SlideShare ist ein Scribd-Unternehmen logo
1 von 55
Downloaden Sie, um offline zu lesen
Anomaly Detection in Noisy Images
Xavier Gibert Serra, Ph.D. Examination, 2015
November 18, 2015
Advisory Committee:
Professor Rama Chellappa, Chair/Advisor
Professor Piya Pal
Professor Shuvra Bhattacharyya
Professor Vishal M. Patel
Professor Amitabh Varshney, Dean’s Representative
1/55
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
2/55
Outline
1 Introduction
2 Background
3 Anomaly Detection on Textured Images
4 Image Dictionaries for Anomaly Detection
5 Deep Learning Methods for Anomaly Detection
6 Extreme Value Theory for Adaptive Anomaly Detection
7 Conclusions and Future Work
8 References
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
3/55
Introduction
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
4/55
Anomaly Detection Problem Formulation
Hypothesis testing problem.
H0 : Y ∼ P0 (normal)
H1 : Y ∼ P1 (anomalous)
Anomalies are usually rare (P(H0) >> P(H1)).
Training data is often unbalanced (limited number of
examples of anomalies)
Both hypothesis are usually composite, due to the
presence of nuisance parameters.
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
5/55
Examples
1 Detection of anisotropic anomalies on textured images.
H0: Homogeneous isotropic texture.
H1: Localized anomaly (texture discontinuity, edge, ...).
2 Railway track component inspection.
H0: Normal component.
H1: Anomalous (broken/missing) component.
3 Anomaly detection for myocardial tissue characterization.
H0: Healthy tissue.
H1: Anomalous (scarred) tissue.
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
6/55
Background
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
7/55
Motivation
Anomalies are infrequent, but failure to detect them can lead
to disastrous consequences
Derailment of Canadian Pacific Railway Freight Train 292-16 and Subsequent Release of Anhydrous
Ammonia Near Minot, North Dakota
January 18, 2002
Source: http://www.ntsb.gov/doclib/reports/2004/RAR0401.pdf
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
8/55
Railway background
Track Components Defects
Le#	
  Rail	
   Right	
  Rail	
  
Ballast	
  
Fasteners	
  
Cross3e	
  
Field	
  side	
   Field	
  side	
  Gage	
  side	
  
Track	
  Gage	
  
(1,435	
  mm)	
  
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
9/55
Related Works
Automated visual railway component inspection methods:
Authors Year Components Defects Features Decision methods
Stella et al. 2002–09 Fasteners Missing DWT 3-layer NN
Singh et al. 2006 Fasteners Missing Edge density Threshold
Hsieh et al. 2007 Fasteners Broken DWT Threshold
Gibert et al. 2007–08 Joint Bars Cracks Edges SVM
Babenko 2008 Fasteners Missing/Def. Intensity OT-MACH corr.
Xia et al. 2010 Fasteners Broken Haar Adaboost
Yang et al. 2011 Fasteners Missing Direction Field Correlation
Resendiz et al. 2013 Ties/Turnouts – Gabor SVM
Li et al. 2014 Tie plates Missing spikes Lines/Haar Adaboost
Feng et al. 2014 Fasteners Missing/Def. Haar PGM
Gibert et al. 2014 Concrete ties Cracks DST Iter. shrinkage
Khan et al. 2014 Fasteners Defective Harris, Shi Matching errors
Gibert et al. 2015 Fasteners Missing/Def. HOG SVM
Gibert et al. 2015 Concrete ties Tie Condition Intensity Deep CNN
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
10/55
Challenges
Anomaly detection challenges:
One-dimensional anomaly detection techniques cannot be
easily extended to 2D (non-causality, directional
dependencies)
Nuisance parameters (illumination, viewpoint, scale, pose,
surface blemishes...)
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
11/55
Challenges: Learning from Weakly Labeled Data
All good. Tie 532 has anomaly.
Which one is
, or ? , or ?
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
12/55
Challenges: Changes in Operating Conditions
Tie 112 113 114 115 116 117 118 119 120 121
Survey 1
Survey 2
Survey 3
Survey 1
Survey 2
Survey 3
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
13/55
Challenges: Changes in Operating Conditions
Tie 112 113 114 115 116 117 118 119 120 121
Survey 1
Survey 2
Survey 3
Survey 1
Survey 2
Survey 3
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
14/55
Challenges: Changes in Operating Conditions (II)
Tie 76 77 78 79 80 81 82 83 84 85
Survey 1
Survey 3
Survey 1
Survey 3
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
15/55
Challenges: Changes in Operating Conditions (III)
Tie 996 997 998 999 1000 1001 1002 1003 1004 1005
Survey 1
Survey 2
Survey 3
Survey 1
Survey 2
Survey 3
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
16/55
Challenges: Changes in Operating Conditions (IV)
Tie 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
Survey 1
Survey 2
Survey 3
Survey 1
Survey 2
Survey 3
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
17/55
Anomaly Detection on Textured Images
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
18/55
Problem Formulation
Hypothesis testing problem.
H0: Homogeneous isotropic texture.
H1: Localized anomaly (texture discontinuity, edge, ...).
Possible texture inference approaches:
Discriminative: extract features → train classifier
Generative: fit model → measure goodness of fit
vs
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
19/55
Image Model
Superposition of curvilinear component over background
texture.
x = xc + xt
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
20/55
Inference Problem
Image decomposition into underlying components.
xc = Φ1ac
xt = Φ2at
(ˆac, ˆat) = arg min
ac ,at
λ ac 1 + λ at 1 +
1
2
x − Φ1ac − Φ2at
2
2
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
21/55
Iterative Shrinkage Algorithm
Input:
Initialization: Initialize and set and
and
repeat:
1.  Update the estimate of and as
2.  Update the residual as
3.  Update the shrinkage parameter as
until: stopping criterion is satisfied
Output: The two representation vectors and .
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
22/55
Separation Algorithm
Iteration 1 Iteration 3 Iteration 5 Iteration 7
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
23/55
Separation Algorithm
(a) (b) (c) (d)Image	
   Cracks component	
   Texture component	
   Ground Truth	
  
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
24/55
Detection Results (simple threshold)
10
−5
10
−4
10
−3
10
−2
10
−1
10
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
False positive rate
Truepositiverate
Shearlet−C
Shearlet−I
Intensity
Canny
10
−5
10
−4
10
−3
10
−2
10
−1
10
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
False positive rate
Truepositiverate
Shearlet−C
Shearlet−I
Intensity
Canny
10
−5
10
−4
10
−3
10
−2
10
−1
10
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
False positive rate
Truepositiverate
Shearlet−C
Shearlet−I
Intensity
Canny
(a) (b) (c) (d)
Shearlet-C	
   Shearlet-I	
   Intensity	
   Canny	
  
Method
 AUC
 F1 score
Shearlet-C
Shearlet-I
Intensity
Canny
0.99915
0.99908
0.99874
0.94457
0.79916
0.65810
0.73188
0.27752
Shearlet-C
Shearlet-I
Intensity
Canny
0.99999
0.99557
0.99037
0.99043
0.98841
0.62705
0.55404
0.81787
Shearlet-C
Shearlet-I
Intensity
Canny
0.99934
0.99977
0.99650
0.96248
0.76418
0.82353
0.45992
0.19436
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
25/55
CUDA-based Implementation
The Discrete Shearlet Transform (DST) and the Wavelet
Transform (DWT) are highly parallelizable.
DST steps:
Laplacian Pyramidal Decomposition
Convolution with directional filters using 2D FFT
DWT steps:
Convolution along rows: x → LL LH
Convolution along columns: LL LH → LL LH HL HH
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
26/55
GPU Acceleration Results
1 2 4 8 16 32 64 C1060 C2050 GTX480GTX690 K20c
10
2
10
3
10
4
10
5
Number of CPU cores/GPU model
time(msec)
2D Shearlet compute times
single precision
double precision
Time to denoise a 512×512 image via shearlet shrinkage
1 2 4 8 16 32 64 C1060 C2050 GTX480GTX690 K20c
10
0
10
1
10
2
10
3
Number of CPU cores/GPU model
time(seconds)
3D Shearlet compute times
single precision
double precision
Time to denoise a 192×192×192 video via 3D shearlet shrinkage
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
27/55
Image Dictionaries for Anomaly Detection
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
28/55
Problem Formulation
Hypothesis testing problem.
H0: Normal component.
H1: Anomalous (broken/missing) component.
missing	
  
(background)	
  
broken	
  
PR	
  clip	
   e	
  clip	
   fastclip	
   c	
  clip	
   j	
  clip	
  
Level	
  1	
  
Level	
  2	
  
Level	
  3	
  
Defec,ve	
   Non-­‐defec,ve	
  
Level	
  4	
  
good	
  
fastener	
  
ROI	
  
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
29/55
Composite Hypothesis Testing
Hypothesis testing problem:
H0: x ∈ G
H1: x ∈ {B ∪ M}
where
G = {good (non-defective) configurations}
B = {broken configurations}
M = {background (missing) configurations}
However, data is highly unbalanced. For each candidate region,
P(x ∈ B) << P(x ∈ G) << P(x ∈ M)
Solution: Partition the configuration space into compact subsets:
→
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
30/55
3-Way Max-margin Formulation
For each class c ∈ C, C ≡ {G ∪ B}, we train a pair of binary
classifiers, bc (c vs M), and fc (c vs Cc)
Given a set of candidate regions X, we define the score for an
image as
S = min(Sb, Sm)
= min − max
c∈B
max
x∈X
fc · x, max
c∈G
max
x∈X
[bc · x + min(0, fc · x)]
Hypothesis testing:
H0 : S > τ
H1 : S ≤ τ
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
31/55
Classification Results
Detected Class
TrueClass
M 1863 152 6 1
B0 40 646
B2 1 27
G0 1 383
G1 272
G2 82 10
G3 2 164
G4 2 115
G5 3 1 34
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
32/55
Detection Results
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
PD
PFA
proposed method
Int. norm. OT−MACH
HOG OT−MACH
ROC curve using 5-fold cross-validation on the training set
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1
PD
PFA
proposed (clear ties)
proposed (clear ties + sw)
proposed (all ties)
ROC curve on the 85-mile testing set
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
33/55
Deep Learning Methods for Anomaly
Detection
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
34/55
Background
Deep learning has become mainstream.
State-of-the-art results in many applications.
applicable to many problems: classification, recognition,
regression, segmentation, ...
in many modalities: image, video, speech, biometrics, ...
Choice of frameworks for quick prototyping (Cuda-Convnet2,
Caffe, Torch7, Theano, TensorFlow, and more).
With enough training data, a carefully chosen deep architecture
can outperform a hand-engineered system.
Still,
hard to debug when it does not work.
difficult to explain why it works.
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
35/55
Deep Multi-Task Learning
Why deep learning?
Shared representations: more efficient, and more compact.
Can learn arbitrarily complex transfer functions.
No need to design feature descriptors.
Why multi-task?
Limited number of examples of anomalies (one-shot learning).
Features learned for one task can be reused for other tasks, but
it is better to learn jointly to ensure acceptable performance on
both tasks.
Multi-task objective Single task objective
Φ =
T
t=1 λt
Nt
i=1 Et (f (xti ), yti ) Φt =
Nt
i=1 Et (ft(xti ), yti ) ,
t ∈ {1 . . . T}
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
36/55
Material Identification Task
We pose track inspection as a semantic segmentation
problem and train 10 relevant material classes.
ballast wood rough medium smooth
concrete concrete concrete
crumbling chipped lubricator rail fastener
concrete concrete
Training is done on representative image patches.
Deployed network runs on the whole image with trained
parameters.
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
37/55
Network Architecture
9	
  
9	
  
1	
  
48	
  
64	
  
256	
  
10	
  
stride	
  2	
   pooling	
  
5	
  
5	
  
5	
  
5	
  
1	
  
1	
  
relu	
  
pooling	
  
relu	
  
pooling	
  
input	
  
conv1	
   conv2	
  
conv3	
  
conv4	
  
Single Task (Material Classification)
9	
  
9	
  
1	
  
48	
  
64	
  
256	
  
10	
  
stride	
  2	
   pooling	
  
5	
  
5	
  
5	
  
5	
  
1	
  
1	
  
relu	
  
pooling	
  
relu	
  
drop	
  
pooling	
  
input	
  
conv1	
   conv2	
  
conv3	
  
conv4_t	
  
512	
  
conv4_f	
  
5	
  
5	
  
5	
  
1	
  
1	
  
conv5_f	
  
Shared	
  network	
  
Material	
  net	
  
Fasteners	
  
Shared	
  features	
  
relu	
  
drop	
  
pooling	
  
Training	
  
Batch	
  size	
  
128	
  
Training	
  
Batch	
  size	
  
16	
  
Fastener	
  
Mul8class	
  
32	
  
conv5_fastVsBg	
  
Fastener	
  
Binary	
  
SVMs	
  
conv5_fastVsFast	
  
Training	
  
Batch	
  size	
  
32	
  x	
  1	
  
Multi-Task (Fastener Detection + Material Classification)
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
38/55
Experimental Results: Material Identification
0.47
0.15
0.31
0.10
1.05
0.56
0.17
0.07
0.31
0.34
0.19
0.31
0.11
0.15
0.64
0.19
0.45
0.21
0.14
0.25
4.86
0.17
1.79
0.81
0.25
0.05
0.02
0.21
0.36
4.73
3.64
0.21
0.80
0.12
0.13
0.12
0.07
0.39
0.57
6.13
0.02
0.33
0.00
0.03
0.02
1.50
0.28
1.08
0.26
0.04
5.03
0.00
0.03
0.06
0.20
0.06
0.46
0.73
0.38
2.18
0.00
0.00
0.01
0.22
0.18
0.49
0.13
0.00
0.00
0.00
0.98
0.15
0.07
0.21
0.03
0.13
0.01
0.01
0.03
1.48
0.07
0.20
0.25
0.01
0.47
0.01
0.08
0.04
0.08
0.15
97.06
97.56
92.28
86.67
95.53
94.51
91.75
97.71
98.11
99.02
Material identification
Detected class
ballast wood rough medium smooth crumbled chip lubricator rail fastener
Trueclass
ballast
wood
rough concrete
medium concrete
smooth concrete
crumbled
chip
lubricator
rail
fastener
0
10
20
30
40
50
60
70
80
90
100
0.49
0.19
0.29
0.08
2.08
0.87
0.22
0.04
0.32
0.28
0.22
0.43
0.12
0.29
0.78
0.20
0.38
0.19
0.13
0.25
5.21
0.13
2.52
1.49
0.20
0.03
0.03
0.22
0.44
5.09
4.28
0.25
1.82
0.11
0.12
0.21
0.01
0.38
0.52
5.94
0.17
0.78
0.00
0.02
0.03
1.82
0.32
1.49
0.28
0.02
10.55
0.02
0.02
0.04
0.20
0.11
0.74
0.98
0.46
4.75
0.01
0.00
0.00
0.22
0.21
0.67
0.17
0.00
0.05
0.00
1.06
0.16
0.04
0.34
0.01
0.14
0.03
0.00
0.00
1.55
0.10
0.20
0.45
0.02
0.76
0.01
0.06
0.04
0.05
0.17
96.86
97.01
91.05
85.81
94.87
89.84
83.67
97.65
98.17
98.91
Material identification
Detected class
ballast wood rough medium smooth crumbled chip lubricator rail fastener
Trueclass
ballast
wood
rough concrete
medium concrete
smooth concrete
crumbled
chip
lubricator
rail
fastener
0
10
20
30
40
50
60
70
80
90
100
Multi-task CNN Single task CNN
1.46
0.88
1.01
0.80
5.03
1.42
4.57
0.34
0.11
0.68
0.16
0.49
0.68
0.30
0.94
0.63
2.80
1.49
0.83
0.34
11.60
1.34
3.34
0.15
8.91
0.97
0.10
0.82
0.81
10.71
9.00
0.91
0.60
6.37
2.50
0.31
0.72
2.40
1.30
9.68
0.74
0.67
4.64
0.37
1.04
4.13
0.54
2.51
0.66
0.42
0.32
16.47
0.02
0.01
1.49
2.07
0.12
1.00
0.73
0.53
0.85
0.22
0.42
2.34
0.58
5.43
3.93
2.16
11.84
0.29
0.02
0.02
0.26
4.46
1.03
1.80
0.26
0.03
0.20
0.00
2.86
0.11
1.08
0.06
0.21
0.43
0.01
0.21
0.03
2.37
88.62
86.26
77.80
69.62
84.18
77.27
95.20
57.52
90.39
93.64
Material identification
Detected class
ballast wood rough medium smooth crumbled chip lubricator rail fastener
Trueclass
ballast
wood
rough concrete
medium concrete
smooth concrete
crumbled
chip
lubricator
rail
fastener
0
10
20
30
40
50
60
70
80
90
100
1.52
1.02
0.93
0.87
5.29
1.25
3.97
0.49
0.12
0.54
0.13
0.35
0.09
0.18
0.46
0.26
0.66
1.11
1.40
0.26
12.15
1.04
4.03
0.05
8.85
1.07
0.07
1.10
0.74
10.12
0.59
0.82
0.33
5.48
2.40
0.22
1.13
0.78
1.13
9.80
0.57
0.53
4.19
0.40
0.53
5.63
0.86
2.11
0.58
0.42
0.38
17.99
0.03
0.02
1.18
1.64
0.05
0.78
0.41
0.57
0.66
0.20
0.39
3.50
0.55
4.06
3.50
2.57
14.74
0.28
0.02
0.02
0.38
1.60
1.12
1.50
0.29
0.12
0.20
0.00
3.02
0.12
0.99
0.06
0.20
0.18
0.01
0.28
0.00
2.35
85.02
91.06
80.20
70.21
93.55
73.67
96.24
58.60
92.38
94.50
Material identification
Detected class
ballast wood rough medium smooth crumbled chip lubricator rail fastener
Trueclass
ballast
wood
rough concrete
medium concrete
smooth concrete
crumbled
chip
lubricator
rail
fastener
0
10
20
30
40
50
60
70
80
90
100
2.12
2.28
1.01
0.19
4.59
2.32
7.14
2.07
0.86
0.85
0.20
0.49
0.48
0.38
1.52
0.65
0.40
2.09
3.75
0.66
17.34
1.53
13.00
0.19
16.14
1.34
0.26
1.75
1.18
14.51
13.42
3.35
0.59
8.95
0.69
0.53
0.29
1.41
1.20
11.31
0.43
0.39
1.46
0.07
0.31
4.59
1.14
6.02
2.04
0.39
0.39
16.82
0.15
0.04
2.28
3.37
0.16
1.08
0.37
0.31
1.17
1.09
0.98
7.07
1.18
6.02
3.26
0.64
15.62
0.68
47.35
0.12
0.11
1.45
0.75
0.93
0.38
0.02
0.10
0.58
0.06
3.40
0.79
5.78
0.41
0.67
0.20
0.02
0.97
0.25
4.17
77.18
82.41
68.27
62.42
82.76
62.20
92.37
89.90
91.42
Material identification
Detected class
ballast wood rough medium smooth crumbled chip lubricator rail fastener
Trueclass
ballast
wood
rough concrete
medium concrete
smooth concrete
crumbled
chip
lubricator
rail
fastener
0
10
20
30
40
50
60
70
80
90
100
LBP-HF with FLANN LBPu2
8,1 with FLANN Gabor with FLANN
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
39/55
Experimental Results: Material Identification
Patch size: 80 × 80 pixels.
Cross-validation set: 500,000 samples (5 splits).
Method Accuracy
Deep CNN MTL 3 95.02%
Deep CNN MTL 2 93.60%
Deep CNN STL 93.35%
LBP-HF with FLANN 82.05%
LBPu2
8,1 with FLANN 82.70%
Gabor with FLANN 75.63%
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
40/55
Tie Assessment Procedure
Compute scores at each site for each anomalous class
b ∈ B:
Sb(x, y) = max
i /∈B
Φi (x, y) − Φb(x, y) (1)
Image score calculation:
Sb =
1
β − α
β
α
F−1
(t)dt (2)
where F−1 refers to the t sample quantile calculated from
all scores Sb(x, y) in the image.
Report alarm b if Sb > τb.
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
41/55
Experimental Results: Tie Assessment
False Positives per Mile
10
-2
10
-1
10
0
10
1
10
2
10
3
10
4
DetectionRate
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Crumbling tie detection
overall (STL)
≥ 10% (STL)
≥ 20% (STL)
≥ 30% (STL)
≥ 40% (STL)
≥ 50% (STL)
≥ 60% (STL)
≥ 70% (STL)
overall (MTL)
≥ 10% (MTL)
≥ 20% (MTL)
≥ 30% (MTL)
≥ 40% (MTL)
≥ 50% (MTL)
≥ 60% (MTL)
≥ 70% (MTL)
ROC curve for detecting crumbling tie conditions
False Positives per Mile
10
-2
10
-1
10
0
10
1
10
2
10
3
10
4
DetectionRate
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Chipped tie detection
overall (STL)
≥ 10% (STL)
≥ 20% (STL)
≥ 30% (STL)
≥ 40% (STL)
≥ 50% (STL)
≥ 60% (STL)
≥ 70% (STL)
overall (MTL)
≥ 10% (MTL)
≥ 20% (MTL)
≥ 30% (MTL)
≥ 40% (MTL)
≥ 50% (MTL)
≥ 60% (MTL)
≥ 70% (MTL)
ROC curve for detecting chip tie conditions
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
42/55
Experimental Results: Defective Fastener Detection
PFA
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
PD
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
proposed method
WACV 2015
HOG OT-MACH
HOG DAG SVM
HOG 1-vs-1 vote SVM
Int. norm. OT-MACH
PFA
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
PD
0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1
proposed method
WACV 2015
HOG OT-MACH
HOG DAG SVM
HOG 1-vs-1 vote SVM
Int. norm. OT-MACH
Cross-validation defective fastener detection Detail
PFA
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
PD
0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1
proposed method (clear ties)
proposed method (clear ties + sw)
proposed method (all ties)
WACV 2015 (clear ties)
WACV 2015 (clear ties + sw)
WACV 2015 (all ties)
Cross-validation defective fastener detection One defect missed at PFA=10−3
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
43/55
Experimental Results: Summary
Subset Total # Bad
PD PFA
MTL STL MTL STL
clear ties 200,763 1,037 99.90% 98.36% 0.25% 0.38%
clear + sw. 201,856 1,045 99.90% 97.99% 0.61% 0.71%
all ties 203,287 1,052 99.90% 98.00% 1.01% 1.23%
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
44/55
Extreme Value Theory for Adaptive
Anomaly Detection
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
45/55
Extreme Value Theory for Adaptive Anomaly
Detection (I)
Theorem 1 (Fisher-Tippet-Gnedenko): Let X1, . . . , Xn be i.i.d.
samples from an unknown distribution F and
Mn = max(X1, . . . , Xn). If there exist a sequence of pairs of real
numbers (an, bn) such that an > 0 for all n and a distribution
Λ(x) such that
lim
n→∞
P
Mn − bn
an
≤ x = Λ(x)
for all x at which Λ(x) is continuous, then the limit distribution
Λ(x) belongs to either the Gumbel, the Fr´echet or the Weibull
family. These three families can be grouped into the Generalized
Extreme Value Distribution (GEVD)
Λ(x; µ, σ, ξ) = exp − 1 + ξ
x − µ
σ
−1/ξ
.
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
46/55
Extreme Value Theory for Adaptive Anomaly
Detection (II)
Theorem 2 (Pickands): Given an upper threshold u, we select
the Nn samples that exceed such threshold and define the
excesses Y1, . . . , YNn as Yi = Xj − u, where i is the excess index
and j is the index of the original sample. The probability of
exceeding the threshold is λ = 1 − F(u). For sufficiently large u,
the upper tail distribution function Fu(y) = F(u+y)−F(u)
1−F(u) can be
approximated by a Generalized Pareto Distribution (GPD)
G(y; σ, ξ) = 1 − 1 +
ξy
σ
−1/ξ
+
, y > 0.
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
47/55
Extreme Value Theory for Adaptive Anomaly
Detection (III)
EVT-Based Adaptive Thresholding Algorithm (Broadwater
and Chellappa, TSP 2010):
1 Set initial threshold u (for example u = F−1
x (0.95))
2 Select all samples greater than u
3 Fit GPD by maximizing the log-likelihood equation
ˆσ, ˆξ = argmax
σ,ξ
g(σ, ξ; X)
= argmax
σ,ξ
−n log σ −
1 + ξ
ξ
n
i=1
log 1 +
ξxi
σ
4 Find threshold for desired FAR α0 > u as
tα = u +
ˆσ
ˆξ
Nα0
n
−ˆξ
− 1
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
48/55
Statistical Model
Assumptions:
Under H0 (normal),
conditions on Theorem 2 hold, so
Fu(y) ≈ G(y; σ, ξ) for u = F−1(0.95),
ξ ≈ 0, i.e. fu(y) ≈ e−λy (hypothesized on the basis of
sparsity promoting prior induced by 1 hinge loss),
Fu is time-variant and λ is drawn from the Gamma
conjugate prior
π(λ; α, β) = βα
Γ(α)λα−1e−βλ
with slowly varying α and β.
Under H1 (anomalous) this model does not hold.
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
49/55
Training Procedure
Algorithm 1 EVT training algorithm
1: procedure TRAIN(T , pu, w0)
2: n 0, s 0 . Initialize sufficient statistics
3: for all (~x, ~y) 2 T do . Training set T contains ~x scores, ~y labels
4: ~g {xi | yi = 0} . Select negative samples
5: u u | #{gi > u} = #~g pu . Find upper threshold
6: ~t {gi | gi > u} - u . Extract upper tail
7: n n + #~t . Update counts
8: s s +
P
~t . Update sum
9: end for
10: ↵0 1 + s
11: 0
w0 s
n
12: return ↵0, 0 . Parameters of the Gamma prior
13: end procedure
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
50/55
Testing Procedure
Algorithm 2 EVT adaptive thresholding algorithm
1: procedure ADAPTSCORES(~x, ↵0, 0, pu, pf , w1, L, na)
2: ba0
0
↵0 1
. MLE in training set
3: ~y sort desc(~x) . Sort scores in descending order
4: k #~y pu
5: for i 1, na do . Training set T contains ~x scores, ~y labels
6: u yi+k . Find upper threshold
7: ~t {yi, . . . , yi+k} u . Extract upper tail
8: Dn,i = supx
bGn(x) G(x) . Compute KS statistic
9: end for
10: ˆi mini{Dn,i} . Estimate number of outliers
11: u0
yˆi . Set outlier rejection threshold
12: ~t {yˆi, . . . , yˆi+k} u . Extract upper tail
13: ↵1 ↵0 +
P
~t
14: 1 0 + w1
P
~t
#~t
15: for i 1, n do
16: ~w ~xi (L 1)/2:i+(L 1)/2 . Window centered at sample xi
17: u u | #{wi > u} = #~w pu . Find upper threshold
18: ~t {wi | wi > u} - u . Extract upper tail
19: ↵ ↵1 + #~t . Posterior
20: 1 +
P
~t . Posterior
21: ba ↵ 1
. MAP estimate
22: yi xi + u ba log(pf /pu) . Adapt score
23: end for
24: return ~y . Adapted scores
25: end procedure
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
51/55
Experimental Results: Defective Fastener Detection
Clear ties subset
False positive rate
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Truepositiverate
0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1
MTL + EVT (clear ties)
MTL (clear ties)
WACV 2015 (clear ties)
Clear with with switches subset All ties
False positive rate
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Truepositiverate
0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1
MTL + EVT (clear + sw)
MTL (clear + sw)
WACV 2015 (clear + sw)
False positive rate
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Truepositiverate
0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1
MTL + EVT (all ties)
MTL (all ties)
WACV 2015 (all ties)
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
52/55
Experimental Results: Summary
Condition PFA MTL + EVT MTL STL
Fastener 0.1% 99.91% 99.91% 98.41%
(only clear ties) 0.02% 97.20% 96.74% 93.19%
Fastener 0.1% 99.54% 98.43% 94.54%
(clear + switch) 0.02% 93.80% 89.35% 88.70%
Fastener 0.1% 99.26% 95.40% 87.38%
(all ties) 0.02% 93.47% 87.76% –
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
53/55
Conclusions and Future Work
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
54/55
Summary
Anomaly detection on images can be solved by modeling the
normal images, the anomalous ones, or both.
Enablers:
Availability of large amounts of training data.
Transfer learning techniques (i.e. multi-task).
Domain-specific modeling.
Approaches:
Analysis of image components (shearlets, wavelets,
dictionaries).
Learning features for normal/abnormal elements.
Statistical analysis (Extreme Value Theory).
Application domains:
Transportation (Railways, roads, bridges, signals, vehicles).
Medical (PET/SPECT/CT/ultrasound images).
Other (Industrial automation, security, remote sensing).
Anomaly
Detection in
Noisy Images
Introduction
Background
Shearlets
Dictionaries
Deep Learning
EVT
Conclusions
References
55/55
References
X. Gibert, V.M. Patel, R. Chellappa.
Deep multi-task learning for railway track
inspection.
submitted to IEEE Trans. on ITS (2015)
X. Gibert, V.M. Patel, R. Chellappa.
Sequential score adaptation with extreme
value theory for robust railway track
inspection.
IEEE-ICCV Workshop on CVRSUAD (2015)
X. Gibert, V.M. Patel, R. Chellappa.
Material classification and semantic
segmentation of railway track images with
deep convolutional neural networks.
IEEE Int. Conf. on Image Processing (2015)
R. Chellappa, X. Gibert, V.M. Patel.
Robust anomaly detection for vision-based
inspection of railway components.
DOT/FRA/ORD-15/23 Tech. Report (2015)
X. Gibert, V.M. Patel, R. Chellappa.
Robust fastener detection for autonomous
visual track inspection.
IEEE Winter Conf. on Appl. of CV (2015)
X. Gibert, V.M. Patel, D. Labate,
R. Chellappa.
Discrete shearlet transform on GPU with
applications in anomaly detection and
denoising.
EURASIP Journal on ASP (2014)
K. Chodnicki, X. Gibert, J. Tian, F. Arrate,
R. Chellappa, T. Dickfeld, V. Dilsizian,
M. Smith.
Point-specific matching of cardiac
electrophysiological voltage and SPECT
perfusion measurements for myocardial tissue
characterization.
Journal of Nuclear Medicine 55 (suppl 1),
602 (2014)
M. Smith, X. Gibert, F. Arrate,
R. Chellappa, K. Chodnicki, J. Tian,
T. Dickfeld, V. Dilsizian.
CardioViewer: A novel modular software tool
for integrating cardiac electrophysiology
voltage measurements and PET/SPECT
data.
IEEE Medical Imaging Conference, Seattle,
Washington (2014)

Weitere ähnliche Inhalte

Andere mochten auch (6)

My family tree
My family treeMy family tree
My family tree
 
Waypoint Intelligence - Global Account Overview
Waypoint Intelligence - Global Account OverviewWaypoint Intelligence - Global Account Overview
Waypoint Intelligence - Global Account Overview
 
Infografia angie 11 9
Infografia angie 11 9Infografia angie 11 9
Infografia angie 11 9
 
unpan048452
unpan048452unpan048452
unpan048452
 
How to Build a Game in One Weekend - HackExtend Prep Day
How to Build a Game in One Weekend - HackExtend Prep DayHow to Build a Game in One Weekend - HackExtend Prep Day
How to Build a Game in One Weekend - HackExtend Prep Day
 
Business Plan
Business PlanBusiness Plan
Business Plan
 

Ähnlich wie PhdThesis_presentation

Lecture 08 larry zitnick - undestanding and describing scenes
Lecture 08   larry zitnick - undestanding and describing scenesLecture 08   larry zitnick - undestanding and describing scenes
Lecture 08 larry zitnick - undestanding and describing scenes
mustafa sarac
 
Cvpr2007 object category recognition p3 - discriminative models
Cvpr2007 object category recognition   p3 - discriminative modelsCvpr2007 object category recognition   p3 - discriminative models
Cvpr2007 object category recognition p3 - discriminative models
zukun
 
TOWARDS OPTIMALITY OF IMAGE SEGMENTATION PART- I
TOWARDS OPTIMALITY OF IMAGE SEGMENTATION PART- ITOWARDS OPTIMALITY OF IMAGE SEGMENTATION PART- I
TOWARDS OPTIMALITY OF IMAGE SEGMENTATION PART- I
Anish Acharya
 
Download It
Download ItDownload It
Download It
butest
 
MachineLearning.ppt
MachineLearning.pptMachineLearning.ppt
MachineLearning.ppt
butest
 
MachineLearning.ppt
MachineLearning.pptMachineLearning.ppt
MachineLearning.ppt
butest
 
MachineLearning.ppt
MachineLearning.pptMachineLearning.ppt
MachineLearning.ppt
butest
 
[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...
[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...
[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...
Taiji Suzuki
 
Lec14: Evaluation Framework for Medical Image Segmentation
Lec14: Evaluation Framework for Medical Image SegmentationLec14: Evaluation Framework for Medical Image Segmentation
Lec14: Evaluation Framework for Medical Image Segmentation
Ulaş Bağcı
 

Ähnlich wie PhdThesis_presentation (20)

Lecture 08 larry zitnick - undestanding and describing scenes
Lecture 08   larry zitnick - undestanding and describing scenesLecture 08   larry zitnick - undestanding and describing scenes
Lecture 08 larry zitnick - undestanding and describing scenes
 
Automatic Differentiation and SciML in Reality: What can go wrong, and what t...
Automatic Differentiation and SciML in Reality: What can go wrong, and what t...Automatic Differentiation and SciML in Reality: What can go wrong, and what t...
Automatic Differentiation and SciML in Reality: What can go wrong, and what t...
 
Cvpr2007 object category recognition p3 - discriminative models
Cvpr2007 object category recognition   p3 - discriminative modelsCvpr2007 object category recognition   p3 - discriminative models
Cvpr2007 object category recognition p3 - discriminative models
 
Shearlets & the Uncertainty Principle
Shearlets & the Uncertainty Principle Shearlets & the Uncertainty Principle
Shearlets & the Uncertainty Principle
 
TOWARDS OPTIMALITY OF IMAGE SEGMENTATION PART- I
TOWARDS OPTIMALITY OF IMAGE SEGMENTATION PART- ITOWARDS OPTIMALITY OF IMAGE SEGMENTATION PART- I
TOWARDS OPTIMALITY OF IMAGE SEGMENTATION PART- I
 
Download It
Download ItDownload It
Download It
 
Linear models for data science
Linear models for data scienceLinear models for data science
Linear models for data science
 
MachineLearning.ppt
MachineLearning.pptMachineLearning.ppt
MachineLearning.ppt
 
MachineLearning.ppt
MachineLearning.pptMachineLearning.ppt
MachineLearning.ppt
 
MachineLearning.ppt
MachineLearning.pptMachineLearning.ppt
MachineLearning.ppt
 
Global Bilateral Symmetry Detection Using Multiscale Mirror Histograms
Global Bilateral Symmetry Detection Using Multiscale Mirror HistogramsGlobal Bilateral Symmetry Detection Using Multiscale Mirror Histograms
Global Bilateral Symmetry Detection Using Multiscale Mirror Histograms
 
[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...
[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...
[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...
 
Lec14: Evaluation Framework for Medical Image Segmentation
Lec14: Evaluation Framework for Medical Image SegmentationLec14: Evaluation Framework for Medical Image Segmentation
Lec14: Evaluation Framework for Medical Image Segmentation
 
Waterloo GLMM talk
Waterloo GLMM talkWaterloo GLMM talk
Waterloo GLMM talk
 
Waterloo GLMM talk
Waterloo GLMM talkWaterloo GLMM talk
Waterloo GLMM talk
 
an approach to identify caries in dental image
an approach to identify caries in dental imagean approach to identify caries in dental image
an approach to identify caries in dental image
 
What is pattern recognition (lecture 4 of 6)
What is pattern recognition (lecture 4 of 6)What is pattern recognition (lecture 4 of 6)
What is pattern recognition (lecture 4 of 6)
 
Classification
ClassificationClassification
Classification
 
Robust image processing algorithms, involving tools from digital geometry and...
Robust image processing algorithms, involving tools from digital geometry and...Robust image processing algorithms, involving tools from digital geometry and...
Robust image processing algorithms, involving tools from digital geometry and...
 
17 vapnik chervonenkis dimension
17 vapnik chervonenkis dimension17 vapnik chervonenkis dimension
17 vapnik chervonenkis dimension
 

PhdThesis_presentation

  • 1. Anomaly Detection in Noisy Images Xavier Gibert Serra, Ph.D. Examination, 2015 November 18, 2015 Advisory Committee: Professor Rama Chellappa, Chair/Advisor Professor Piya Pal Professor Shuvra Bhattacharyya Professor Vishal M. Patel Professor Amitabh Varshney, Dean’s Representative 1/55
  • 2. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 2/55 Outline 1 Introduction 2 Background 3 Anomaly Detection on Textured Images 4 Image Dictionaries for Anomaly Detection 5 Deep Learning Methods for Anomaly Detection 6 Extreme Value Theory for Adaptive Anomaly Detection 7 Conclusions and Future Work 8 References
  • 4. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 4/55 Anomaly Detection Problem Formulation Hypothesis testing problem. H0 : Y ∼ P0 (normal) H1 : Y ∼ P1 (anomalous) Anomalies are usually rare (P(H0) >> P(H1)). Training data is often unbalanced (limited number of examples of anomalies) Both hypothesis are usually composite, due to the presence of nuisance parameters.
  • 5. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 5/55 Examples 1 Detection of anisotropic anomalies on textured images. H0: Homogeneous isotropic texture. H1: Localized anomaly (texture discontinuity, edge, ...). 2 Railway track component inspection. H0: Normal component. H1: Anomalous (broken/missing) component. 3 Anomaly detection for myocardial tissue characterization. H0: Healthy tissue. H1: Anomalous (scarred) tissue.
  • 7. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 7/55 Motivation Anomalies are infrequent, but failure to detect them can lead to disastrous consequences Derailment of Canadian Pacific Railway Freight Train 292-16 and Subsequent Release of Anhydrous Ammonia Near Minot, North Dakota January 18, 2002 Source: http://www.ntsb.gov/doclib/reports/2004/RAR0401.pdf
  • 8. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 8/55 Railway background Track Components Defects Le#  Rail   Right  Rail   Ballast   Fasteners   Cross3e   Field  side   Field  side  Gage  side   Track  Gage   (1,435  mm)  
  • 9. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 9/55 Related Works Automated visual railway component inspection methods: Authors Year Components Defects Features Decision methods Stella et al. 2002–09 Fasteners Missing DWT 3-layer NN Singh et al. 2006 Fasteners Missing Edge density Threshold Hsieh et al. 2007 Fasteners Broken DWT Threshold Gibert et al. 2007–08 Joint Bars Cracks Edges SVM Babenko 2008 Fasteners Missing/Def. Intensity OT-MACH corr. Xia et al. 2010 Fasteners Broken Haar Adaboost Yang et al. 2011 Fasteners Missing Direction Field Correlation Resendiz et al. 2013 Ties/Turnouts – Gabor SVM Li et al. 2014 Tie plates Missing spikes Lines/Haar Adaboost Feng et al. 2014 Fasteners Missing/Def. Haar PGM Gibert et al. 2014 Concrete ties Cracks DST Iter. shrinkage Khan et al. 2014 Fasteners Defective Harris, Shi Matching errors Gibert et al. 2015 Fasteners Missing/Def. HOG SVM Gibert et al. 2015 Concrete ties Tie Condition Intensity Deep CNN
  • 10. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 10/55 Challenges Anomaly detection challenges: One-dimensional anomaly detection techniques cannot be easily extended to 2D (non-causality, directional dependencies) Nuisance parameters (illumination, viewpoint, scale, pose, surface blemishes...)
  • 11. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 11/55 Challenges: Learning from Weakly Labeled Data All good. Tie 532 has anomaly. Which one is , or ? , or ?
  • 12. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 12/55 Challenges: Changes in Operating Conditions Tie 112 113 114 115 116 117 118 119 120 121 Survey 1 Survey 2 Survey 3 Survey 1 Survey 2 Survey 3
  • 13. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 13/55 Challenges: Changes in Operating Conditions Tie 112 113 114 115 116 117 118 119 120 121 Survey 1 Survey 2 Survey 3 Survey 1 Survey 2 Survey 3
  • 14. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 14/55 Challenges: Changes in Operating Conditions (II) Tie 76 77 78 79 80 81 82 83 84 85 Survey 1 Survey 3 Survey 1 Survey 3
  • 15. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 15/55 Challenges: Changes in Operating Conditions (III) Tie 996 997 998 999 1000 1001 1002 1003 1004 1005 Survey 1 Survey 2 Survey 3 Survey 1 Survey 2 Survey 3
  • 16. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 16/55 Challenges: Changes in Operating Conditions (IV) Tie 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 Survey 1 Survey 2 Survey 3 Survey 1 Survey 2 Survey 3
  • 17. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 17/55 Anomaly Detection on Textured Images
  • 18. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 18/55 Problem Formulation Hypothesis testing problem. H0: Homogeneous isotropic texture. H1: Localized anomaly (texture discontinuity, edge, ...). Possible texture inference approaches: Discriminative: extract features → train classifier Generative: fit model → measure goodness of fit vs
  • 19. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 19/55 Image Model Superposition of curvilinear component over background texture. x = xc + xt
  • 20. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 20/55 Inference Problem Image decomposition into underlying components. xc = Φ1ac xt = Φ2at (ˆac, ˆat) = arg min ac ,at λ ac 1 + λ at 1 + 1 2 x − Φ1ac − Φ2at 2 2
  • 21. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 21/55 Iterative Shrinkage Algorithm Input: Initialization: Initialize and set and and repeat: 1.  Update the estimate of and as 2.  Update the residual as 3.  Update the shrinkage parameter as until: stopping criterion is satisfied Output: The two representation vectors and .
  • 22. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 22/55 Separation Algorithm Iteration 1 Iteration 3 Iteration 5 Iteration 7
  • 23. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 23/55 Separation Algorithm (a) (b) (c) (d)Image   Cracks component   Texture component   Ground Truth  
  • 24. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 24/55 Detection Results (simple threshold) 10 −5 10 −4 10 −3 10 −2 10 −1 10 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 False positive rate Truepositiverate Shearlet−C Shearlet−I Intensity Canny 10 −5 10 −4 10 −3 10 −2 10 −1 10 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 False positive rate Truepositiverate Shearlet−C Shearlet−I Intensity Canny 10 −5 10 −4 10 −3 10 −2 10 −1 10 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 False positive rate Truepositiverate Shearlet−C Shearlet−I Intensity Canny (a) (b) (c) (d) Shearlet-C   Shearlet-I   Intensity   Canny   Method AUC F1 score Shearlet-C Shearlet-I Intensity Canny 0.99915 0.99908 0.99874 0.94457 0.79916 0.65810 0.73188 0.27752 Shearlet-C Shearlet-I Intensity Canny 0.99999 0.99557 0.99037 0.99043 0.98841 0.62705 0.55404 0.81787 Shearlet-C Shearlet-I Intensity Canny 0.99934 0.99977 0.99650 0.96248 0.76418 0.82353 0.45992 0.19436
  • 25. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 25/55 CUDA-based Implementation The Discrete Shearlet Transform (DST) and the Wavelet Transform (DWT) are highly parallelizable. DST steps: Laplacian Pyramidal Decomposition Convolution with directional filters using 2D FFT DWT steps: Convolution along rows: x → LL LH Convolution along columns: LL LH → LL LH HL HH
  • 26. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 26/55 GPU Acceleration Results 1 2 4 8 16 32 64 C1060 C2050 GTX480GTX690 K20c 10 2 10 3 10 4 10 5 Number of CPU cores/GPU model time(msec) 2D Shearlet compute times single precision double precision Time to denoise a 512×512 image via shearlet shrinkage 1 2 4 8 16 32 64 C1060 C2050 GTX480GTX690 K20c 10 0 10 1 10 2 10 3 Number of CPU cores/GPU model time(seconds) 3D Shearlet compute times single precision double precision Time to denoise a 192×192×192 video via 3D shearlet shrinkage
  • 27. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 27/55 Image Dictionaries for Anomaly Detection
  • 28. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 28/55 Problem Formulation Hypothesis testing problem. H0: Normal component. H1: Anomalous (broken/missing) component. missing   (background)   broken   PR  clip   e  clip   fastclip   c  clip   j  clip   Level  1   Level  2   Level  3   Defec,ve   Non-­‐defec,ve   Level  4   good   fastener   ROI  
  • 29. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 29/55 Composite Hypothesis Testing Hypothesis testing problem: H0: x ∈ G H1: x ∈ {B ∪ M} where G = {good (non-defective) configurations} B = {broken configurations} M = {background (missing) configurations} However, data is highly unbalanced. For each candidate region, P(x ∈ B) << P(x ∈ G) << P(x ∈ M) Solution: Partition the configuration space into compact subsets: →
  • 30. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 30/55 3-Way Max-margin Formulation For each class c ∈ C, C ≡ {G ∪ B}, we train a pair of binary classifiers, bc (c vs M), and fc (c vs Cc) Given a set of candidate regions X, we define the score for an image as S = min(Sb, Sm) = min − max c∈B max x∈X fc · x, max c∈G max x∈X [bc · x + min(0, fc · x)] Hypothesis testing: H0 : S > τ H1 : S ≤ τ
  • 31. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 31/55 Classification Results Detected Class TrueClass M 1863 152 6 1 B0 40 646 B2 1 27 G0 1 383 G1 272 G2 82 10 G3 2 164 G4 2 115 G5 3 1 34
  • 32. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 32/55 Detection Results 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 PD PFA proposed method Int. norm. OT−MACH HOG OT−MACH ROC curve using 5-fold cross-validation on the training set 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 PD PFA proposed (clear ties) proposed (clear ties + sw) proposed (all ties) ROC curve on the 85-mile testing set
  • 33. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 33/55 Deep Learning Methods for Anomaly Detection
  • 34. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 34/55 Background Deep learning has become mainstream. State-of-the-art results in many applications. applicable to many problems: classification, recognition, regression, segmentation, ... in many modalities: image, video, speech, biometrics, ... Choice of frameworks for quick prototyping (Cuda-Convnet2, Caffe, Torch7, Theano, TensorFlow, and more). With enough training data, a carefully chosen deep architecture can outperform a hand-engineered system. Still, hard to debug when it does not work. difficult to explain why it works.
  • 35. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 35/55 Deep Multi-Task Learning Why deep learning? Shared representations: more efficient, and more compact. Can learn arbitrarily complex transfer functions. No need to design feature descriptors. Why multi-task? Limited number of examples of anomalies (one-shot learning). Features learned for one task can be reused for other tasks, but it is better to learn jointly to ensure acceptable performance on both tasks. Multi-task objective Single task objective Φ = T t=1 λt Nt i=1 Et (f (xti ), yti ) Φt = Nt i=1 Et (ft(xti ), yti ) , t ∈ {1 . . . T}
  • 36. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 36/55 Material Identification Task We pose track inspection as a semantic segmentation problem and train 10 relevant material classes. ballast wood rough medium smooth concrete concrete concrete crumbling chipped lubricator rail fastener concrete concrete Training is done on representative image patches. Deployed network runs on the whole image with trained parameters.
  • 37. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 37/55 Network Architecture 9   9   1   48   64   256   10   stride  2   pooling   5   5   5   5   1   1   relu   pooling   relu   pooling   input   conv1   conv2   conv3   conv4   Single Task (Material Classification) 9   9   1   48   64   256   10   stride  2   pooling   5   5   5   5   1   1   relu   pooling   relu   drop   pooling   input   conv1   conv2   conv3   conv4_t   512   conv4_f   5   5   5   1   1   conv5_f   Shared  network   Material  net   Fasteners   Shared  features   relu   drop   pooling   Training   Batch  size   128   Training   Batch  size   16   Fastener   Mul8class   32   conv5_fastVsBg   Fastener   Binary   SVMs   conv5_fastVsFast   Training   Batch  size   32  x  1   Multi-Task (Fastener Detection + Material Classification)
  • 38. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 38/55 Experimental Results: Material Identification 0.47 0.15 0.31 0.10 1.05 0.56 0.17 0.07 0.31 0.34 0.19 0.31 0.11 0.15 0.64 0.19 0.45 0.21 0.14 0.25 4.86 0.17 1.79 0.81 0.25 0.05 0.02 0.21 0.36 4.73 3.64 0.21 0.80 0.12 0.13 0.12 0.07 0.39 0.57 6.13 0.02 0.33 0.00 0.03 0.02 1.50 0.28 1.08 0.26 0.04 5.03 0.00 0.03 0.06 0.20 0.06 0.46 0.73 0.38 2.18 0.00 0.00 0.01 0.22 0.18 0.49 0.13 0.00 0.00 0.00 0.98 0.15 0.07 0.21 0.03 0.13 0.01 0.01 0.03 1.48 0.07 0.20 0.25 0.01 0.47 0.01 0.08 0.04 0.08 0.15 97.06 97.56 92.28 86.67 95.53 94.51 91.75 97.71 98.11 99.02 Material identification Detected class ballast wood rough medium smooth crumbled chip lubricator rail fastener Trueclass ballast wood rough concrete medium concrete smooth concrete crumbled chip lubricator rail fastener 0 10 20 30 40 50 60 70 80 90 100 0.49 0.19 0.29 0.08 2.08 0.87 0.22 0.04 0.32 0.28 0.22 0.43 0.12 0.29 0.78 0.20 0.38 0.19 0.13 0.25 5.21 0.13 2.52 1.49 0.20 0.03 0.03 0.22 0.44 5.09 4.28 0.25 1.82 0.11 0.12 0.21 0.01 0.38 0.52 5.94 0.17 0.78 0.00 0.02 0.03 1.82 0.32 1.49 0.28 0.02 10.55 0.02 0.02 0.04 0.20 0.11 0.74 0.98 0.46 4.75 0.01 0.00 0.00 0.22 0.21 0.67 0.17 0.00 0.05 0.00 1.06 0.16 0.04 0.34 0.01 0.14 0.03 0.00 0.00 1.55 0.10 0.20 0.45 0.02 0.76 0.01 0.06 0.04 0.05 0.17 96.86 97.01 91.05 85.81 94.87 89.84 83.67 97.65 98.17 98.91 Material identification Detected class ballast wood rough medium smooth crumbled chip lubricator rail fastener Trueclass ballast wood rough concrete medium concrete smooth concrete crumbled chip lubricator rail fastener 0 10 20 30 40 50 60 70 80 90 100 Multi-task CNN Single task CNN 1.46 0.88 1.01 0.80 5.03 1.42 4.57 0.34 0.11 0.68 0.16 0.49 0.68 0.30 0.94 0.63 2.80 1.49 0.83 0.34 11.60 1.34 3.34 0.15 8.91 0.97 0.10 0.82 0.81 10.71 9.00 0.91 0.60 6.37 2.50 0.31 0.72 2.40 1.30 9.68 0.74 0.67 4.64 0.37 1.04 4.13 0.54 2.51 0.66 0.42 0.32 16.47 0.02 0.01 1.49 2.07 0.12 1.00 0.73 0.53 0.85 0.22 0.42 2.34 0.58 5.43 3.93 2.16 11.84 0.29 0.02 0.02 0.26 4.46 1.03 1.80 0.26 0.03 0.20 0.00 2.86 0.11 1.08 0.06 0.21 0.43 0.01 0.21 0.03 2.37 88.62 86.26 77.80 69.62 84.18 77.27 95.20 57.52 90.39 93.64 Material identification Detected class ballast wood rough medium smooth crumbled chip lubricator rail fastener Trueclass ballast wood rough concrete medium concrete smooth concrete crumbled chip lubricator rail fastener 0 10 20 30 40 50 60 70 80 90 100 1.52 1.02 0.93 0.87 5.29 1.25 3.97 0.49 0.12 0.54 0.13 0.35 0.09 0.18 0.46 0.26 0.66 1.11 1.40 0.26 12.15 1.04 4.03 0.05 8.85 1.07 0.07 1.10 0.74 10.12 0.59 0.82 0.33 5.48 2.40 0.22 1.13 0.78 1.13 9.80 0.57 0.53 4.19 0.40 0.53 5.63 0.86 2.11 0.58 0.42 0.38 17.99 0.03 0.02 1.18 1.64 0.05 0.78 0.41 0.57 0.66 0.20 0.39 3.50 0.55 4.06 3.50 2.57 14.74 0.28 0.02 0.02 0.38 1.60 1.12 1.50 0.29 0.12 0.20 0.00 3.02 0.12 0.99 0.06 0.20 0.18 0.01 0.28 0.00 2.35 85.02 91.06 80.20 70.21 93.55 73.67 96.24 58.60 92.38 94.50 Material identification Detected class ballast wood rough medium smooth crumbled chip lubricator rail fastener Trueclass ballast wood rough concrete medium concrete smooth concrete crumbled chip lubricator rail fastener 0 10 20 30 40 50 60 70 80 90 100 2.12 2.28 1.01 0.19 4.59 2.32 7.14 2.07 0.86 0.85 0.20 0.49 0.48 0.38 1.52 0.65 0.40 2.09 3.75 0.66 17.34 1.53 13.00 0.19 16.14 1.34 0.26 1.75 1.18 14.51 13.42 3.35 0.59 8.95 0.69 0.53 0.29 1.41 1.20 11.31 0.43 0.39 1.46 0.07 0.31 4.59 1.14 6.02 2.04 0.39 0.39 16.82 0.15 0.04 2.28 3.37 0.16 1.08 0.37 0.31 1.17 1.09 0.98 7.07 1.18 6.02 3.26 0.64 15.62 0.68 47.35 0.12 0.11 1.45 0.75 0.93 0.38 0.02 0.10 0.58 0.06 3.40 0.79 5.78 0.41 0.67 0.20 0.02 0.97 0.25 4.17 77.18 82.41 68.27 62.42 82.76 62.20 92.37 89.90 91.42 Material identification Detected class ballast wood rough medium smooth crumbled chip lubricator rail fastener Trueclass ballast wood rough concrete medium concrete smooth concrete crumbled chip lubricator rail fastener 0 10 20 30 40 50 60 70 80 90 100 LBP-HF with FLANN LBPu2 8,1 with FLANN Gabor with FLANN
  • 39. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 39/55 Experimental Results: Material Identification Patch size: 80 × 80 pixels. Cross-validation set: 500,000 samples (5 splits). Method Accuracy Deep CNN MTL 3 95.02% Deep CNN MTL 2 93.60% Deep CNN STL 93.35% LBP-HF with FLANN 82.05% LBPu2 8,1 with FLANN 82.70% Gabor with FLANN 75.63%
  • 40. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 40/55 Tie Assessment Procedure Compute scores at each site for each anomalous class b ∈ B: Sb(x, y) = max i /∈B Φi (x, y) − Φb(x, y) (1) Image score calculation: Sb = 1 β − α β α F−1 (t)dt (2) where F−1 refers to the t sample quantile calculated from all scores Sb(x, y) in the image. Report alarm b if Sb > τb.
  • 41. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 41/55 Experimental Results: Tie Assessment False Positives per Mile 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 DetectionRate 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Crumbling tie detection overall (STL) ≥ 10% (STL) ≥ 20% (STL) ≥ 30% (STL) ≥ 40% (STL) ≥ 50% (STL) ≥ 60% (STL) ≥ 70% (STL) overall (MTL) ≥ 10% (MTL) ≥ 20% (MTL) ≥ 30% (MTL) ≥ 40% (MTL) ≥ 50% (MTL) ≥ 60% (MTL) ≥ 70% (MTL) ROC curve for detecting crumbling tie conditions False Positives per Mile 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 DetectionRate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Chipped tie detection overall (STL) ≥ 10% (STL) ≥ 20% (STL) ≥ 30% (STL) ≥ 40% (STL) ≥ 50% (STL) ≥ 60% (STL) ≥ 70% (STL) overall (MTL) ≥ 10% (MTL) ≥ 20% (MTL) ≥ 30% (MTL) ≥ 40% (MTL) ≥ 50% (MTL) ≥ 60% (MTL) ≥ 70% (MTL) ROC curve for detecting chip tie conditions
  • 42. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 42/55 Experimental Results: Defective Fastener Detection PFA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 PD 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 proposed method WACV 2015 HOG OT-MACH HOG DAG SVM HOG 1-vs-1 vote SVM Int. norm. OT-MACH PFA 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 PD 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 proposed method WACV 2015 HOG OT-MACH HOG DAG SVM HOG 1-vs-1 vote SVM Int. norm. OT-MACH Cross-validation defective fastener detection Detail PFA 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 PD 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 proposed method (clear ties) proposed method (clear ties + sw) proposed method (all ties) WACV 2015 (clear ties) WACV 2015 (clear ties + sw) WACV 2015 (all ties) Cross-validation defective fastener detection One defect missed at PFA=10−3
  • 43. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 43/55 Experimental Results: Summary Subset Total # Bad PD PFA MTL STL MTL STL clear ties 200,763 1,037 99.90% 98.36% 0.25% 0.38% clear + sw. 201,856 1,045 99.90% 97.99% 0.61% 0.71% all ties 203,287 1,052 99.90% 98.00% 1.01% 1.23%
  • 44. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 44/55 Extreme Value Theory for Adaptive Anomaly Detection
  • 45. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 45/55 Extreme Value Theory for Adaptive Anomaly Detection (I) Theorem 1 (Fisher-Tippet-Gnedenko): Let X1, . . . , Xn be i.i.d. samples from an unknown distribution F and Mn = max(X1, . . . , Xn). If there exist a sequence of pairs of real numbers (an, bn) such that an > 0 for all n and a distribution Λ(x) such that lim n→∞ P Mn − bn an ≤ x = Λ(x) for all x at which Λ(x) is continuous, then the limit distribution Λ(x) belongs to either the Gumbel, the Fr´echet or the Weibull family. These three families can be grouped into the Generalized Extreme Value Distribution (GEVD) Λ(x; µ, σ, ξ) = exp − 1 + ξ x − µ σ −1/ξ .
  • 46. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 46/55 Extreme Value Theory for Adaptive Anomaly Detection (II) Theorem 2 (Pickands): Given an upper threshold u, we select the Nn samples that exceed such threshold and define the excesses Y1, . . . , YNn as Yi = Xj − u, where i is the excess index and j is the index of the original sample. The probability of exceeding the threshold is λ = 1 − F(u). For sufficiently large u, the upper tail distribution function Fu(y) = F(u+y)−F(u) 1−F(u) can be approximated by a Generalized Pareto Distribution (GPD) G(y; σ, ξ) = 1 − 1 + ξy σ −1/ξ + , y > 0.
  • 47. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 47/55 Extreme Value Theory for Adaptive Anomaly Detection (III) EVT-Based Adaptive Thresholding Algorithm (Broadwater and Chellappa, TSP 2010): 1 Set initial threshold u (for example u = F−1 x (0.95)) 2 Select all samples greater than u 3 Fit GPD by maximizing the log-likelihood equation ˆσ, ˆξ = argmax σ,ξ g(σ, ξ; X) = argmax σ,ξ −n log σ − 1 + ξ ξ n i=1 log 1 + ξxi σ 4 Find threshold for desired FAR α0 > u as tα = u + ˆσ ˆξ Nα0 n −ˆξ − 1
  • 48. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 48/55 Statistical Model Assumptions: Under H0 (normal), conditions on Theorem 2 hold, so Fu(y) ≈ G(y; σ, ξ) for u = F−1(0.95), ξ ≈ 0, i.e. fu(y) ≈ e−λy (hypothesized on the basis of sparsity promoting prior induced by 1 hinge loss), Fu is time-variant and λ is drawn from the Gamma conjugate prior π(λ; α, β) = βα Γ(α)λα−1e−βλ with slowly varying α and β. Under H1 (anomalous) this model does not hold.
  • 49. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 49/55 Training Procedure Algorithm 1 EVT training algorithm 1: procedure TRAIN(T , pu, w0) 2: n 0, s 0 . Initialize sufficient statistics 3: for all (~x, ~y) 2 T do . Training set T contains ~x scores, ~y labels 4: ~g {xi | yi = 0} . Select negative samples 5: u u | #{gi > u} = #~g pu . Find upper threshold 6: ~t {gi | gi > u} - u . Extract upper tail 7: n n + #~t . Update counts 8: s s + P ~t . Update sum 9: end for 10: ↵0 1 + s 11: 0 w0 s n 12: return ↵0, 0 . Parameters of the Gamma prior 13: end procedure
  • 50. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 50/55 Testing Procedure Algorithm 2 EVT adaptive thresholding algorithm 1: procedure ADAPTSCORES(~x, ↵0, 0, pu, pf , w1, L, na) 2: ba0 0 ↵0 1 . MLE in training set 3: ~y sort desc(~x) . Sort scores in descending order 4: k #~y pu 5: for i 1, na do . Training set T contains ~x scores, ~y labels 6: u yi+k . Find upper threshold 7: ~t {yi, . . . , yi+k} u . Extract upper tail 8: Dn,i = supx bGn(x) G(x) . Compute KS statistic 9: end for 10: ˆi mini{Dn,i} . Estimate number of outliers 11: u0 yˆi . Set outlier rejection threshold 12: ~t {yˆi, . . . , yˆi+k} u . Extract upper tail 13: ↵1 ↵0 + P ~t 14: 1 0 + w1 P ~t #~t 15: for i 1, n do 16: ~w ~xi (L 1)/2:i+(L 1)/2 . Window centered at sample xi 17: u u | #{wi > u} = #~w pu . Find upper threshold 18: ~t {wi | wi > u} - u . Extract upper tail 19: ↵ ↵1 + #~t . Posterior 20: 1 + P ~t . Posterior 21: ba ↵ 1 . MAP estimate 22: yi xi + u ba log(pf /pu) . Adapt score 23: end for 24: return ~y . Adapted scores 25: end procedure
  • 51. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 51/55 Experimental Results: Defective Fastener Detection Clear ties subset False positive rate 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 Truepositiverate 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 MTL + EVT (clear ties) MTL (clear ties) WACV 2015 (clear ties) Clear with with switches subset All ties False positive rate 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 Truepositiverate 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 MTL + EVT (clear + sw) MTL (clear + sw) WACV 2015 (clear + sw) False positive rate 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 Truepositiverate 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 MTL + EVT (all ties) MTL (all ties) WACV 2015 (all ties)
  • 52. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 52/55 Experimental Results: Summary Condition PFA MTL + EVT MTL STL Fastener 0.1% 99.91% 99.91% 98.41% (only clear ties) 0.02% 97.20% 96.74% 93.19% Fastener 0.1% 99.54% 98.43% 94.54% (clear + switch) 0.02% 93.80% 89.35% 88.70% Fastener 0.1% 99.26% 95.40% 87.38% (all ties) 0.02% 93.47% 87.76% –
  • 53. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 53/55 Conclusions and Future Work
  • 54. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 54/55 Summary Anomaly detection on images can be solved by modeling the normal images, the anomalous ones, or both. Enablers: Availability of large amounts of training data. Transfer learning techniques (i.e. multi-task). Domain-specific modeling. Approaches: Analysis of image components (shearlets, wavelets, dictionaries). Learning features for normal/abnormal elements. Statistical analysis (Extreme Value Theory). Application domains: Transportation (Railways, roads, bridges, signals, vehicles). Medical (PET/SPECT/CT/ultrasound images). Other (Industrial automation, security, remote sensing).
  • 55. Anomaly Detection in Noisy Images Introduction Background Shearlets Dictionaries Deep Learning EVT Conclusions References 55/55 References X. Gibert, V.M. Patel, R. Chellappa. Deep multi-task learning for railway track inspection. submitted to IEEE Trans. on ITS (2015) X. Gibert, V.M. Patel, R. Chellappa. Sequential score adaptation with extreme value theory for robust railway track inspection. IEEE-ICCV Workshop on CVRSUAD (2015) X. Gibert, V.M. Patel, R. Chellappa. Material classification and semantic segmentation of railway track images with deep convolutional neural networks. IEEE Int. Conf. on Image Processing (2015) R. Chellappa, X. Gibert, V.M. Patel. Robust anomaly detection for vision-based inspection of railway components. DOT/FRA/ORD-15/23 Tech. Report (2015) X. Gibert, V.M. Patel, R. Chellappa. Robust fastener detection for autonomous visual track inspection. IEEE Winter Conf. on Appl. of CV (2015) X. Gibert, V.M. Patel, D. Labate, R. Chellappa. Discrete shearlet transform on GPU with applications in anomaly detection and denoising. EURASIP Journal on ASP (2014) K. Chodnicki, X. Gibert, J. Tian, F. Arrate, R. Chellappa, T. Dickfeld, V. Dilsizian, M. Smith. Point-specific matching of cardiac electrophysiological voltage and SPECT perfusion measurements for myocardial tissue characterization. Journal of Nuclear Medicine 55 (suppl 1), 602 (2014) M. Smith, X. Gibert, F. Arrate, R. Chellappa, K. Chodnicki, J. Tian, T. Dickfeld, V. Dilsizian. CardioViewer: A novel modular software tool for integrating cardiac electrophysiology voltage measurements and PET/SPECT data. IEEE Medical Imaging Conference, Seattle, Washington (2014)