 20 kN/m3 Sand above groundwater table É£ = 20 kN/m3 For Drilled Shaft 𝛜 = 1,5 − 0,245 𝑧 𝑓𝑠 = 𝛜 ∗ 𝜎′𝑧
  • 10. Solution 3: Layer z (m) β σ'z (kPa) fs (kPa) As (m2 ) Ps (kN) Silty sand above GWT 1 1.26 17.0 21.34 3.77 80.43 Silty sand below GWT 2.75 1.09 41.6 45.54 2.83 128.78 Sand below GWT (3.5m-9m) 6.25 0.89 77.3 68.61 10.37 711.30 Sand below GWT (9m-14m) 11.5 0.67 130.8 87.53 9.42 824.95 Total 1745.46 60 ' 57.5* 57.5 22 1265 t q N kPa   ï‚Ž    2 2 0.6 0.283 4 t m A m  ï‚Ž     2 ' 1265 0.283 1745 701 3 t t s s a q A f A kPa m kN P kN FS    ï‚Ž      (For drilled shaft)
  • 11. Example 4: A concrete pile 40 cm in diameter and 10 m long is driven into a homogenous mass of clayey soil of medium consistency. The water table is at the ground surface.The undrained shear strength is 80 kPa and the adhesion factor α = 0.75. Compute the ultimate load bearing capacity. Solution 4:
  • 12. Example 5: It is designed that the steel pile having a diameter 40cm given in the figure below has to have an allowable bearing capacity which should be maximum 490 kN. Calculate the length of the pile by considering the factor of safety as 3. Solution 5: 𝑄𝑢𝑙𝑡 = 𝑄𝑝 + 𝑄𝑠 𝑄𝑝 = 9 ∗ 𝑐𝑢 ∗ 𝐎𝑝 = 9 ∗ 125 ∗ 0.42 ∗ 𝜋 4 = 141.4 𝑘𝑁 𝑄𝑠 = ෍ 𝑐𝑢 ∗ 𝛌 ∗ 𝑝 ∗ ∆𝑙 According to Randolph and Murphy (1985), 𝜎′𝑧𝐷 1 = 3 ∗ 17 = 51𝑘𝑃𝑎 → 𝑐𝑢 𝜎′ 𝑧𝐷 1 = 50 51 ≈ 1 → 𝛌1 ≈ 0.5 (𝑏𝑙𝑢𝑒) 𝜎′𝑧𝐷 2 = 6 ∗ 17 + 2 ∗ 19 − 9.8 = 120.4𝑘𝑃𝑎 → 𝑐𝑢 𝜎′ 𝑧𝐷 2 = 50 120.4 ≈ 0.41 → 𝛌2 ≈ 0.78 (𝑟𝑒𝑑)
  • 13. Solution 5: For safety, 𝐿 can be assumed zero while determining the lowest possible value of 𝛌3 𝑝 = 𝜋 ∗ 0.4 = 1.26 𝑚 𝑄𝑠 = 50 ∗ 0.5 ∗ 6 + 50 ∗ 0.78 ∗ 4 + 125 ∗ 0.52 ∗ L ∗ 1.26 = 385.56 + 81.9𝐿 𝜎′𝑧𝐷 3 = 6 ∗ 17 + 4 ∗ 19 − 9.8 + 𝐿 2 ∗ 19.5 − 9.8 = 138.8 + 4.85𝐿 → 𝑐𝑢 𝜎′ 𝑧𝐷 2 = 125 138.8 ≈ 0.9 → 𝛌3 ≈ 0.52 (𝑔𝑟𝑒𝑒𝑛) 𝑄𝑎𝑙𝑙 = 500𝑘𝑁 → 𝑄𝑢𝑙𝑡 = 1500𝑘𝑁 → 141.4 + 385.56 + 81.9𝐿 = 1500 → 𝐿 = 11.2 𝑚 𝑃𝑖𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ = 6 + 4 + 11.2 = 21.2 ≈ 22𝑚
  • 14. Example 6: The load-settlement data shown in the figure were obtained from a full-scale static load test on a 400mm square, 17m long concrete pile (fÂŽc=40MPa). Use Davisson’s method to compute the ultimate downward load capacity.
  • 15. Solution 6: Interpratation of static load tests
  • 16. Solution 6: 𝐞 = 4700 𝑓′𝑐 = 4700 40 𝑀𝑃𝑎 = 30000 𝑀𝑃𝑎 4𝑚𝑚 + 𝐵 120 + 𝑃𝐷 𝐎𝐞 = 4𝑚𝑚 + 40𝑚𝑚 120 + 𝑃 17000𝑚𝑚 0.42 ∗ 30000000𝑘𝑃𝑎 = 7.3𝑚𝑚 + 0.0035𝑃 𝑃𝑢𝑙𝑡 = 1650𝑘𝑁
  • 17. Example 7: Given that n1 = 4, n2 = 3, D = 305 mm, d = 1220 mm, and L = 15 m. The piles are square in cross section and embedded in a homogenous clay with É£ = 15.5 kN/m3 and cu = 70 kN/m2. Using a factor of safety equal to 4, determine the allowable load bearing capacity of the group pile.
  • 18. Solution 7: Determine the ultimate capacity assuming that the piles in the group act as individual piles. σ′𝑧 = É£ × ൗ 𝐿 2 = 15.5 × ൗ 15 2 = 116.25𝑘𝑃𝑎 The average value for ΀ 𝑐𝑢 σ′𝑧 = ΀ 70 116.25 = 0.6       1 2 1 2 9 9 u p s p p u s u u p u u Q n n Q Q Q A c Q pc L Q n n A c pc L                     2 0.305 0.305 0.093 m 4 0.305 1.22 m p A p     from figure for 70 kPa, 0.63 u c                  4 3 9 0.093 70 0.63 1.22 70 15 12 58.59 807.03 10387 kN ult Q          
  • 19. Solution 7: Determine the ultimate capacity assuming that the piles in the group act as a block with dimensions Lg x Bg x L.         * * * Skin resistance of the block: 2 Point bearing capacity : Thus the ultimate load is equal to: 2 g u g g u p p p u c g g u c ult g g u c g g u p c L L B c L A Q A c N L B c N Q L B c N L B c L                             1 2 * 1 2 4 1 1.22 0.305 3.965 m 2 1 2 3 1 1.22 0.305 2.745 m 2 15 3.965 5.46 and 1.44 2.745 2.745 From figure, 8.6 g g g g g c D L n d D B n d L L B B N                               
  • 20. Solution 7:          Block capacity 3.965 2.745 70 8.6 2 3.965 2.745 70 15 6552 14091 20643 kN             10387 kN 20643 kN 10387 2597 kN 4 g ult g ult g all Q Q Q FS     
  • 21. Example 8: A group pile in clay is shown in the figure on the right. Determine the consolidation settlement of the pile groups. Assume that all the clay layers are normally consolidated.
  • 22. Solution 8: Because the lengths of the piles are 15 m each, the stress distribution starts at a depth of 10 m below the top of the pile. Settlement of Layer I 0(1) (1) 1 (1) 0(1) 0(1) ' ' log 1 ' c c C H e                               (1) 1 1 2000 ' 51.6 3.3 3.5 2.2 3.5 g g Q kPa L z B z            0(1) ' 2 16.2 12.5 18 9.81 134.8kPa   ï‚Ž  ï‚Ž   (1) 0.3 7 134.8 51.6 log 162.4 1 0.82 134.8 c mm  ï‚Ž                
  • 23. Solution 8: Settlement of Layer II 0(2) (2) 2 (2) 0(2) 0(2) ' ' log 1 ' c c C H e                               (2) 2 2 2000 ' 14.52 3.3 9 2.2 9 g g Q kPa L z B z            0(2) ' 2 16.2 16 18 9.81 181.62kPa   ï‚Ž  ï‚Ž   (2) 0.2 4 181.62 14.52 log 15.7 1 0.7 181.62 c mm  ï‚Ž                
  • 24. Solution 8: Settlement of Layer III 0(3) (3) 3 (3) 0(3) 0(3) ' ' log 1 ' c c C H e                               (3) 3 3 2000 ' 9.2 3.3 12 2.2 12 g g Q kPa L z B z            0(3) ' 2 16.2 19 18 9.81 208.99kPa   ï‚Ž  ï‚Ž   (3) 0.25 2 208.99 9.2 log 5.4 1 0.75 208.99 c mm  ï‚Ž                 Total settlement ( ) (1) (2) (3) 162.4 15.7 5.4 183.5 c T c c c mm           
  • 25. -Ultimate (fully mobilized) load capacity Deep Foundations-Pile Load Transfer Mechanism 𝑻𝒐𝒕𝒂𝒍 𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚 = 𝑠ℎ𝑎𝑓𝑡 𝑠𝑘𝑖𝑛 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑡𝑖𝑝 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑊𝑝𝑖𝑙𝑒 𝑅 = 𝑄𝑢𝑙𝑡 = 𝑄𝑠 + 𝑄𝑏 − 𝑊 𝑝 Buoyancy effect should be taken into account
  • 26. -Ultimate (fully mobilized) load capacity Deep Foundations-Pile Load Transfer Mechanism 𝑻𝒐𝒕𝒂𝒍 𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚 = 𝑠𝑘𝑖𝑛 𝑠ℎ𝑎𝑓𝑡 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑡𝑖𝑝 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 Friction pile (clayey soil, adhesion) End bearing pile (rock formation) 𝑅 = 𝑄𝑢𝑙𝑡 = 𝑄𝑠 + 𝑄𝑏 − 𝑊 𝑝 End bearing pile (granular soils) >3 m or 5B
  • 27. -Ultimate (fully mobilized) load capacity Deep Foundations-Pile Load Transfer Mechanism 𝑻𝒐𝒕𝒂𝒍 𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚 = 𝑠𝑘𝑖𝑛 𝑠ℎ𝑎𝑓𝑡 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑡𝑖𝑝 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 to attain fully mobilised capacity 10 to 25% of the pile width 0.5 to 1% of the pile width
  • 28. -Bearing resistance (Undrained condition, clayey soil, non-free draining) Deep Foundations-Pile Axial Load Capacity 𝑄𝑏 = 𝐎𝑏 𝑠𝑐𝑁𝑐𝑐𝑢 + 𝑁𝑞σ′𝑞 (𝑏𝑜𝑟𝑒𝑑 𝑎𝑛𝑑 𝑑𝑟𝑖𝑣𝑒𝑛 𝑝𝑖𝑙𝑒𝑠) Ab=cross-sectional area of the base of the pile -Bearing resistance (Drained condition, granular soil, free draining) 𝑄𝑏 = 𝐎𝑏 𝑁𝑞σ′𝑞 (𝑏𝑜𝑟𝑒𝑑 𝑎𝑛𝑑 𝑑𝑟𝑖𝑣𝑒𝑛 𝑝𝑖𝑙𝑒𝑠) 𝑠𝑐𝑁𝑐 = 9.0 𝑓𝑜𝑟 𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑝𝑖𝑙𝑒 may be neglected (Nq=1)
  • 29. Deep Foundations-Pile Axial Load Capacity -Bearing resistance (Drained condition, granular soil, free draining) 𝑄𝑏 = 𝐎𝑏 𝑁𝑞σ′𝑞 φ Nq 20.00 12.40 21.00 13.80 22.00 15.50 23.00 17.90 24.00 21.40 25.00 26.00 26.00 29.50 27.00 34.00 28.00 39.70 29.00 46.50 30.00 56.70 31.00 68.20 32.00 81.00 33.00 96.00 34.00 115.00 35.00 143.00 36.00 168.00 37.00 194.00 38.00 231.00 39.00 276.00 40.00 346.00 41.00 420.00 42.00 525.00 43.00 650.00 44.00 780.00 45.00 930.00 𝐷 𝐵 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝐿𝑝𝑖𝑙𝑒 𝐵 𝑀𝑒𝑊𝑒𝑟ℎ𝑜𝑓
  • 30. Deep Foundations-Pile Axial Load Capacity -Shaft resistance (Undrained condition, clayey soil, non-free draining)  α-method (𝑑𝑟𝑖𝑣𝑒𝑛 𝑝𝑖𝑙𝑒𝑠) 𝑄𝑠 = α(𝑐𝑢)𝐎𝑠 As= shaft area of the of the pile α= adhesion factor and f(slenderness, shear strength) 𝐹𝑜𝑟 𝑐𝑢 σ′𝑣0 ≀ 1; α = 0.5Fp 𝑐𝑢 σ′𝑣0 −0.5 ≀ 1 𝐹𝑜𝑟 𝑐𝑢 σ′𝑣0 ≥ 1; α = 0.5Fp 𝑐𝑢 σ′𝑣0 −0.25 Fp = 1.0 if 𝐿𝑝 𝐵 ≀ 50 = 0.7if 𝐿𝑝 𝐵 ≥ 120
  • 31. Deep Foundations-Pile Axial Load Capacity -Shaft resistance (Undrained condition, clayey soil, non-free draining)  α-method (𝑏𝑜𝑟𝑒𝑑 𝑝𝑖𝑙𝑒𝑠) 𝑄𝑠 = α(𝑐𝑢)𝐎𝑠 As= shaft area of the of the pile α= adhesion factor and f(shear strength) α = 1.0 𝑓𝑜𝑟 𝑐𝑢 ≀ 30 α = 1. 16 − 𝑐𝑢 185 𝑓𝑜𝑟 30 < 𝑐𝑢 ≀ 150 α = 0.35 𝑓𝑜𝑟 𝑐𝑢 > 150
  • 32. Deep Foundations-Pile Axial Load Capacity -Shaft resistance (Drained condition, granular soil, free draining) 𝑄𝑠 = 𝐟𝑠σ′𝑣0 tan Ύ′ 𝐎𝑠 (𝑏𝑜𝑟𝑒𝑑 𝑎𝑛𝑑 𝑑𝑟𝑖𝑣𝑒𝑛 𝑝𝑖𝑙𝑒𝑠) As= shaft area of the of the pile Ks= coefficient of horizontal soil stress ÎŽ'= the angle of friction b/w pile and soil Ύ′ = ϕ = 0.75ϕ′ 𝐟0 = 1 − 𝑠𝑖𝑛ϕ′
  • 33. Deep Foundations-Pile Axial Load Capacity -Shaft resistance (Drained condition, granular soil, free draining) 𝑄𝑠 = βσ′𝑣0𝐎𝑠 β=0.18+0.65Dr Dr=relative density in decimal form  β-method (𝑑𝑟𝑖𝑣𝑒𝑛 𝑝𝑖𝑙𝑒𝑠) 𝑄𝑠 = βσ′𝑣0𝐎𝑠 β=1.5-0.245 𝑧 z= depth to the mid-layer (m)  β-method (𝑏𝑜𝑟𝑒𝑑 𝑝𝑖𝑙𝑒𝑠)
  • 34. Ex1: A bridge pier is to be supported by 1.0 𝑚 diameter driven-cast in place concrete piles. The design load per pile is determined as 700 𝑘𝑁 by the structural engineer. Calculate the total pile length using a factor of safety of 3.0 against failure. Deep Foundations- Single Pile Capacity 6 m Sand γ=17 kN/m3 ϕ'=36˚ Clay γ=20 kN/m3 cu=100 kPa σ𝑣0 (𝑘𝑃𝑎) 𝑢 (𝑘𝑃𝑎) σ′𝑣0 (𝑘𝑃𝑎) 51 102 102 + 20ℎ𝑐𝑙𝑎𝑊 10ℎ𝑐𝑙𝑎𝑊 51 102 102 + 10ℎ𝑐𝑙𝑎𝑊
  • 35. Ex1: A bridge pier is to be supported by 1.0 𝑚 diameter driven-cast in place concrete piles. The design load per pile is determined as 700 𝑘𝑁 by the structural engineer. Calculate the total pile length using a factor of safety of 3.0 against failure. Deep Foundations- Single Pile Capacity 6 m Sand γ=17 kN/m3 ϕ'=36˚ Clay γ=20 kN/m3 cu=100 kPa • 𝐿𝑝 𝐵 ≥ 12, 𝑡ℎ𝑢𝑠 𝐿𝑝,𝑚𝑖𝑛 ≥ 12 𝑚 𝑻𝒐𝒕𝒂𝒍 𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚 𝑄𝑢𝑙𝑡 = ∑𝑄𝑠 + 𝑄𝑏 • 𝐹𝑜𝑟 𝑠𝑎𝑛𝑑 𝑙𝑎𝑊𝑒𝑟 𝑄𝑠 = 𝐟𝑠σ′𝑣0 tan Ύ′ 𝐎𝑠 𝐟𝑠 = 0.41 1.5 = 0.62 Ύ′ = ϕ = 0.75 ϕ′ = 27˚ 𝐟0 = 1 − 𝑠𝑖𝑛ϕ′ = 0.41
  • 36. Ex1 (cont.) Deep Foundations- Single Pile Capacity 𝑄𝑠 = 𝐟𝑠σ′𝑣0 tan Ύ′ (π𝐷𝑙𝑠𝑎𝑛𝑑) σ′𝑣0 @𝑧=3𝑚 = 3 17 = 51 kPa 𝑄𝑠,1 = 0.62 54 tan 27 π 1 6 = 303.7 𝑘𝑁 • 𝑭𝒐𝒓 𝒄𝒍𝒂𝒚 𝒍𝒂𝒚𝒆𝒓 𝑄𝑠 = α(𝑐𝑢)𝐎𝑠 𝐹𝑜𝑟 𝑐𝑢 σ′𝑣0 ≀ 1; α = 0.5Fp 𝑐𝑢 σ′𝑣0 −0.5 ≀ 1 Fp = 1.0 if 𝐿𝑝 𝐵 ≀ 50 = 0.7if 𝐿𝑝 𝐵 ≥ 120 σ′𝑣0 @𝑧=6𝑚 = 6 17 = 102 kPa 𝑐𝑢 σ′𝑣0 = 100 102 < 1 α = 0.5Fp 𝑐𝑢 σ′𝑣0 −0.5 = 0.5 100 102 + 20 − 10 𝑙𝑐𝑙𝑎𝑊 −0.5 𝑄𝑏 = 𝐎𝑏 𝑠𝑐𝑁𝑐𝑐𝑢 = π 0.5 2 9 100 = 706.9 𝑘𝑁 𝐎𝑠 = π𝐵(2𝑙𝑐𝑙𝑎𝑊) 𝑄𝑠,2 = 0.5 100 102 + 10 𝑙𝑐𝑙𝑎𝑊 −0.5 100 π(1)(2𝑙𝑐𝑙𝑎𝑊) • 𝑭𝒐𝒓 𝒔𝒂𝒏𝒅 𝒍𝒂𝒚𝒆𝒓 Sand γ=17 kN/m3 ϕ'=36˚ Clay γ=20 kN/m3 cu=100 kPa 2𝑙𝑐𝑙𝑎𝑊
  • 37. Ex1 (cont.) Deep Foundations- Single Pile Capacity • 𝑄𝑢𝑙𝑡 = 𝑄𝑠,1 + 𝑄𝑠,2 + 𝑄𝑏 − 𝑊 𝑝 303.7 + 𝑄𝑠,2 + 706.9 = π 0.5 2 25 ∗ 6 + 15 ∗ 2𝑙𝑐𝑙𝑎𝑊 + 700(3) 𝑇𝑟𝑖𝑎𝑙 𝑎𝑛𝑑 𝑒𝑟𝑟𝑜𝑟 𝑜𝑟 𝑒𝑞𝑛 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 • 𝑄𝑎𝑙𝑙𝑜𝑀 = 𝑄𝑠,1+𝑄𝑠,2+𝑄𝑏 𝐹𝑆 − 𝑊 𝑝 = 700 1010.6 + 314.2 100 102 + 10 𝑙𝑐𝑙𝑎𝑊 −0.5 𝑙𝑐𝑙𝑎𝑊 = 117.8 + 23.6 𝑙𝑐𝑙𝑎𝑊 + 700(3) 1010.6 + 314.2 100 102 + 10 𝑙𝑐𝑙𝑎𝑊 −0.5 𝑙𝑐𝑙𝑎𝑊 = 2217.8 + 70.8𝑙𝑐𝑙𝑎𝑊 𝑙𝑚𝑖𝑑 𝑐𝑙𝑎𝑊 = 4 𝑚 𝐿𝑝 = 6 + 2 ∗ 4 = 𝟏𝟔 𝒎 Eqn is written wrt. Midpoint of clay layer γ𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒′ = 25 − 10 γ𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 25 𝑘𝑁/𝑚3 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑠𝑎𝑓𝑒𝑡𝑊
  • 38. Ex2: A bridge pier is to be supported by bored-cast in place concrete piles (C30). The design load per pile is determined as 2000 𝑘𝑁 by the structural engineer. Calculate the total pile length using a factor of safety of 3.0 against failure. Deep Foundations- Single Pile Capacity 6 m Sand γ=17 kN/m3 ϕ'=28˚ Clay γ=18 kN/m3 cu=30 kPa σ𝑣0 (𝑘𝑃𝑎) 𝑢 (𝑘𝑃𝑎) σ′𝑣0 (𝑘𝑃𝑎) 51 102 210 60 Sand γ=19 kN/m3 ϕ' =38˚ Clay γ=18 kN/m3 cu=150 kPa 6 m 6 m 120 324 51 102 150 204
  • 39. Ex2: A bridge pier is to be supported by bored-cast in place concrete piles (C30). The design load per pile is determined as 2000 𝑘𝑁 by the structural engineer. Calculate the total pile length using a factor of safety of 3.0 against failure. Deep Foundations- Single Pile Capacity 6 m Sand γ=17 kN/m3 ϕ'=28˚ Clay γ=18 kN/m3 cu=30 kPa σ𝑣0 (𝑘𝑃𝑎) 𝑢 (𝑘𝑃𝑎) σ′𝑣0 (𝑘𝑃𝑎) 51 102 210 60 Sand γ=19 kN/m3 ϕ' =38˚ Clay γ=18 kN/m3 cu=150 kPa 6 m 6 m 120 324 51 102 150 204 • 𝐞𝐶7 σ𝑝𝑖𝑙𝑒 𝑐𝑜𝑚𝑝 = 𝑄𝑝𝑖𝑙𝑒 𝐎𝑏 ≀ σ𝑐,𝑘 4 σ𝑝𝑖𝑙𝑒 𝑐𝑜𝑚𝑝 ≀ 30 4 = 7.5 𝑀𝑃𝑎 𝑄𝑝𝑖𝑙𝑒 𝐎𝑏 = 2000000 𝐎𝑏 = 7.5 𝑃𝑖𝑙𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 ⇒ 𝐵 = 600𝑚𝑚
  • 40. Ex2 (cont.) Deep Foundations- Single Pile Capacity 6 m Sand γ=17 kN/m3 ϕ'=28˚ Clay γ=18 kN/m3 cu=30 kPa Sand γ=19 kN/m3 ϕ' =38˚ Clay γ=18 kN/m3 cu=150 kPa 6 m 6 m • Embedment length>3 m or 5B= 3m L=12+3=15 m • 𝐿𝑝 𝐵 = 15 0.6 = 25 ≥ 12 <50 • 𝐹𝑜𝑟 𝑡ℎ𝑒 𝑠𝑎𝑛𝑑 𝑙𝑎𝑊𝑒𝑟 𝑎𝑡 𝑡ℎ𝑒 𝑡𝑜𝑝 𝑄𝑠 = 𝐟𝑠σ′𝑣0 tan Ύ′ 𝐎𝑠 ϕ = 0.75ϕ′ = 21.8˚ 𝐟0 = 1 − 𝑠𝑖𝑛ϕ′ = 0.53 𝑎𝑛𝑑 𝐟𝑠 = 𝐟0 0.85 = 0.45 𝑄𝑠 = 𝐟𝑠σ′𝑣0 tan Ύ′ 𝐎𝑠 = 0.45 51 tan 21.8 π(0.6)6 = 103.8 𝑘𝑁 • 𝑄𝑢𝑙𝑡 = 𝑄𝑠,𝑠𝑎𝑛𝑑1 + 𝑄𝑠,𝑐𝑙𝑎𝑊 + 𝑄𝑠,𝑠𝑎𝑛𝑑2 + 𝑄𝑏 − 𝑊 𝑝
  • 41. Ex2 (cont.) Deep Foundations- Single Pile Capacity 6 m Sand γ=17 kN/m3 ϕ'=28˚ Clay γ=18 kN/m3 cu=30 kPa Sand γ=19 kN/m3 ϕ' =38˚ Clay γ=18 kN/m3 cu=150 kPa 6 m 6 m L=15 m • 𝑄𝑢𝑙𝑡 = 𝑄𝑠,𝑠𝑎𝑛𝑑1 + 𝑄𝑠,𝑐𝑙𝑎𝑊 + 𝑄𝑠,𝑠𝑎𝑛𝑑2 + 𝑄𝑏 − 𝑊 𝑝 𝑄𝑠 = α(𝑐𝑢)𝐎𝑠 α = 1.0 𝑓𝑜𝑟 𝑐𝑢 ≀ 30 𝑄𝑠 = α(𝑐𝑢)𝐎𝑠 = 1 30 π 0.6 6 = 339.3 𝑘𝑁 • For clay layer • 𝐹𝑜𝑟 𝑠𝑎𝑛𝑑 𝑙𝑎𝑊𝑒𝑟 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑜𝑡𝑡𝑜𝑚 𝑄𝑠 = 𝐟𝑠σ′𝑣0 tan Ύ′ 𝐎𝑠 𝑄𝑠 = 𝐟𝑠σ′𝑣0 tan Ύ′ 𝐎𝑠 = 0.33 163.5 tan 28.5 π 0.6 3 = 165.7 𝑘𝑁 𝑄𝑏 = 𝐎𝑏 𝑁𝑞σ′𝑞 = π0.32 120 177 = 6005.5 kN • 𝑊 𝑝 = π 0.3 2 6 25 + 9 15 = 80.6 𝑘𝑁 𝑄𝑢𝑙𝑡 = 103.8 + 339.3 + 165.7 + 6005.5 − 80.6 = 6533.7 𝑘𝑁 𝑄𝑎𝑙𝑙 = ∑𝑄𝑠 + 𝑄𝑏 3 − 𝑊 𝑝 = 2124.2 ≥ 2000 𝑘𝑁 120 γ𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒′ = 25 − 10
  • 42. -Load vs settlement: Load controlled test, to obtain ultimate load  Load increment= 25% of working load  Ultimate load= 200% of working load Deep Foundations- Pile Load Test (Davisson Approach) 1) Clayey soil 2) Granular soil Total settlement Elastic settlement Net settlement=Total settlement- pile elastic settlement Ύ𝑝𝑖𝑙𝑒 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = (𝑄𝑀𝑝+0.6𝑄𝑀𝑠)𝐿𝑝 𝐎𝑏𝐞𝑝𝑖𝑙𝑒 𝑄𝑀𝑝 = 𝑀𝑜𝑟𝑘𝑖𝑛𝑔 𝑙𝑜𝑎𝑑 𝑄𝑀𝑠 = 𝑠ℎ𝑎𝑓𝑡 𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑜𝑎𝑑 @𝑀𝑜𝑟𝑘𝑖𝑛𝑔
  • 43. -Load vs settlement  Use net settlement values Deep Foundations- Pile Axial Load Test Ύ𝑢𝑙𝑡 = 0.012 𝐵𝑟𝑒𝑓 + 0.1 𝐵 𝐵𝑟𝑒𝑓 + 𝑄𝑢𝐿𝑝 𝐎𝑏𝐞𝑝 K M K M Net settlement (mm) 𝑄𝑢𝑙𝑡 = 𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑙𝑜𝑎𝑑 (𝑘𝑁) 𝐵 = 𝑃𝑖𝑙𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (𝑚𝑚) 𝐵𝑟𝑒𝑓 = 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑖𝑙𝑒 𝑀𝑖𝑑𝑡ℎ 𝑚𝑚 = 300 mm 𝐿𝑝 = 𝑃𝑖𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ (𝑚𝑚) 𝐎𝑏 = 𝐞𝑛𝑑 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑎𝑟𝑒𝑎 𝑚𝑚2 𝐞𝑝 = 𝑃𝑖𝑙𝑒 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 (𝐺𝑃𝑎) Ύ𝑢𝑙𝑡 𝑄𝑢𝑙𝑡
  • 44. -Ex3: Lp= 20 m, BxB=406x406 mm, Ep=30 GPa (C30 concrete), Qult ? Deep Foundations- Pile Axial Load Test Ύ𝑢𝑙𝑡 = 0.012 𝐵𝑟𝑒𝑓 + 0.1 𝐵 𝐵𝑟𝑒𝑓 + 𝑄𝑢𝐿𝑝 𝐎𝑏𝐞𝑝 K=3.735 Net settlement (mm) Ύ𝑢𝑙𝑡 = 0.012 300 + 0.1 406 300 + 𝑄𝑢20000 (406)(406)(30) 𝑄𝑢𝑙𝑡 = 1460 𝑘𝑁
  • 45. -Downdrag force acting on pile: force exerted by settling soil on pile (ÎŽsoil> ÎŽpile) Deep Foundations- Negative Skin Friction  Placement of fill (granular) settlement of the fill by selfweight additional consolidation of soft clayey layers beneath fill  Lowering of GWT σ' and settlement increases additional settlement for the pile
  • 46. -Downdrag force acting on pile Deep Foundations- Negative Skin Friction • 𝑄𝑝 = 𝑃0 + 𝑄𝑠𝑒𝑙𝑓 𝑀𝑒𝑖𝑔ℎ𝑡 + 𝑄𝑑𝑜𝑀𝑛𝑑𝑟𝑎𝑔 𝑄𝑑𝑜𝑀𝑛𝑑𝑟𝑎𝑔 = 0.25 σ′𝑣(π𝐵𝑙𝑐𝑙𝑎𝑊 𝑙𝑎𝑊𝑒𝑟) • For clay layer upon consolidation • For sand layer upon settling 𝑄𝑑𝑜𝑀𝑛𝑑𝑟𝑎𝑔 = 𝐟0σ′𝑣 tan Ύ′ (π𝐵𝑙𝑠𝑎𝑛𝑑) Ύ′ = (0.6)ϕ′ Resistance Load Force P0 Qb 𝐹𝑆 = 𝑄𝑠 + 𝑄𝑏 𝑃0 + 𝑄𝑠𝑒𝑙𝑓 𝑀𝑒𝑖𝑔ℎ𝑡 + 𝑄𝑑𝑜𝑀𝑛𝑑𝑟𝑎𝑔 ≥ 2.0 𝑄𝑠 + 𝑄𝑏
  • 47. Ex2 (cont.): 2 m height of a very large fill (γ=20 kN/m3) will be placed next to the pile on the behalf of approach fill. Check whether adequate FS exists or not? Deep Foundations- Negative Skin Friction 6 m Sand γ=17 kN/m3 ϕ'=28˚ 6 m 6 m Clay γ=18 kN/m3 cu=30 kPa Sand γ=19 kN/m3 ϕ' =38˚ Clay γ=18 kN/m3 cu=150 kPa • 𝐹𝑆 = 𝑄𝑠+𝑄𝑝 𝑃0+𝑄𝑠𝑒𝑙𝑓 𝑀𝑒𝑖𝑔ℎ𝑡+𝑄𝑑𝑜𝑀𝑛𝑑𝑟𝑎𝑔 ≥ 2.0 𝐹𝑆 = 6614.3 2000 + 80.6 + 𝑄𝑑𝑜𝑀𝑛𝑑𝑟𝑎𝑔 𝑄𝑑𝑜𝑀𝑛𝑑𝑟𝑎𝑔 = 0.25 σ′𝑣(π𝐷𝑙𝑐𝑙𝑎𝑊 𝑙𝑎𝑊𝑒𝑟) σ′𝑣0 = 102 + 150 2 + (2)(20) = 166 𝑘𝑃𝑎 Fill 𝑄𝑑𝑜𝑀𝑛𝑑𝑟𝑎𝑔 = 0.25 166 π 0.6 6 = 469 𝑘𝑁 𝐹𝑆 = 6614.3 2000 + 80.6 + 469 = 2.59
  • 48. Piles working under tension: Deep Foundations- Uplift Capacity • 𝐹𝑆 = 𝑄𝑠+𝑄𝑠𝑒𝑙𝑓 𝑀𝑒𝑖𝑔ℎ𝑡 𝑄𝑢𝑝𝑀𝑎𝑟𝑑 ≥ 3.0~6.0  Ship building docks  Wind turbines, chimneys or any structures exposed to lateral loads
  • 49. -Group action: zone of soil or rock which is stressed by the entire group extends to a much greater width and depth than the zone beneath the single pile. Spacing (s) between adjacent piles should be increased (>5B) Deep Foundations- Piles in Group  (# of piles) x Qult (single pile) > Qult (group) under same displacement  Even though loading tests made on a single pile have indicated satisfactory performance, failure or excessive settlement may take place Friction pile (clayey soil, adhesion) End bearing pile (granular soils)
  • 50. -Group capacity: Deep Foundations- Piles in Group Group Efficiency Approach Qult, group = (η) x (# of piles) x Qult (single pile) η (efficiency)=1−ψ [ 𝑚 − 1 𝑛 + 𝑛 − 1 𝑚] 90(𝑚)(𝑛) ψ in degrees = tan−1 𝐵 𝑠 B B B B B 𝑚 = 𝑛𝑜 𝑜𝑓 𝑟𝑜𝑀𝑠 𝑛 = 𝑛𝑜 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 s = spacing b/w piles measured from center to center
  • 51. -Group capacity: Deep Foundations- Piles in Group Terzaghi-Peck Block Approach  shallow spread foundation  Crucial for soil profiles consisting of soft clay layers (low cu values)  𝑄𝑢𝑙𝑡 = ∑𝑄𝑠 + 𝑄𝑏 𝑄𝑠 = 2 𝐿𝑏𝑙𝑜𝑐𝑘 + 𝐵𝑏𝑙𝑜𝑐𝑘 ∑𝐷𝑖α(𝑐𝑢) or 𝑄𝑠 = 2 𝐿𝑏𝑙𝑜𝑐𝑘 + 𝐵𝑏𝑙𝑜𝑐𝑘 ∑𝐷𝑖𝐟𝑠σ′𝑣0 tan Ύ′ clayey soil granular soil 𝑄𝑏 = (𝐿𝑏𝑙𝑜𝑐𝑘𝐵𝑏𝑙𝑜𝑐𝑘) 𝑠𝑐𝑁𝑐𝑐𝑢 𝑄𝑏 = (𝐿𝑏𝑙𝑜𝑐𝑘𝐵𝑏𝑙𝑜𝑐𝑘) 𝑁𝑞σ′𝑞𝑠𝑞 clayey soil granular soil 𝐷 = 𝐿𝑝
  • 52. -Ex4: A group of bored-cast in place piles are constructed in a deep layer of clay. Find Qult, group? B=0.6 m Deep Foundations- Piles in Group 𝐺𝑟𝑜𝑢𝑝 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑊 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ s=1.8 m • 𝑄𝑢𝑙𝑡,𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑖𝑙𝑒 = 𝑄𝑠 + 𝑄𝑏 σ′𝑣0 (𝑘𝑃𝑎) 114 228 𝑄𝑏 = 𝐎𝑏 𝑠𝑐𝑁𝑐𝑐𝑢 = π 0.3 2 9 60 = 152.7 𝑘𝑁 𝑄𝑠 = α(𝑐𝑢)𝐎𝑠 = 1.16 − 60 185 60 π 0.6 12 = 1134.2 𝑘𝑁 α = 1. 16 − 𝑐𝑢 185 𝑓𝑜𝑟 30 < 𝑐𝑢 ≀ 150 Pile layout s=1.8 m
  • 53. -Ex4: A group of bored-cast in place piles are constructed in a deep layer of clay. Find Qult, group? B=0.6 m Deep Foundations- Piles in Group Pile layout s=1.8 m • Q𝑢𝑙𝑡,𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑖𝑙𝑒 = 𝑄𝑠 + 𝑄𝑏 = 152.7 + 1134.2 = 1286.9 𝑘𝑁 • Qult, group = (η) x (# of piles) x Qult (single pile) η (efficiency)=1−ψ [ 𝑚 − 1 𝑛 + 𝑛 − 1 𝑚] 90(𝑚)(𝑛) ψ in degrees = tan−1 𝐵 𝑠 = tan−1 0.6 1.8 = 18.4˚ η =1−18.4 [ 3 − 1 4 + 4 − 1 3] 90(4)(3) = 0.71 𝑚 = 3 𝑛 = 4 • Qult, group = (0.71)(12)(1286.9)=10964.4 kN s=1.8 m
  • 54. -Ex4: A group of bored-cast in place piles are constructed in a deep layer of clay. Find Qult, group? B=0.6 m Deep Foundations- Piles in Group Pile layout s=1.8 m s=1.8 m Terzaghi−Peck Block 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝑄𝑠 = 2 𝐿𝑏𝑙𝑜𝑐𝑘 + 𝐵𝑏𝑙𝑜𝑐𝑘 α(𝑐𝑢)  𝑄𝑢𝑙𝑡,𝑏𝑙𝑜𝑐𝑘 = 𝑄𝑠 + 𝑄𝑏 𝑄𝑠 = 2[ 1.8 3 + 1.8 2 12 0.84 60 = 10886.4 kN α = 1. 16 − 𝑐𝑢 185 𝑓𝑜𝑟 30 < 𝑐𝑢 ≀ 150 𝑄𝑏 = 𝐿𝑏𝑙𝑜𝑐𝑘𝐵𝑏𝑙𝑜𝑐𝑘 𝑠𝑐𝑁𝑐𝑐𝑢 = 𝐿𝑏𝑙𝑜𝑐𝑘𝐵𝑏𝑙𝑜𝑐𝑘 9𝑐𝑢 𝑄𝑏 = 5.4 3.6 9 60 = 10497.6𝑘𝑁  𝑄𝑢𝑙𝑡,𝑏𝑙𝑜𝑐𝑘 = 𝑄𝑠 + 𝑄𝑏 = 10886.4 + 10497.6 = 21384 𝑘𝑁  𝑄𝑢𝑙𝑡,𝑏𝑙𝑜𝑐𝑘 = min 𝐺𝑟𝑜𝑢𝑝 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑊 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ, 𝑇𝑒𝑟𝑧𝑎𝑔ℎ𝑖 − 𝑃𝑒𝑐𝑘 𝑏𝑙𝑜𝑐𝑘 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ = 10694.4 𝑘𝑁