SlideShare ist ein Scribd-Unternehmen logo
1 von 49
Downloaden Sie, um offline zu lesen
Nonlinear analysis of time series
ARMA(p,q) model qtqttptptt zzzxxx     1111
Linear analysis / linear models
Advantages:
1. Simple
2. Gaussian process, established
theory for stochastic processes
and statistical inference
3. Useful in applications
Shortcomings:
1. Cannot explain irregular patterns
in the time series
- data (distribution) asymmetry
- time irreversibility
- «bursts»
2. Deterministic part:
- stable fixed point system
- unstable system
- periodic system
autocorrelation AR model
description of irregular
patterns
explanation / detection of complex
deterministic patterns
Time series, Part 3
Nonlinear analysis of time series
),,,,( 21 tptttt XXXfX  A general
nonlinear model
tptttt XXXfX   ),,,( 21 
additive
noise
  p
ptttt
'XXX   ,,, 211 X  p
f :
f ?
tptpttt XXXX    2211
Linear AR
model
Generalizations / extensions of the ΑR model
p ,,, 21 
constant (linear ΑR)
random coefficients
- RCA
- BL
constant (linear ΑR, ARMA)
function of Xt
- ARCH
- GARCH

piecewise models
- SETAR
- Markovian
)1()1(
2
)1(
1 ,,, p 
)2()2(
2
)2(
1 ,,, p 
)()(
2
)(
1 ,,, l
p
ll
 
Self-excited threshold autoregressive models (SETAR)
 ll rrrr ,,,, 110 
 lrrr 10
lRRR  21
lirrR iii ,,1],,( 1  
p
Partition of
selection of a lag d,
partition of for dtX 
t
j
pt
j
pt
j
t
j
t XXXX  )()(
2
)(
21
)(
1   
jdt RX 
SETAR
when
)1,0(~
0αν4.00.1
0αν6.00.2
11
11









t
ttt
ttt
t
XX
XX
X 


Example for SETAR
-5 0 5
-3
-2
-1
0
1
2
3
4
x(t-1)
x(t)
(xt-1
,xt
) for a SETAR model
AR models with probabilistic selection of threshold
Exponential autoregressive models (EAR)
tt
j
t
j
t XXX    2
)(
21
)(
1







1με2
με1
j
tt
j
t
j
t XXX    2
)(
21
)(
1
AR models with periodic coefficients






12όταν2
2όταν1
kt
kt
j
1
)1(
1   0)1(
2  0)2(
1  2
)2(
2  
Example
Markov chain driven AR models
 ljJt ,,2,1 
The selection of the threshold
is determined by a Markov chain
)|( 1 iJjJP tt  
Transition matrix
Example
tt
J
t XX t
  1
)( 9.0)1(
 9.0)2(







8.02.0
9.01.0
)|( 1 iJjJP tt   =
Piecewise polynomial models
tptttt XXXfX   ),,,( 21 
1 2( , , , )t m t t t p tX p X X X    
polynomial of
order p and
degree m
Example
2
1 1 1 1(1 )t t t t tX aX X aX aX       logistic map1a
aa /)1( Two fixed points: 0 and
Fractional autoregressive models
tq
j
j
tj
p
j
j
tj
t
Xbb
Xaa
X 









1
10
1
10
10  qp
0pa 
0qb
Example
Fraction of two polynomials
random coefficients autoregressive models (RCA)
1 ttt XX AR(1) with multiplicative errors
 
 
p
i
titiit XtBbX
1
)( RCA
ib constant
)(tBb iii 
)(,),(),( 21 tBtBtB p
independent of
t
tXrandom with mean 0
Example
  titit XtBX  )(1.0 )9.0,0(~ 2
tB
Bilinear models (BL)
BL of order 1: ttttt XbaXX    11
 
 
p
i
titiit XtAaX
1
)(  

s
k
ktjki btA
1
)( 
)(tAa iii coefficients
ts XXts  const, tss ,- If linear w.r.t.
“Bilinear” because:
ts Xts  const,  tsXs ,- If linear w.r.t.
AR models with conditional heteroscedasticity
 tX ~ ARCH  ~ BL 2
tX
ARCH ttt VX 
22
11 ptptt XXV     0
0i
Model of multiplicative noise
),0(~ 2
 t
GARCH  


 
q
i
iti
p
i
itit VXV
11
2

0i
ttt VX 
0
0i
Analysis with nonlinear models
1. Model selection
2. Parameter estimation
- maximum likelihood method
- method of ordinary least squares
3. Diagnostic checking
uncorrelated
following normal distribution
  rgm m 2)(ˆ|ln2)(AIC  xθx
Μ candidate models, m = 1,...,M
errors (rediduals):
Real world time series
mechanics
physiology
geophysics economics
Nonlinear time series analysis and dynamical systems
Time series 1 2, , , nx x x
Assumption:
: trajectory of the dynamical systemd
ts
0s : state vector at time 0
dd
:  t
f system function
t : continuous or discrete time
For time series we assume underlying systems to be dissipative
Trajectory in
d
 attractor
 d
:h observation function
( )t tx h sobservation :
0( )t
t s f sNonlinear dynamical system
Attractor:
● stable fixed (equilibrium) point
● finite set of equilibrium points
● limit cycle
● torus
● strange attractor
self similarity - fractals
chaossensitivity to initial conditions
can be derived by
a linear system
cannot be derived by
a linear system
Nonlinear dynamical systems, maps (discrete time)
si = 1 – 1.4 si-1
2 + 0.3si-2
chaotic map Hénon











 2
1
1
1
6
4.0exp9.01
k
kk
s
i
iss
chaotic map Ikeda
si = a si-1(1 - si-1)
periodic a=3.52
chaotic a=4
Logistic map
Nonlinear dynamical systems, flows (continuous time)
s3
s1
s2
s1, s2 , s3Lorenz system:
2133
31212
121 )(
sscss
sssbss
ssas






3
8
2810  cba
sampling time τs
Noise in the time series
( )t tx h s
0( )t
t s f s
noise
( )t t tx h w s
observational noise
noise
Observation
Dynamical system
0( )t
t tf  s s
dynamic (system) noise
tw : white noise, uncorrelated to andtx ts
t : white noise, uncorrelated to us tu 
Noise: dynamic (system) ε observational (measurement) w
si = a si-1(1 - si-1)
xi = si + wi, wi ~ N(0,s)
logistic map
si = a si-1(1 - si-1) + εi , εi ~ N(0,s2)
xi = si
chaotic
periodic
Scatter diagrams in 2 and 3 dimensions
d=1 d=3d=2
d=1 d=3d=2
0 50 100 150 200 250 300
0
50
100
150
200
time index i
x(i)
annual sunspots 1700-1996
0 50 100 150 200
0
50
100
150
200
x(i)
x(i-1)
sunspots
0
50
100
150
200 0
50
100
150
200
0
50
100
150
200
x(i-1)
sunspots
x(i)
x(i-2)
0 50 100 150 200 250 300
0
100
200
300
400
500
time index i
x(i)
square of AR(9)
0 100 200 300 400 500
0
100
200
300
400
500
x(i)
x(i-1)
Square of AR(9)
0
200
400
600 0
200
400
600
0
100
200
300
400
500
x(i-1)
Square of AR(9)
x(i)
x(i-2)
50 100 150 200 250
0
500
1000
1500
2000
time index i
x(i)
square of z-lorenz
0 500 1000 1500 2000
0
500
1000
1500
2000
x(i)
x(i-1)
square of z-lorenz
0
500
1000
1500
2000 0
500
1000
1500
2000
0
500
1000
1500
2000
x(i-1)
square of z-lorenz
x(i)
x(i-2)
Scatter diagrams in 2 and 3 dimensions
- Other topics:
- Hypothesis testing for linearity / nonlinearity
- Control system evolution
- Synchronization
- …
- State space reconstruction
in order to observe the complexity / stochasticity / structure
of the system
- Estimation of characteristics of the system / attractor
measuring the complexity / dimension of the system
- Modeling / Prediction
Use nonlinear models to improve predictions
Topics in
the analysis of time series and dynamical systems
xi = [xi , xi-t ,…, xi-(m-1)t ]
Method of delays
Parameters
embedding dimension m
delay time t
time window length tw
tw = (m-1)t
We assume that
the studied system
is deterministic
State space reconstruction
initial state
space
M
is
1is
)(1 ii sfs 
x
R
observed
quantity
xi = h(si )
h
Embedding
?
1ix
ix
)(1 ii xFx 
Rm
reconstructed
state space
xi = F(si )Φ
condition: 12  Dm
m=2 τ=1
s(i)= 1 – 1.4 s(i-1)2 + 0.3s(i-2)
or
s1 (i)= 1 – 1.4 s1(i-1)2 + s2(i-1)
s2 (i)= 0.3 s1(i-1)
Method of delays
Example: Hénon map
xi= s1 (i)
projection
m=3 τ=1
m=2 τ=2
m=3 τ=2
self-intersections
τ =10
xi= s1 (i)
projection
τ=1
Method of delays, m=3
3213
21312
211 )(
cssss
sbssss
ssas






a=10, b=28, c=8/3
Example: Lorenz system
optimal τ ? τ =5
τ =20
• From the autocorrelation r(τ)
(measures linear correlation)
τ  r(τ) =1/e ή τ  r(τ) =0
Estimation of τ
)()(
),(
log),(),(
, ypxp
yxp
yxpYXI
YX
XY
yx
XY
)(),( t
t
IYXI
xYxX ii

 
• From the mutual information I(τ)
(measures linear and
nonlinear correlation)
τ  first local minimum I(τ)
• Close points on the attractor are:
- either real neighboring points due to system dynamics
- or false neighboring points due to self-intersections and insufficiently low m
Method of false nearest neighbors (FNN)
Estimation of m
Optimal m ?
R
R2
• Takens theorem:
… but D is unknown
12  Dm
• At a larger m where there are no self-intersections all false neighboring points
will be resolved as they will no longer be close
• The optimal m’ is the one for which there are no longer any false nearest
neighbors as the dimension increases by one from m’ to m’+1.
• Too small m
 self-intersection in the attractor
• Too large m
 “curse of dimensionality”
An example of estimating m by the method FNN
The estimation of m with the method FNN depends on:
- the delay τ
- noise
x-Lorenz without noise
2 4 6 8 10
0
5
10
15
20
25
30
35
40
m
%FNN
FNN, x-lorenz, no-noise
t=2
t=5
t=10
t=20
x-Lorenz + 10% noise
2 4 6 8 10
0
5
10
15
20
25
30
35
40
m
%FNN
FNN, x-lorenz 10% noise
t=2
t=5
t=10
t=20
• Dimension
1. Euclidean
2. Topologic
3. Fractal
(correlation, information, box counting, …)
• Lyapunov exponents
(largest, the whole spectrum)
• Entropy
Estimation of nonlinear characteristics
Nonlinear characteristics (invariant measures)
The correlation dimension ν characterizes the fractal structure of the
attractor (self-similarity at different scales) using the density of the points
of the attractor in the reconstructed state space
The basic idea is that the probability of two points being
closer than a distance r
Correlation dimension ν
 rji  xx
changes w.r.t. r as a power of r
i : number of points lying in a sphere with
radius r and center ix
 i i jx
r    x x
scaling law

 rxi ~
ν integer the attractor is a regular geometric object
ν non-integer attractor is a fractal
holds for
0r N
xi
xi
xi
xi

rrC )(Scaling law for small r
Convergence of ν(m) for m sufficiently large
Estimation
dlog ( )
dlog
C r
r
  for a range of r
If ν small and non-integer and the system is deterministic
small dimension and fractal (chaotic) structure
Estimation of the correlation dimension ν
Correlation sum    



N
i
N
ij
jr
NN
rC
1 1)1(
2
)( xxi
  Nii ,,1, xreconstructiontime series  , 1, , ( 1)ix i N m t  
Estimation of
xi
0 when 0
( )
1 when 0
x
x
x

  

Heaviside function
x-Lorenz + 10% observational noise, τ=2
x-Lorenz + 10% observational noise, τ=10
log C(r) vs log r local slope vs log r ν vs m
x-Lorenz without noise, τ=2
The estimation of ν is affected by the following factors:
- correlation time  wji 
- selection of τ and m
- noise
- time series length
-2 -1.5 -1 -0.5 0 0.5
-5
-4
-3
-2
-1
0
logr
logC(r)
m=1
m=10
()
-2 -1.5 -1 -0.5 0 0.5
0
1
2
3
4
5
log r
localslope
m=1
m=10
()
0 2 4 6 8 10
0
1
2
3
4
5
m

()
n=924
Hénon
-2 -1.5 -1 -0.5 0 0.5
-5
-4
-3
-2
-1
0
logr
logC(r)
m=1
m=10
()
-2 -1.5 -1 -0.5 0 0.5
0
1
2
3
4
5
log r
localslope
m=1
m=10
()
0 2 4 6 8 10
0
1
2
3
4
5
m

(t)
Hénon
+ 10% white noise
-4 -3.5 -3 -2.5 -2 -1.5 -1
-5
-4
-3
-2
-1
0
logr
logC(r)
m=1
m=10
()
-4 -3.5 -3 -2.5 -2 -1.5 -1
0
2
4
6
8
10
log r
localslope
m=1
m=10
()
0 2 4 6 8 10
0
2
4
6
8
10
m

()
Returns of ASE index
1/1/2005 – 20/9/2005
-4 -3.5 -3 -2.5 -2 -1.5 -1
-5
-4
-3
-2
-1
0
logr
logC(r)
m=1
m=10
()
-4 -3.5 -3 -2.5 -2 -1.5 -1
0
2
4
6
8
10
log r
localslope
m=1
m=10
()
0 2 4 6 8 10
0
2
4
6
8
10
m

()
white noise
The Lyapunov exponents measure the average rate of divergence and convergence
of the trajectories on the attractor at the directions of the local state space
Lyapunov spectrum: m  ...21
λi > 0  divergence
λi < 0  convergence
λi = 0  direction of flow
If λ1 > 0 and the system is deterministic
chaos
Lyapunov exponents
Dissipative system : 

m
i
i
1
0
xi
xi’
xi+t
xi’+t
d0
dt
Largest Lyapunov exponent λ1
Initial distance d0= xi - xi’ of two nearby trajectories is
expected to increase exponentially with time
If
t
t e 1
0

 
λ1 is the largest
Lyapunov exponent


N
j j
jt
Nt 1 ,0
,
1 ln
1


Computation:
After time t: dt= xi+t - xi’+t
Example: x-Lorenz
without noise with 10%-noise
The estimation of λ1 depends on : τ, m, noise
The true system generating the time series: )(1 ii sfs 
Prediction models
2
1, 1 1, 2,
2, 1 1,
1 1.4
0.3
i i i
i i
s s s
s s


  

Hénon map
1
1, 2, 1, 1( , ) f
i i is s s 
2
1, 2, 2, 1( , ) f
i i is s s 
1i if
s s
The true system generating the time series: unknown)(1 ii sfs 
The problem of modeling and prediction of time series:
given x1, x2, … xi , to estimate / predict xi+1
State space reconstruction
with the method of delays:
xi = [xi, xi-t …, xi-(m-1)t]
Prediction models
The reconstructed system from the time series: estimation?)(1 ii xFx 
The function that is relevant to
time series prediction:
)(1 ii xFx 
)(1 ii Fx x
mm
 :F
 m
F :
1 1( , )i i ix F x x m = 2, τ = 1
• Semi-local models, e.g. neural networks
the form of function F is derived as a weighted sum of
local basic functions
Nonlinear prediction models
• Global models, e.g. polynomials
function F bears the same analytic expression
for the whole domain
• Local models, e.g. the local linear model
function F is defined differently at each point of the
reconstructed state space
Prediction using similar segments of the time series
Prediction at time i+T from the mappings Τ step ahead of
“similar” segments from the past of the time series
Local prediction models
Implementation of the idea of “similar” segments:
time series segments  reconstructed points
},...,,{ )()2()1( Kiii xxxThe nearest neighboring points to xi:
Prediction of xi+T from the mappings of the neighbors: },...,,{ )()2()1( TKiTiTi xxx 
Zeroth order prediction: TiiTi xTxx   )1()(ˆ
Average prediction:


K
j
Tjii x
K
Tx
1
)(
1
)(
Local linear prediction
We assume that for the neighbor of xi the local linear model is valid :
i
mimii
miiiii
'a
xaxaxaa
xxxFFx
xa
x





0
)1(210
)1(1 ),,,()(
tt
tt


xi(1)+T = a0 + a’ xi(1)
xi(2)+T = a0 + a’ xi(2)
xi(K)+T = a0 + a’ xi(K)
The model holds for
)()2()1( ,...,, Kiii xxx

 
K
j
mjimjiji
aaa
xaxaax
m
1
2
)1()()(101)(
,,,
)(min
10
t

Estimation of parameters
(method of ordinary least squares)
maaa ,,, 10 
Estimation of prediction error
We split the time series in two parts:
1 11 2, 1, , , , ,N N Nx x x x x
learning set test set
1 1
ˆ ˆ, ,N Nx xpredictions
ˆi T i T i Te x x   
prediction error
 
 








 N
i
i
TN
Nt
TtTt
xx
N
xx
NTN
T
1
2
1
2
1
1
ˆ
1
)(NRMSE 1
statistic for
prediction error
( )ix T
Example: x-Lorenz
• local linear prediction model (LLP)
Prediction with:
• local average prediction model (LAP)
11,5,1  Kmt
without noise
with 10%-noise
0 2 4 6 8 10
0.7
0.8
0.9
1
1.1
m
nrmse(m)
()
AR
LAM(K=15)
LLM(K=15)
Prediction error (nrmse) for the
last 30 quarters
annual- quarter growth rate of GNP of USE in the period 1947 – 1991
164 166 168 170 172 174 176
-0.01
-0.005
0
0.005
0.01
0.015
0.02
()
real
AR(3)
LAM(m=5,K=15)
LLM(m=5,K=15)
Predictions starting at the first
quarter of 1989 with prediction
horizon being the last 6 years
Prediction with
- linear model, AR
- local average model, LAM
- local linear model, LLM
Prediction starting at 20/9/2005
and prediction horizon is up to 16 days ahead
ASE index in the period 1/1/2002 – 20/9/2005
Predict index with
- linear model, AR
- local average model, LAM
returns 1
1
t t
t
t
x x
y
x




18 25 02 09 16
-0.015
-0.01
-0.005
0
0.005
0.01
0.015
day
returnsofindex
()
general index returns
y
n
(T), AR(7)
y
n
(T), LAM(m=7,K=20)
index
18 25 02 09 16
3200
3250
3300
3350
3400
3450
day
closeindex
()
general index
xn
(T), AR(7)
xn
(T), LAM(m=7,K=20)
One step ahead prediction
in the period 21/9/2005 – 12/10/2005
ASE index in the period 1/1/2002 – 20/9/2005
Predict index with
- linear model, AR
- local average model, LAM
returns 1
1
t t
t
t
x x
y
x




18 25 02 09 16
-0.015
-0.01
-0.005
0
0.005
0.01
0.015
day
indexreturn
()
general index
y
n
(1) AR(7)
y
n
(1) LAM(m=7,K=20)
index
18 25 02 09 16
3200
3250
3300
3350
3400
3450
day
closeindex
()
general index
xn
(1) AR(7)
xn
(1) LAM(m=7,K=20)

Weitere ähnliche Inhalte

Was ist angesagt?

discrete time signals and systems
 discrete time signals and systems  discrete time signals and systems
discrete time signals and systems
Zlatan Ahmadovic
 
2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter
nozomuhamada
 
Métodos computacionales para el estudio de modelos epidemiológicos con incer...
Métodos computacionales para el estudio de modelos  epidemiológicos con incer...Métodos computacionales para el estudio de modelos  epidemiológicos con incer...
Métodos computacionales para el estudio de modelos epidemiológicos con incer...
Facultad de Informática UCM
 
Fourier series example
Fourier series exampleFourier series example
Fourier series example
Abi finni
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
ijceronline
 

Was ist angesagt? (20)

discrete time signals and systems
 discrete time signals and systems  discrete time signals and systems
discrete time signals and systems
 
Introduction to mathematical control theory - Dr. Purnima Pandit
Introduction to mathematical control theory - Dr. Purnima PanditIntroduction to mathematical control theory - Dr. Purnima Pandit
Introduction to mathematical control theory - Dr. Purnima Pandit
 
2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter
 
Unit 1 Operation on signals
Unit 1  Operation on signalsUnit 1  Operation on signals
Unit 1 Operation on signals
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
 
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
 
Métodos computacionales para el estudio de modelos epidemiológicos con incer...
Métodos computacionales para el estudio de modelos  epidemiológicos con incer...Métodos computacionales para el estudio de modelos  epidemiológicos con incer...
Métodos computacionales para el estudio de modelos epidemiológicos con incer...
 
Chapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic SignalsChapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic Signals
 
Deconvolution
DeconvolutionDeconvolution
Deconvolution
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
 
Fourier series example
Fourier series exampleFourier series example
Fourier series example
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
 
4. operations of signals
4. operations of signals 4. operations of signals
4. operations of signals
 
Application of analytic function
Application of analytic functionApplication of analytic function
Application of analytic function
 
Linear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comLinear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.com
 
Modern Control - Lec07 - State Space Modeling of LTI Systems
Modern Control - Lec07 - State Space Modeling of LTI SystemsModern Control - Lec07 - State Space Modeling of LTI Systems
Modern Control - Lec07 - State Space Modeling of LTI Systems
 
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and SystemsDSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
 
Ch07 8
Ch07 8Ch07 8
Ch07 8
 

Andere mochten auch

Forecasting solid waste generation in Juba Town, South Sudan using Artificial...
Forecasting solid waste generation in Juba Town, South Sudan using Artificial...Forecasting solid waste generation in Juba Town, South Sudan using Artificial...
Forecasting solid waste generation in Juba Town, South Sudan using Artificial...
Premier Publishers
 

Andere mochten auch (12)

Forecasting solid waste generation in Juba Town, South Sudan using Artificial...
Forecasting solid waste generation in Juba Town, South Sudan using Artificial...Forecasting solid waste generation in Juba Town, South Sudan using Artificial...
Forecasting solid waste generation in Juba Town, South Sudan using Artificial...
 
Time series Analysis
Time series AnalysisTime series Analysis
Time series Analysis
 
2012.09.27 Lessons Learned from Doing Qualitative Research
2012.09.27 Lessons Learned from Doing Qualitative Research2012.09.27 Lessons Learned from Doing Qualitative Research
2012.09.27 Lessons Learned from Doing Qualitative Research
 
2017.03.09 collaboration is key to thriving in the 21st century
2017.03.09 collaboration is key to thriving in the 21st century2017.03.09 collaboration is key to thriving in the 21st century
2017.03.09 collaboration is key to thriving in the 21st century
 
2017.02.08 The Darkside of Enterprise Social Media
2017.02.08 The Darkside of Enterprise Social Media2017.02.08 The Darkside of Enterprise Social Media
2017.02.08 The Darkside of Enterprise Social Media
 
2017.03.09 innovation and why it matters more in the 21st century than ever b...
2017.03.09 innovation and why it matters more in the 21st century than ever b...2017.03.09 innovation and why it matters more in the 21st century than ever b...
2017.03.09 innovation and why it matters more in the 21st century than ever b...
 
Final Report SCP
Final Report SCPFinal Report SCP
Final Report SCP
 
FPGA Implementation of a GA
FPGA Implementation of a GAFPGA Implementation of a GA
FPGA Implementation of a GA
 
ARMA and VAR modelling of Industrial Production in America
ARMA and VAR modelling of Industrial Production in AmericaARMA and VAR modelling of Industrial Production in America
ARMA and VAR modelling of Industrial Production in America
 
2012.09.18 exploring the glocalization of activism and empowerment
2012.09.18 exploring the glocalization of activism and empowerment2012.09.18 exploring the glocalization of activism and empowerment
2012.09.18 exploring the glocalization of activism and empowerment
 
Forecasting IP using ARMA and VAR
Forecasting IP using ARMA and VARForecasting IP using ARMA and VAR
Forecasting IP using ARMA and VAR
 
2017.05.24 coaching yourself to success
2017.05.24 coaching yourself to success2017.05.24 coaching yourself to success
2017.05.24 coaching yourself to success
 

Ähnlich wie 2013.06.18 Time Series Analysis Workshop ..Applications in Physiology, Climate Change and Finance, part 3

Anomaly Detection in Sequences of Short Text Using Iterative Language Models
Anomaly Detection in Sequences of Short Text Using Iterative Language ModelsAnomaly Detection in Sequences of Short Text Using Iterative Language Models
Anomaly Detection in Sequences of Short Text Using Iterative Language Models
Cynthia Freeman
 

Ähnlich wie 2013.06.18 Time Series Analysis Workshop ..Applications in Physiology, Climate Change and Finance, part 3 (20)

df_lesson_01.ppt
df_lesson_01.pptdf_lesson_01.ppt
df_lesson_01.ppt
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
LeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.pptLeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.ppt
 
Eece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformEece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transform
 
residue
residueresidue
residue
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
 
Convolution representation impulse response
Convolution representation impulse responseConvolution representation impulse response
Convolution representation impulse response
 
Tdm fdm
Tdm fdmTdm fdm
Tdm fdm
 
Anomaly Detection in Sequences of Short Text Using Iterative Language Models
Anomaly Detection in Sequences of Short Text Using Iterative Language ModelsAnomaly Detection in Sequences of Short Text Using Iterative Language Models
Anomaly Detection in Sequences of Short Text Using Iterative Language Models
 
Note and assignment mis3 5.3
Note and assignment mis3 5.3Note and assignment mis3 5.3
Note and assignment mis3 5.3
 
Signals and system
Signals and systemSignals and system
Signals and system
 
Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)
 
Module v sp
Module v spModule v sp
Module v sp
 
15963128.ppt
15963128.ppt15963128.ppt
15963128.ppt
 
P73
P73P73
P73
 
PhasePlane1-1.pptx
PhasePlane1-1.pptxPhasePlane1-1.pptx
PhasePlane1-1.pptx
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 

Mehr von NUI Galway

Mehr von NUI Galway (20)

Vincenzo MacCarrone, Explaining the trajectory of collective bargaining in Ir...
Vincenzo MacCarrone, Explaining the trajectory of collective bargaining in Ir...Vincenzo MacCarrone, Explaining the trajectory of collective bargaining in Ir...
Vincenzo MacCarrone, Explaining the trajectory of collective bargaining in Ir...
 
Tom Turner, Tipping the scales for labour in Ireland?
Tom Turner, Tipping the scales for labour in Ireland? Tom Turner, Tipping the scales for labour in Ireland?
Tom Turner, Tipping the scales for labour in Ireland?
 
Tom McDonnell, Medium-term trends in the Irish labour market and possibilitie...
Tom McDonnell, Medium-term trends in the Irish labour market and possibilitie...Tom McDonnell, Medium-term trends in the Irish labour market and possibilitie...
Tom McDonnell, Medium-term trends in the Irish labour market and possibilitie...
 
Stephen Byrne, A non-employment index for Ireland
Stephen Byrne, A non-employment index for IrelandStephen Byrne, A non-employment index for Ireland
Stephen Byrne, A non-employment index for Ireland
 
Sorcha Foster, The risk of automation of work in Ireland
Sorcha Foster, The risk of automation of work in IrelandSorcha Foster, The risk of automation of work in Ireland
Sorcha Foster, The risk of automation of work in Ireland
 
Sinead Pembroke, Living with uncertainty: The social implications of precario...
Sinead Pembroke, Living with uncertainty: The social implications of precario...Sinead Pembroke, Living with uncertainty: The social implications of precario...
Sinead Pembroke, Living with uncertainty: The social implications of precario...
 
Paul MacFlynn, A low skills equilibrium in Northern Ireland
Paul MacFlynn, A low skills equilibrium in Northern IrelandPaul MacFlynn, A low skills equilibrium in Northern Ireland
Paul MacFlynn, A low skills equilibrium in Northern Ireland
 
Nuala Whelan, The role of labour market activation in building a healthy work...
Nuala Whelan, The role of labour market activation in building a healthy work...Nuala Whelan, The role of labour market activation in building a healthy work...
Nuala Whelan, The role of labour market activation in building a healthy work...
 
Michéal Collins, and Dr Michelle Maher, Auto enrolment
 Michéal Collins, and Dr Michelle Maher, Auto enrolment Michéal Collins, and Dr Michelle Maher, Auto enrolment
Michéal Collins, and Dr Michelle Maher, Auto enrolment
 
Michael Taft, A new enterprise model
Michael Taft, A new enterprise modelMichael Taft, A new enterprise model
Michael Taft, A new enterprise model
 
Luke Rehill, Patterns of firm-level productivity in Ireland
Luke Rehill, Patterns of firm-level productivity in IrelandLuke Rehill, Patterns of firm-level productivity in Ireland
Luke Rehill, Patterns of firm-level productivity in Ireland
 
Lucy Pyne, Evidence from the Social Inclusion and Community Activation Programme
Lucy Pyne, Evidence from the Social Inclusion and Community Activation ProgrammeLucy Pyne, Evidence from the Social Inclusion and Community Activation Programme
Lucy Pyne, Evidence from the Social Inclusion and Community Activation Programme
 
Lisa Wilson, The gendered nature of job quality and job insecurity
Lisa Wilson, The gendered nature of job quality and job insecurityLisa Wilson, The gendered nature of job quality and job insecurity
Lisa Wilson, The gendered nature of job quality and job insecurity
 
Karina Doorley, axation, labour force participation and gender equality in Ir...
Karina Doorley, axation, labour force participation and gender equality in Ir...Karina Doorley, axation, labour force participation and gender equality in Ir...
Karina Doorley, axation, labour force participation and gender equality in Ir...
 
Jason Loughrey, Household income volatility in Ireland
Jason Loughrey, Household income volatility in IrelandJason Loughrey, Household income volatility in Ireland
Jason Loughrey, Household income volatility in Ireland
 
Ivan Privalko, What do Workers get from Mobility?
Ivan Privalko, What do Workers get from Mobility?Ivan Privalko, What do Workers get from Mobility?
Ivan Privalko, What do Workers get from Mobility?
 
Helen Johnston, Labour market transitions: barriers and enablers
Helen Johnston, Labour market transitions: barriers and enablersHelen Johnston, Labour market transitions: barriers and enablers
Helen Johnston, Labour market transitions: barriers and enablers
 
Gail Irvine, Fulfilling work in Ireland
Gail Irvine, Fulfilling work in IrelandGail Irvine, Fulfilling work in Ireland
Gail Irvine, Fulfilling work in Ireland
 
Frank Walsh, Assessing competing explanations for the decline in trade union ...
Frank Walsh, Assessing competing explanations for the decline in trade union ...Frank Walsh, Assessing competing explanations for the decline in trade union ...
Frank Walsh, Assessing competing explanations for the decline in trade union ...
 
Eamon Murphy, An overview of labour market participation in Ireland over the ...
Eamon Murphy, An overview of labour market participation in Ireland over the ...Eamon Murphy, An overview of labour market participation in Ireland over the ...
Eamon Murphy, An overview of labour market participation in Ireland over the ...
 

Kürzlich hochgeladen

Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
amitlee9823
 
Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...
Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...
Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...
amitlee9823
 
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
amitlee9823
 
Probability Grade 10 Third Quarter Lessons
Probability Grade 10 Third Quarter LessonsProbability Grade 10 Third Quarter Lessons
Probability Grade 10 Third Quarter Lessons
JoseMangaJr1
 
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
amitlee9823
 
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
amitlee9823
 
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts ServiceCall Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...
Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...
Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...
amitlee9823
 
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAl Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
AroojKhan71
 

Kürzlich hochgeladen (20)

Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
 
Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...
Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...
Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...
 
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
 
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
 
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
 
Halmar dropshipping via API with DroFx
Halmar  dropshipping  via API with DroFxHalmar  dropshipping  via API with DroFx
Halmar dropshipping via API with DroFx
 
Probability Grade 10 Third Quarter Lessons
Probability Grade 10 Third Quarter LessonsProbability Grade 10 Third Quarter Lessons
Probability Grade 10 Third Quarter Lessons
 
Mature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptxMature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptx
 
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
 
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
 
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts ServiceCall Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
 
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfAccredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
 
Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...
Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...
Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...
 
Anomaly detection and data imputation within time series
Anomaly detection and data imputation within time seriesAnomaly detection and data imputation within time series
Anomaly detection and data imputation within time series
 
Capstone Project on IBM Data Analytics Program
Capstone Project on IBM Data Analytics ProgramCapstone Project on IBM Data Analytics Program
Capstone Project on IBM Data Analytics Program
 
Sampling (random) method and Non random.ppt
Sampling (random) method and Non random.pptSampling (random) method and Non random.ppt
Sampling (random) method and Non random.ppt
 
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
 
Week-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interactionWeek-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interaction
 
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAl Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
 
Ravak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptxRavak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptx
 

2013.06.18 Time Series Analysis Workshop ..Applications in Physiology, Climate Change and Finance, part 3

  • 1. Nonlinear analysis of time series ARMA(p,q) model qtqttptptt zzzxxx     1111 Linear analysis / linear models Advantages: 1. Simple 2. Gaussian process, established theory for stochastic processes and statistical inference 3. Useful in applications Shortcomings: 1. Cannot explain irregular patterns in the time series - data (distribution) asymmetry - time irreversibility - «bursts» 2. Deterministic part: - stable fixed point system - unstable system - periodic system autocorrelation AR model description of irregular patterns explanation / detection of complex deterministic patterns Time series, Part 3 Nonlinear analysis of time series
  • 2.
  • 3. ),,,,( 21 tptttt XXXfX  A general nonlinear model tptttt XXXfX   ),,,( 21  additive noise   p ptttt 'XXX   ,,, 211 X  p f : f ?
  • 4. tptpttt XXXX    2211 Linear AR model Generalizations / extensions of the ΑR model p ,,, 21  constant (linear ΑR) random coefficients - RCA - BL constant (linear ΑR, ARMA) function of Xt - ARCH - GARCH  piecewise models - SETAR - Markovian )1()1( 2 )1( 1 ,,, p  )2()2( 2 )2( 1 ,,, p  )()( 2 )( 1 ,,, l p ll  
  • 5. Self-excited threshold autoregressive models (SETAR)  ll rrrr ,,,, 110   lrrr 10 lRRR  21 lirrR iii ,,1],,( 1   p Partition of selection of a lag d, partition of for dtX  t j pt j pt j t j t XXXX  )()( 2 )( 21 )( 1    jdt RX  SETAR when
  • 7. AR models with probabilistic selection of threshold Exponential autoregressive models (EAR) tt j t j t XXX    2 )( 21 )( 1        1με2 με1 j tt j t j t XXX    2 )( 21 )( 1 AR models with periodic coefficients       12όταν2 2όταν1 kt kt j 1 )1( 1   0)1( 2  0)2( 1  2 )2( 2   Example
  • 8. Markov chain driven AR models  ljJt ,,2,1  The selection of the threshold is determined by a Markov chain )|( 1 iJjJP tt   Transition matrix Example tt J t XX t   1 )( 9.0)1(  9.0)2(        8.02.0 9.01.0 )|( 1 iJjJP tt   =
  • 9. Piecewise polynomial models tptttt XXXfX   ),,,( 21  1 2( , , , )t m t t t p tX p X X X     polynomial of order p and degree m Example 2 1 1 1 1(1 )t t t t tX aX X aX aX       logistic map1a aa /)1( Two fixed points: 0 and Fractional autoregressive models tq j j tj p j j tj t Xbb Xaa X           1 10 1 10 10  qp 0pa  0qb Example Fraction of two polynomials
  • 10. random coefficients autoregressive models (RCA) 1 ttt XX AR(1) with multiplicative errors     p i titiit XtBbX 1 )( RCA ib constant )(tBb iii  )(,),(),( 21 tBtBtB p independent of t tXrandom with mean 0 Example   titit XtBX  )(1.0 )9.0,0(~ 2 tB
  • 11. Bilinear models (BL) BL of order 1: ttttt XbaXX    11     p i titiit XtAaX 1 )(    s k ktjki btA 1 )(  )(tAa iii coefficients ts XXts  const, tss ,- If linear w.r.t. “Bilinear” because: ts Xts  const,  tsXs ,- If linear w.r.t.
  • 12. AR models with conditional heteroscedasticity  tX ~ ARCH  ~ BL 2 tX ARCH ttt VX  22 11 ptptt XXV     0 0i Model of multiplicative noise ),0(~ 2  t GARCH       q i iti p i itit VXV 11 2  0i ttt VX  0 0i
  • 13. Analysis with nonlinear models 1. Model selection 2. Parameter estimation - maximum likelihood method - method of ordinary least squares 3. Diagnostic checking uncorrelated following normal distribution   rgm m 2)(ˆ|ln2)(AIC  xθx Μ candidate models, m = 1,...,M errors (rediduals):
  • 14. Real world time series mechanics physiology geophysics economics
  • 15. Nonlinear time series analysis and dynamical systems Time series 1 2, , , nx x x Assumption: : trajectory of the dynamical systemd ts 0s : state vector at time 0 dd :  t f system function t : continuous or discrete time For time series we assume underlying systems to be dissipative Trajectory in d  attractor  d :h observation function ( )t tx h sobservation : 0( )t t s f sNonlinear dynamical system
  • 16. Attractor: ● stable fixed (equilibrium) point ● finite set of equilibrium points ● limit cycle ● torus ● strange attractor self similarity - fractals chaossensitivity to initial conditions can be derived by a linear system cannot be derived by a linear system
  • 17. Nonlinear dynamical systems, maps (discrete time) si = 1 – 1.4 si-1 2 + 0.3si-2 chaotic map Hénon             2 1 1 1 6 4.0exp9.01 k kk s i iss chaotic map Ikeda si = a si-1(1 - si-1) periodic a=3.52 chaotic a=4 Logistic map
  • 18. Nonlinear dynamical systems, flows (continuous time) s3 s1 s2 s1, s2 , s3Lorenz system: 2133 31212 121 )( sscss sssbss ssas       3 8 2810  cba sampling time τs
  • 19. Noise in the time series ( )t tx h s 0( )t t s f s noise ( )t t tx h w s observational noise noise Observation Dynamical system 0( )t t tf  s s dynamic (system) noise tw : white noise, uncorrelated to andtx ts t : white noise, uncorrelated to us tu 
  • 20. Noise: dynamic (system) ε observational (measurement) w si = a si-1(1 - si-1) xi = si + wi, wi ~ N(0,s) logistic map si = a si-1(1 - si-1) + εi , εi ~ N(0,s2) xi = si chaotic periodic
  • 21. Scatter diagrams in 2 and 3 dimensions d=1 d=3d=2
  • 22. d=1 d=3d=2 0 50 100 150 200 250 300 0 50 100 150 200 time index i x(i) annual sunspots 1700-1996 0 50 100 150 200 0 50 100 150 200 x(i) x(i-1) sunspots 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 x(i-1) sunspots x(i) x(i-2) 0 50 100 150 200 250 300 0 100 200 300 400 500 time index i x(i) square of AR(9) 0 100 200 300 400 500 0 100 200 300 400 500 x(i) x(i-1) Square of AR(9) 0 200 400 600 0 200 400 600 0 100 200 300 400 500 x(i-1) Square of AR(9) x(i) x(i-2) 50 100 150 200 250 0 500 1000 1500 2000 time index i x(i) square of z-lorenz 0 500 1000 1500 2000 0 500 1000 1500 2000 x(i) x(i-1) square of z-lorenz 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 x(i-1) square of z-lorenz x(i) x(i-2) Scatter diagrams in 2 and 3 dimensions
  • 23. - Other topics: - Hypothesis testing for linearity / nonlinearity - Control system evolution - Synchronization - … - State space reconstruction in order to observe the complexity / stochasticity / structure of the system - Estimation of characteristics of the system / attractor measuring the complexity / dimension of the system - Modeling / Prediction Use nonlinear models to improve predictions Topics in the analysis of time series and dynamical systems
  • 24. xi = [xi , xi-t ,…, xi-(m-1)t ] Method of delays Parameters embedding dimension m delay time t time window length tw tw = (m-1)t We assume that the studied system is deterministic State space reconstruction initial state space M is 1is )(1 ii sfs  x R observed quantity xi = h(si ) h Embedding ? 1ix ix )(1 ii xFx  Rm reconstructed state space xi = F(si )Φ condition: 12  Dm
  • 25. m=2 τ=1 s(i)= 1 – 1.4 s(i-1)2 + 0.3s(i-2) or s1 (i)= 1 – 1.4 s1(i-1)2 + s2(i-1) s2 (i)= 0.3 s1(i-1) Method of delays Example: Hénon map xi= s1 (i) projection m=3 τ=1 m=2 τ=2 m=3 τ=2 self-intersections
  • 26. τ =10 xi= s1 (i) projection τ=1 Method of delays, m=3 3213 21312 211 )( cssss sbssss ssas       a=10, b=28, c=8/3 Example: Lorenz system optimal τ ? τ =5 τ =20
  • 27. • From the autocorrelation r(τ) (measures linear correlation) τ  r(τ) =1/e ή τ  r(τ) =0 Estimation of τ )()( ),( log),(),( , ypxp yxp yxpYXI YX XY yx XY )(),( t t IYXI xYxX ii    • From the mutual information I(τ) (measures linear and nonlinear correlation) τ  first local minimum I(τ)
  • 28. • Close points on the attractor are: - either real neighboring points due to system dynamics - or false neighboring points due to self-intersections and insufficiently low m Method of false nearest neighbors (FNN) Estimation of m Optimal m ? R R2 • Takens theorem: … but D is unknown 12  Dm • At a larger m where there are no self-intersections all false neighboring points will be resolved as they will no longer be close • The optimal m’ is the one for which there are no longer any false nearest neighbors as the dimension increases by one from m’ to m’+1. • Too small m  self-intersection in the attractor • Too large m  “curse of dimensionality”
  • 29. An example of estimating m by the method FNN The estimation of m with the method FNN depends on: - the delay τ - noise x-Lorenz without noise 2 4 6 8 10 0 5 10 15 20 25 30 35 40 m %FNN FNN, x-lorenz, no-noise t=2 t=5 t=10 t=20 x-Lorenz + 10% noise 2 4 6 8 10 0 5 10 15 20 25 30 35 40 m %FNN FNN, x-lorenz 10% noise t=2 t=5 t=10 t=20
  • 30. • Dimension 1. Euclidean 2. Topologic 3. Fractal (correlation, information, box counting, …) • Lyapunov exponents (largest, the whole spectrum) • Entropy Estimation of nonlinear characteristics Nonlinear characteristics (invariant measures)
  • 31. The correlation dimension ν characterizes the fractal structure of the attractor (self-similarity at different scales) using the density of the points of the attractor in the reconstructed state space The basic idea is that the probability of two points being closer than a distance r Correlation dimension ν  rji  xx changes w.r.t. r as a power of r i : number of points lying in a sphere with radius r and center ix  i i jx r    x x scaling law   rxi ~ ν integer the attractor is a regular geometric object ν non-integer attractor is a fractal holds for 0r N xi xi
  • 32. xi xi  rrC )(Scaling law for small r Convergence of ν(m) for m sufficiently large Estimation dlog ( ) dlog C r r   for a range of r If ν small and non-integer and the system is deterministic small dimension and fractal (chaotic) structure Estimation of the correlation dimension ν Correlation sum        N i N ij jr NN rC 1 1)1( 2 )( xxi   Nii ,,1, xreconstructiontime series  , 1, , ( 1)ix i N m t   Estimation of xi 0 when 0 ( ) 1 when 0 x x x      Heaviside function
  • 33. x-Lorenz + 10% observational noise, τ=2 x-Lorenz + 10% observational noise, τ=10 log C(r) vs log r local slope vs log r ν vs m x-Lorenz without noise, τ=2
  • 34. The estimation of ν is affected by the following factors: - correlation time  wji  - selection of τ and m - noise - time series length
  • 35. -2 -1.5 -1 -0.5 0 0.5 -5 -4 -3 -2 -1 0 logr logC(r) m=1 m=10 () -2 -1.5 -1 -0.5 0 0.5 0 1 2 3 4 5 log r localslope m=1 m=10 () 0 2 4 6 8 10 0 1 2 3 4 5 m  () n=924 Hénon -2 -1.5 -1 -0.5 0 0.5 -5 -4 -3 -2 -1 0 logr logC(r) m=1 m=10 () -2 -1.5 -1 -0.5 0 0.5 0 1 2 3 4 5 log r localslope m=1 m=10 () 0 2 4 6 8 10 0 1 2 3 4 5 m  (t) Hénon + 10% white noise -4 -3.5 -3 -2.5 -2 -1.5 -1 -5 -4 -3 -2 -1 0 logr logC(r) m=1 m=10 () -4 -3.5 -3 -2.5 -2 -1.5 -1 0 2 4 6 8 10 log r localslope m=1 m=10 () 0 2 4 6 8 10 0 2 4 6 8 10 m  () Returns of ASE index 1/1/2005 – 20/9/2005 -4 -3.5 -3 -2.5 -2 -1.5 -1 -5 -4 -3 -2 -1 0 logr logC(r) m=1 m=10 () -4 -3.5 -3 -2.5 -2 -1.5 -1 0 2 4 6 8 10 log r localslope m=1 m=10 () 0 2 4 6 8 10 0 2 4 6 8 10 m  () white noise
  • 36. The Lyapunov exponents measure the average rate of divergence and convergence of the trajectories on the attractor at the directions of the local state space Lyapunov spectrum: m  ...21 λi > 0  divergence λi < 0  convergence λi = 0  direction of flow If λ1 > 0 and the system is deterministic chaos Lyapunov exponents Dissipative system :   m i i 1 0
  • 37. xi xi’ xi+t xi’+t d0 dt Largest Lyapunov exponent λ1 Initial distance d0= xi - xi’ of two nearby trajectories is expected to increase exponentially with time If t t e 1 0    λ1 is the largest Lyapunov exponent   N j j jt Nt 1 ,0 , 1 ln 1   Computation: After time t: dt= xi+t - xi’+t
  • 38. Example: x-Lorenz without noise with 10%-noise The estimation of λ1 depends on : τ, m, noise
  • 39. The true system generating the time series: )(1 ii sfs  Prediction models 2 1, 1 1, 2, 2, 1 1, 1 1.4 0.3 i i i i i s s s s s       Hénon map 1 1, 2, 1, 1( , ) f i i is s s  2 1, 2, 2, 1( , ) f i i is s s  1i if s s
  • 40. The true system generating the time series: unknown)(1 ii sfs  The problem of modeling and prediction of time series: given x1, x2, … xi , to estimate / predict xi+1 State space reconstruction with the method of delays: xi = [xi, xi-t …, xi-(m-1)t] Prediction models The reconstructed system from the time series: estimation?)(1 ii xFx  The function that is relevant to time series prediction: )(1 ii xFx  )(1 ii Fx x mm  :F  m F : 1 1( , )i i ix F x x m = 2, τ = 1
  • 41. • Semi-local models, e.g. neural networks the form of function F is derived as a weighted sum of local basic functions Nonlinear prediction models • Global models, e.g. polynomials function F bears the same analytic expression for the whole domain • Local models, e.g. the local linear model function F is defined differently at each point of the reconstructed state space
  • 42. Prediction using similar segments of the time series Prediction at time i+T from the mappings Τ step ahead of “similar” segments from the past of the time series
  • 43. Local prediction models Implementation of the idea of “similar” segments: time series segments  reconstructed points },...,,{ )()2()1( Kiii xxxThe nearest neighboring points to xi: Prediction of xi+T from the mappings of the neighbors: },...,,{ )()2()1( TKiTiTi xxx  Zeroth order prediction: TiiTi xTxx   )1()(ˆ Average prediction:   K j Tjii x K Tx 1 )( 1 )(
  • 44. Local linear prediction We assume that for the neighbor of xi the local linear model is valid : i mimii miiiii 'a xaxaxaa xxxFFx xa x      0 )1(210 )1(1 ),,,()( tt tt   xi(1)+T = a0 + a’ xi(1) xi(2)+T = a0 + a’ xi(2) xi(K)+T = a0 + a’ xi(K) The model holds for )()2()1( ,...,, Kiii xxx    K j mjimjiji aaa xaxaax m 1 2 )1()()(101)( ,,, )(min 10 t  Estimation of parameters (method of ordinary least squares) maaa ,,, 10 
  • 45. Estimation of prediction error We split the time series in two parts: 1 11 2, 1, , , , ,N N Nx x x x x learning set test set 1 1 ˆ ˆ, ,N Nx xpredictions ˆi T i T i Te x x    prediction error              N i i TN Nt TtTt xx N xx NTN T 1 2 1 2 1 1 ˆ 1 )(NRMSE 1 statistic for prediction error ( )ix T
  • 46. Example: x-Lorenz • local linear prediction model (LLP) Prediction with: • local average prediction model (LAP) 11,5,1  Kmt without noise with 10%-noise
  • 47. 0 2 4 6 8 10 0.7 0.8 0.9 1 1.1 m nrmse(m) () AR LAM(K=15) LLM(K=15) Prediction error (nrmse) for the last 30 quarters annual- quarter growth rate of GNP of USE in the period 1947 – 1991 164 166 168 170 172 174 176 -0.01 -0.005 0 0.005 0.01 0.015 0.02 () real AR(3) LAM(m=5,K=15) LLM(m=5,K=15) Predictions starting at the first quarter of 1989 with prediction horizon being the last 6 years Prediction with - linear model, AR - local average model, LAM - local linear model, LLM
  • 48. Prediction starting at 20/9/2005 and prediction horizon is up to 16 days ahead ASE index in the period 1/1/2002 – 20/9/2005 Predict index with - linear model, AR - local average model, LAM returns 1 1 t t t t x x y x     18 25 02 09 16 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 day returnsofindex () general index returns y n (T), AR(7) y n (T), LAM(m=7,K=20) index 18 25 02 09 16 3200 3250 3300 3350 3400 3450 day closeindex () general index xn (T), AR(7) xn (T), LAM(m=7,K=20)
  • 49. One step ahead prediction in the period 21/9/2005 – 12/10/2005 ASE index in the period 1/1/2002 – 20/9/2005 Predict index with - linear model, AR - local average model, LAM returns 1 1 t t t t x x y x     18 25 02 09 16 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 day indexreturn () general index y n (1) AR(7) y n (1) LAM(m=7,K=20) index 18 25 02 09 16 3200 3250 3300 3350 3400 3450 day closeindex () general index xn (1) AR(7) xn (1) LAM(m=7,K=20)