SlideShare ist ein Scribd-Unternehmen logo
1 von 96
Downloaden Sie, um offline zu lesen
Estimates for a class of
non-standard bilinear multipliers
Vjekoslav Kovaˇc (University of Zagreb)
Joint work with Fr´ed´eric Bernicot (Universit´e de Nantes)
and Christoph Thiele (Universit¨at Bonn)
Joint CRM-ISAAC Conference on
Fourier Analysis and Approximation Theory
Bellaterra, November 6, 2013
Talk outline |
Part 1 — Introduction
Motivation for multilinear estimates
Concrete examples and some results
Talk outline |
Part 1 — Introduction
Motivation for multilinear estimates
Concrete examples and some results
Part 2 — The “entangled” structure
The scope of our techniques
Talk outline |
Part 1 — Introduction
Motivation for multilinear estimates
Concrete examples and some results
Part 2 — The “entangled” structure
The scope of our techniques
Part 3 — Dyadic model operators
Formulating a T(1)-type theorem
Setting up the Bellman function scheme
Talk outline |
Part 1 — Introduction
Motivation for multilinear estimates
Concrete examples and some results
Part 2 — The “entangled” structure
The scope of our techniques
Part 3 — Dyadic model operators
Formulating a T(1)-type theorem
Setting up the Bellman function scheme
Part 4 — Transition to continuous-type operators
Back to bilinear multipliers
“Entangled” operators with continuous kernels
Part 1 — Multilinear estimates ||
T = a multilinear integral operator
T is “singular” in some sense
Part 1 — Multilinear estimates ||
T = a multilinear integral operator
T is “singular” in some sense
We are interested in Lp
estimates:
T(F1, F2, . . . , Fk) Lp(Rn) ≤ Cp,p1,...,pk
k
j=1
Fj L
pj (R
nj )
in a subrange of 0 < p, p1, . . . , pk < ∞
Possibly also some Sobolev norm estimates, etc.
Part 1 — Multilinear estimates, motivation |||
Motivation for multilinear estimates:
Part 1 — Multilinear estimates, motivation |||
Motivation for multilinear estimates:
paraproducts
J.-M. Bony (1981) — paradifferential operators
G. David and J.-L. Journ´e (1984) — T(1) theorem
Part 1 — Multilinear estimates, motivation |||
Motivation for multilinear estimates:
paraproducts
J.-M. Bony (1981) — paradifferential operators
G. David and J.-L. Journ´e (1984) — T(1) theorem
multilinear expansions of nonlinear/“curved” operators
A. Calder´on (1960s) — Cauchy integral on Lipschitz curves
M. Christ and A. Kiselev (2001) — Hausdorff-Young
inequalities for the Dirac scattering transform
J. Bourgain and L. Guth (2010) — restriction estimates,
oscillatory integrals
Part 1 — Multilinear estimates, motivation |||
Motivation for multilinear estimates:
paraproducts
J.-M. Bony (1981) — paradifferential operators
G. David and J.-L. Journ´e (1984) — T(1) theorem
multilinear expansions of nonlinear/“curved” operators
A. Calder´on (1960s) — Cauchy integral on Lipschitz curves
M. Christ and A. Kiselev (2001) — Hausdorff-Young
inequalities for the Dirac scattering transform
J. Bourgain and L. Guth (2010) — restriction estimates,
oscillatory integrals
recurrence in ergodic theory
J. Bourgain (1988) — return times theorem
C. Demeter, M. Lacey, T. Tao, and C. Thiele (2008) —
extending the exponent range
Part 1 — A basic example ||||
Bilinear case only (for simplicity)
Part 1 — A basic example ||||
Bilinear case only (for simplicity)
From the viewpoint of bilinear singular integrals:
T(F, G)(x) = p.v.
(Rn)2
K(s, t)F(x − s)G(x − t) ds dt
K = translation-invariant Calder´on-Zygmund kernel
Generalized by L. Grafakos and R. H. Torres (2002):
multilinear C-Z operators
Take m = K
Part 1 — A basic example ||||
Bilinear case only (for simplicity)
From the viewpoint of bilinear multipliers:
Coifman-Meyer multipliers, R. Coifman and Y. Meyer (1978)
T(F, G)(x) =
(Rn)2
m(ξ, η)e2πix·(ξ+η)
F(ξ)G(η)dξdη
m∈C∞
R2{(0, 0)}
∂α1
ξ ∂α2
η m(ξ, η) ≤ Cα1,α2,n(|ξ| + |η|)−α1−α2
Note: m(ξ, η) is singular only at the origin ξ = η = 0
Part 1 — More singular examples, 1D ||||
1D example: bilinear Hilbert transform
Suggested by A. Calderon (Cauchy integral on Lipschitz curves)
Bounded by M. Lacey and C. Thiele (1997)
Part 1 — More singular examples, 1D ||||
1D example: bilinear Hilbert transform
Suggested by A. Calderon (Cauchy integral on Lipschitz curves)
Bounded by M. Lacey and C. Thiele (1997)
As a singular integral:
T(f , g)(x) = p.v.
R
f (x − t)g(x + t)
dt
t
Part 1 — More singular examples, 1D ||||
1D example: bilinear Hilbert transform
Suggested by A. Calderon (Cauchy integral on Lipschitz curves)
Bounded by M. Lacey and C. Thiele (1997)
As a singular integral:
T(f , g)(x) = p.v.
R
f (x − t)g(x + t)
dt
t
As a multiplier:
T(f , g)(x) =
R2
πi sgn(η − ξ)e2πix(ξ+η)
f (ξ)g(η)dξdη
Note: m(ξ, η) = πi sgn(η − ξ) is singular along the line ξ = η
Part 1 — More singular examples, 2D | ||||
2D example: a variant of the 2D bilinear Hilbert transform
Introduced by Demeter and Thiele and bounded for “most” cases
of A, B ∈ M2(R) (2008)
Part 1 — More singular examples, 2D | ||||
2D example: a variant of the 2D bilinear Hilbert transform
Introduced by Demeter and Thiele and bounded for “most” cases
of A, B ∈ M2(R) (2008)
As a singular integral:
T(F, G)(x, y) = p.v.
R2
K(s, t)F (x, y)−A(s, t)
G (x, y)−B(s, t) ds dt
Part 1 — More singular examples, 2D | ||||
2D example: a variant of the 2D bilinear Hilbert transform
Introduced by Demeter and Thiele and bounded for “most” cases
of A, B ∈ M2(R) (2008)
As a singular integral:
T(F, G)(x, y) = p.v.
R2
K(s, t)F (x, y)−A(s, t)
G (x, y)−B(s, t) ds dt
Essentially the only case that was left out:
A =
1 0
0 0
and B =
0 0
0 1
Part 1 — More singular examples, 2D | ||||
2D example: a variant of the 2D bilinear Hilbert transform
As a multiplier:
T(F, G)(x, y) =
R4
µ(ξ1, ξ2, η1, η2)e2πi(x(ξ1+η1)+y(ξ2+η2))
F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2
µ(ξ1, ξ2, η1, η2) = m Aτ (ξ1, ξ2) + Bτ (η1, η2) , m = K
m ∈ C∞
R2{(0, 0)}
∂α1
τ1
∂α2
τ2
m(τ1, τ2) ≤ Cα1,α2 (|τ1| + |τ2|)−α1−α2
Note: µ(ξ1, ξ2, η1, η2) is singular along the 2-plane
Aτ (ξ1, ξ2) + Bτ (η1, η2) = (0, 0)
Part 1 — Remaining case of 2D BHT || ||||
T(F, G)(x, y) =
R4
m(ξ1, η2)e2πi(x(ξ1+η1)+y(ξ2+η2))
F(ξ1, ξ2)G(η1, η2)dξ1dξ2dη1dη2
Part 1 — Remaining case of 2D BHT || ||||
T(F, G)(x, y) =
R4
m(ξ1, η2)e2πi(x(ξ1+η1)+y(ξ2+η2))
F(ξ1, ξ2)G(η1, η2)dξ1dξ2dη1dη2
Theorem. Lp
estimate — F. Bernicot (2010), V. K. (2010)
T(F, G) Lr ≤ Cp,q,r F Lp G Lq
for 1 < p, q < ∞, 0 < r < 2, 1
p + 1
q = 1
r .
Part 1 — Remaining case of 2D BHT || ||||
T(F, G)(x, y) =
R4
m(ξ1, η2)e2πi(x(ξ1+η1)+y(ξ2+η2))
F(ξ1, ξ2)G(η1, η2)dξ1dξ2dη1dη2
Theorem. Lp
estimate — F. Bernicot (2010), V. K. (2010)
T(F, G) Lr ≤ Cp,q,r F Lp G Lq
for 1 < p, q < ∞, 0 < r < 2, 1
p + 1
q = 1
r .
Theorem. Sobolev estimate — F. Bernicot and V. K. (2013)
If supp m ⊆ (ξ1, η2) : |ξ1| ≤ c |η2| , then
T(F, G) Lr
y (Ws,r
x ) ≤ Cp,q,r,s F Lp G Ws,q
for s ≥ 0, 1 < p, q < ∞, 1 < r < 2, 1
p + 1
q = 1
r .
Part 1 — A warning example ||| ||||
Bi-parameter bilinear Hilbert transform
Part 1 — A warning example ||| ||||
Bi-parameter bilinear Hilbert transform
T(F, G)(x, y) = p.v.
R2
F(x − s, y − t) G(x + s, y + t)
ds
s
dt
t
Part 1 — A warning example ||| ||||
Bi-parameter bilinear Hilbert transform
T(F, G)(x, y) = p.v.
R2
F(x − s, y − t) G(x + s, y + t)
ds
s
dt
t
T(F, G)(x, y) =
R4
π2
sgn(ξ1 + ξ2)sgn(η1 + η2)
e2πi(x(ξ1+η1)+y(ξ2+η2))
F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2
Part 1 — A warning example ||| ||||
Bi-parameter bilinear Hilbert transform
T(F, G)(x, y) = p.v.
R2
F(x − s, y − t) G(x + s, y + t)
ds
s
dt
t
T(F, G)(x, y) =
R4
π2
sgn(ξ1 + ξ2)sgn(η1 + η2)
e2πi(x(ξ1+η1)+y(ξ2+η2))
F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2
Satisfies no Lp
estimates!
C. Muscalu, J. Pipher, T. Tao, and C. Thiele (2004)
Note: the symbol is singular along the union of two 3-planes,
ξ1 + ξ2 = 0 and η1 + η2 = 0
Part 1 — Open problem #1 |||| ||||
Triangular Hilbert transform
Part 1 — Open problem #1 |||| ||||
Triangular Hilbert transform
T(F, G)(x, y) = p.v.
R
F(x−t, y)G(x, y −t)
dt
t
Part 1 — Open problem #1 |||| ||||
Triangular Hilbert transform
T(F, G)(x, y) = p.v.
R
F(x−t, y)G(x, y −t)
dt
t
T(F, G)(x, y) =
R4
−πisgn(ξ1 + η2) e2πi(x(ξ1+η1)+y(ξ2+η2))
F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2
Part 1 — Open problem #1 |||| ||||
Triangular Hilbert transform
T(F, G)(x, y) = p.v.
R
F(x−t, y)G(x, y −t)
dt
t
T(F, G)(x, y) =
R4
−πisgn(ξ1 + η2) e2πi(x(ξ1+η1)+y(ξ2+η2))
F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2
Still no Lp
estimates are known
Note: the symbol is singular along the 3-plane ξ1 + η2 = 0
Probably not the right way of looking at the operator
Part 1 — Open problem #1 |||| ||||
Triangular Hilbert transform
A singular integral approach to bilinear ergodic averages
(suggested by C. Demeter and C. Thiele):
1
N
N−1
k=0
f (Sk
ω)g(Tk
ω), ω ∈ Ω
S, T : Ω → Ω are commuting measure preserving transformations
L2
norm convergence as N → ∞ was shown by J.-P. Conze and E.
Lesigne (1984)
a.e. convergence as N → ∞ is still an open problem
Part 1 — Open problem #2 |||| ||||
Trilinear Hilbert transform
Part 1 — Open problem #2 |||| ||||
Trilinear Hilbert transform
T(f , g, h)(x) = p.v.
R
f (x−t)g(x+t)h(x+2t)
dt
t
Part 1 — Open problem #2 |||| ||||
Trilinear Hilbert transform
T(f , g, h)(x) = p.v.
R
f (x−t)g(x+t)h(x+2t)
dt
t
T(f , g, h)(x) =
R3
πi sgn(−ξ + η + 2ζ)e2πix(ξ+η+ζ)
f (ξ)g(η)h(ζ)dξdηdζ
Part 1 — Open problem #2 |||| ||||
Trilinear Hilbert transform
T(f , g, h)(x) = p.v.
R
f (x−t)g(x+t)h(x+2t)
dt
t
T(f , g, h)(x) =
R3
πi sgn(−ξ + η + 2ζ)e2πix(ξ+η+ζ)
f (ξ)g(η)h(ζ)dξdηdζ
Note: the symbol is singular along the 2-plane −ξ + η + 2ζ = 0
A complete mystery!
Only some negative results are known: C. Demeter (2008)
Part 2 — Entangled structure | |||| ||||
k-linear operator (k+1)-linear form
Object of study:
Multilinear singular integral forms with functions that partially
share variables
Part 2 — Entangled structure | |||| ||||
k-linear operator (k+1)-linear form
Object of study:
Multilinear singular integral forms with functions that partially
share variables
Schematically:
Λ(F1, F2, . . .) =
Rn
F1(x1, x2) F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
K = singular kernel
F1, F2, . . . = functions on R2
Part 2 — Generalized modulation invariance || |||| ||||
An alternative viewpoint: generalized modulation invariances
Part 2 — Generalized modulation invariance || |||| ||||
An alternative viewpoint: generalized modulation invariances
Rn
F1(x1, x2) F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
Part 2 — Generalized modulation invariance || |||| ||||
An alternative viewpoint: generalized modulation invariances
Rn
F1(x1, x2) F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
=
Rn
e2πiax1
F1(x1, x2) e−2πiax1
F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
Part 2 — Generalized modulation invariance || |||| ||||
An alternative viewpoint: generalized modulation invariances
Rn
F1(x1, x2) F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
=
Rn
e2πiax1
F1(x1, x2) e−2πiax1
F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
=
Rn
ϕ(x1)F1(x1, x2)
1
ϕ(x1)
F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
Part 2 — Estimates ||| |||| ||||
Goal: Lp estimates
|Λ(F1, F2, . . . , Fk)| F1 Lp1 F2 Lp2 . . . Fk Lpk
in a nonempty open subrange of
1
p1
+
1
p2
+ . . . +
1
pk
= 1
Part 2 — Estimates ||| |||| ||||
Goal: Lp estimates
|Λ(F1, F2, . . . , Fk)| F1 Lp1 F2 Lp2 . . . Fk Lpk
in a nonempty open subrange of
1
p1
+
1
p2
+ . . . +
1
pk
= 1
Desired results: characterizations of Lp boundedness
T(1)-type theorems
Part 2 — Back to examples, rem. case of 2D BHT|||| |||| ||||
T(F, G)(x, y) =
R2
F(x − s, y) G(x, y − t) K(s, t) ds dt
Part 2 — Back to examples, rem. case of 2D BHT|||| |||| ||||
T(F, G)(x, y) =
R2
F(x − s, y) G(x, y − t) K(s, t) ds dt
Substitute u = x − s, v = y − t:
Λ(F, G, H) = T(F, G), H
=
R4
F(u, y)G(x, v)H(x, y)K(x − u, y − v) dudvdxdy
Part 2 — Back to examples, rem. case of 2D BHT|||| |||| ||||
T(F, G)(x, y) =
R2
F(x − s, y) G(x, y − t) K(s, t) ds dt
Substitute u = x − s, v = y − t:
Λ(F, G, H) = T(F, G), H
=
R4
F(u, y)G(x, v)H(x, y)K(x − u, y − v) dudvdxdy
Non-translation-invariant generalization:
Λ(F, G, H) =
R4
F(u, y)G(x, v)H(x, y)K(u, v, x, y) dudvdxdy
Part 2 — Back to examples, rem. case of 2D BHT|||| |||| ||||
Λ(F, G, H) =
R4
F(u, y)G(x, v)H(x, y)K(u, v, x, y) dudvdxdy
Graph associated with its structure:
x ◦
H
G
◦
F
y
v ◦ ◦ u
Part 2 — Back to examples, triangular HT |||| |||| ||||
T(F, G)(x, y) := p.v.
R
F(x + t, y)G(x, y + t)
dt
t
Part 2 — Back to examples, triangular HT |||| |||| ||||
T(F, G)(x, y) := p.v.
R
F(x + t, y)G(x, y + t)
dt
t
Substitute: z = −x − y − t,
F1(x, y) = H(x, y), F2(y, z) = F(−y −z, y), F3(z, x) = G(x, −x−z)
Λ(F, G, H) = T(F, G), H
=
R3
F1(x, y) F2(y, z) F3(z, x)
−1
x + y + z
dxdydz
We do not know how to proceed in this example
Part 2 — Back to examples, triangular HT |||| |||| ||||
Λ(F1, F2, F3) =
R3
F1(x, y) F2(y, z) F3(z, x)
−1
x + y + z
dxdydz
Associated graph:
x
◦
F3F1
y ◦
F2
◦ z
Note: this graph is not bipartite
Part 2 — A manageable modification | |||| |||| ||||
Quadrilinear variant:
Λ(F1, F2, F3, F4)
=
R4
F1(u, v)F2(u, y)F3(x, y)F4(x, v) K(u, v, x, y) dudvdxdy
Part 2 — A manageable modification | |||| |||| ||||
Quadrilinear variant:
Λ(F1, F2, F3, F4)
=
R4
F1(u, v)F2(u, y)F3(x, y)F4(x, v) K(u, v, x, y) dudvdxdy
Associated graph:
x ◦
F3
F4
◦
F2
y
v ◦
F1
◦ u
Part 2 — A manageable modification | |||| |||| ||||
Quadrilinear variant:
Λ(F1, F2, F3, F4)
=
R4
F1(u, v)F2(u, y)F3(x, y)F4(x, v) K(u, v, x, y) dudvdxdy
Associated graph:
x ◦
F3
F4
◦
F2
y
v ◦
F1
◦ u
x ◦
F3
F2
◦
F4
y
u ◦
F1
◦ v
Note: this graph is bipartite
Part 3 — Dyadic model operators || |||| |||| ||||
Scope of our techniques
Part 3 — Dyadic model operators || |||| |||| ||||
Scope of our techniques
We specialize to:
bipartite graphs
multilinear Calder´on-Zygmund kernels K
“perfect” dyadic models
Part 3 — Perfect dyadic conditions ||| |||| |||| ||||
m, n = positive integers
D := (x, . . . , x
m
, y, . . . , y
n
) : x, y ∈ R
the “diagonal” in Rm+n
Part 3 — Perfect dyadic conditions ||| |||| |||| ||||
m, n = positive integers
D := (x, . . . , x
m
, y, . . . , y
n
) : x, y ∈ R
the “diagonal” in Rm+n
Perfect dyadic Calder´on-Zygmund kernel K : Rm+n → C,
Auscher, Hofmann, Muscalu, Tao, Thiele (2002):
|K(x1, . . . , xm, y1, . . . , yn)|
i1<i2
|xi1 − xi2 | + j1<j2
|yj1 − yj2 |
2−m−n
K is constant on (m+n)-dimensional dyadic cubes disjoint
from D
K is bounded and compactly supported
Part 3 — Bipartite structure |||| |||| |||| ||||
E ⊆ {1, . . . , m}×{1, . . . , n}
G = simple bipartite undirected graph on
{x1, . . . , xm} and {y1, . . . , yn}
xi —yj ⇔ (i, j) ∈ E
Part 3 — Bipartite structure |||| |||| |||| ||||
E ⊆ {1, . . . , m}×{1, . . . , n}
G = simple bipartite undirected graph on
{x1, . . . , xm} and {y1, . . . , yn}
xi —yj ⇔ (i, j) ∈ E
|E|-linear singular form:
Λ (Fi,j )(i,j)∈E :=
Rm+n
K(x1, . . . , xm, y1, . . . , yn)
(i,j)∈E
Fi,j (xi , yj ) dx1 . . . dxmdy1 . . . dyn
Assume: there are no isolated vertices in G
avoids degeneracy
Part 3 — Adjoints |||| |||| |||| ||||
There are |E| mutually adjoint (|E|−1)-linear operators Tu,v ,
(u, v) ∈ E:
Λ (Fi,j )(i,j)∈E =
R2
Tu,v (Fi,j )(i,j)=(u,v) Fu,v
Part 3 — Adjoints |||| |||| |||| ||||
There are |E| mutually adjoint (|E|−1)-linear operators Tu,v ,
(u, v) ∈ E:
Λ (Fi,j )(i,j)∈E =
R2
Tu,v (Fi,j )(i,j)=(u,v) Fu,v
Explicitly:
Tu,v (Fi,j )(i,j)∈E{(u,v)} (xu, yv )
=
Rm+n−2
K(x1, . . . , xm, y1, . . . , yn)
(i,j)∈E{(u,v)}
Fi,j (xi , yj )
i=u
dxi
j=v
dyj
Part 3 — A T(1)-type theorem | |||| |||| |||| ||||
Theorem. “Entangled” T(1) — V. K. and C. Thiele (2013)
(a) For m, n ≥ 2 and a graph G there exist positive integers di,j
such that (i,j)∈E
1
di,j
> 1 and the following holds. If
|Λ(1Q, . . . , 1Q)| |Q|, Q dyadic square,
Tu,v (1R2 , . . . , 1R2 ) BMO(R2) 1, (u, v) ∈ E,
then
Λ (Fi,j )(i,j)∈E
(i,j)∈E
Fi,j L
pi,j (R2)
for exponents pi,j s.t. (i,j)∈E
1
pi,j
= 1, di,j < pi,j ≤ ∞.
Part 3 — A T(1)-type theorem | |||| |||| |||| ||||
Theorem. “Entangled” T(1) — V. K. and C. Thiele (2013)
(a) For m, n ≥ 2 and a graph G there exist positive integers di,j
such that (i,j)∈E
1
di,j
> 1 and the following holds. If
|Λ(1Q, . . . , 1Q)| |Q|, Q dyadic square,
Tu,v (1R2 , . . . , 1R2 ) BMO(R2) 1, (u, v) ∈ E,
then
Λ (Fi,j )(i,j)∈E
(i,j)∈E
Fi,j L
pi,j (R2)
for exponents pi,j s.t. (i,j)∈E
1
pi,j
= 1, di,j < pi,j ≤ ∞.
(b) Conversely, the estimate for some choice of exponents implies
the conditions.
Part 3 — A T(1)-type theorem, reformulation|| |||| |||| |||| ||||
Theorem. “Entangled” T(1) — V. K. and C. Thiele (2013)
For m, n ≥ 2 and a graph G there exist positive integers di,j such
that (i,j)∈E
1
di,j
> 1 and the following holds. If
Tu,v (1Q, . . . , 1Q) L1
(Q)
|Q|, Q dyadic square, (u, v) ∈ E,
then
Λ (Fi,j )(i,j)∈E
(i,j)∈E
Fi,j L
pi,j (R2)
for exponents pi,j s.t. (i,j)∈E
1
pi,j
= 1, di,j < pi,j ≤ ∞.
Part 3 — Proof outline ||| |||| |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Part 3 — Proof outline ||| |||| |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Scheme of the proof:
Part 3 — Proof outline ||| |||| |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Scheme of the proof:
decomposition into paraproducts
Part 3 — Proof outline ||| |||| |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Scheme of the proof:
decomposition into paraproducts
a stopping time argument for reducing global estimates to
local estimates
Part 3 — Proof outline ||| |||| |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Scheme of the proof:
decomposition into paraproducts
a stopping time argument for reducing global estimates to
local estimates
cancellative paraproducts with ∞ coefficients
“most” cases of graphs G
di,j related to sizes of connected components of G
stuctural induction + Bellman function technique
exceptional cases of graphs G
Part 3 — Proof outline ||| |||| |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Scheme of the proof:
decomposition into paraproducts
a stopping time argument for reducing global estimates to
local estimates
cancellative paraproducts with ∞ coefficients
“most” cases of graphs G
di,j related to sizes of connected components of G
stuctural induction + Bellman function technique
exceptional cases of graphs G
non-cancellative paraproducts with BMO coefficients
reduction to cancellative paraproducts
Part 3 — Proof outline ||| |||| |||| |||| ||||
The only nonstandard part — sufficiency of the testing conditions
Scheme of the proof:
decomposition into paraproducts
a stopping time argument for reducing global estimates to
local estimates
cancellative paraproducts with ∞ coefficients
“most” cases of graphs G
di,j related to sizes of connected components of G
stuctural induction + Bellman function technique
exceptional cases of graphs G
non-cancellative paraproducts with BMO coefficients
reduction to cancellative paraproducts
counterexample for m = 1 or n = 1
Part 3 — Multilinear Bellman functions |||| |||| |||| |||| ||||
Bellman functions in harmonic analysis
Invented by Burkholder (1980s)
Developed by Nazarov, Treil, Volberg, etc. (1990s)
We only keep the “induction on scales” idea
Part 3 — Multilinear Bellman functions |||| |||| |||| |||| ||||
Bellman functions in harmonic analysis
Invented by Burkholder (1980s)
Developed by Nazarov, Treil, Volberg, etc. (1990s)
We only keep the “induction on scales” idea
A broad class of interesting dyadic objects can be reduced to
bounding expressions of the form
ΛT (F1, . . . , F ) =
Q∈T
|Q| AQ(F1, . . . , F )
T = a finite convex tree of dyadic squares
AQ(F1, . . . , F ) = some “scale-invariant” quantity
depending on F1, . . . , F and Q ∈ T
Part 3 — Calculus of finite differences |||| |||| |||| |||| ||||
B = BQ(F1, . . . , F )
First order difference of B: B = BQ(F1, . . . , F )
BI×J := 1
4BIleft×Jleft
+ 1
4BIleft×Jright
+ 1
4BIright×Jleft
+ 1
4BIright×Jright
− BI×J
Part 3 — Calculus of finite differences |||| |||| |||| |||| ||||
B = BQ(F1, . . . , F )
First order difference of B: B = BQ(F1, . . . , F )
BI×J := 1
4BIleft×Jleft
+ 1
4BIleft×Jright
+ 1
4BIright×Jleft
+ 1
4BIright×Jright
− BI×J
Suppose: |A| ≤ B, i.e.
|AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F )
for all Q ∈ T and nonnegative bounded measurable F1, . . . , F
Part 3 — Calculus of finite differences |||| |||| |||| |||| ||||
|AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F )
|Q| |AQ(F1, . . . , F )| ≤
Q is a child of Q
|Q| BQ
(F1, . . . , F )
− |Q| BQ(F1, . . . , F )
Part 3 — Calculus of finite differences |||| |||| |||| |||| ||||
|AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F )
|Q| |AQ(F1, . . . , F )| ≤
Q is a child of Q
|Q| BQ
(F1, . . . , F )
− |Q| BQ(F1, . . . , F )
|ΛT (F1, . . . , F )| ≤
Q∈L(T )
|Q| BQ(F1, . . . , F )
− |QT | BQT
(F1, . . . , F )
B = a Bellman function for ΛT
Part 4 — Ordinary paraproduct | |||| |||| |||| |||| ||||
Dyadic version
Td(f , g) :=
k∈Z
(Ekf )(∆kg)
Ekf := |I|=2−k
1
|I| I f 1I , ∆kg := Ek+1g − Ekg
Part 4 — Ordinary paraproduct | |||| |||| |||| |||| ||||
Dyadic version
Td(f , g) :=
k∈Z
(Ekf )(∆kg)
Ekf := |I|=2−k
1
|I| I f 1I , ∆kg := Ek+1g − Ekg
Continuous version
Tc(f , g) :=
k∈Z
(Pϕk
f )(Pψk
g)
Pϕk
f := f ∗ ϕk, Pψk
g := g ∗ ψk
ϕ, ψ Schwartz, supp( ˆψ) ⊆ {ξ ∈ R : 1
2 ≤|ξ| ≤ 2}
ϕk(t) := 2kϕ(2kt), ψk(t) := 2kψ(2kt)
Part 4 — Twisted paraproduct || |||| |||| |||| |||| ||||
Dyadic version
Td(F, G) :=
k∈Z
(E
(1)
k F)(∆
(2)
k G)
E
(1)
k martingale averages in the 1st variable
∆
(2)
k martingale differences in the 2nd variable
Part 4 — Twisted paraproduct || |||| |||| |||| |||| ||||
Dyadic version
Td(F, G) :=
k∈Z
(E
(1)
k F)(∆
(2)
k G)
E
(1)
k martingale averages in the 1st variable
∆
(2)
k martingale differences in the 2nd variable
Continuous version
Tc(F, G) :=
k∈Z
(P(1)
ϕk
F)(P
(2)
ψk
G)
P
(1)
ϕk , P
(2)
ψk
L-P projections in the 1st and the 2nd variable
(P
(1)
ϕk F)(x, y) := R F(x−t, y)ϕk(t)dt
(P
(2)
ψk
G)(x, y) := R G(x, y −t)ψk(t)dt
Part 4 — Twisted paraproduct || |||| |||| |||| |||| ||||
Dyadic version
Td(F, G) :=
k∈Z
(E
(1)
k F)(∆
(2)
k G)
Continuous version
Tc(F, G) :=
k∈Z
(P(1)
ϕk
F)(P
(2)
ψk
G)
Bilinear multipliers from our theorems reduce to these
using cone decomposition of the symbol:
m =
j
m[j]
from the Fourier series
m[j]
(ξ1, η2) =
k∈Z
ϕ
[j]
k (ξ1) ψ
[j]
k (η2)
Part 4 — Twisted paraproduct, estimates ||| |||| |||| |||| |||| ||||
B( ), _
2
1 C( )_
2
1 , _
2
1
1
2
_,1
4
_ )(E
D( )_
2
1 ,
0
0,1
2
_ )(A
_
4
1
_1
q
p
1_
1
0
10
the shaded region – the
strong estimate
two solid sides of the square
– the weak estimate
two dashed sides of the
square – no estimates
the white region –
unresolved
Part 4 — Proof outline |||| |||| |||| |||| |||| ||||
B( ), _
2
1 C( )_
2
1 , _
2
1
1
2
_,1
4
_ )(E
D( )_
2
1 ,
0
0,1
2
_ )(A
_
4
1
_1
q
p
1_
1
0
10
Dyadic version Td
ABC – a very special case
of the technique in Part 3
the rest of the shaded region
– conditional proof,
F. Bernicot (2010)
dashed segments –
counterexamples
D, E – an alternative purely
Bellman function proof
Continuous version Tc
transition using the
Jones-Seeger-Wright square
function
Part 4 — Transition to cont. version |||| |||| |||| |||| |||| ||||
Assume: ψk = φk+1 − φk for some φ Schwartz, R φ = 1
The general case is then obtained by composing with a bounded
Fourier multiplier in the second variable
Part 4 — Transition to cont. version |||| |||| |||| |||| |||| ||||
Assume: ψk = φk+1 − φk for some φ Schwartz, R φ = 1
The general case is then obtained by composing with a bounded
Fourier multiplier in the second variable
A. Calder´on (1960s), R. L. Jones, A. Seeger and J. Wright (2008)
If ϕ is Schwartz and R ϕ = 1, then the square function
SF :=
k∈Z
Pϕk
F − EkF
2 1/2
satisfies SF Lp
(R) p F Lp
(R)
for 1 < p < ∞.
Part 4 — Transition to cont. version |||| |||| |||| |||| |||| ||||
Assume: ψk = φk+1 − φk for some φ Schwartz, R φ = 1
The general case is then obtained by composing with a bounded
Fourier multiplier in the second variable
A. Calder´on (1960s), R. L. Jones, A. Seeger and J. Wright (2008)
If ϕ is Schwartz and R ϕ = 1, then the square function
SF :=
k∈Z
Pϕk
F − EkF
2 1/2
satisfies SF Lp
(R) p F Lp
(R)
for 1 < p < ∞.
Proposition
Tc(F, G) − Td(F, G) Lpq/(p+q) p,q F Lp G Lq
Part 4 — “Entangled” + cont. kernel | |||| |||| |||| |||| |||| ||||
General bipartite graphs G
How to obtain boundedness of
Λ (Fi,j )(i,j)∈E :=
Rm+n
K(x1, . . . , xm, y1, . . . , yn)
(i,j)∈E
Fi,j (xi , yj ) dx1 . . . dxmdy1 . . . dyn
at least for some continuous singular kernels K?
Part 4 — “Entangled” + cont. kernel | |||| |||| |||| |||| |||| ||||
General bipartite graphs G
How to obtain boundedness of
Λ (Fi,j )(i,j)∈E :=
Rm+n
K(x1, . . . , xm, y1, . . . , yn)
(i,j)∈E
Fi,j (xi , yj ) dx1 . . . dxmdy1 . . . dyn
at least for some continuous singular kernels K?
We can average “entangled” dyadic operators from Part 3 over
translated, dilated, and rotated dyadic grids
Partial results: One can recover some very special kernels K
Possibly all sufficiently smooth translation-invariant kernels
This is still far from a complete T(1)-type theorem
Currently open problems || |||| |||| |||| |||| |||| ||||
Further directions:
Currently open problems || |||| |||| |||| |||| |||| ||||
Further directions:
Translating the results to the case of more general continuous
C-Z kernels K
Ultimately obtaining a “real” (i.e. non-dyadic) T(1)-type
theorem
Currently open problems || |||| |||| |||| |||| |||| ||||
Further directions:
Translating the results to the case of more general continuous
C-Z kernels K
Ultimately obtaining a “real” (i.e. non-dyadic) T(1)-type
theorem
Forms corresponding to non-bipartite graphs (such as odd
cycles, recall a triangle)
Currently open problems || |||| |||| |||| |||| |||| ||||
Further directions:
Translating the results to the case of more general continuous
C-Z kernels K
Ultimately obtaining a “real” (i.e. non-dyadic) T(1)-type
theorem
Forms corresponding to non-bipartite graphs (such as odd
cycles, recall a triangle)
More singular kernels K, like K(x, y, z) = 1
x+y+z
Thank you! ||| |||| |||| |||| |||| |||| ||||
Thank you!

Weitere ähnliche Inhalte

Was ist angesagt?

Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsVjekoslavKovac1
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restrictionVjekoslavKovac1
 
A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsVjekoslavKovac1
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsVjekoslavKovac1
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisVjekoslavKovac1
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureVjekoslavKovac1
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling SetsVjekoslavKovac1
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted ParaproductsVjekoslavKovac1
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesVjekoslavKovac1
 
Paraproducts with general dilations
Paraproducts with general dilationsParaproducts with general dilations
Paraproducts with general dilationsVjekoslavKovac1
 
Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Jurgen Riedel
 
Classification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsClassification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsFrank Nielsen
 
Clustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryClustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryFrank Nielsen
 

Was ist angesagt? (20)

Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurations
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restriction
 
A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentials
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structure
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cube
 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling Sets
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted Paraproducts
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
 
Paraproducts with general dilations
Paraproducts with general dilationsParaproducts with general dilations
Paraproducts with general dilations
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013
 
Classification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsClassification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metrics
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
 Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli... Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Clustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryClustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometry
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 

Ähnlich wie Estimates for non-standard bilinear multipliers

Can we estimate a constant?
Can we estimate a constant?Can we estimate a constant?
Can we estimate a constant?Christian Robert
 
Gibbs flow transport for Bayesian inference
Gibbs flow transport for Bayesian inferenceGibbs flow transport for Bayesian inference
Gibbs flow transport for Bayesian inferenceJeremyHeng10
 
04_spectral_applications.pdf
04_spectral_applications.pdf04_spectral_applications.pdf
04_spectral_applications.pdfBruno Levy
 
Testing for Extreme Volatility Transmission
Testing for Extreme Volatility Transmission Testing for Extreme Volatility Transmission
Testing for Extreme Volatility Transmission Arthur Charpentier
 
Thegeneralizedinverse weibulldistribution ....
Thegeneralizedinverse weibulldistribution ....Thegeneralizedinverse weibulldistribution ....
Thegeneralizedinverse weibulldistribution ....fitriya rizki
 
NCE, GANs & VAEs (and maybe BAC)
NCE, GANs & VAEs (and maybe BAC)NCE, GANs & VAEs (and maybe BAC)
NCE, GANs & VAEs (and maybe BAC)Christian Robert
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Alexander Litvinenko
 
Ecfft zk studyclub 9.9
Ecfft zk studyclub 9.9Ecfft zk studyclub 9.9
Ecfft zk studyclub 9.9Alex Pruden
 
Harmonic Analysis and Deep Learning
Harmonic Analysis and Deep LearningHarmonic Analysis and Deep Learning
Harmonic Analysis and Deep LearningSungbin Lim
 
Interpreting Multiple Regression via an Ellipse Inscribed in a Square Extensi...
Interpreting Multiple Regressionvia an Ellipse Inscribed in a Square Extensi...Interpreting Multiple Regressionvia an Ellipse Inscribed in a Square Extensi...
Interpreting Multiple Regression via an Ellipse Inscribed in a Square Extensi...Toshiyuki Shimono
 
Andreas Eberle
Andreas EberleAndreas Eberle
Andreas EberleBigMC
 
Scalable inference for a full multivariate stochastic volatility
Scalable inference for a full multivariate stochastic volatilityScalable inference for a full multivariate stochastic volatility
Scalable inference for a full multivariate stochastic volatilitySYRTO Project
 
DIGITAL IMAGE PROCESSING - Day 4 Image Transform
DIGITAL IMAGE PROCESSING - Day 4 Image TransformDIGITAL IMAGE PROCESSING - Day 4 Image Transform
DIGITAL IMAGE PROCESSING - Day 4 Image Transformvijayanand Kandaswamy
 

Ähnlich wie Estimates for non-standard bilinear multipliers (20)

Can we estimate a constant?
Can we estimate a constant?Can we estimate a constant?
Can we estimate a constant?
 
CDT 22 slides.pdf
CDT 22 slides.pdfCDT 22 slides.pdf
CDT 22 slides.pdf
 
Laplace_1.ppt
Laplace_1.pptLaplace_1.ppt
Laplace_1.ppt
 
Gibbs flow transport for Bayesian inference
Gibbs flow transport for Bayesian inferenceGibbs flow transport for Bayesian inference
Gibbs flow transport for Bayesian inference
 
04_spectral_applications.pdf
04_spectral_applications.pdf04_spectral_applications.pdf
04_spectral_applications.pdf
 
Signal Processing Homework Help
Signal Processing Homework HelpSignal Processing Homework Help
Signal Processing Homework Help
 
Testing for Extreme Volatility Transmission
Testing for Extreme Volatility Transmission Testing for Extreme Volatility Transmission
Testing for Extreme Volatility Transmission
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
Thegeneralizedinverse weibulldistribution ....
Thegeneralizedinverse weibulldistribution ....Thegeneralizedinverse weibulldistribution ....
Thegeneralizedinverse weibulldistribution ....
 
NCE, GANs & VAEs (and maybe BAC)
NCE, GANs & VAEs (and maybe BAC)NCE, GANs & VAEs (and maybe BAC)
NCE, GANs & VAEs (and maybe BAC)
 
g-lecture.pptx
g-lecture.pptxg-lecture.pptx
g-lecture.pptx
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)
 
Ecfft zk studyclub 9.9
Ecfft zk studyclub 9.9Ecfft zk studyclub 9.9
Ecfft zk studyclub 9.9
 
Harmonic Analysis and Deep Learning
Harmonic Analysis and Deep LearningHarmonic Analysis and Deep Learning
Harmonic Analysis and Deep Learning
 
Interpreting Multiple Regression via an Ellipse Inscribed in a Square Extensi...
Interpreting Multiple Regressionvia an Ellipse Inscribed in a Square Extensi...Interpreting Multiple Regressionvia an Ellipse Inscribed in a Square Extensi...
Interpreting Multiple Regression via an Ellipse Inscribed in a Square Extensi...
 
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
 
Andreas Eberle
Andreas EberleAndreas Eberle
Andreas Eberle
 
Scalable inference for a full multivariate stochastic volatility
Scalable inference for a full multivariate stochastic volatilityScalable inference for a full multivariate stochastic volatility
Scalable inference for a full multivariate stochastic volatility
 
DIGITAL IMAGE PROCESSING - Day 4 Image Transform
DIGITAL IMAGE PROCESSING - Day 4 Image TransformDIGITAL IMAGE PROCESSING - Day 4 Image Transform
DIGITAL IMAGE PROCESSING - Day 4 Image Transform
 
ICCF_2022_talk.pdf
ICCF_2022_talk.pdfICCF_2022_talk.pdf
ICCF_2022_talk.pdf
 

Kürzlich hochgeladen

RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringPrajakta Shinde
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuinethapagita
 
Functional group interconversions(oxidation reduction)
Functional group interconversions(oxidation reduction)Functional group interconversions(oxidation reduction)
Functional group interconversions(oxidation reduction)itwameryclare
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRlizamodels9
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPirithiRaju
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024innovationoecd
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationColumbia Weather Systems
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologycaarthichand2003
 
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》rnrncn29
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...D. B. S. College Kanpur
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayupadhyaymani499
 

Kürzlich hochgeladen (20)

RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical Engineering
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
 
Functional group interconversions(oxidation reduction)
Functional group interconversions(oxidation reduction)Functional group interconversions(oxidation reduction)
Functional group interconversions(oxidation reduction)
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdf
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather Station
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technology
 
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyay
 

Estimates for non-standard bilinear multipliers

  • 1. Estimates for a class of non-standard bilinear multipliers Vjekoslav Kovaˇc (University of Zagreb) Joint work with Fr´ed´eric Bernicot (Universit´e de Nantes) and Christoph Thiele (Universit¨at Bonn) Joint CRM-ISAAC Conference on Fourier Analysis and Approximation Theory Bellaterra, November 6, 2013
  • 2. Talk outline | Part 1 — Introduction Motivation for multilinear estimates Concrete examples and some results
  • 3. Talk outline | Part 1 — Introduction Motivation for multilinear estimates Concrete examples and some results Part 2 — The “entangled” structure The scope of our techniques
  • 4. Talk outline | Part 1 — Introduction Motivation for multilinear estimates Concrete examples and some results Part 2 — The “entangled” structure The scope of our techniques Part 3 — Dyadic model operators Formulating a T(1)-type theorem Setting up the Bellman function scheme
  • 5. Talk outline | Part 1 — Introduction Motivation for multilinear estimates Concrete examples and some results Part 2 — The “entangled” structure The scope of our techniques Part 3 — Dyadic model operators Formulating a T(1)-type theorem Setting up the Bellman function scheme Part 4 — Transition to continuous-type operators Back to bilinear multipliers “Entangled” operators with continuous kernels
  • 6. Part 1 — Multilinear estimates || T = a multilinear integral operator T is “singular” in some sense
  • 7. Part 1 — Multilinear estimates || T = a multilinear integral operator T is “singular” in some sense We are interested in Lp estimates: T(F1, F2, . . . , Fk) Lp(Rn) ≤ Cp,p1,...,pk k j=1 Fj L pj (R nj ) in a subrange of 0 < p, p1, . . . , pk < ∞ Possibly also some Sobolev norm estimates, etc.
  • 8. Part 1 — Multilinear estimates, motivation ||| Motivation for multilinear estimates:
  • 9. Part 1 — Multilinear estimates, motivation ||| Motivation for multilinear estimates: paraproducts J.-M. Bony (1981) — paradifferential operators G. David and J.-L. Journ´e (1984) — T(1) theorem
  • 10. Part 1 — Multilinear estimates, motivation ||| Motivation for multilinear estimates: paraproducts J.-M. Bony (1981) — paradifferential operators G. David and J.-L. Journ´e (1984) — T(1) theorem multilinear expansions of nonlinear/“curved” operators A. Calder´on (1960s) — Cauchy integral on Lipschitz curves M. Christ and A. Kiselev (2001) — Hausdorff-Young inequalities for the Dirac scattering transform J. Bourgain and L. Guth (2010) — restriction estimates, oscillatory integrals
  • 11. Part 1 — Multilinear estimates, motivation ||| Motivation for multilinear estimates: paraproducts J.-M. Bony (1981) — paradifferential operators G. David and J.-L. Journ´e (1984) — T(1) theorem multilinear expansions of nonlinear/“curved” operators A. Calder´on (1960s) — Cauchy integral on Lipschitz curves M. Christ and A. Kiselev (2001) — Hausdorff-Young inequalities for the Dirac scattering transform J. Bourgain and L. Guth (2010) — restriction estimates, oscillatory integrals recurrence in ergodic theory J. Bourgain (1988) — return times theorem C. Demeter, M. Lacey, T. Tao, and C. Thiele (2008) — extending the exponent range
  • 12. Part 1 — A basic example |||| Bilinear case only (for simplicity)
  • 13. Part 1 — A basic example |||| Bilinear case only (for simplicity) From the viewpoint of bilinear singular integrals: T(F, G)(x) = p.v. (Rn)2 K(s, t)F(x − s)G(x − t) ds dt K = translation-invariant Calder´on-Zygmund kernel Generalized by L. Grafakos and R. H. Torres (2002): multilinear C-Z operators Take m = K
  • 14. Part 1 — A basic example |||| Bilinear case only (for simplicity) From the viewpoint of bilinear multipliers: Coifman-Meyer multipliers, R. Coifman and Y. Meyer (1978) T(F, G)(x) = (Rn)2 m(ξ, η)e2πix·(ξ+η) F(ξ)G(η)dξdη m∈C∞ R2{(0, 0)} ∂α1 ξ ∂α2 η m(ξ, η) ≤ Cα1,α2,n(|ξ| + |η|)−α1−α2 Note: m(ξ, η) is singular only at the origin ξ = η = 0
  • 15. Part 1 — More singular examples, 1D |||| 1D example: bilinear Hilbert transform Suggested by A. Calderon (Cauchy integral on Lipschitz curves) Bounded by M. Lacey and C. Thiele (1997)
  • 16. Part 1 — More singular examples, 1D |||| 1D example: bilinear Hilbert transform Suggested by A. Calderon (Cauchy integral on Lipschitz curves) Bounded by M. Lacey and C. Thiele (1997) As a singular integral: T(f , g)(x) = p.v. R f (x − t)g(x + t) dt t
  • 17. Part 1 — More singular examples, 1D |||| 1D example: bilinear Hilbert transform Suggested by A. Calderon (Cauchy integral on Lipschitz curves) Bounded by M. Lacey and C. Thiele (1997) As a singular integral: T(f , g)(x) = p.v. R f (x − t)g(x + t) dt t As a multiplier: T(f , g)(x) = R2 πi sgn(η − ξ)e2πix(ξ+η) f (ξ)g(η)dξdη Note: m(ξ, η) = πi sgn(η − ξ) is singular along the line ξ = η
  • 18. Part 1 — More singular examples, 2D | |||| 2D example: a variant of the 2D bilinear Hilbert transform Introduced by Demeter and Thiele and bounded for “most” cases of A, B ∈ M2(R) (2008)
  • 19. Part 1 — More singular examples, 2D | |||| 2D example: a variant of the 2D bilinear Hilbert transform Introduced by Demeter and Thiele and bounded for “most” cases of A, B ∈ M2(R) (2008) As a singular integral: T(F, G)(x, y) = p.v. R2 K(s, t)F (x, y)−A(s, t) G (x, y)−B(s, t) ds dt
  • 20. Part 1 — More singular examples, 2D | |||| 2D example: a variant of the 2D bilinear Hilbert transform Introduced by Demeter and Thiele and bounded for “most” cases of A, B ∈ M2(R) (2008) As a singular integral: T(F, G)(x, y) = p.v. R2 K(s, t)F (x, y)−A(s, t) G (x, y)−B(s, t) ds dt Essentially the only case that was left out: A = 1 0 0 0 and B = 0 0 0 1
  • 21. Part 1 — More singular examples, 2D | |||| 2D example: a variant of the 2D bilinear Hilbert transform As a multiplier: T(F, G)(x, y) = R4 µ(ξ1, ξ2, η1, η2)e2πi(x(ξ1+η1)+y(ξ2+η2)) F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2 µ(ξ1, ξ2, η1, η2) = m Aτ (ξ1, ξ2) + Bτ (η1, η2) , m = K m ∈ C∞ R2{(0, 0)} ∂α1 τ1 ∂α2 τ2 m(τ1, τ2) ≤ Cα1,α2 (|τ1| + |τ2|)−α1−α2 Note: µ(ξ1, ξ2, η1, η2) is singular along the 2-plane Aτ (ξ1, ξ2) + Bτ (η1, η2) = (0, 0)
  • 22. Part 1 — Remaining case of 2D BHT || |||| T(F, G)(x, y) = R4 m(ξ1, η2)e2πi(x(ξ1+η1)+y(ξ2+η2)) F(ξ1, ξ2)G(η1, η2)dξ1dξ2dη1dη2
  • 23. Part 1 — Remaining case of 2D BHT || |||| T(F, G)(x, y) = R4 m(ξ1, η2)e2πi(x(ξ1+η1)+y(ξ2+η2)) F(ξ1, ξ2)G(η1, η2)dξ1dξ2dη1dη2 Theorem. Lp estimate — F. Bernicot (2010), V. K. (2010) T(F, G) Lr ≤ Cp,q,r F Lp G Lq for 1 < p, q < ∞, 0 < r < 2, 1 p + 1 q = 1 r .
  • 24. Part 1 — Remaining case of 2D BHT || |||| T(F, G)(x, y) = R4 m(ξ1, η2)e2πi(x(ξ1+η1)+y(ξ2+η2)) F(ξ1, ξ2)G(η1, η2)dξ1dξ2dη1dη2 Theorem. Lp estimate — F. Bernicot (2010), V. K. (2010) T(F, G) Lr ≤ Cp,q,r F Lp G Lq for 1 < p, q < ∞, 0 < r < 2, 1 p + 1 q = 1 r . Theorem. Sobolev estimate — F. Bernicot and V. K. (2013) If supp m ⊆ (ξ1, η2) : |ξ1| ≤ c |η2| , then T(F, G) Lr y (Ws,r x ) ≤ Cp,q,r,s F Lp G Ws,q for s ≥ 0, 1 < p, q < ∞, 1 < r < 2, 1 p + 1 q = 1 r .
  • 25. Part 1 — A warning example ||| |||| Bi-parameter bilinear Hilbert transform
  • 26. Part 1 — A warning example ||| |||| Bi-parameter bilinear Hilbert transform T(F, G)(x, y) = p.v. R2 F(x − s, y − t) G(x + s, y + t) ds s dt t
  • 27. Part 1 — A warning example ||| |||| Bi-parameter bilinear Hilbert transform T(F, G)(x, y) = p.v. R2 F(x − s, y − t) G(x + s, y + t) ds s dt t T(F, G)(x, y) = R4 π2 sgn(ξ1 + ξ2)sgn(η1 + η2) e2πi(x(ξ1+η1)+y(ξ2+η2)) F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2
  • 28. Part 1 — A warning example ||| |||| Bi-parameter bilinear Hilbert transform T(F, G)(x, y) = p.v. R2 F(x − s, y − t) G(x + s, y + t) ds s dt t T(F, G)(x, y) = R4 π2 sgn(ξ1 + ξ2)sgn(η1 + η2) e2πi(x(ξ1+η1)+y(ξ2+η2)) F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2 Satisfies no Lp estimates! C. Muscalu, J. Pipher, T. Tao, and C. Thiele (2004) Note: the symbol is singular along the union of two 3-planes, ξ1 + ξ2 = 0 and η1 + η2 = 0
  • 29. Part 1 — Open problem #1 |||| |||| Triangular Hilbert transform
  • 30. Part 1 — Open problem #1 |||| |||| Triangular Hilbert transform T(F, G)(x, y) = p.v. R F(x−t, y)G(x, y −t) dt t
  • 31. Part 1 — Open problem #1 |||| |||| Triangular Hilbert transform T(F, G)(x, y) = p.v. R F(x−t, y)G(x, y −t) dt t T(F, G)(x, y) = R4 −πisgn(ξ1 + η2) e2πi(x(ξ1+η1)+y(ξ2+η2)) F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2
  • 32. Part 1 — Open problem #1 |||| |||| Triangular Hilbert transform T(F, G)(x, y) = p.v. R F(x−t, y)G(x, y −t) dt t T(F, G)(x, y) = R4 −πisgn(ξ1 + η2) e2πi(x(ξ1+η1)+y(ξ2+η2)) F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2 Still no Lp estimates are known Note: the symbol is singular along the 3-plane ξ1 + η2 = 0 Probably not the right way of looking at the operator
  • 33. Part 1 — Open problem #1 |||| |||| Triangular Hilbert transform A singular integral approach to bilinear ergodic averages (suggested by C. Demeter and C. Thiele): 1 N N−1 k=0 f (Sk ω)g(Tk ω), ω ∈ Ω S, T : Ω → Ω are commuting measure preserving transformations L2 norm convergence as N → ∞ was shown by J.-P. Conze and E. Lesigne (1984) a.e. convergence as N → ∞ is still an open problem
  • 34. Part 1 — Open problem #2 |||| |||| Trilinear Hilbert transform
  • 35. Part 1 — Open problem #2 |||| |||| Trilinear Hilbert transform T(f , g, h)(x) = p.v. R f (x−t)g(x+t)h(x+2t) dt t
  • 36. Part 1 — Open problem #2 |||| |||| Trilinear Hilbert transform T(f , g, h)(x) = p.v. R f (x−t)g(x+t)h(x+2t) dt t T(f , g, h)(x) = R3 πi sgn(−ξ + η + 2ζ)e2πix(ξ+η+ζ) f (ξ)g(η)h(ζ)dξdηdζ
  • 37. Part 1 — Open problem #2 |||| |||| Trilinear Hilbert transform T(f , g, h)(x) = p.v. R f (x−t)g(x+t)h(x+2t) dt t T(f , g, h)(x) = R3 πi sgn(−ξ + η + 2ζ)e2πix(ξ+η+ζ) f (ξ)g(η)h(ζ)dξdηdζ Note: the symbol is singular along the 2-plane −ξ + η + 2ζ = 0 A complete mystery! Only some negative results are known: C. Demeter (2008)
  • 38. Part 2 — Entangled structure | |||| |||| k-linear operator (k+1)-linear form Object of study: Multilinear singular integral forms with functions that partially share variables
  • 39. Part 2 — Entangled structure | |||| |||| k-linear operator (k+1)-linear form Object of study: Multilinear singular integral forms with functions that partially share variables Schematically: Λ(F1, F2, . . .) = Rn F1(x1, x2) F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn K = singular kernel F1, F2, . . . = functions on R2
  • 40. Part 2 — Generalized modulation invariance || |||| |||| An alternative viewpoint: generalized modulation invariances
  • 41. Part 2 — Generalized modulation invariance || |||| |||| An alternative viewpoint: generalized modulation invariances Rn F1(x1, x2) F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn
  • 42. Part 2 — Generalized modulation invariance || |||| |||| An alternative viewpoint: generalized modulation invariances Rn F1(x1, x2) F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn = Rn e2πiax1 F1(x1, x2) e−2πiax1 F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn
  • 43. Part 2 — Generalized modulation invariance || |||| |||| An alternative viewpoint: generalized modulation invariances Rn F1(x1, x2) F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn = Rn e2πiax1 F1(x1, x2) e−2πiax1 F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn = Rn ϕ(x1)F1(x1, x2) 1 ϕ(x1) F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn
  • 44. Part 2 — Estimates ||| |||| |||| Goal: Lp estimates |Λ(F1, F2, . . . , Fk)| F1 Lp1 F2 Lp2 . . . Fk Lpk in a nonempty open subrange of 1 p1 + 1 p2 + . . . + 1 pk = 1
  • 45. Part 2 — Estimates ||| |||| |||| Goal: Lp estimates |Λ(F1, F2, . . . , Fk)| F1 Lp1 F2 Lp2 . . . Fk Lpk in a nonempty open subrange of 1 p1 + 1 p2 + . . . + 1 pk = 1 Desired results: characterizations of Lp boundedness T(1)-type theorems
  • 46. Part 2 — Back to examples, rem. case of 2D BHT|||| |||| |||| T(F, G)(x, y) = R2 F(x − s, y) G(x, y − t) K(s, t) ds dt
  • 47. Part 2 — Back to examples, rem. case of 2D BHT|||| |||| |||| T(F, G)(x, y) = R2 F(x − s, y) G(x, y − t) K(s, t) ds dt Substitute u = x − s, v = y − t: Λ(F, G, H) = T(F, G), H = R4 F(u, y)G(x, v)H(x, y)K(x − u, y − v) dudvdxdy
  • 48. Part 2 — Back to examples, rem. case of 2D BHT|||| |||| |||| T(F, G)(x, y) = R2 F(x − s, y) G(x, y − t) K(s, t) ds dt Substitute u = x − s, v = y − t: Λ(F, G, H) = T(F, G), H = R4 F(u, y)G(x, v)H(x, y)K(x − u, y − v) dudvdxdy Non-translation-invariant generalization: Λ(F, G, H) = R4 F(u, y)G(x, v)H(x, y)K(u, v, x, y) dudvdxdy
  • 49. Part 2 — Back to examples, rem. case of 2D BHT|||| |||| |||| Λ(F, G, H) = R4 F(u, y)G(x, v)H(x, y)K(u, v, x, y) dudvdxdy Graph associated with its structure: x ◦ H G ◦ F y v ◦ ◦ u
  • 50. Part 2 — Back to examples, triangular HT |||| |||| |||| T(F, G)(x, y) := p.v. R F(x + t, y)G(x, y + t) dt t
  • 51. Part 2 — Back to examples, triangular HT |||| |||| |||| T(F, G)(x, y) := p.v. R F(x + t, y)G(x, y + t) dt t Substitute: z = −x − y − t, F1(x, y) = H(x, y), F2(y, z) = F(−y −z, y), F3(z, x) = G(x, −x−z) Λ(F, G, H) = T(F, G), H = R3 F1(x, y) F2(y, z) F3(z, x) −1 x + y + z dxdydz We do not know how to proceed in this example
  • 52. Part 2 — Back to examples, triangular HT |||| |||| |||| Λ(F1, F2, F3) = R3 F1(x, y) F2(y, z) F3(z, x) −1 x + y + z dxdydz Associated graph: x ◦ F3F1 y ◦ F2 ◦ z Note: this graph is not bipartite
  • 53. Part 2 — A manageable modification | |||| |||| |||| Quadrilinear variant: Λ(F1, F2, F3, F4) = R4 F1(u, v)F2(u, y)F3(x, y)F4(x, v) K(u, v, x, y) dudvdxdy
  • 54. Part 2 — A manageable modification | |||| |||| |||| Quadrilinear variant: Λ(F1, F2, F3, F4) = R4 F1(u, v)F2(u, y)F3(x, y)F4(x, v) K(u, v, x, y) dudvdxdy Associated graph: x ◦ F3 F4 ◦ F2 y v ◦ F1 ◦ u
  • 55. Part 2 — A manageable modification | |||| |||| |||| Quadrilinear variant: Λ(F1, F2, F3, F4) = R4 F1(u, v)F2(u, y)F3(x, y)F4(x, v) K(u, v, x, y) dudvdxdy Associated graph: x ◦ F3 F4 ◦ F2 y v ◦ F1 ◦ u x ◦ F3 F2 ◦ F4 y u ◦ F1 ◦ v Note: this graph is bipartite
  • 56. Part 3 — Dyadic model operators || |||| |||| |||| Scope of our techniques
  • 57. Part 3 — Dyadic model operators || |||| |||| |||| Scope of our techniques We specialize to: bipartite graphs multilinear Calder´on-Zygmund kernels K “perfect” dyadic models
  • 58. Part 3 — Perfect dyadic conditions ||| |||| |||| |||| m, n = positive integers D := (x, . . . , x m , y, . . . , y n ) : x, y ∈ R the “diagonal” in Rm+n
  • 59. Part 3 — Perfect dyadic conditions ||| |||| |||| |||| m, n = positive integers D := (x, . . . , x m , y, . . . , y n ) : x, y ∈ R the “diagonal” in Rm+n Perfect dyadic Calder´on-Zygmund kernel K : Rm+n → C, Auscher, Hofmann, Muscalu, Tao, Thiele (2002): |K(x1, . . . , xm, y1, . . . , yn)| i1<i2 |xi1 − xi2 | + j1<j2 |yj1 − yj2 | 2−m−n K is constant on (m+n)-dimensional dyadic cubes disjoint from D K is bounded and compactly supported
  • 60. Part 3 — Bipartite structure |||| |||| |||| |||| E ⊆ {1, . . . , m}×{1, . . . , n} G = simple bipartite undirected graph on {x1, . . . , xm} and {y1, . . . , yn} xi —yj ⇔ (i, j) ∈ E
  • 61. Part 3 — Bipartite structure |||| |||| |||| |||| E ⊆ {1, . . . , m}×{1, . . . , n} G = simple bipartite undirected graph on {x1, . . . , xm} and {y1, . . . , yn} xi —yj ⇔ (i, j) ∈ E |E|-linear singular form: Λ (Fi,j )(i,j)∈E := Rm+n K(x1, . . . , xm, y1, . . . , yn) (i,j)∈E Fi,j (xi , yj ) dx1 . . . dxmdy1 . . . dyn Assume: there are no isolated vertices in G avoids degeneracy
  • 62. Part 3 — Adjoints |||| |||| |||| |||| There are |E| mutually adjoint (|E|−1)-linear operators Tu,v , (u, v) ∈ E: Λ (Fi,j )(i,j)∈E = R2 Tu,v (Fi,j )(i,j)=(u,v) Fu,v
  • 63. Part 3 — Adjoints |||| |||| |||| |||| There are |E| mutually adjoint (|E|−1)-linear operators Tu,v , (u, v) ∈ E: Λ (Fi,j )(i,j)∈E = R2 Tu,v (Fi,j )(i,j)=(u,v) Fu,v Explicitly: Tu,v (Fi,j )(i,j)∈E{(u,v)} (xu, yv ) = Rm+n−2 K(x1, . . . , xm, y1, . . . , yn) (i,j)∈E{(u,v)} Fi,j (xi , yj ) i=u dxi j=v dyj
  • 64. Part 3 — A T(1)-type theorem | |||| |||| |||| |||| Theorem. “Entangled” T(1) — V. K. and C. Thiele (2013) (a) For m, n ≥ 2 and a graph G there exist positive integers di,j such that (i,j)∈E 1 di,j > 1 and the following holds. If |Λ(1Q, . . . , 1Q)| |Q|, Q dyadic square, Tu,v (1R2 , . . . , 1R2 ) BMO(R2) 1, (u, v) ∈ E, then Λ (Fi,j )(i,j)∈E (i,j)∈E Fi,j L pi,j (R2) for exponents pi,j s.t. (i,j)∈E 1 pi,j = 1, di,j < pi,j ≤ ∞.
  • 65. Part 3 — A T(1)-type theorem | |||| |||| |||| |||| Theorem. “Entangled” T(1) — V. K. and C. Thiele (2013) (a) For m, n ≥ 2 and a graph G there exist positive integers di,j such that (i,j)∈E 1 di,j > 1 and the following holds. If |Λ(1Q, . . . , 1Q)| |Q|, Q dyadic square, Tu,v (1R2 , . . . , 1R2 ) BMO(R2) 1, (u, v) ∈ E, then Λ (Fi,j )(i,j)∈E (i,j)∈E Fi,j L pi,j (R2) for exponents pi,j s.t. (i,j)∈E 1 pi,j = 1, di,j < pi,j ≤ ∞. (b) Conversely, the estimate for some choice of exponents implies the conditions.
  • 66. Part 3 — A T(1)-type theorem, reformulation|| |||| |||| |||| |||| Theorem. “Entangled” T(1) — V. K. and C. Thiele (2013) For m, n ≥ 2 and a graph G there exist positive integers di,j such that (i,j)∈E 1 di,j > 1 and the following holds. If Tu,v (1Q, . . . , 1Q) L1 (Q) |Q|, Q dyadic square, (u, v) ∈ E, then Λ (Fi,j )(i,j)∈E (i,j)∈E Fi,j L pi,j (R2) for exponents pi,j s.t. (i,j)∈E 1 pi,j = 1, di,j < pi,j ≤ ∞.
  • 67. Part 3 — Proof outline ||| |||| |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions
  • 68. Part 3 — Proof outline ||| |||| |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions Scheme of the proof:
  • 69. Part 3 — Proof outline ||| |||| |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions Scheme of the proof: decomposition into paraproducts
  • 70. Part 3 — Proof outline ||| |||| |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions Scheme of the proof: decomposition into paraproducts a stopping time argument for reducing global estimates to local estimates
  • 71. Part 3 — Proof outline ||| |||| |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions Scheme of the proof: decomposition into paraproducts a stopping time argument for reducing global estimates to local estimates cancellative paraproducts with ∞ coefficients “most” cases of graphs G di,j related to sizes of connected components of G stuctural induction + Bellman function technique exceptional cases of graphs G
  • 72. Part 3 — Proof outline ||| |||| |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions Scheme of the proof: decomposition into paraproducts a stopping time argument for reducing global estimates to local estimates cancellative paraproducts with ∞ coefficients “most” cases of graphs G di,j related to sizes of connected components of G stuctural induction + Bellman function technique exceptional cases of graphs G non-cancellative paraproducts with BMO coefficients reduction to cancellative paraproducts
  • 73. Part 3 — Proof outline ||| |||| |||| |||| |||| The only nonstandard part — sufficiency of the testing conditions Scheme of the proof: decomposition into paraproducts a stopping time argument for reducing global estimates to local estimates cancellative paraproducts with ∞ coefficients “most” cases of graphs G di,j related to sizes of connected components of G stuctural induction + Bellman function technique exceptional cases of graphs G non-cancellative paraproducts with BMO coefficients reduction to cancellative paraproducts counterexample for m = 1 or n = 1
  • 74. Part 3 — Multilinear Bellman functions |||| |||| |||| |||| |||| Bellman functions in harmonic analysis Invented by Burkholder (1980s) Developed by Nazarov, Treil, Volberg, etc. (1990s) We only keep the “induction on scales” idea
  • 75. Part 3 — Multilinear Bellman functions |||| |||| |||| |||| |||| Bellman functions in harmonic analysis Invented by Burkholder (1980s) Developed by Nazarov, Treil, Volberg, etc. (1990s) We only keep the “induction on scales” idea A broad class of interesting dyadic objects can be reduced to bounding expressions of the form ΛT (F1, . . . , F ) = Q∈T |Q| AQ(F1, . . . , F ) T = a finite convex tree of dyadic squares AQ(F1, . . . , F ) = some “scale-invariant” quantity depending on F1, . . . , F and Q ∈ T
  • 76. Part 3 — Calculus of finite differences |||| |||| |||| |||| |||| B = BQ(F1, . . . , F ) First order difference of B: B = BQ(F1, . . . , F ) BI×J := 1 4BIleft×Jleft + 1 4BIleft×Jright + 1 4BIright×Jleft + 1 4BIright×Jright − BI×J
  • 77. Part 3 — Calculus of finite differences |||| |||| |||| |||| |||| B = BQ(F1, . . . , F ) First order difference of B: B = BQ(F1, . . . , F ) BI×J := 1 4BIleft×Jleft + 1 4BIleft×Jright + 1 4BIright×Jleft + 1 4BIright×Jright − BI×J Suppose: |A| ≤ B, i.e. |AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F ) for all Q ∈ T and nonnegative bounded measurable F1, . . . , F
  • 78. Part 3 — Calculus of finite differences |||| |||| |||| |||| |||| |AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F ) |Q| |AQ(F1, . . . , F )| ≤ Q is a child of Q |Q| BQ (F1, . . . , F ) − |Q| BQ(F1, . . . , F )
  • 79. Part 3 — Calculus of finite differences |||| |||| |||| |||| |||| |AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F ) |Q| |AQ(F1, . . . , F )| ≤ Q is a child of Q |Q| BQ (F1, . . . , F ) − |Q| BQ(F1, . . . , F ) |ΛT (F1, . . . , F )| ≤ Q∈L(T ) |Q| BQ(F1, . . . , F ) − |QT | BQT (F1, . . . , F ) B = a Bellman function for ΛT
  • 80. Part 4 — Ordinary paraproduct | |||| |||| |||| |||| |||| Dyadic version Td(f , g) := k∈Z (Ekf )(∆kg) Ekf := |I|=2−k 1 |I| I f 1I , ∆kg := Ek+1g − Ekg
  • 81. Part 4 — Ordinary paraproduct | |||| |||| |||| |||| |||| Dyadic version Td(f , g) := k∈Z (Ekf )(∆kg) Ekf := |I|=2−k 1 |I| I f 1I , ∆kg := Ek+1g − Ekg Continuous version Tc(f , g) := k∈Z (Pϕk f )(Pψk g) Pϕk f := f ∗ ϕk, Pψk g := g ∗ ψk ϕ, ψ Schwartz, supp( ˆψ) ⊆ {ξ ∈ R : 1 2 ≤|ξ| ≤ 2} ϕk(t) := 2kϕ(2kt), ψk(t) := 2kψ(2kt)
  • 82. Part 4 — Twisted paraproduct || |||| |||| |||| |||| |||| Dyadic version Td(F, G) := k∈Z (E (1) k F)(∆ (2) k G) E (1) k martingale averages in the 1st variable ∆ (2) k martingale differences in the 2nd variable
  • 83. Part 4 — Twisted paraproduct || |||| |||| |||| |||| |||| Dyadic version Td(F, G) := k∈Z (E (1) k F)(∆ (2) k G) E (1) k martingale averages in the 1st variable ∆ (2) k martingale differences in the 2nd variable Continuous version Tc(F, G) := k∈Z (P(1) ϕk F)(P (2) ψk G) P (1) ϕk , P (2) ψk L-P projections in the 1st and the 2nd variable (P (1) ϕk F)(x, y) := R F(x−t, y)ϕk(t)dt (P (2) ψk G)(x, y) := R G(x, y −t)ψk(t)dt
  • 84. Part 4 — Twisted paraproduct || |||| |||| |||| |||| |||| Dyadic version Td(F, G) := k∈Z (E (1) k F)(∆ (2) k G) Continuous version Tc(F, G) := k∈Z (P(1) ϕk F)(P (2) ψk G) Bilinear multipliers from our theorems reduce to these using cone decomposition of the symbol: m = j m[j] from the Fourier series m[j] (ξ1, η2) = k∈Z ϕ [j] k (ξ1) ψ [j] k (η2)
  • 85. Part 4 — Twisted paraproduct, estimates ||| |||| |||| |||| |||| |||| B( ), _ 2 1 C( )_ 2 1 , _ 2 1 1 2 _,1 4 _ )(E D( )_ 2 1 , 0 0,1 2 _ )(A _ 4 1 _1 q p 1_ 1 0 10 the shaded region – the strong estimate two solid sides of the square – the weak estimate two dashed sides of the square – no estimates the white region – unresolved
  • 86. Part 4 — Proof outline |||| |||| |||| |||| |||| |||| B( ), _ 2 1 C( )_ 2 1 , _ 2 1 1 2 _,1 4 _ )(E D( )_ 2 1 , 0 0,1 2 _ )(A _ 4 1 _1 q p 1_ 1 0 10 Dyadic version Td ABC – a very special case of the technique in Part 3 the rest of the shaded region – conditional proof, F. Bernicot (2010) dashed segments – counterexamples D, E – an alternative purely Bellman function proof Continuous version Tc transition using the Jones-Seeger-Wright square function
  • 87. Part 4 — Transition to cont. version |||| |||| |||| |||| |||| |||| Assume: ψk = φk+1 − φk for some φ Schwartz, R φ = 1 The general case is then obtained by composing with a bounded Fourier multiplier in the second variable
  • 88. Part 4 — Transition to cont. version |||| |||| |||| |||| |||| |||| Assume: ψk = φk+1 − φk for some φ Schwartz, R φ = 1 The general case is then obtained by composing with a bounded Fourier multiplier in the second variable A. Calder´on (1960s), R. L. Jones, A. Seeger and J. Wright (2008) If ϕ is Schwartz and R ϕ = 1, then the square function SF := k∈Z Pϕk F − EkF 2 1/2 satisfies SF Lp (R) p F Lp (R) for 1 < p < ∞.
  • 89. Part 4 — Transition to cont. version |||| |||| |||| |||| |||| |||| Assume: ψk = φk+1 − φk for some φ Schwartz, R φ = 1 The general case is then obtained by composing with a bounded Fourier multiplier in the second variable A. Calder´on (1960s), R. L. Jones, A. Seeger and J. Wright (2008) If ϕ is Schwartz and R ϕ = 1, then the square function SF := k∈Z Pϕk F − EkF 2 1/2 satisfies SF Lp (R) p F Lp (R) for 1 < p < ∞. Proposition Tc(F, G) − Td(F, G) Lpq/(p+q) p,q F Lp G Lq
  • 90. Part 4 — “Entangled” + cont. kernel | |||| |||| |||| |||| |||| |||| General bipartite graphs G How to obtain boundedness of Λ (Fi,j )(i,j)∈E := Rm+n K(x1, . . . , xm, y1, . . . , yn) (i,j)∈E Fi,j (xi , yj ) dx1 . . . dxmdy1 . . . dyn at least for some continuous singular kernels K?
  • 91. Part 4 — “Entangled” + cont. kernel | |||| |||| |||| |||| |||| |||| General bipartite graphs G How to obtain boundedness of Λ (Fi,j )(i,j)∈E := Rm+n K(x1, . . . , xm, y1, . . . , yn) (i,j)∈E Fi,j (xi , yj ) dx1 . . . dxmdy1 . . . dyn at least for some continuous singular kernels K? We can average “entangled” dyadic operators from Part 3 over translated, dilated, and rotated dyadic grids Partial results: One can recover some very special kernels K Possibly all sufficiently smooth translation-invariant kernels This is still far from a complete T(1)-type theorem
  • 92. Currently open problems || |||| |||| |||| |||| |||| |||| Further directions:
  • 93. Currently open problems || |||| |||| |||| |||| |||| |||| Further directions: Translating the results to the case of more general continuous C-Z kernels K Ultimately obtaining a “real” (i.e. non-dyadic) T(1)-type theorem
  • 94. Currently open problems || |||| |||| |||| |||| |||| |||| Further directions: Translating the results to the case of more general continuous C-Z kernels K Ultimately obtaining a “real” (i.e. non-dyadic) T(1)-type theorem Forms corresponding to non-bipartite graphs (such as odd cycles, recall a triangle)
  • 95. Currently open problems || |||| |||| |||| |||| |||| |||| Further directions: Translating the results to the case of more general continuous C-Z kernels K Ultimately obtaining a “real” (i.e. non-dyadic) T(1)-type theorem Forms corresponding to non-bipartite graphs (such as odd cycles, recall a triangle) More singular kernels K, like K(x, y, z) = 1 x+y+z
  • 96. Thank you! ||| |||| |||| |||| |||| |||| |||| Thank you!