Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Lehtomäki ville

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Nächste SlideShare
FSP-Be - NETS2011
FSP-Be - NETS2011
Wird geladen in …3
×

Hier ansehen

1 von 44 Anzeige
Anzeige

Weitere Verwandte Inhalte

Ähnlich wie Lehtomäki ville (13)

Anzeige

Aktuellste (20)

Lehtomäki ville

  1. 1. Ice Induced Vibration Measurements On MW scale wind turbines Presented by: Ville Lehtomäki, VTT Matthew Wadham-Gagnon, TCE 2013-02-12 WinterWind 2013
  2. 2. Co-authors V. Lehtomäki, VTT, Finland S. Rissanen, VTT, Finland T. Karlsson, VTT , Finland M. Wadham-Gagnon, TCE, QC, Canada D. Bolduc, TCE , QC, Canada B. Boucher, TCE , QC, Canada E. Bechoefer, NRG, VT, USA 2
  3. 3. Content • Motivation • Case Canada • Infrastructure • Icing Event no1: glaze • Icing Event no2: rime • Case Finland • Site & measurement system description • Ice detection: Finding icing cases from various databases • Icing Event no3: light rime • Loads on blades & tower • Conclusions • Future work 3
  4. 4. Motivation • Currently 60 GW of wind energy in cold and icing climate (CIC) [3] • Global wind energy in CIC ≈ 3 x global offshore! [5] • NREL estimate: 50% of US wind fleet in CIC by 2030 [4] • Problem of production losses caused by iced blades “well known”. • BUT no clear idea, how turbine lifetime is affected by iced blades. • Thesis: Are premature failure of main components e.g. gearboxes & towers resulting to “hidden” financial penalties BIGGER than production losses? • ULTIMATE GOAL: Increase knowledge & improve wind energy reliability in CIC. 4
  5. 5. Work presented here • Preliminary analysis to feed in to: • IcedBlades – Research consortium with European partners to assess the effect of ice induced vibration on fatigue loads • TC88 Cold Climate Sub Committee to include ice load case in next edition of IEC61400-1 5
  6. 6. Main questions to be answered: 1. Does icing of blades increase vibrations and loads? 2. Which turbine components are most affected? 3. What causes increased loads? 6
  7. 7. Case Canada 7
  8. 8. TCE infrastructure location TCE R&D wind farm Over 900MW in operation 8
  9. 9. TCE R&D Wind Farm • Two 2.05 MW Repower MM92 wind turbines • Located in Riviere-au- Renard, Québec, Canada • Icing & complex terrain • Commissionned in March 2010 • Research, development and technology transfer projects involving northern climates and complex terrain. 9 www.eolien.qc.ca
  10. 10. TCE 126m Met Mast Compliant with CSA-S37-01 (DLC: 40 mm of ice and 57 m/s) 10
  11. 11. Infrastructure Topographic Layout 11
  12. 12. Health Monitoring System • Text 12
  13. 13. Vibration Data • Measurement Campaign running since December 2011 • 2-axis sensor to measure nacelle accelerations • Nacelle X (fore and aft) & Nacelle Y (side to side) 13
  14. 14. Vibration Data • Measurement Campaign running since December 2011 • 2-axis sensor to measure nacelle accelerations • Nacelle X (fore and aft) & Nacelle Y (side to side) • FFT1 = Normalised magnitude of first tower eigenvalue from FFT • FFT1 data Normalised with respect to wind speed (WS) and turbulence intensity (TI) BIN matrix as follows: 14
  15. 15. Vibration Data 1.4 1.2 1 0.8 0.6 0.4 0.2 0 15
  16. 16. Vibration Data • Possibility of ice induced vibration when y-axis value exceeds 1 1.4 1.2 1 0.8 0.6 0.4 0.2 0 16
  17. 17. Vibration Data • Not all values that exceed 1 are due to icing 1.4 1.2 1 0.8 0.6 0.4 0.2 0 17
  18. 18. Icing Event example 1 (IE1) - Glaze • Freezing Rain 2012-01-14 ~5mm of glaze 2012-01-16 18
  19. 19. IE1 – Meteorological Icing Meteorological icing 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 Event type Method Duration Meteorological Icing Ice sensor ~ 6 hours (15 hours) 19
  20. 20. IE1 – Instrumental Icing Meteorological icing Instr. Icing 25 20 15 WS (m/s) 10 5 0 WS1 WS2 Event type Method Duration Meteorological Icing Ice sensor ~ 6 hours (15 hours) Instrumental Icing Heat/Unheat Anemometers ~ 65 hours 20
  21. 21. IE1 – Production Loss Meteorological icing Instr. Icing Prod. Loss 2 500 2 000 Power (kW) 1 500 1 000 500 0 Power CPC Event type Method Duration Meteorological Icing Ice sensor ~ 6 hours (15 hours) Instrumental Icing Heat/Unheat Anemometers ~ 65 hours Production loss Actual vs expected power ~ (1.5 hours) 21
  22. 22. IE1 – Nacelle Y Meteorological icing Instr. Icing Prod. Loss Ice induced Vibration 6 5 4 3 2 1 0 Event type Method Duration Meteorological Icing Ice sensor ~ 6 hours (15 hours) Instrumental Icing Heat/Unheat Anemometers ~ 65 hours Production loss Actual vs expected power ~ 1.5 hours Ice Induced Vibration Nacelle X and Y – FFT1 ice index ~ 5 hours (50 hours) 22
  23. 23. IE1 – Nacelle Y Meteorological icing Instr. Icing Prod. Loss Ice induced Vibration 6 5 4 Ice Shed? 3 2 1 0 Event type Method Duration Meteorological Icing Ice sensor ~ 6 hours (15 hours) Instrumental Icing Heat/Unheat Anemometers ~ 65 hours Production loss Actual vs expected power ~ 1.5 hours Ice Induced Vibration Nacelle X and Y – FFT1 ice index ~ 5 hours (50 hours) 23
  24. 24. IE1 – Nacelle X Meteorological icing Instr. Icing Prod. Loss Ice induced Vibration 4 3.5 3 2.5 2 1.5 1 0.5 0 Event type Method Duration Meteorological Icing Ice sensor ~ 6 hours (15 hours) Instrumental Icing Heat/Unheat Anemometers ~ 65 hours Production loss Actual vs expected power ~ 1.5 hours Ice Induced Vibration Nacelle X and Y – FFT1 ice index ~ 5 hours (50 hours) 24
  25. 25. Icing Event example 2 (IE2) - rime Photos taken 2012/11/09 16:00 Estimated 15-20 cm of ice near tip 25
  26. 26. IE2 – Meteorological Icing Meteorological icing 10 150 125 Cloud Height (m) 5 100 Temp (oC) 75 0 50 25 -5 0 MMV2 78m T WEC1 Temp MMV2 11m Min CH Event type Method Duration Meteorological Icing Cloud Height & Temperature ~ 30 hours 26
  27. 27. IE2 – Instrumental Icing Meteorological icing Instr. Icing 35 30 25 WS (m/s) 20 15 10 5 0 WEC1 WS cup WEC1 WS heat avg Event type Method Duration Meteorological Icing Cloud Height & Temperature ~ 30 hours Instrumental Icing Heat/Unheat Anemometers ~ 60 hours 27
  28. 28. IE2 – Production Loss Meteorological icing Instr. Icing Prod. Loss 2500 2000 Power (kW) 1500 1000 500 0 WEC1 Power WEC1 CPC Event type Method Duration Meteorological Icing Cloud Height & Temperature ~ 30 hours Instrumental Icing Heat/Unheat Anemometers ~ 60 hours Production loss Actual vs expected power ~ 30 hours 28
  29. 29. IE2 – Nacelle X Meteorological icing Instr. Icing Prod. Loss Ice induced Vibration 3 2.5 2 1.5 1 0.5 0 Event type Method Duration Meteorological Icing Cloud Height & Temperature ~ 30 hours Instrumental Icing Heat/Unheat Anemometers ~ 60 hours Production loss Actual vs expected power ~ 30 hours Ice Induced Vibration Nacelle X – FFT1 ~ 30 hours 29
  30. 30. IE2 – Nacelle Y Meteorological icing Instr. Icing Prod. Loss Ice induced Vibration 1.4 1.2 1 0.8 0.6 0.4 0.2 0 Event type Method Duration Meteorological Icing Cloud Height & Temperature ~ 30 hours Instrumental Icing Heat/Unheat Anemometers ~ 60 hours Production loss Actual vs expected power ~ 30 hours Ice Induced Vibration Nacelle X – FFT1 ~ 30 hours 30
  31. 31. Case Finland 31
  32. 32. Case Finland -Site & measurement system description- • Site location: Southern Finland • MW-scale turbine (near shore) • Meas. acc. to IEC 61400-1-12 (power) & -13 (loads) • Measurement campaign: 9/2007-8/2009 • Load measurements at 50Hz • Blade#1-2 root (flap&edge) • Tower top (roll,pitch&yaw) Hub height: 100m asl Blade tip: 130m asl • Tower base (s2s&fa) Base: 30m asl • Met mast • Heated & unheated cup anemometer • No dedicated ice detectors 32
  33. 33. Baseline values • Before looking at Icing Event (IE) power production or loads, a reference non-iced dataset is need as baseline values. • Baseline values are then compared to IE values. 1. Calculate baseline (non-iced) values taking into account: • Wind speed [m/s] • Turbulence intensity [%] IEC 61400-13 • Turbine status (power production) & • Wind sector (wake or terrain effects) IEC 61400-1-12 • Temperature (>0 C) 2. Calculate relative values for IE using formula (1) (1) • If relative = 1, then IE values = baseline values. 33
  34. 34. Ice detection with multiple signals (9/2007-8/2009) Icing Event no3 34
  35. 35. Icing Event no3 (IE3): In-cloud light rime icing 48h from start to finish with Ice Warning & cold cup anemo freezing. Alarm hours 1+2: 19h 1+2 or 2+3: 19h Cold (unheated) anemo stops 35
  36. 36. IE3: Blade & tower loads 4% flap deviation between b2 & b3 result to aerodynamic imbalance of the rotor Increase in tower 80% threshold of baseline fatigue loads limits in ”grey tube” 36
  37. 37. IE3: Blade & tower loads Mean flap load Tower fore-aft fatigue decrease by 10…20% DEL increased by 5..32% Tower fore-aft mean decreased by 15..45% 37
  38. 38. Conclusions (1/3) • More reliable ice detection achieved with multiple methods. • For both rime icing cases analyzed, the duration of: • Meteorological icing ≈ cloud base height & temperature* ≈ production loss ≈ above threshold tower vibration. • Above threshold tower vibrations in: • IE1 (glaze) for 50h • IE2 (rime) for 30h • IE3 (light rime) for 14h • IE1 (glaze) led to significant increase in nacelle-X and -Y vibrations • IE2 (rime) led to significant increase in nacelle-X vibration but NO apparent vibration in nacelle-Y * www.WindPowerIcingAtlas.com, 38 online soon
  39. 39. Conclusions (2/3) • In IE1-2, tower vibrations continue at increased levels even when power production is returned to baseline levels. • Mean blade & tower loads decrease during IE3 • Tower base fatigue loads increase in IE3 * www.WindPowerIcingAtlas.com, 39 online soon
  40. 40. Conclusions (3/3) -Main takeaways- 1. Does icing of blades increase vibrations and loads? • Yes, during IE1-3. 2. Which turbine components are most affected? • Blade fatigue loads decrease, tower base fatigue loads increase. 3. What causes increased loads? • In IE3 (light rime), aerodynamic imbalance. 40
  41. 41. Future Work • More icing events need to be analyzed in order to get a thorough statistical view on the long-term impacts. • Analyse P2P, RMS and RPM data • Analyse gearbox higher speed shafts • Determine fatigue loads for other components • Replicate icing events with multi body dynamics simulation (e.g. NREL FAST and FLEX5) 41
  42. 42. Thanks, Kiitos, Tack, Merci! Åre, 9.2.2013
  43. 43. Ville Lehtomäki, M.Sc. (Tech) Matthew Wadham-Gagnon, eng, M.eng Research Scientist Project Lead Ville.Lehtomaki@vtt.fi mgagnon@eolien.qc.ca Vuorimiehentie 5, Espoo, P.O. Box 1000, FI-02044 VTT Finland 70, rue Bolduc, Gaspé (Québec) G4X 1G2 Tél. : +358 40 176 3147 Canada Tél. : +1 418 368-6162 Finnish Funding Agency for Technology and Innovation
  44. 44. References [1] Lehtomäki, V. et al., IcedBlades - Modelling of ice accretion on rotor blades in a coupled wind turbine tool, WinterWind 2012 conference, Skellefteå, Sweden [2] IEC 61400-1:2005 ed3, Wind Turbines – Part 1: Design requirements, International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland [3] IEA WIND TASK 19, EXPERT GROUP STUDY ON RECOMMENDED PRACTICES: 13. WIND ENERGY PROJECTS IN COLD CLIMATES, 1. EDITION 2011, Approved by the Executive Committee of IEA Wind May 22, 2012. [4] Baring-Gould, I. US Wind Market Overview, WinterWind 2011 conference [5] Laakso, T. et al., IEA WIND TASK 19 WIND ENERGY IN COLD CLIMATES: Cold Climate Challenges, EWEA 2011 side event, Brussels, Belgium 44

×