SlideShare ist ein Scribd-Unternehmen logo
1 von 17
Downloaden Sie, um offline zu lesen
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/323099290
Balance de masa del glaciar cubierto del Pirámide (Chile Central, 33°S)
entre 1965 y 2000 aplicando métodos geodésicos
Article · April 2013
DOI: 10.25074/07197209.5.345
CITATIONS
2
READS
33
3 authors, including:
Some of the authors of this publication are also working on these related projects:
National Geographic HJ-150R-17 “Assessing open-air localities as venues for the early peopling of Central Western Patagonia" View
project
Dinámicas humanas y ambientales durante el Holoceno en el norte de Aisén continental/Holocene human and environmental dynamics
in northern continental Aisén, Chile, South America View project
Alexander Brenning
Friedrich Schiller University Jena
135 PUBLICATIONS   2,296 CITATIONS   
SEE PROFILE
Juan Luis García
Pontifical Catholic University of Chile
28 PUBLICATIONS   92 CITATIONS   
SEE PROFILE
All content following this page was uploaded by Juan Luis García on 17 April 2018.
The user has requested enhancement of the downloaded file.
11
Balance de masa del glaciar cubierto del Pirámide
Torres, Brenning y García
Balance de masa del glaciar cubierto del Pirámide
(Chile Central, 33°S) entre 1965 y 2000 aplicando
métodos geodésicos
Mass balance of the debris-covered Pirámide glacier (Central Chile,
33°S) between 1965 and 2000 using geodetic methods
Héctor J. Torres
Instituto de Geografía, Pontificia Universidad Católica de Chile, Santiago, Chile y
Department of Geography and Environmental Management, University of Waterloo,
Waterloo, Ontario, Canada. Email: htorresmoros@gmail.com
Alexander Brenning
Department of Geography and Environmental Management, University of Waterloo,
Waterloo, Ontario, Canada. Email: brenning@uwaterloo.ca
Juan-Luis García
Instituto de Geografía, Pontificia Universidad Católica de Chile, Santiago, Chile.
Email: jgarciab@uc.cl
REVISTA DE GEOGRAFÍA ESPACIOS
Investigación	 Rev. Geogr. Espacios Vol. 3, No
5: 11-25, 2013
Resumen
Entre las consecuencias más preocupantes del calentamiento climático en Chile central figuran la pérdida de hielo
y el retroceso de los glaciares andinos debido a sus efectos sobre la disponibilidad del recurso hídrico. En este con-
texto, el comportamiento de los glaciares cubiertos ha sido poco estudiado pese a que constituyen el 14% de la
superficie glaciar en los Andes de Santiago y un porcentaje mayor de las zonas de ablación donde se concentra la
pérdida de hielo. Utilizando métodos geodésicos, este estudio calculó el balance de masa neto del glaciar del Pirá-
mide (4,6 km2
), el glaciar cubierto más grande de la cuenca del río Yeso, la cual abastece la ciudad de Santiago de
agua potable. Con el fin de obtener la diferencia en altura entre los años 1965 y 2000, se prepararon modelos digita-
les de elevación (MDE) a través de la interpolación de curvas de nivel de una carta topográfica (Instituto Geográfico
Militar, IGM) y la restitución fotogramétrica de fotografías aéreas estereoscópicas (Servicio Aerofotogramétrico de la
Fuerza Aérea, SAF). Se alcanzaron precisiones de 10,6 m (IGM) y 7,5 m (SAF) para los MDE y 12,5 m para la diferencia
entre los MDE, resultando en un margen de error de 4,0 m al 95% de confianza para la diferencia de altura promedio
en 40 puntos fijos. El descenso de altura total de -9,69 m como promedio de la superficie del glaciar equivale a un
12
Rev. Geogr. Espacios Vol. 3, No
5: 11-25, 2013
balance de masa neto anual de -0,249 m a-1
equivalente en agua (e.a.), o una pérdida de 40 millones de m3
de agua
(±40% al 95% de confianza). Ello es alrededor del 23% de la masa de hielo del glaciar del Pirámide y corresponde
a una escorrentía promedio potencial del orden de 100 l s-1
durante verano, lo que subraya la importancia de este
recurso hídrico no renovable para la disponibilidad de agua en la cuenca.
Palabras clave: Glaciar Cubierto, Balance de Masa, Cambio Climático, Andes de Santiago
Abstract
Glacier retreat and the loss of glacier ice are among the most preoccupying consequences of climate change in
central Chile due to their effects on the availability of water resources. The response of debris-covered glaciers
has received little attention in this context although debris-covered glacier surfaces comprise 14% of the total
glacier surface in the Andes of Santiago and an even larger proportion of ablation zones, in which most of the ice
loss is concentrated. This study used geodetic methods to calculate the net mass balance of the Pirámide glacier
(4.6 km2
), the largest glacier in the Yeso watershed, which supplies Chile’s capital Santiago with drinking water. In
order to obtain elevation differences between 1965 and 2000, digital elevation models (DEMs) were prepared by
interpolating contour lines from topographic maps (Instituto Geográfico Militar, IGM) and by photogrammetric
restitution of stereo pairs of aerial photographs (Servicio Aerofotogramétrico de la Fuerza Aérea, SAF). Precisions
of 10.6 m (IGM) and 7.5 m (SAF) were achieved for the individual DEMs, and 12.5 m for the difference between the
DEMs, resulting in a 4.0 m margin of error at the 95% confidence level for the mean elevation difference of 40 fixed
points.The elevation change of -9.69 m on average of the glacier surface corresponds to a net annual mass balance
of -0.249 m a-1
water equivalent (w.e.), or an ice loss of 40 millones de m3
w.e. (±40% with 95% confidence). This is
around 23% of the total water equivalent of the Pirámide glacier and equals a potential average streamflow on the
order of 100 l s-1
during summer, which underlines the importance of this non-renewable water resource for water
availability in the watershed.
Keywords: Debris-Covered Glacier, Glacier Mass Balance, Climate Change, Andes of Santiago
Introducción
A nivel mundial como también en el contex-
to andino el retroceso y la preservación de los
glaciares han alcanzado una gran importancia
en el debate académico y político relacionado
con el cambio climático antropogénico y las
actividades antrópicas en alta montaña (Oer-
lemans, 2001; Brenning & Azócar, 2010). Los
glaciares en climas semiáridos con un período
estival seco son de particular interés debido
a su importancia crítica como contribuyentes
a la escorrentía de los ríos durante los meses
más calurosos, especialmente en años de se-
quía (Peña & Nazarala 1987; Favier et al., 2009).
Los glaciares cubiertos con detritos, en este
contexto, juegan un papel muy particular y se
comportan de forma distinta a los glaciares no
cubiertos, “blancos” (Scherler et al., 2011). Por
un lado, su cubierta detrítica reduce las tasas
de fusión de hielo, reduciendo su aporte esti-
val (Mattson et al., 1993; Mattson, 2000). Ello
extiende la posible“vida útil”de estos reservo-
rios naturales de agua como fuente estacional,
renovable, y de largo plazo, no renovable en un
contexto de cambio climático. Por el otro lado,
la reacción de los glaciares cubierto a cambios
climáticos puede ser no lineal al abrirse de-
presiones por fusión de hielo que exponen el
núcleo de hielo a las temperaturas exteriores
(Schomacker, 2008; Bodin et al., 2010).
Al mismo tiempo se complica el monitoreo
o seguimiento de la pérdida de masa de los
glaciares cubiertos dado que esta pérdida se
13
Balance de masa del glaciar cubierto del Pirámide
Torres, Brenning y García
puede limitar a un descenso vertical de la su-
perficie del glaciar sin ningún retroceso frontal,
y/o al retroceso de los acantilados de hielo de
las depresiones termokársticas que se encuen-
tran dentro del glaciar (Schomacker, 2008;
Bodin et al., 2010). Por lo tanto, el retroceso
frontal y/o cambio de superficie de glaciares,
que se aplica frecuentemente como indicador
más simple del balance de masa negativo de
los glaciares‘blancos’(Rivera et al., 2000; Oerle-
mans, 2001), no se puede aplicar a los glaciares
cubiertos de detritos, y consecuentemente se
requiere de mediciones del balance de masa
de estos glaciares (Scherler et al., 2011).
Este trabajo es uno de los primeros en aplicar
el método geodésico para la medición del ba-
lance de masa de glaciares cubiertos en la cor-
dillera andina, donde los registros históricos
cartográficos y de teledetección de la topo-
grafía todavía son limitados (Le Quesne et al.,
2009; Bodin et al., 2010). Específicamente, se
reconstruyó el cambio vertical en la topografía
del glaciar del Pirámide, ubicado en los Andes
de Santiago, entre los años 1965 y 2000 me-
diante el análisis fotogramétrico de fotografías
aéreas del año 2000 y la interpolación de cur-
vas de nivel de cartas topográficas correspon-
dientes al año 1965. Se evaluará la precisión
de estas estimaciones y se analizará la relación
entre las tasas de cambio vertical y su contexto
geomorfológico y glaciológico, junto con en-
tregar una estimación del aporte hidrológico
que resulta de la pérdida de masa observada.
Área de estudio
El área de estudio se ubica en los Andes de
Santiago en Chile central, una zona donde la
escorrentía generada por los glaciares y per-
mafrost constituye la principal fuente de agua
potable para Santiago durante los meses es-
tivales secos (Peña & Nazarala, 1987). La zona
registra una precipitación promedio anual de
524 mm en la estación meteorológica más
cercana, Embalse El Yeso (2.475 msnm), y la
isoterma de 0°C de la temperatura media
anual se sitúa, a escala regional, alrededor de
los 3.600 msnm (Carrasco et al., 2005; Bodin et
al., 2010). El cambio climático se manifiesta en
la zona con un calentamiento significativo de
alrededor de 1-2°C durante la mayor parte del
siglo XX (Rosenblüth et al., 1997), con una tasa
acelerada de +0,28°C por década a partir de
un cambio abrupto que ocurrió en 1976/1977
y que también se registró en Embalse El Yeso
(Falvey & Garreaud 2009; Bodin et al., 2010).
Se estima que el 14% de la superficie total
de glaciares en la cordillera de Santiago está
cubierto de detritos y presenta fenómenos de
termokarst (Brenning, 2005).
Un número creciente de estudios ha investi-
gado los balances de masa y las variaciones
frontales de los glaciares de Chile Central, con-
centrándose principalmente en los glaciares
no cubiertos. En el caso del glaciar Echaurren
Norte, el glaciar (no cubierto) mejor estudiado
de la zona, la línea de equilibrio se sitúa en pro-
medio a los 3.800 msnm, con fuertes variacio-
nes interanuales principalmente en respuesta
a las variaciones en precipitación asociadas al
fenómeno de El Niño (Escobar et al., 1995). Las
14
Rev. Geogr. Espacios Vol. 3, No
5: 11-25, 2013
mediciones existentes de balances de masa
en glaciares no cubiertos indican pérdidas de
hielo del orden de 0,5 m equivalente en agua
(e.a.) por año (Tabla 1), lo que es consistente
con la observación de variaciones frontales
predominantemente negativas de los glacia-
res en la cordillera chilena (Rivera et al., 2000).
Ello contrasta, sin embargo, con una pérdida
mucho menor, si bien también significativa,
de hielo en el glaciar principalmente cubierto
de Punta Negra, con un balance de masa de
-0,05 m e.a. por año (Bodin et al., 2010). Este
glaciar ha mostrado una tendencia a aumentar
su área cubierta y reducir su superficie no cu-
bierta sin cambiar su posición frontal, la cual se
caracteriza por una transición hacia un glaciar
rocoso morrénico (Bodin et al., 2010).
El glaciar del Pirámide (33°36’LS, 69°54’LW) es
uno de varios sistemas de glaciares parcial o
completamente cubiertos que son caracterís-
ticos de la criósfera de esta zona, junto con los
muy numerosos pero más pequeños glaciares
rocosos (Brenning, 2005; Bodin et al., 2010).
Este glaciar se sitúa en las cabeceras del río
Yeso, aguas arriba del Embalse El Yeso, el cual
tiene un volumen promedio de ~180 millones
de m3
(Brenning & Azócar, 2010). Al Este del
glaciar se encuentra el cordón fronterizo con
Argentina, y por el lado Norte, una pared mon-
Tabla 1:
Listado de mediciones de balance de masa promedio anual neto en los Andes semiáridos de
Chile y Argentina (n.s.: no significativo). Mediciones de cambio de elevación fueron converti-
dos a balance de masa usando una densidad del hielo de 0,9 g cm-3
.
Glaciar
(Fuente)
(m a-1
e.a.)
Tipo Período de estudio Balance de masa
Cipreses
Palomo
Universidad
(Le Quesne et al. 2009)
No cubiertos 1955-2000 -0,68
-0,54
-0,50
Echaurren
(WGMS 2011)
No cubierto 1976-2009 -0,24
Punta Negra
(Bodin et al. 2010)
Parcialmente cubierto
(>50%)
1955-1996 -0,053
Juncal Norte
(Bown et al. 2008)
No cubierto 1955-2003 Parte baja:
-0,52
alta: n.s.
Piloto
(Leiva 1999)
No cubierto 1979-1997 -0,35
Tapado
(DGA 2012)
No cubiertoa 2009-2012 -0,83 a -2,2 b
a Sector cubierto del glaciar no incluido en área de monitoreo.
b Valores de tres balances de masa corresponden a diferentes métodos, sectores y años.
15
Balance de masa del glaciar cubierto del Pirámide
Torres, Brenning y García
tañosa cierra el valle. De esta pared montañosa
destacan el cerro Hoff (5.170 msnm) y el cerro
Pirámide (5.484 msnm). Las aguas de fusión
del glaciar del Pirámide escurren una corta
distancia por varios esteros sin nombre para-
lelos a los dos cordones morrénicos del glaciar,
que al final de su curso desembocan al ríoYeso
(Figura 1 y 2). Morrenas laterales de menor ta-
maño existen a ambos costados del glaciar a lo
largo de casi toda su extensión.
El glaciar cubierto del Pirámide tiene un área
de 4,6 km2
, una longitud total de 6,5 km, y flu-
ye principalmente hacia el Sur, con una pen-
diente generalmente inferior a los 10°. El frente
del glaciar está ubicado a los 3.210 msnm, y el
glaciar está casi completamente cubierto has-
ta su zona de inicio a los 3.870 msnm, donde
se alimenta a través de avalanchas de nieve y
bloques de hielo provenientes del circo glaciar
del lado Sur de los cerros Hoff y Pirámide. El
glaciar está cubierto por una capa de detri-
tos con espesores variables entre 0,3 y 1 m
(Ferrando, 2012). Su topografía superficial es
irregular o acolinada, presentando numerosas
lagunas y depresiones por fusión de hielo, que
tienen diámetros entre los 20 y 200 m, apro-
ximadamente. Estos fenómenos son más fre-
cuentes en alturas inferiores a los 3.600 msnm
(Figura 3).
Figura1. Mapa de ubicación
del glaciar del Pirámide en las
cabeceras del ríoYeso, Andes de
Santiago. Fotografía aérea de
propiedad del SAF.
16
Rev. Geogr. Espacios Vol. 3, No
5: 11-25, 2013
Figura2. Zona frontal del glaciar
cubierto del Pirámide. a) Zona
proglacial con cordón morrénico
lateral. b) Detalle del frente en una
zona de salida de esteros subglaciales
y englaciales. Nótese el contenido
variable de material detrítico.
c) Depresión termokárstica producto
de la fusión de hielo.
Fuente: a), b): A. Brenning, 1999;
c): F. Escobar, 1983.
Figura3. Superficie irregular en el glaciar del Pirámide con la presencia de depresiones termokársticas a una
altura inferior a los 3.600 msnm.
Fuente: Elaboración propia con base en la imagen GEOTEC del año 2000. Fotografía aérea de propiedad del SAF.
a)
b)
c)
17
Balance de masa del glaciar cubierto del Pirámide
Torres, Brenning y García
Métodos y datos
Procesamiento de los modelos
digitales de terreno
La carta topográfica escaneada a resolución de
1.600 dpi fue georeferenciada con la ubicación
de 25 puntos de control, obteniendo un error
medio cuadrático de 6,2 m en sentido hori-
zontal. Las curvas de nivel se digitalizaron ma-
nualmente y se interpolaron linealmente a una
resolución de 4 m x 4 m utilizando una red irre-
gular triangular y el software ArcGIS Desktop
(versión 9.3), el que también se ocupó para las
otras operaciones de análisis espacial en este
trabajo. Si bien esta resolución no refleja la pre-
cisión del MDE generado a partir de las curvas
de nivel, se utiliza para facilitar la comparación
con el MDE más preciso formado a partir de las
imágenes GEOTEC.
El par de imágenes GEOTEC fue procesado y
ajustado fotogramétricamente utilizando el
software PCI Geomática (versión 9) para ob-
tener una fotografía georeferenciada y orto-
rectificada. La ortorectificación es el proceso
por medio del cual se remueve la distorsión
geométrica presente en las fotografías aéreas.
Esta distorsión se debe a la orientación de la
cámara, el desplazamiento aparente de los
puntos en la imagen debido al relieve, y los
errores sistemáticos asociados con la fotogra-
fía. El proceso de ortorectificación elimina es-
tos efectos, generando imágenes planimétri-
camente correctas, con la ubicación verdadera
de los objetos del terreno y con un ajuste tridi-
mensional (Chmiel et al., 2004; Lillesand et al.,
2004). En este proceso se asignaron 29 puntos
de control terrestre (GCP) para asociar las coor-
denadas de la carta con las coordenadas de la
fotografía. Luego se ingresaron 21 puntos de
Con el fin de calcular el balance de masa
geodésico del glaciar del Pirámide como di-
ferencia de los modelos digitales de elevación
(MDE), se adquirieron y procesaron fotografías
aéreas estereoscópicas del año 2000 y curvas
de nivel del año 1965 utilizando herramientas
de fotogrametría e interpolación espacial.
Datos primarios
Para crear un MDE de las elevaciones del te-
rreno en el año 2000 se adquirió un par de
imágenes del año 2000 del vuelo GEOTEC
efectuado por el Servicio Aerofotogramétrico
de la Fuerza Aérea (SAF) junto con los datos
de calibración de la cámara utilizada. Las imá-
genes nº 16.641 y 16.642 de escala original
de 1:50.000 se obtuvieron en formato digital,
escaneadas a una resolución de 1600 dpi, o
aproximadamente 0,8 m x 0,8 m. Igualmen-
te se adquirieron imágenes del año 1955 del
vuelo HYCON del Instituto Geográfico Militar
(IGM) de Chile (escala 1:70.000, fotogramas nº
24.921, 24.922). Sin embargo, la falta parcial de
las marcas fiduciales y de los datos de calibra-
ción no permitieron obtener resultados preci-
sos, por lo cual no se pudieron ocupar en el
cálculo del balance de masa.
Debido a lo anterior se utilizaron las curvas
de nivel de la carta topográfica nº IGM 5-04-
05-0069-00 escala 1:50.000 del IGM para la
generación de un MDE de línea base. Estas
curvas de nivel de una equidistancia de 50 m
representan las condiciones de terreno del año
1965 y se refieren al nivel medio del mar. Su
sistema de referencia es SIRGAS y el sistema de
coordenadas es Universal Transversal de Mer-
cator (UTM) en el dátum WGS 84.
18
Rev. Geogr. Espacios Vol. 3, No
5: 11-25, 2013
enlace que ayudaron a ubicar píxeles idénticos
en cada fotografía. Con estos datos, junto con
la información básica del sensor, el sistema
ejecutó la triangulación, rectificación diferen-
cial y ajustes necesarios para cada fotografía,
obteniendo la ortofotografía final.
Con el fin de obtener un MDE a partir de las
imágenes GEOTEC del año 2000, se realizó la
restitución fotogramétrica digital utilizando
102 puntos de enlace para el cálculo de forma
matemática de la orientación relativa y asocia-
ción de las fotografías. Luego se recopilaron,
con ayuda de la carta topográfica, 111 puntos
de control, ubicados en zonas que no presen-
tan cambios significativos en el tiempo, tales
como las cumbres de cerros o promontorios
rocosos. A partir de ello, y utilizando los da-
tos de calibración de la cámara y la altitud del
avión, el software empleado creó un modelo
matemático asociado a la posición en el mo-
mento de la toma para estas dos fotografías.
Seguidamente, se generó automáticamente la
proyecciónepipolarparaunadelasfotografías,
y el software utilizó filtros de correlación entre
ventanas de interés para medir el paralaje del
píxel correspondiente. Éste se utilizó para cal-
cular la elevación en este punto y elaborar un
MDE GEOTEC 2000 con una resolución de 4 m
x 4 m.
Para estimar la precisión de los MDE genera-
dos, se utilizaron 40 puntos fijos. Estos puntos
fijos fueron seleccionados fuera de los glacia-
res de la zona en áreas donde se supone no
había cambios de elevación significativos en
los 35 años entre las tomas de datos. Se trata
de puntos individuales con alturas marcadas
en la carta topográfica del 1965; estos puntos
no coinciden con las curvas de nivel, y gene-
ralmente representan cumbres, portezuelos, y
promontorios rocosos. A partir de estas 40 al-
turas reales y las alturas obtenidas en los MDE
se calculó, para cada MDE, el error sistemático,
o sesgo, como el promedio de los errores al-
titudinales, y la precisión como la desviación
estándar de los errores. Adicionalmente se
calculó la precisión de la diferencia altitudi-
nal entre los dos MDE utilizando la desviación
estándar de la diferencia altitudinal en los 40
puntos fijos.
Cálculo de balance de masa y
equivalencia hídrica
Con el fin de calcular el cambio de volumen
del glaciar del Pirámide, primero se restaron los
valores de elevación del MDE GEOTEC de 2000
del MDE IGM de 1965, utilizando como másca-
ra un polígono del área del glaciar digitalizada
en la ortofotografía GEOTEC 2000. Para luego
obtener el balance de masa neto acumulado
del glaciar, se calculó la diferencia de volumen
para cada píxel al multiplicar la diferencia de
altura por el tamaño de píxel, y posteriormente
se dividió la suma de este cambio de volumen,
dV, por el área del glaciar, A, en el año 2000.
Finalmente se convirtió el balance de masa
neto en su equivalencia en agua, multipli-
cándolo por la densidad del hielo, 0,9 g cm-3,
valor promedio asumido al no contarse con
mediciones directas (Paterson, 1994). Al utili-
zar este valor se asume implícitamente que el
volumen perdido corresponde únicamente a
la fusión de hielo y posterior drenaje del agua
de fusión. No se considera un contenido de
gas significativo o una remoción significativa
de sedimentos.Tampoco se considera una po-
sible contribución a un cambio de superficie
por el colapso de cuevas preexistentes en el
glaciar.
19
Balance de masa del glaciar cubierto del Pirámide
Torres, Brenning y García
Dado que la pérdida de volumen de un gla-
ciar se evalúa mejor en términos relativos a
su volumen total, se decidió obtener una es-
timación cruda del volumen del glaciar del
Pirámide. Por la falta de observaciones o me-
diciones directas o indirectas (ej. geofísicas)
del espesor del glaciar, se procedió utilizando
una relación entre área y volumen de glaciar
propuesta a escala global, reconociendo que
esta estimación sólo tiene una precisión del
orden del ±20-30%, aproximadamente (Chen
& Ohmura, 1990; Haeberli et al., 2008). Según
esta relación, el volumen V [km3
] de un glaciar
se estima a partir de su superficie A [km2
] me-
diante la ecuación:
V = 0.0285 A1.357
Considerando un contenido volumétrico de
hielo de los glaciares rocosos de aproximada-
mente 90% y una densidad del hielo de 0,9 g
cm-3, se obtuvo una estimación cruda de la
equivalencia en agua del glaciar del Pirámide.
Resultados
Cambios entre 1965 y 2000
y calidad del MDE
Los MDE obtenidos a partir de la restitución
fotogramétrica (GEOTEC, año 2000) y la inter-
polación de curvas de nivel (IGM, año 1965)
alcanzaron un error sistemático, o sesgo, de
-1,25 m y -6,68 m, respectivamente, los cua-
les se corrigieron al restar estos valores de los
MDE. Las precisiones fueron de 7,5 m y 10,6 m,
respectivamente, y la diferencia de los MDE al-
canzó una precisión de 12,46 m. De esta forma,
la precisión del estimador de la diferencia pro-
medio entre los MDE en base a los 40 puntos
de control fue igual a 1,97 m (margen de error
±3,98 m al 95% de confianza).
Visualmente, el MDE GEOTEC 2000 alcanza un
buen nivel de detalle en los fondos de valle y
las laderas, mientras que presenta un alto nivel
de ruido en parte de las zonas rocosas y empi-
nadas. De modo de comparación, el MDE IGM
1965 es más suavizado y generaliza zonas ro-
cosas. En la zona del glaciar no existen huecos
en el MDE GEOTEC 2000, y debido a la topo-
grafía relativamente regular (en comparación
con las paredes rocosas), ambos productos se
consideraron comparables para fines de este
estudio.
El mapa de diferencias entre los MDE GEOTEC
año 2000 e IGM año 1965 muestra, en general,
una clara tendencia hacia la pérdida de volu-
men en zonas inferiores a los 3.600 msnm, y
una ganancia de altura en alturas superiores
a ésta (Figura 4 y 5). En la parte terminal del
glaciar no se registraron cambios significati-
vos de la altura. En particular destaca la zona
más afectada por depresiones termokársticas
como la zona más afectada por pérdida de vo-
lumen. Dentro de esta zona, las mismas depre-
siones termokársticas y sus bordes presentan
pérdidas de altura de 40 m o más (Figura 4).
La mayor pérdida de altura se registró en una
depresión termokárstica con un diámetro de
200 m (Figura 5B).
La comparación visual de los límites del gla-
ciar del Pirámide en la carta topográfica y las
fotografías HYCON demostraron que el límite
20
Rev. Geogr. Espacios Vol. 3, No
5: 11-25, 2013
Figura4. Diferencias de altura en toda
la superficie del glaciar del Pirámide.
Fuente: Elaboración propia. Fotografía
aérea de propiedad del SAF.
frontal según la carta no era preciso al exten-
derse hasta el río Yeso, a 1 km valle abajo de la
posición del frente en las imágenes del 1955 y
2000. La comparación entre las imágenes del
1955 y 2000 indicó que el glaciar del Pirámi-
de no presenta un cambio de posición frontal
significativo, por lo cual únicamente muestra
cambios en su volumen (Figura 6).
Balance de masa geodésico
y volumen de hielo
A partir de las diferencias entre los MDE
GEOTEC año 2000 e IGM año 1965 se deter-
minó que el glaciar del Pirámide perdió 0,046
km3
entre los años 1965 y 2000. Este cambio
de volumen equivale a un balance de masa
geodésico de -9,96 m como promedio de la
superficie del glaciar entero, a una tasa anual
-0,277 m a-1
. El equivalente en agua es de 40
millones de m3
e.a. como pérdida total, o 0,249
m a-1
e.a. Considerando la desviación estándar
estimada de 1,97 m para la diferencia prome-
dio entre los dos MDE, las estimaciones de
balance de masa y cambio volumétrico tienen
una precisión aproximada de 20%, o de ±40%
al 95% de confianza.
Utilizando la relación entre área y volumen se-
gún Chen & Ohmura (1990) para obtener una
aproximación cruda del volumen del glaciar
Pirámide, se obtiene un valor aproximado de
21
Balance de masa del glaciar cubierto del Pirámide
Torres, Brenning y García
Figura5. Alturas de la superficie glacial a lo largo de una transecta en la parte central del glaciar del Pirámi-
de en los MDE GEOTEC 2000 e IGM 1965.
Fuente: Elaboración propia.
Perfil longitudinal parte superior
Perfil longitudinal parte inferior
Perfil longitudinal parte central
Figura6. Cambios del frente glaciar según las imágenes HYCON del año 1955 y GEOTEC del 2000.
Fuente: Fotografías aéreas de propiedad del IGM (A) y SAF (B).
a) b)
c)
22
Rev. Geogr. Espacios Vol. 3, No
5: 11-25, 2013
Discusión
crecimiento paulatino de la capa detrítica al
derretirse el hielo subyacente. Ello reduciría la
tasa de fusión hasta posiblemente encontrar
un nuevo equilibrio térmico. Por otro lado,
cuando hay un crecimiento o desarrollo de
nuevas depresiones termokársticas con pare-
des de hielo expuesto, se genera un proceso
de fusión con realimentación positiva debido
al crecimiento de la superficie de hielo expues-
to. Si bien los procesos que inician la formación
de depresiones por fusión de hielo han recibi-
do poca atención en la literatura glaciológica
(ej. Nicholson & Benn, 2006), la relación entre
el retroceso de paredes de hielo y la tempe-
ratura media anual observada a nivel mundial
(Schomacker, 2008) sugiere que el fuerte au-
mento de temperatura media anual en déca-
das recientes (Falvey & Garreaud, 2009; Bodin
et al., 2010) ha sido favorable para la formación
de estos fenómenos de ablación acelerada en
glaciares cubiertos en Chile central.
Contribución hídrica
Asumiendo que la escorrentía media anual
de 1.1 millones de m3
e.a. generada por la
pérdida de volumen del glaciar se concen-
tra únicamente en los meses de diciembre a
marzo, se generaría una escorrentía prome-
0,226 km3
, o 183 millones m3
e.a., sugiriendo
un espesor promedio del glaciar de 49 m. Es-
tos valores tienen una precisión del orden del
±20 a ±30% (Chen & Ohmura 1990; Haeberli
et al., 2008). De esta forma, se estima que alre-
dedor del 23% de la masa de hielo del glaciar
del Pirámide se derritió entre los años 1965 y
2000. Asumiendo que los errores de la estima-
ción de pérdida de masa y de volumen son
independientes y tienen distribución normal y
logarítmicamente normal, respectivamente, el
intervalo de confianza Monte Carlo de la pér-
dida relativa de volumen es entre 10% y 44%,
al 95% de confianza.
Balance de masa y procesos de fusión
El balance de masa estimado de -0,249 m a-1
e.a. (±40% con 95% de confianza) como pro-
medio de un período de 35 años es significati-
vamente más negativo que el balance de masa
geodésico del glaciar parcialmente cubierto
de Punta Negra durante la segunda mitad del
siglo XX (Bodin et al., 2010). Sin embargo, esta
pérdida de volumen es menos pronunciada
que aquella observada en glaciares blancos
de Chile central (Tabla 1). Ello es consisten-
te con una reducción de la tasa de fusión de
hielo bajo una cubierta detrítica (Mattson et
al. 1993, Nicholson & Benn 2006; Schomacker,
2008). La principal parte de la pérdida de masa
del glaciar del Pirámide se concentra en las de-
presiones termokársticas, como ya se observó
en el glaciar de Punta Negra en Chile central
(Bodin et al., 2010). La formación de depresio-
nes con lagunas por fusión de hielo también
conlleva el riesgo potencial del vaciamiento
rápido de estas lagunas (Reynolds, 2000).
La dualidad de los procesos de fusión bajo una
cubierta detrítica y el crecimiento de depresio-
nes termokársticas hace difícil la predicción y
el modelamiento del futuro comportamiento
de un glaciar cubierto bajo condiciones de
cambio climático. Por un lado, se esperaría un
23
Balance de masa del glaciar cubierto del Pirámide
Torres, Brenning y García
dio de 110 ls-1
durante estos meses, a lo que
se sumaría la contribución netamente esta-
cional de los glaciares.
Igualmente, el equivalente en agua del hielo
perdido en estos 35 años es aproximadamente
igual al 22% del volumen de agua promedio
en el Embalse El Yeso. Ello junto con la con-
tribución adicional de otros glaciares con ba-
lance de masa negativo en la cuenca del río
Yeso superior (Escobar et al., 1995; Bodin et al.,
2010), apunta hacia una fuerte dependencia
de este importante reservorio de agua de la
reducción irreversible del volumen de glacia-
res como recurso natural no renovable. Si bien
es posible que en el plazo de décadas se pro-
duzca un aumento en la escorrentía fluvial de-
bido a una posible degradación acelerada, en
el largo plazo se debe contemplar una fuerte
reducción de la escorrentía en ríos con contri-
bución glacial (Oerlemans, 2001; Uhlmann et
al., 2012).
Conclusiones
La fuerte pérdida de hielo observada durante
el período de 1965 a 2000 en el glaciar del Pi-
rámide apunta hacia una importante contribu-
ción hídrica de este glaciar y permite entender
mejor la sensibilidad de los glaciares cubiertos
al calentamiento climático. Los futuros traba-
jos de medición y modelamiento del balan-
ce de masa en glaciares cubiertos deberán
enfocarse no solamente en los procesos de
fusión en superficie, sino que deberán tratar
de entender de mejor forma los procesos de
iniciación y crecimiento de las depresiones ter-
mokársticas debido a su importante rol en la
fusión de hielo.
Agradecimientos
Se agradece al Department of Foreign Affairs
and International Trade (DFAIT) de Canadá por
apoyar este trabajo con una beca de investi-
gación del Emerging Leaders in the Americas
Program (ELAP) para una estadía de H. J.Torres
en la Universidad de Waterloo.
Bibliografía
Bodin, X., Rojas, F. & Brenning, A. (2010). Status
and evolution of the cryosphere in the Andes
of Santiago (Chile, 33.5°S). Geomorphology.
118: 453-464.
Bown, F., Rivera, A. & Acuña, C. (2008). Recent
glacier variations in the Aconcagua basin,
central Chilean Andes. Annals of Glaciology.
48: 43-48.
24
Rev. Geogr. Espacios Vol. 3, No
5: 11-25, 2013
Brenning, A. (2005). Geomorphological, hydro-
logical and climatic significance of rock gla-
ciers in the Andes of Central Chile (33°-35°S).
Permafrost and Periglacial Processes. 16: 231-
240.
Brenning, A. (2008). The impact of mining on
rock glaciers and glaciers: examples from
Central Chile. En: Darkening peaks: glacier
retreat, science, and society (eds.: Orlove,
B.S., Wiegandt, E. & Luckman, B.). University
of California Press, Berkeley, California, EE.UU.
Cap 14: 196-205.
Brenning, A. & Azócar, G. F. (2010). Minería y gla-
ciares rocosos: impactos ambientales, ante-
cedentes políticos y legales, y perspectivas
futuras. Revista de Geografía Norte Grande.
47: 143-158.
Carrasco, J. F., Casassa, G. & Quintana, J. (2005).
Changes of the 0° C isotherm and the equili-
brium line altitude in central Chile during the
last quarter of the 20th century. Hydrological
Sciences Journal. 50: 933-948.
Chen, J. & Ohmura, A. (1990). Estimation of Alpi-
ne glacier water resources and their change
since the 1870s. En: Hydrology in Mountai-
nous Regions, I. – Hydrological Measure-
ments, the Water Cycle. Proceedings of two
Lausanne Symposia, August 1990 (eds.: Lang,
H. & Musy, A.). IAHS Publ. 193: 127-135.
Chmiel, J., Kay, S. & Spruyt, P. (2004). Orthorecti-
fication and geometric quality assessment of
very high spatial resolution satellite imagery
for Common Agricultural Policy purposes.
Proceedings of XXth ISPRS Congress. 12-23.
DGA (2012). Caracterización y monitoreo de
glaciares rocosos en la cuenca del rio Elqui,
y balance de masa del glaciar Tapado. Direc-
ción General de Aguas, Ministerio de Obras
Públicas, Santiago, Chile. S.I.T. Nº 285. 228 pp.
Escobar, F., Casassa, G. & Pozo, V. (1995). Variacio-
nes de un glaciar de montaña en los Andes
de Chile central en las últimas dos décadas.
Bull. Inst. fr. études andines. 24: 683-695.
Falvey, M. & Garreaud, R.D. (2009). Regional coo-
ling in a warming world: Recent temperatu-
re trends in the southeast Pacific and along
the west coast of subtropical South America
(1979–2006). Journal of Geophysical Re-
search. 114: D04102.
Favier, V., Falvey, M., Rabatel, A., Praderio, E. &
López, D. (2009). Interpreting discrepan-
cies between discharge and precipitation
in high-altitude area of Chile’s Norte Chico
region (26-32°S). Water Resources Research.
45: W02424.
Ferrando, F. (2012). Glaciar Pirámide: característi-
cas y evolución reciente de un glaciar cubier-
to; evidencias del cambio climático. Investi-
gaciones Geográficas. 44: 57-74.
Haeberli, W., Hoelzle, M., Paul, F. & Zemp, M.
(2008). Integrated glacier monitoring strate-
gies - comments on a recent Corresponden-
ce. Journal of Glaciology. 55: 947-948.
Leiva, J.C. (1999). Recent fluctuations of the Ar-
gentinian glaciers. Global and Planetary
Change. 22: 169-177.
Le Quesne, C., Acuña, C., Boninsegna, J.A., Rivera,
A. & Barichivich, J. (2009). Long-term glacier
variations in the Central Andes of Argentina
and Chile, inferred from historical records
and tree-ring reconstructed precipitation.
Palaeogeography, Palaeoclimatology, Pa-
laeoecology. 281: 334-344.
Lillesand, T., Keifer, R.W. & Choipman, J.W. (2004).
Remote sensing and image interpretation.
Fifth edition. Wiley, NewYork, EE.UU. 763 pp.
Mattson, L.E., Gardner, J.S. & Young, G.J. (1993).
Ablation on debris covered glaciers: an
example from the Rakhiot Glacier, Punjab,
Himalaya. En: Snow and Glacier Hydrology
(ed.:Young, G.J.), IAHS Publ. 218: 289-296.
Mattson, L.E. (2000). The influence of a debris
cover on the mid-summer discharge of
Dome Glacier, Canadian Rocky Mountains.
En: Debris-covered glaciers, Proceedings of a
Workshop held in Seattle, Washington, USA,
September 2000. IAHS Publ. 264: 25-33.
25
Balance de masa del glaciar cubierto del Pirámide
Torres, Brenning y García
Nicholson, L. & Benn, D.I. (2006). Calculating ice
melt beneath a debris layer using meteorolo-
gical data. Journal of Glaciology. 52: 463-470.
Oerlemans, J. (2001). Glaciers and climate chan-
ge. A.A. Balkema, Lisse, Países Bajos. 148pp.
Paterson, W.S.B. (1994). The physics of glaciers.
Third edition. Butterworth-Heinemann,
Oxford, Reino Unido. 481 pp.
Peña, H. & Nazarala, N. (1987). Snowmelt-runoff
simulation model of a Central Chile Andean
basin with relevant orographic effects. En:
Large scale effects of seasonal snow cover,
Proceedings of the Vancouver Symposium.
IAHS Publ. 166: 161-172.
Reynolds, J.M. (2000). On the formation of su-
praglacial lakes on debris-covered glaciers.
En: Debris-covered glaciers, Proceedings of a
Workshop held in Seattle, Washington, USA,
September 2000 (eds.: Nakawo, N., Fountain,
A. & Raymond, C.). IAHS Publ. 264: 153-161.
Rivera, A., Casassa, G., Acuña, C. & Lange, H.
(2000). Variaciones recientes de glaciares en
Chile. Investigaciones Geográficas. 34: 29-60.
Rosenblüth, B., Fuenzalida, H.A. & Aceituno, P.
(1997). Recent temperature variations in
southern South America. International Jour-
nal of Climatology. 17: 67-85.
Scherler, D., Bookhagen, B. & Strecker, M.R. (2011).
Spatially variable response of Himalayan gla-
ciers to climate change affected by debris
cover. Nature Geoscience. 4: 156-159.
Schomacker, A. (2008). What controls dead-ice
melting under different climate conditions?
A discussion. Earth-Science Reviews. 90:103-
113.
Uhlmann, B., Jordan, F. & Beniston, M. (2012).
Modelling runoff in a Swiss glacierized cat-
chment – Part II: daily discharge and glacier
evolution in the Findelen basin in a progres-
sively warmer climate. International Journal
of Climatology. 33: 1301-1307.
WGMS (2011). Glacier mass balance bulletin.
Bulletin No. 11 (2008-2009) (eds.: Zemp, M.,
Nussbaumer, S.U., Gärtner-Roer, I., Hoelzle,
M., Paul, F. & Haeberli, W.). World Glacier Mo-
nitoring Service, Zurich, Suiza. 102 pp.
Fecha de recepción: 17 de enero del 2013
Fecha de aceptación: 24 de junio del 2013
26
Rev. Geogr. Espacios Vol. 3, No
5: 11-25, 2013
View publication statsView publication stats

Weitere ähnliche Inhalte

Was ist angesagt?

Evidencias del cambio climático en las cuencas hidrográficas de colombia
Evidencias del cambio climático en las cuencas hidrográficas de colombiaEvidencias del cambio climático en las cuencas hidrográficas de colombia
Evidencias del cambio climático en las cuencas hidrográficas de colombiaUniversidad del Magdalena
 
Glacial 15 del Antisana
Glacial 15 del AntisanaGlacial 15 del Antisana
Glacial 15 del AntisanaNathali Luna
 
el bagual - clima chaco
 el bagual - clima chaco el bagual - clima chaco
el bagual - clima chacoYoni Echavarria
 
Analisis cuantitativo de los efectos de la temperatura sobre la variabilidad ...
Analisis cuantitativo de los efectos de la temperatura sobre la variabilidad ...Analisis cuantitativo de los efectos de la temperatura sobre la variabilidad ...
Analisis cuantitativo de los efectos de la temperatura sobre la variabilidad ...Richard Alberto Aguilar Barriga
 
Conceptos de Variabilidad Climática
Conceptos de Variabilidad ClimáticaConceptos de Variabilidad Climática
Conceptos de Variabilidad ClimáticaSergio Navarro Hudiel
 
Evaluación del comportamiento hídrico de la vertie pacifica enos
Evaluación del comportamiento hídrico de la vertie pacifica   enosEvaluación del comportamiento hídrico de la vertie pacifica   enos
Evaluación del comportamiento hídrico de la vertie pacifica enosTelmex
 
Evolución del clima en Guatemala
Evolución del clima en GuatemalaEvolución del clima en Guatemala
Evolución del clima en GuatemalaVictor Toledo
 
Cambio climático jairo marin barragán
Cambio climático   jairo marin barragánCambio climático   jairo marin barragán
Cambio climático jairo marin barragánJairo Marín
 
Impactos del Cambio Climático en Grances Cuencas Montañosos: Cuenca del Mar d...
Impactos del Cambio Climático en Grances Cuencas Montañosos: Cuenca del Mar d...Impactos del Cambio Climático en Grances Cuencas Montañosos: Cuenca del Mar d...
Impactos del Cambio Climático en Grances Cuencas Montañosos: Cuenca del Mar d...Johannes Hunink
 
calendario de riego
calendario de riegocalendario de riego
calendario de riegodhanalex
 
Los usos del agua
Los usos del aguaLos usos del agua
Los usos del aguaanga
 
Present i futur de les costes en l’escenari actual de canvi global
Present i futur de les costes en l’escenari actual de canvi globalPresent i futur de les costes en l’escenari actual de canvi global
Present i futur de les costes en l’escenari actual de canvi globalUniversity of Barcelona
 
1 s2.0-s0188461114728201-main
1 s2.0-s0188461114728201-main1 s2.0-s0188461114728201-main
1 s2.0-s0188461114728201-mainDiego Vargas
 
Gonzalo Vieira - Permafrost ártico en el marco del calentamiento global
Gonzalo Vieira - Permafrost ártico en el marco del calentamiento globalGonzalo Vieira - Permafrost ártico en el marco del calentamiento global
Gonzalo Vieira - Permafrost ártico en el marco del calentamiento globalFundación Ramón Areces
 

Was ist angesagt? (20)

Evidencias del cambio climático en las cuencas hidrográficas de colombia
Evidencias del cambio climático en las cuencas hidrográficas de colombiaEvidencias del cambio climático en las cuencas hidrográficas de colombia
Evidencias del cambio climático en las cuencas hidrográficas de colombia
 
Glacial 15 del Antisana
Glacial 15 del AntisanaGlacial 15 del Antisana
Glacial 15 del Antisana
 
Balance hidrico del suelo
Balance hidrico del sueloBalance hidrico del suelo
Balance hidrico del suelo
 
Tendencias del nivel del mar
Tendencias del nivel del marTendencias del nivel del mar
Tendencias del nivel del mar
 
Vol2 cap8 tramo1
Vol2 cap8 tramo1Vol2 cap8 tramo1
Vol2 cap8 tramo1
 
01 sistema hidrologico 2010
01 sistema hidrologico 201001 sistema hidrologico 2010
01 sistema hidrologico 2010
 
el bagual - clima chaco
 el bagual - clima chaco el bagual - clima chaco
el bagual - clima chaco
 
Analisis cuantitativo de los efectos de la temperatura sobre la variabilidad ...
Analisis cuantitativo de los efectos de la temperatura sobre la variabilidad ...Analisis cuantitativo de los efectos de la temperatura sobre la variabilidad ...
Analisis cuantitativo de los efectos de la temperatura sobre la variabilidad ...
 
Conceptos de Variabilidad Climática
Conceptos de Variabilidad ClimáticaConceptos de Variabilidad Climática
Conceptos de Variabilidad Climática
 
Precipitacion areal
Precipitacion arealPrecipitacion areal
Precipitacion areal
 
Evaluación del comportamiento hídrico de la vertie pacifica enos
Evaluación del comportamiento hídrico de la vertie pacifica   enosEvaluación del comportamiento hídrico de la vertie pacifica   enos
Evaluación del comportamiento hídrico de la vertie pacifica enos
 
Evolución del clima en Guatemala
Evolución del clima en GuatemalaEvolución del clima en Guatemala
Evolución del clima en Guatemala
 
Cambio climático jairo marin barragán
Cambio climático   jairo marin barragánCambio climático   jairo marin barragán
Cambio climático jairo marin barragán
 
Impactos del Cambio Climático en Grances Cuencas Montañosos: Cuenca del Mar d...
Impactos del Cambio Climático en Grances Cuencas Montañosos: Cuenca del Mar d...Impactos del Cambio Climático en Grances Cuencas Montañosos: Cuenca del Mar d...
Impactos del Cambio Climático en Grances Cuencas Montañosos: Cuenca del Mar d...
 
calendario de riego
calendario de riegocalendario de riego
calendario de riego
 
Climas de Venezuela
Climas de VenezuelaClimas de Venezuela
Climas de Venezuela
 
Los usos del agua
Los usos del aguaLos usos del agua
Los usos del agua
 
Present i futur de les costes en l’escenari actual de canvi global
Present i futur de les costes en l’escenari actual de canvi globalPresent i futur de les costes en l’escenari actual de canvi global
Present i futur de les costes en l’escenari actual de canvi global
 
1 s2.0-s0188461114728201-main
1 s2.0-s0188461114728201-main1 s2.0-s0188461114728201-main
1 s2.0-s0188461114728201-main
 
Gonzalo Vieira - Permafrost ártico en el marco del calentamiento global
Gonzalo Vieira - Permafrost ártico en el marco del calentamiento globalGonzalo Vieira - Permafrost ártico en el marco del calentamiento global
Gonzalo Vieira - Permafrost ártico en el marco del calentamiento global
 

Ähnlich wie Balance de masa del Pirámide

Expo mono2012
Expo mono2012Expo mono2012
Expo mono2012saul51
 
Discurso Dr.Hugo Jara - Jefe de la Autoridad Nacional del Agua
Discurso Dr.Hugo Jara  - Jefe de la Autoridad Nacional del AguaDiscurso Dr.Hugo Jara  - Jefe de la Autoridad Nacional del Agua
Discurso Dr.Hugo Jara - Jefe de la Autoridad Nacional del AguaInfoAndina CONDESAN
 
Evidencias del cambio climático en Boyacá
Evidencias del cambio climático en BoyacáEvidencias del cambio climático en Boyacá
Evidencias del cambio climático en BoyacáLina9212
 
Perdidas de agua por evaporacion (pgn6)
Perdidas de agua por evaporacion (pgn6)Perdidas de agua por evaporacion (pgn6)
Perdidas de agua por evaporacion (pgn6)Lorenzo Araya
 
Manejo de cuencas y cambio climático
Manejo de cuencas y cambio climáticoManejo de cuencas y cambio climático
Manejo de cuencas y cambio climáticoLenin Pereyra
 
FUNDAMENTOS DEL CLIMA PARA NIVEL PRIMARIA
FUNDAMENTOS DEL CLIMA PARA NIVEL PRIMARIAFUNDAMENTOS DEL CLIMA PARA NIVEL PRIMARIA
FUNDAMENTOS DEL CLIMA PARA NIVEL PRIMARIAKristallSofiaMarinBe
 
R20044301559eure2
R20044301559eure2R20044301559eure2
R20044301559eure2marimesa16
 
Efectos de las anom alías climáticas en la cobertura de nieve de los glaciare...
Efectos de las anom alías climáticas en la cobertura de nieve de los glaciare...Efectos de las anom alías climáticas en la cobertura de nieve de los glaciare...
Efectos de las anom alías climáticas en la cobertura de nieve de los glaciare...Gia Grupo
 
Efectos del cambio climático sobre el recurso hídrico en Colombia
Efectos del cambio climático sobre el recurso hídrico en ColombiaEfectos del cambio climático sobre el recurso hídrico en Colombia
Efectos del cambio climático sobre el recurso hídrico en ColombiaJuliana Madrid
 
Cambio Climático y Recurso Hídrico en Colombia
Cambio Climático y Recurso Hídrico en ColombiaCambio Climático y Recurso Hídrico en Colombia
Cambio Climático y Recurso Hídrico en ColombiaViky Gonzalez Melendez
 
El cambio climático y los Recursos Hídricos en los andes tropicales
El cambio climático y los Recursos Hídricos en los andes tropicalesEl cambio climático y los Recursos Hídricos en los andes tropicales
El cambio climático y los Recursos Hídricos en los andes tropicalesIngeniería y Gestión Ambiental
 
Cela lima 2016 cambio climatico
Cela lima 2016 cambio climaticoCela lima 2016 cambio climatico
Cela lima 2016 cambio climaticoJimmyPelayza
 
Articulo huaytapallana
Articulo huaytapallanaArticulo huaytapallana
Articulo huaytapallanaUNCP
 
Evidencias del cambio climático en la disminución de los glaciales en Colombia
Evidencias del cambio climático en la disminución de los glaciales en ColombiaEvidencias del cambio climático en la disminución de los glaciales en Colombia
Evidencias del cambio climático en la disminución de los glaciales en Colombiadairo moyano
 
USACH - Balance Hídrico (2022).pdf
USACH - Balance Hídrico (2022).pdfUSACH - Balance Hídrico (2022).pdf
USACH - Balance Hídrico (2022).pdfAlexDamian25
 
El calentamiento global
El calentamiento globalEl calentamiento global
El calentamiento globalGabriel Osnaya
 

Ähnlich wie Balance de masa del Pirámide (20)

Artículo+..
Artículo+..Artículo+..
Artículo+..
 
Expo mono2012
Expo mono2012Expo mono2012
Expo mono2012
 
Discurso Dr.Hugo Jara - Jefe de la Autoridad Nacional del Agua
Discurso Dr.Hugo Jara  - Jefe de la Autoridad Nacional del AguaDiscurso Dr.Hugo Jara  - Jefe de la Autoridad Nacional del Agua
Discurso Dr.Hugo Jara - Jefe de la Autoridad Nacional del Agua
 
Evidencias del cambio climático en Boyacá
Evidencias del cambio climático en BoyacáEvidencias del cambio climático en Boyacá
Evidencias del cambio climático en Boyacá
 
Perdidas de agua por evaporacion (pgn6)
Perdidas de agua por evaporacion (pgn6)Perdidas de agua por evaporacion (pgn6)
Perdidas de agua por evaporacion (pgn6)
 
Manejo de cuencas y cambio climático
Manejo de cuencas y cambio climáticoManejo de cuencas y cambio climático
Manejo de cuencas y cambio climático
 
FUNDAMENTOS DEL CLIMA PARA NIVEL PRIMARIA
FUNDAMENTOS DEL CLIMA PARA NIVEL PRIMARIAFUNDAMENTOS DEL CLIMA PARA NIVEL PRIMARIA
FUNDAMENTOS DEL CLIMA PARA NIVEL PRIMARIA
 
R20044301559eure2
R20044301559eure2R20044301559eure2
R20044301559eure2
 
Efectos de las anom alías climáticas en la cobertura de nieve de los glaciare...
Efectos de las anom alías climáticas en la cobertura de nieve de los glaciare...Efectos de las anom alías climáticas en la cobertura de nieve de los glaciare...
Efectos de las anom alías climáticas en la cobertura de nieve de los glaciare...
 
Efectos del cambio climático sobre el recurso hídrico en Colombia
Efectos del cambio climático sobre el recurso hídrico en ColombiaEfectos del cambio climático sobre el recurso hídrico en Colombia
Efectos del cambio climático sobre el recurso hídrico en Colombia
 
Hidro f01
Hidro f01Hidro f01
Hidro f01
 
Cambio Climático y Recurso Hídrico en Colombia
Cambio Climático y Recurso Hídrico en ColombiaCambio Climático y Recurso Hídrico en Colombia
Cambio Climático y Recurso Hídrico en Colombia
 
El cambio climático y los Recursos Hídricos en los andes tropicales
El cambio climático y los Recursos Hídricos en los andes tropicalesEl cambio climático y los Recursos Hídricos en los andes tropicales
El cambio climático y los Recursos Hídricos en los andes tropicales
 
Cela lima 2016 cambio climatico
Cela lima 2016 cambio climaticoCela lima 2016 cambio climatico
Cela lima 2016 cambio climatico
 
Articulo huaytapallana
Articulo huaytapallanaArticulo huaytapallana
Articulo huaytapallana
 
Evidencias del cambio climático en la disminución de los glaciales en Colombia
Evidencias del cambio climático en la disminución de los glaciales en ColombiaEvidencias del cambio climático en la disminución de los glaciales en Colombia
Evidencias del cambio climático en la disminución de los glaciales en Colombia
 
Calentamiento global abril 2016
Calentamiento global  abril 2016Calentamiento global  abril 2016
Calentamiento global abril 2016
 
USACH - Balance Hídrico (2022).pdf
USACH - Balance Hídrico (2022).pdfUSACH - Balance Hídrico (2022).pdf
USACH - Balance Hídrico (2022).pdf
 
El calentamiento global
El calentamiento globalEl calentamiento global
El calentamiento global
 
Cambio ClimáTico
Cambio ClimáTicoCambio ClimáTico
Cambio ClimáTico
 

Kürzlich hochgeladen

TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSjlorentemartos
 
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxEXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxPryhaSalam
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
la unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscala unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscaeliseo91
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxMaritzaRetamozoVera
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAEl Fortí
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdfBaker Publishing Company
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.amayarogel
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñotapirjackluis
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoFundación YOD YOD
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfMaritzaRetamozoVera
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...JAVIER SOLIS NOYOLA
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadAlejandrino Halire Ccahuana
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...JonathanCovena1
 

Kürzlich hochgeladen (20)

TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
 
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptxEXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
EXPANSIÓN ECONÓMICA DE OCCIDENTE LEÓN.pptx
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
la unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscala unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fisca
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docx
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf
 
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdfTema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativo
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdad
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
 

Balance de masa del Pirámide

  • 1. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/323099290 Balance de masa del glaciar cubierto del Pirámide (Chile Central, 33°S) entre 1965 y 2000 aplicando métodos geodésicos Article · April 2013 DOI: 10.25074/07197209.5.345 CITATIONS 2 READS 33 3 authors, including: Some of the authors of this publication are also working on these related projects: National Geographic HJ-150R-17 “Assessing open-air localities as venues for the early peopling of Central Western Patagonia" View project Dinámicas humanas y ambientales durante el Holoceno en el norte de Aisén continental/Holocene human and environmental dynamics in northern continental Aisén, Chile, South America View project Alexander Brenning Friedrich Schiller University Jena 135 PUBLICATIONS   2,296 CITATIONS    SEE PROFILE Juan Luis García Pontifical Catholic University of Chile 28 PUBLICATIONS   92 CITATIONS    SEE PROFILE All content following this page was uploaded by Juan Luis García on 17 April 2018. The user has requested enhancement of the downloaded file.
  • 2. 11 Balance de masa del glaciar cubierto del Pirámide Torres, Brenning y García Balance de masa del glaciar cubierto del Pirámide (Chile Central, 33°S) entre 1965 y 2000 aplicando métodos geodésicos Mass balance of the debris-covered Pirámide glacier (Central Chile, 33°S) between 1965 and 2000 using geodetic methods Héctor J. Torres Instituto de Geografía, Pontificia Universidad Católica de Chile, Santiago, Chile y Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario, Canada. Email: htorresmoros@gmail.com Alexander Brenning Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario, Canada. Email: brenning@uwaterloo.ca Juan-Luis García Instituto de Geografía, Pontificia Universidad Católica de Chile, Santiago, Chile. Email: jgarciab@uc.cl REVISTA DE GEOGRAFÍA ESPACIOS Investigación Rev. Geogr. Espacios Vol. 3, No 5: 11-25, 2013 Resumen Entre las consecuencias más preocupantes del calentamiento climático en Chile central figuran la pérdida de hielo y el retroceso de los glaciares andinos debido a sus efectos sobre la disponibilidad del recurso hídrico. En este con- texto, el comportamiento de los glaciares cubiertos ha sido poco estudiado pese a que constituyen el 14% de la superficie glaciar en los Andes de Santiago y un porcentaje mayor de las zonas de ablación donde se concentra la pérdida de hielo. Utilizando métodos geodésicos, este estudio calculó el balance de masa neto del glaciar del Pirá- mide (4,6 km2 ), el glaciar cubierto más grande de la cuenca del río Yeso, la cual abastece la ciudad de Santiago de agua potable. Con el fin de obtener la diferencia en altura entre los años 1965 y 2000, se prepararon modelos digita- les de elevación (MDE) a través de la interpolación de curvas de nivel de una carta topográfica (Instituto Geográfico Militar, IGM) y la restitución fotogramétrica de fotografías aéreas estereoscópicas (Servicio Aerofotogramétrico de la Fuerza Aérea, SAF). Se alcanzaron precisiones de 10,6 m (IGM) y 7,5 m (SAF) para los MDE y 12,5 m para la diferencia entre los MDE, resultando en un margen de error de 4,0 m al 95% de confianza para la diferencia de altura promedio en 40 puntos fijos. El descenso de altura total de -9,69 m como promedio de la superficie del glaciar equivale a un
  • 3. 12 Rev. Geogr. Espacios Vol. 3, No 5: 11-25, 2013 balance de masa neto anual de -0,249 m a-1 equivalente en agua (e.a.), o una pérdida de 40 millones de m3 de agua (±40% al 95% de confianza). Ello es alrededor del 23% de la masa de hielo del glaciar del Pirámide y corresponde a una escorrentía promedio potencial del orden de 100 l s-1 durante verano, lo que subraya la importancia de este recurso hídrico no renovable para la disponibilidad de agua en la cuenca. Palabras clave: Glaciar Cubierto, Balance de Masa, Cambio Climático, Andes de Santiago Abstract Glacier retreat and the loss of glacier ice are among the most preoccupying consequences of climate change in central Chile due to their effects on the availability of water resources. The response of debris-covered glaciers has received little attention in this context although debris-covered glacier surfaces comprise 14% of the total glacier surface in the Andes of Santiago and an even larger proportion of ablation zones, in which most of the ice loss is concentrated. This study used geodetic methods to calculate the net mass balance of the Pirámide glacier (4.6 km2 ), the largest glacier in the Yeso watershed, which supplies Chile’s capital Santiago with drinking water. In order to obtain elevation differences between 1965 and 2000, digital elevation models (DEMs) were prepared by interpolating contour lines from topographic maps (Instituto Geográfico Militar, IGM) and by photogrammetric restitution of stereo pairs of aerial photographs (Servicio Aerofotogramétrico de la Fuerza Aérea, SAF). Precisions of 10.6 m (IGM) and 7.5 m (SAF) were achieved for the individual DEMs, and 12.5 m for the difference between the DEMs, resulting in a 4.0 m margin of error at the 95% confidence level for the mean elevation difference of 40 fixed points.The elevation change of -9.69 m on average of the glacier surface corresponds to a net annual mass balance of -0.249 m a-1 water equivalent (w.e.), or an ice loss of 40 millones de m3 w.e. (±40% with 95% confidence). This is around 23% of the total water equivalent of the Pirámide glacier and equals a potential average streamflow on the order of 100 l s-1 during summer, which underlines the importance of this non-renewable water resource for water availability in the watershed. Keywords: Debris-Covered Glacier, Glacier Mass Balance, Climate Change, Andes of Santiago Introducción A nivel mundial como también en el contex- to andino el retroceso y la preservación de los glaciares han alcanzado una gran importancia en el debate académico y político relacionado con el cambio climático antropogénico y las actividades antrópicas en alta montaña (Oer- lemans, 2001; Brenning & Azócar, 2010). Los glaciares en climas semiáridos con un período estival seco son de particular interés debido a su importancia crítica como contribuyentes a la escorrentía de los ríos durante los meses más calurosos, especialmente en años de se- quía (Peña & Nazarala 1987; Favier et al., 2009). Los glaciares cubiertos con detritos, en este contexto, juegan un papel muy particular y se comportan de forma distinta a los glaciares no cubiertos, “blancos” (Scherler et al., 2011). Por un lado, su cubierta detrítica reduce las tasas de fusión de hielo, reduciendo su aporte esti- val (Mattson et al., 1993; Mattson, 2000). Ello extiende la posible“vida útil”de estos reservo- rios naturales de agua como fuente estacional, renovable, y de largo plazo, no renovable en un contexto de cambio climático. Por el otro lado, la reacción de los glaciares cubierto a cambios climáticos puede ser no lineal al abrirse de- presiones por fusión de hielo que exponen el núcleo de hielo a las temperaturas exteriores (Schomacker, 2008; Bodin et al., 2010). Al mismo tiempo se complica el monitoreo o seguimiento de la pérdida de masa de los glaciares cubiertos dado que esta pérdida se
  • 4. 13 Balance de masa del glaciar cubierto del Pirámide Torres, Brenning y García puede limitar a un descenso vertical de la su- perficie del glaciar sin ningún retroceso frontal, y/o al retroceso de los acantilados de hielo de las depresiones termokársticas que se encuen- tran dentro del glaciar (Schomacker, 2008; Bodin et al., 2010). Por lo tanto, el retroceso frontal y/o cambio de superficie de glaciares, que se aplica frecuentemente como indicador más simple del balance de masa negativo de los glaciares‘blancos’(Rivera et al., 2000; Oerle- mans, 2001), no se puede aplicar a los glaciares cubiertos de detritos, y consecuentemente se requiere de mediciones del balance de masa de estos glaciares (Scherler et al., 2011). Este trabajo es uno de los primeros en aplicar el método geodésico para la medición del ba- lance de masa de glaciares cubiertos en la cor- dillera andina, donde los registros históricos cartográficos y de teledetección de la topo- grafía todavía son limitados (Le Quesne et al., 2009; Bodin et al., 2010). Específicamente, se reconstruyó el cambio vertical en la topografía del glaciar del Pirámide, ubicado en los Andes de Santiago, entre los años 1965 y 2000 me- diante el análisis fotogramétrico de fotografías aéreas del año 2000 y la interpolación de cur- vas de nivel de cartas topográficas correspon- dientes al año 1965. Se evaluará la precisión de estas estimaciones y se analizará la relación entre las tasas de cambio vertical y su contexto geomorfológico y glaciológico, junto con en- tregar una estimación del aporte hidrológico que resulta de la pérdida de masa observada. Área de estudio El área de estudio se ubica en los Andes de Santiago en Chile central, una zona donde la escorrentía generada por los glaciares y per- mafrost constituye la principal fuente de agua potable para Santiago durante los meses es- tivales secos (Peña & Nazarala, 1987). La zona registra una precipitación promedio anual de 524 mm en la estación meteorológica más cercana, Embalse El Yeso (2.475 msnm), y la isoterma de 0°C de la temperatura media anual se sitúa, a escala regional, alrededor de los 3.600 msnm (Carrasco et al., 2005; Bodin et al., 2010). El cambio climático se manifiesta en la zona con un calentamiento significativo de alrededor de 1-2°C durante la mayor parte del siglo XX (Rosenblüth et al., 1997), con una tasa acelerada de +0,28°C por década a partir de un cambio abrupto que ocurrió en 1976/1977 y que también se registró en Embalse El Yeso (Falvey & Garreaud 2009; Bodin et al., 2010). Se estima que el 14% de la superficie total de glaciares en la cordillera de Santiago está cubierto de detritos y presenta fenómenos de termokarst (Brenning, 2005). Un número creciente de estudios ha investi- gado los balances de masa y las variaciones frontales de los glaciares de Chile Central, con- centrándose principalmente en los glaciares no cubiertos. En el caso del glaciar Echaurren Norte, el glaciar (no cubierto) mejor estudiado de la zona, la línea de equilibrio se sitúa en pro- medio a los 3.800 msnm, con fuertes variacio- nes interanuales principalmente en respuesta a las variaciones en precipitación asociadas al fenómeno de El Niño (Escobar et al., 1995). Las
  • 5. 14 Rev. Geogr. Espacios Vol. 3, No 5: 11-25, 2013 mediciones existentes de balances de masa en glaciares no cubiertos indican pérdidas de hielo del orden de 0,5 m equivalente en agua (e.a.) por año (Tabla 1), lo que es consistente con la observación de variaciones frontales predominantemente negativas de los glacia- res en la cordillera chilena (Rivera et al., 2000). Ello contrasta, sin embargo, con una pérdida mucho menor, si bien también significativa, de hielo en el glaciar principalmente cubierto de Punta Negra, con un balance de masa de -0,05 m e.a. por año (Bodin et al., 2010). Este glaciar ha mostrado una tendencia a aumentar su área cubierta y reducir su superficie no cu- bierta sin cambiar su posición frontal, la cual se caracteriza por una transición hacia un glaciar rocoso morrénico (Bodin et al., 2010). El glaciar del Pirámide (33°36’LS, 69°54’LW) es uno de varios sistemas de glaciares parcial o completamente cubiertos que son caracterís- ticos de la criósfera de esta zona, junto con los muy numerosos pero más pequeños glaciares rocosos (Brenning, 2005; Bodin et al., 2010). Este glaciar se sitúa en las cabeceras del río Yeso, aguas arriba del Embalse El Yeso, el cual tiene un volumen promedio de ~180 millones de m3 (Brenning & Azócar, 2010). Al Este del glaciar se encuentra el cordón fronterizo con Argentina, y por el lado Norte, una pared mon- Tabla 1: Listado de mediciones de balance de masa promedio anual neto en los Andes semiáridos de Chile y Argentina (n.s.: no significativo). Mediciones de cambio de elevación fueron converti- dos a balance de masa usando una densidad del hielo de 0,9 g cm-3 . Glaciar (Fuente) (m a-1 e.a.) Tipo Período de estudio Balance de masa Cipreses Palomo Universidad (Le Quesne et al. 2009) No cubiertos 1955-2000 -0,68 -0,54 -0,50 Echaurren (WGMS 2011) No cubierto 1976-2009 -0,24 Punta Negra (Bodin et al. 2010) Parcialmente cubierto (>50%) 1955-1996 -0,053 Juncal Norte (Bown et al. 2008) No cubierto 1955-2003 Parte baja: -0,52 alta: n.s. Piloto (Leiva 1999) No cubierto 1979-1997 -0,35 Tapado (DGA 2012) No cubiertoa 2009-2012 -0,83 a -2,2 b a Sector cubierto del glaciar no incluido en área de monitoreo. b Valores de tres balances de masa corresponden a diferentes métodos, sectores y años.
  • 6. 15 Balance de masa del glaciar cubierto del Pirámide Torres, Brenning y García tañosa cierra el valle. De esta pared montañosa destacan el cerro Hoff (5.170 msnm) y el cerro Pirámide (5.484 msnm). Las aguas de fusión del glaciar del Pirámide escurren una corta distancia por varios esteros sin nombre para- lelos a los dos cordones morrénicos del glaciar, que al final de su curso desembocan al ríoYeso (Figura 1 y 2). Morrenas laterales de menor ta- maño existen a ambos costados del glaciar a lo largo de casi toda su extensión. El glaciar cubierto del Pirámide tiene un área de 4,6 km2 , una longitud total de 6,5 km, y flu- ye principalmente hacia el Sur, con una pen- diente generalmente inferior a los 10°. El frente del glaciar está ubicado a los 3.210 msnm, y el glaciar está casi completamente cubierto has- ta su zona de inicio a los 3.870 msnm, donde se alimenta a través de avalanchas de nieve y bloques de hielo provenientes del circo glaciar del lado Sur de los cerros Hoff y Pirámide. El glaciar está cubierto por una capa de detri- tos con espesores variables entre 0,3 y 1 m (Ferrando, 2012). Su topografía superficial es irregular o acolinada, presentando numerosas lagunas y depresiones por fusión de hielo, que tienen diámetros entre los 20 y 200 m, apro- ximadamente. Estos fenómenos son más fre- cuentes en alturas inferiores a los 3.600 msnm (Figura 3). Figura1. Mapa de ubicación del glaciar del Pirámide en las cabeceras del ríoYeso, Andes de Santiago. Fotografía aérea de propiedad del SAF.
  • 7. 16 Rev. Geogr. Espacios Vol. 3, No 5: 11-25, 2013 Figura2. Zona frontal del glaciar cubierto del Pirámide. a) Zona proglacial con cordón morrénico lateral. b) Detalle del frente en una zona de salida de esteros subglaciales y englaciales. Nótese el contenido variable de material detrítico. c) Depresión termokárstica producto de la fusión de hielo. Fuente: a), b): A. Brenning, 1999; c): F. Escobar, 1983. Figura3. Superficie irregular en el glaciar del Pirámide con la presencia de depresiones termokársticas a una altura inferior a los 3.600 msnm. Fuente: Elaboración propia con base en la imagen GEOTEC del año 2000. Fotografía aérea de propiedad del SAF. a) b) c)
  • 8. 17 Balance de masa del glaciar cubierto del Pirámide Torres, Brenning y García Métodos y datos Procesamiento de los modelos digitales de terreno La carta topográfica escaneada a resolución de 1.600 dpi fue georeferenciada con la ubicación de 25 puntos de control, obteniendo un error medio cuadrático de 6,2 m en sentido hori- zontal. Las curvas de nivel se digitalizaron ma- nualmente y se interpolaron linealmente a una resolución de 4 m x 4 m utilizando una red irre- gular triangular y el software ArcGIS Desktop (versión 9.3), el que también se ocupó para las otras operaciones de análisis espacial en este trabajo. Si bien esta resolución no refleja la pre- cisión del MDE generado a partir de las curvas de nivel, se utiliza para facilitar la comparación con el MDE más preciso formado a partir de las imágenes GEOTEC. El par de imágenes GEOTEC fue procesado y ajustado fotogramétricamente utilizando el software PCI Geomática (versión 9) para ob- tener una fotografía georeferenciada y orto- rectificada. La ortorectificación es el proceso por medio del cual se remueve la distorsión geométrica presente en las fotografías aéreas. Esta distorsión se debe a la orientación de la cámara, el desplazamiento aparente de los puntos en la imagen debido al relieve, y los errores sistemáticos asociados con la fotogra- fía. El proceso de ortorectificación elimina es- tos efectos, generando imágenes planimétri- camente correctas, con la ubicación verdadera de los objetos del terreno y con un ajuste tridi- mensional (Chmiel et al., 2004; Lillesand et al., 2004). En este proceso se asignaron 29 puntos de control terrestre (GCP) para asociar las coor- denadas de la carta con las coordenadas de la fotografía. Luego se ingresaron 21 puntos de Con el fin de calcular el balance de masa geodésico del glaciar del Pirámide como di- ferencia de los modelos digitales de elevación (MDE), se adquirieron y procesaron fotografías aéreas estereoscópicas del año 2000 y curvas de nivel del año 1965 utilizando herramientas de fotogrametría e interpolación espacial. Datos primarios Para crear un MDE de las elevaciones del te- rreno en el año 2000 se adquirió un par de imágenes del año 2000 del vuelo GEOTEC efectuado por el Servicio Aerofotogramétrico de la Fuerza Aérea (SAF) junto con los datos de calibración de la cámara utilizada. Las imá- genes nº 16.641 y 16.642 de escala original de 1:50.000 se obtuvieron en formato digital, escaneadas a una resolución de 1600 dpi, o aproximadamente 0,8 m x 0,8 m. Igualmen- te se adquirieron imágenes del año 1955 del vuelo HYCON del Instituto Geográfico Militar (IGM) de Chile (escala 1:70.000, fotogramas nº 24.921, 24.922). Sin embargo, la falta parcial de las marcas fiduciales y de los datos de calibra- ción no permitieron obtener resultados preci- sos, por lo cual no se pudieron ocupar en el cálculo del balance de masa. Debido a lo anterior se utilizaron las curvas de nivel de la carta topográfica nº IGM 5-04- 05-0069-00 escala 1:50.000 del IGM para la generación de un MDE de línea base. Estas curvas de nivel de una equidistancia de 50 m representan las condiciones de terreno del año 1965 y se refieren al nivel medio del mar. Su sistema de referencia es SIRGAS y el sistema de coordenadas es Universal Transversal de Mer- cator (UTM) en el dátum WGS 84.
  • 9. 18 Rev. Geogr. Espacios Vol. 3, No 5: 11-25, 2013 enlace que ayudaron a ubicar píxeles idénticos en cada fotografía. Con estos datos, junto con la información básica del sensor, el sistema ejecutó la triangulación, rectificación diferen- cial y ajustes necesarios para cada fotografía, obteniendo la ortofotografía final. Con el fin de obtener un MDE a partir de las imágenes GEOTEC del año 2000, se realizó la restitución fotogramétrica digital utilizando 102 puntos de enlace para el cálculo de forma matemática de la orientación relativa y asocia- ción de las fotografías. Luego se recopilaron, con ayuda de la carta topográfica, 111 puntos de control, ubicados en zonas que no presen- tan cambios significativos en el tiempo, tales como las cumbres de cerros o promontorios rocosos. A partir de ello, y utilizando los da- tos de calibración de la cámara y la altitud del avión, el software empleado creó un modelo matemático asociado a la posición en el mo- mento de la toma para estas dos fotografías. Seguidamente, se generó automáticamente la proyecciónepipolarparaunadelasfotografías, y el software utilizó filtros de correlación entre ventanas de interés para medir el paralaje del píxel correspondiente. Éste se utilizó para cal- cular la elevación en este punto y elaborar un MDE GEOTEC 2000 con una resolución de 4 m x 4 m. Para estimar la precisión de los MDE genera- dos, se utilizaron 40 puntos fijos. Estos puntos fijos fueron seleccionados fuera de los glacia- res de la zona en áreas donde se supone no había cambios de elevación significativos en los 35 años entre las tomas de datos. Se trata de puntos individuales con alturas marcadas en la carta topográfica del 1965; estos puntos no coinciden con las curvas de nivel, y gene- ralmente representan cumbres, portezuelos, y promontorios rocosos. A partir de estas 40 al- turas reales y las alturas obtenidas en los MDE se calculó, para cada MDE, el error sistemático, o sesgo, como el promedio de los errores al- titudinales, y la precisión como la desviación estándar de los errores. Adicionalmente se calculó la precisión de la diferencia altitudi- nal entre los dos MDE utilizando la desviación estándar de la diferencia altitudinal en los 40 puntos fijos. Cálculo de balance de masa y equivalencia hídrica Con el fin de calcular el cambio de volumen del glaciar del Pirámide, primero se restaron los valores de elevación del MDE GEOTEC de 2000 del MDE IGM de 1965, utilizando como másca- ra un polígono del área del glaciar digitalizada en la ortofotografía GEOTEC 2000. Para luego obtener el balance de masa neto acumulado del glaciar, se calculó la diferencia de volumen para cada píxel al multiplicar la diferencia de altura por el tamaño de píxel, y posteriormente se dividió la suma de este cambio de volumen, dV, por el área del glaciar, A, en el año 2000. Finalmente se convirtió el balance de masa neto en su equivalencia en agua, multipli- cándolo por la densidad del hielo, 0,9 g cm-3, valor promedio asumido al no contarse con mediciones directas (Paterson, 1994). Al utili- zar este valor se asume implícitamente que el volumen perdido corresponde únicamente a la fusión de hielo y posterior drenaje del agua de fusión. No se considera un contenido de gas significativo o una remoción significativa de sedimentos.Tampoco se considera una po- sible contribución a un cambio de superficie por el colapso de cuevas preexistentes en el glaciar.
  • 10. 19 Balance de masa del glaciar cubierto del Pirámide Torres, Brenning y García Dado que la pérdida de volumen de un gla- ciar se evalúa mejor en términos relativos a su volumen total, se decidió obtener una es- timación cruda del volumen del glaciar del Pirámide. Por la falta de observaciones o me- diciones directas o indirectas (ej. geofísicas) del espesor del glaciar, se procedió utilizando una relación entre área y volumen de glaciar propuesta a escala global, reconociendo que esta estimación sólo tiene una precisión del orden del ±20-30%, aproximadamente (Chen & Ohmura, 1990; Haeberli et al., 2008). Según esta relación, el volumen V [km3 ] de un glaciar se estima a partir de su superficie A [km2 ] me- diante la ecuación: V = 0.0285 A1.357 Considerando un contenido volumétrico de hielo de los glaciares rocosos de aproximada- mente 90% y una densidad del hielo de 0,9 g cm-3, se obtuvo una estimación cruda de la equivalencia en agua del glaciar del Pirámide. Resultados Cambios entre 1965 y 2000 y calidad del MDE Los MDE obtenidos a partir de la restitución fotogramétrica (GEOTEC, año 2000) y la inter- polación de curvas de nivel (IGM, año 1965) alcanzaron un error sistemático, o sesgo, de -1,25 m y -6,68 m, respectivamente, los cua- les se corrigieron al restar estos valores de los MDE. Las precisiones fueron de 7,5 m y 10,6 m, respectivamente, y la diferencia de los MDE al- canzó una precisión de 12,46 m. De esta forma, la precisión del estimador de la diferencia pro- medio entre los MDE en base a los 40 puntos de control fue igual a 1,97 m (margen de error ±3,98 m al 95% de confianza). Visualmente, el MDE GEOTEC 2000 alcanza un buen nivel de detalle en los fondos de valle y las laderas, mientras que presenta un alto nivel de ruido en parte de las zonas rocosas y empi- nadas. De modo de comparación, el MDE IGM 1965 es más suavizado y generaliza zonas ro- cosas. En la zona del glaciar no existen huecos en el MDE GEOTEC 2000, y debido a la topo- grafía relativamente regular (en comparación con las paredes rocosas), ambos productos se consideraron comparables para fines de este estudio. El mapa de diferencias entre los MDE GEOTEC año 2000 e IGM año 1965 muestra, en general, una clara tendencia hacia la pérdida de volu- men en zonas inferiores a los 3.600 msnm, y una ganancia de altura en alturas superiores a ésta (Figura 4 y 5). En la parte terminal del glaciar no se registraron cambios significati- vos de la altura. En particular destaca la zona más afectada por depresiones termokársticas como la zona más afectada por pérdida de vo- lumen. Dentro de esta zona, las mismas depre- siones termokársticas y sus bordes presentan pérdidas de altura de 40 m o más (Figura 4). La mayor pérdida de altura se registró en una depresión termokárstica con un diámetro de 200 m (Figura 5B). La comparación visual de los límites del gla- ciar del Pirámide en la carta topográfica y las fotografías HYCON demostraron que el límite
  • 11. 20 Rev. Geogr. Espacios Vol. 3, No 5: 11-25, 2013 Figura4. Diferencias de altura en toda la superficie del glaciar del Pirámide. Fuente: Elaboración propia. Fotografía aérea de propiedad del SAF. frontal según la carta no era preciso al exten- derse hasta el río Yeso, a 1 km valle abajo de la posición del frente en las imágenes del 1955 y 2000. La comparación entre las imágenes del 1955 y 2000 indicó que el glaciar del Pirámi- de no presenta un cambio de posición frontal significativo, por lo cual únicamente muestra cambios en su volumen (Figura 6). Balance de masa geodésico y volumen de hielo A partir de las diferencias entre los MDE GEOTEC año 2000 e IGM año 1965 se deter- minó que el glaciar del Pirámide perdió 0,046 km3 entre los años 1965 y 2000. Este cambio de volumen equivale a un balance de masa geodésico de -9,96 m como promedio de la superficie del glaciar entero, a una tasa anual -0,277 m a-1 . El equivalente en agua es de 40 millones de m3 e.a. como pérdida total, o 0,249 m a-1 e.a. Considerando la desviación estándar estimada de 1,97 m para la diferencia prome- dio entre los dos MDE, las estimaciones de balance de masa y cambio volumétrico tienen una precisión aproximada de 20%, o de ±40% al 95% de confianza. Utilizando la relación entre área y volumen se- gún Chen & Ohmura (1990) para obtener una aproximación cruda del volumen del glaciar Pirámide, se obtiene un valor aproximado de
  • 12. 21 Balance de masa del glaciar cubierto del Pirámide Torres, Brenning y García Figura5. Alturas de la superficie glacial a lo largo de una transecta en la parte central del glaciar del Pirámi- de en los MDE GEOTEC 2000 e IGM 1965. Fuente: Elaboración propia. Perfil longitudinal parte superior Perfil longitudinal parte inferior Perfil longitudinal parte central Figura6. Cambios del frente glaciar según las imágenes HYCON del año 1955 y GEOTEC del 2000. Fuente: Fotografías aéreas de propiedad del IGM (A) y SAF (B). a) b) c)
  • 13. 22 Rev. Geogr. Espacios Vol. 3, No 5: 11-25, 2013 Discusión crecimiento paulatino de la capa detrítica al derretirse el hielo subyacente. Ello reduciría la tasa de fusión hasta posiblemente encontrar un nuevo equilibrio térmico. Por otro lado, cuando hay un crecimiento o desarrollo de nuevas depresiones termokársticas con pare- des de hielo expuesto, se genera un proceso de fusión con realimentación positiva debido al crecimiento de la superficie de hielo expues- to. Si bien los procesos que inician la formación de depresiones por fusión de hielo han recibi- do poca atención en la literatura glaciológica (ej. Nicholson & Benn, 2006), la relación entre el retroceso de paredes de hielo y la tempe- ratura media anual observada a nivel mundial (Schomacker, 2008) sugiere que el fuerte au- mento de temperatura media anual en déca- das recientes (Falvey & Garreaud, 2009; Bodin et al., 2010) ha sido favorable para la formación de estos fenómenos de ablación acelerada en glaciares cubiertos en Chile central. Contribución hídrica Asumiendo que la escorrentía media anual de 1.1 millones de m3 e.a. generada por la pérdida de volumen del glaciar se concen- tra únicamente en los meses de diciembre a marzo, se generaría una escorrentía prome- 0,226 km3 , o 183 millones m3 e.a., sugiriendo un espesor promedio del glaciar de 49 m. Es- tos valores tienen una precisión del orden del ±20 a ±30% (Chen & Ohmura 1990; Haeberli et al., 2008). De esta forma, se estima que alre- dedor del 23% de la masa de hielo del glaciar del Pirámide se derritió entre los años 1965 y 2000. Asumiendo que los errores de la estima- ción de pérdida de masa y de volumen son independientes y tienen distribución normal y logarítmicamente normal, respectivamente, el intervalo de confianza Monte Carlo de la pér- dida relativa de volumen es entre 10% y 44%, al 95% de confianza. Balance de masa y procesos de fusión El balance de masa estimado de -0,249 m a-1 e.a. (±40% con 95% de confianza) como pro- medio de un período de 35 años es significati- vamente más negativo que el balance de masa geodésico del glaciar parcialmente cubierto de Punta Negra durante la segunda mitad del siglo XX (Bodin et al., 2010). Sin embargo, esta pérdida de volumen es menos pronunciada que aquella observada en glaciares blancos de Chile central (Tabla 1). Ello es consisten- te con una reducción de la tasa de fusión de hielo bajo una cubierta detrítica (Mattson et al. 1993, Nicholson & Benn 2006; Schomacker, 2008). La principal parte de la pérdida de masa del glaciar del Pirámide se concentra en las de- presiones termokársticas, como ya se observó en el glaciar de Punta Negra en Chile central (Bodin et al., 2010). La formación de depresio- nes con lagunas por fusión de hielo también conlleva el riesgo potencial del vaciamiento rápido de estas lagunas (Reynolds, 2000). La dualidad de los procesos de fusión bajo una cubierta detrítica y el crecimiento de depresio- nes termokársticas hace difícil la predicción y el modelamiento del futuro comportamiento de un glaciar cubierto bajo condiciones de cambio climático. Por un lado, se esperaría un
  • 14. 23 Balance de masa del glaciar cubierto del Pirámide Torres, Brenning y García dio de 110 ls-1 durante estos meses, a lo que se sumaría la contribución netamente esta- cional de los glaciares. Igualmente, el equivalente en agua del hielo perdido en estos 35 años es aproximadamente igual al 22% del volumen de agua promedio en el Embalse El Yeso. Ello junto con la con- tribución adicional de otros glaciares con ba- lance de masa negativo en la cuenca del río Yeso superior (Escobar et al., 1995; Bodin et al., 2010), apunta hacia una fuerte dependencia de este importante reservorio de agua de la reducción irreversible del volumen de glacia- res como recurso natural no renovable. Si bien es posible que en el plazo de décadas se pro- duzca un aumento en la escorrentía fluvial de- bido a una posible degradación acelerada, en el largo plazo se debe contemplar una fuerte reducción de la escorrentía en ríos con contri- bución glacial (Oerlemans, 2001; Uhlmann et al., 2012). Conclusiones La fuerte pérdida de hielo observada durante el período de 1965 a 2000 en el glaciar del Pi- rámide apunta hacia una importante contribu- ción hídrica de este glaciar y permite entender mejor la sensibilidad de los glaciares cubiertos al calentamiento climático. Los futuros traba- jos de medición y modelamiento del balan- ce de masa en glaciares cubiertos deberán enfocarse no solamente en los procesos de fusión en superficie, sino que deberán tratar de entender de mejor forma los procesos de iniciación y crecimiento de las depresiones ter- mokársticas debido a su importante rol en la fusión de hielo. Agradecimientos Se agradece al Department of Foreign Affairs and International Trade (DFAIT) de Canadá por apoyar este trabajo con una beca de investi- gación del Emerging Leaders in the Americas Program (ELAP) para una estadía de H. J.Torres en la Universidad de Waterloo. Bibliografía Bodin, X., Rojas, F. & Brenning, A. (2010). Status and evolution of the cryosphere in the Andes of Santiago (Chile, 33.5°S). Geomorphology. 118: 453-464. Bown, F., Rivera, A. & Acuña, C. (2008). Recent glacier variations in the Aconcagua basin, central Chilean Andes. Annals of Glaciology. 48: 43-48.
  • 15. 24 Rev. Geogr. Espacios Vol. 3, No 5: 11-25, 2013 Brenning, A. (2005). Geomorphological, hydro- logical and climatic significance of rock gla- ciers in the Andes of Central Chile (33°-35°S). Permafrost and Periglacial Processes. 16: 231- 240. Brenning, A. (2008). The impact of mining on rock glaciers and glaciers: examples from Central Chile. En: Darkening peaks: glacier retreat, science, and society (eds.: Orlove, B.S., Wiegandt, E. & Luckman, B.). University of California Press, Berkeley, California, EE.UU. Cap 14: 196-205. Brenning, A. & Azócar, G. F. (2010). Minería y gla- ciares rocosos: impactos ambientales, ante- cedentes políticos y legales, y perspectivas futuras. Revista de Geografía Norte Grande. 47: 143-158. Carrasco, J. F., Casassa, G. & Quintana, J. (2005). Changes of the 0° C isotherm and the equili- brium line altitude in central Chile during the last quarter of the 20th century. Hydrological Sciences Journal. 50: 933-948. Chen, J. & Ohmura, A. (1990). Estimation of Alpi- ne glacier water resources and their change since the 1870s. En: Hydrology in Mountai- nous Regions, I. – Hydrological Measure- ments, the Water Cycle. Proceedings of two Lausanne Symposia, August 1990 (eds.: Lang, H. & Musy, A.). IAHS Publ. 193: 127-135. Chmiel, J., Kay, S. & Spruyt, P. (2004). Orthorecti- fication and geometric quality assessment of very high spatial resolution satellite imagery for Common Agricultural Policy purposes. Proceedings of XXth ISPRS Congress. 12-23. DGA (2012). Caracterización y monitoreo de glaciares rocosos en la cuenca del rio Elqui, y balance de masa del glaciar Tapado. Direc- ción General de Aguas, Ministerio de Obras Públicas, Santiago, Chile. S.I.T. Nº 285. 228 pp. Escobar, F., Casassa, G. & Pozo, V. (1995). Variacio- nes de un glaciar de montaña en los Andes de Chile central en las últimas dos décadas. Bull. Inst. fr. études andines. 24: 683-695. Falvey, M. & Garreaud, R.D. (2009). Regional coo- ling in a warming world: Recent temperatu- re trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). Journal of Geophysical Re- search. 114: D04102. Favier, V., Falvey, M., Rabatel, A., Praderio, E. & López, D. (2009). Interpreting discrepan- cies between discharge and precipitation in high-altitude area of Chile’s Norte Chico region (26-32°S). Water Resources Research. 45: W02424. Ferrando, F. (2012). Glaciar Pirámide: característi- cas y evolución reciente de un glaciar cubier- to; evidencias del cambio climático. Investi- gaciones Geográficas. 44: 57-74. Haeberli, W., Hoelzle, M., Paul, F. & Zemp, M. (2008). Integrated glacier monitoring strate- gies - comments on a recent Corresponden- ce. Journal of Glaciology. 55: 947-948. Leiva, J.C. (1999). Recent fluctuations of the Ar- gentinian glaciers. Global and Planetary Change. 22: 169-177. Le Quesne, C., Acuña, C., Boninsegna, J.A., Rivera, A. & Barichivich, J. (2009). Long-term glacier variations in the Central Andes of Argentina and Chile, inferred from historical records and tree-ring reconstructed precipitation. Palaeogeography, Palaeoclimatology, Pa- laeoecology. 281: 334-344. Lillesand, T., Keifer, R.W. & Choipman, J.W. (2004). Remote sensing and image interpretation. Fifth edition. Wiley, NewYork, EE.UU. 763 pp. Mattson, L.E., Gardner, J.S. & Young, G.J. (1993). Ablation on debris covered glaciers: an example from the Rakhiot Glacier, Punjab, Himalaya. En: Snow and Glacier Hydrology (ed.:Young, G.J.), IAHS Publ. 218: 289-296. Mattson, L.E. (2000). The influence of a debris cover on the mid-summer discharge of Dome Glacier, Canadian Rocky Mountains. En: Debris-covered glaciers, Proceedings of a Workshop held in Seattle, Washington, USA, September 2000. IAHS Publ. 264: 25-33.
  • 16. 25 Balance de masa del glaciar cubierto del Pirámide Torres, Brenning y García Nicholson, L. & Benn, D.I. (2006). Calculating ice melt beneath a debris layer using meteorolo- gical data. Journal of Glaciology. 52: 463-470. Oerlemans, J. (2001). Glaciers and climate chan- ge. A.A. Balkema, Lisse, Países Bajos. 148pp. Paterson, W.S.B. (1994). The physics of glaciers. Third edition. Butterworth-Heinemann, Oxford, Reino Unido. 481 pp. Peña, H. & Nazarala, N. (1987). Snowmelt-runoff simulation model of a Central Chile Andean basin with relevant orographic effects. En: Large scale effects of seasonal snow cover, Proceedings of the Vancouver Symposium. IAHS Publ. 166: 161-172. Reynolds, J.M. (2000). On the formation of su- praglacial lakes on debris-covered glaciers. En: Debris-covered glaciers, Proceedings of a Workshop held in Seattle, Washington, USA, September 2000 (eds.: Nakawo, N., Fountain, A. & Raymond, C.). IAHS Publ. 264: 153-161. Rivera, A., Casassa, G., Acuña, C. & Lange, H. (2000). Variaciones recientes de glaciares en Chile. Investigaciones Geográficas. 34: 29-60. Rosenblüth, B., Fuenzalida, H.A. & Aceituno, P. (1997). Recent temperature variations in southern South America. International Jour- nal of Climatology. 17: 67-85. Scherler, D., Bookhagen, B. & Strecker, M.R. (2011). Spatially variable response of Himalayan gla- ciers to climate change affected by debris cover. Nature Geoscience. 4: 156-159. Schomacker, A. (2008). What controls dead-ice melting under different climate conditions? A discussion. Earth-Science Reviews. 90:103- 113. Uhlmann, B., Jordan, F. & Beniston, M. (2012). Modelling runoff in a Swiss glacierized cat- chment – Part II: daily discharge and glacier evolution in the Findelen basin in a progres- sively warmer climate. International Journal of Climatology. 33: 1301-1307. WGMS (2011). Glacier mass balance bulletin. Bulletin No. 11 (2008-2009) (eds.: Zemp, M., Nussbaumer, S.U., Gärtner-Roer, I., Hoelzle, M., Paul, F. & Haeberli, W.). World Glacier Mo- nitoring Service, Zurich, Suiza. 102 pp. Fecha de recepción: 17 de enero del 2013 Fecha de aceptación: 24 de junio del 2013
  • 17. 26 Rev. Geogr. Espacios Vol. 3, No 5: 11-25, 2013 View publication statsView publication stats