SlideShare ist ein Scribd-Unternehmen logo
1 von 36
Downloaden Sie, um offline zu lesen
Boundedness of the Twisted
Paraproduct
Vjekoslav Kovaˇc, UCLA
Indiana University, Bloomington
January 13, 2011
Mathematical Institute, University of Bonn
February 3, 2011
Ordinary paraproduct
Dyadic version
Td(f , g) :=
k∈Z
(Ekf )(∆kg)
Ekf := |I|=2−k
1
|I| I f 1I , ∆kg := Ek+1g − Ekg
Continuous version
Tc(f , g) :=
k∈Z
(Pϕk
f )(Pψk
g)
Pϕk
f := f ∗ ϕk, Pψk
g := g ∗ ψk
ϕ, ψ Schwartz, supp( ˆψ) ⊆ {ξ ∈ R : 1
2 ≤|ξ| ≤ 2}
ϕk(x) := 2kϕ(2kx), ψk(x) := 2kψ(2kx)
Twisted paraproduct
Dyadic version
Td(F, G) :=
k∈Z
(E
(1)
k F)(∆
(2)
k G)
E
(1)
k martingale averages in the 1st variable
∆
(2)
k martingale differences in the 2nd variable
Continuous version
Tc(F, G) :=
k∈Z
(P(1)
ϕk
F)(P
(2)
ψk
G)
P
(1)
ϕk , P
(2)
ψk
Littlewood-Paley projections in the 1st and the 2nd
variable respectively
(P
(1)
ϕk F)(x, y) := R F(x−t, y)ϕk(t)dt
(P
(2)
ψk
G)(x, y) := R G(x, y −t)ψk(t)dt
Twisted paraproduct – Estimates
We are interested in
strong-type estimates
T(F, G) Lpq/(p+q)(R2) p,q F Lp(R2) G Lq(R2)
weak-type estimates
α |T(F, G)| > α
(p+q)/pq
p,q F Lp(R2) G Lq(R2)
Theorem (K., 2010)
Operators Td and Tc satisfy the strong bound if
1 < p, q < ∞, 1
p + 1
q > 1
2.
Additionally, operators Td and Tc satisfy the weak bound
when p = 1, 1 ≤ q < ∞ or q = 1, 1 ≤ p < ∞.
The weak estimate fails for p = ∞ or q = ∞.
Range of exponents
B( ), _
2
1 C( )_
2
1 , _
2
1
1
2
_,1
4
_ )(E
D( )_
2
1 ,
0
0,1
2
_ )(A
_
4
1
_1
q
p
1_
1
0
10
the shaded region – the
strong estimate
two solid sides of the square
– the weak estimate
two dashed sides of the
square – no estimates
the white region –
unresolved
Proof outline
B( ), _
2
1 C( )_
2
1 , _
2
1
1
2
_,1
4
_ )(E
D( )_
2
1 ,
0
0,1
2
_ )(A
_
4
1
_1
q
p
1_
1
0
10
Dyadic version Td
ABC – direct proof,
K. (2010)
the rest of the shaded region
– conditional proof,
Bernicot (2010)
dashed segments –
counterexamples,
K. (2010)
points D, E – the direct
proof simplifies
Continuous version Tc
transition using the
Jones-Seeger-Wright square
function
Some motivation
1D bilinear Hilbert transform
Tα,β(f , g)(x) := p.v.
R
f (x − αt) g(x − βt)
dt
t
Bounds proved by Lacey and Thiele (1997–1999).
2D bilinear Hilbert transform
TA,B(F, G)(x, y) :=
p.v.
R2
F (x, y) − A(s, t) G (x, y) − B(s, t) K(s, t) ds dt
|∂α ˆK(ξ, η)| α (ξ2 + η2)−|α|/2
Introduced by Demeter and Thiele (2008). They proved bounds in
the range 2 < p, q < ∞, 1
p + 1
q > 1
2, and for almost all cases
depending on matrices A and B.
Some motivation
Essentially the only unresolved case was (denoted “Case 6”):
T(F, G)(x, y) := p.v.
R2
F(x − s, y) G(x, y − t) K(s, t) ds dt
Using “cone decomposition” it reduces to bilinear multipliers with
symbols
ˆK(ξ, η) =
k∈Z
ˆϕ(2−k
ξ) ˆψ(2−k
η)
which are twisted paraproducts.
Bounding the dyadic version
ϕd
I := |I|−1/21I the Haar scaling function
ψd
I := |I|−1/2(1Ileft
− 1Iright
) the Haar wavelet
C = dyadic squares in R2
Td(F, G)(x, y) =
I×J∈C R2
F(u, y)G(x, v)ϕd
I (u)ϕd
I (x)ψd
J (v)ψd
J (y)dudv
Λd(F, G, H) =
R2
Td(F, G)(x, y)H(x, y) dx dy
=
I×J∈C R4
F(u, y)G(x, v)H(x, y) ϕd
I (u)ϕd
I (x)ψd
J (v)ψd
J (y) du dx dv dy
Introducing trees
A finite convex tree is a collection T of dyadic squares such that
There exists QT ∈ T , called the root of T , satisfying Q ⊆ QT
for every Q ∈ T .
Whenever Q1 ⊆ Q2 ⊆ Q3 and Q1, Q3 ∈ T , then also Q2 ∈ T .
A leaf of T is a square that is not contained in T , but its parent is.
L(T ) = the family of leaves of T
Squares in L(T ) partition QT .
Local forms
For any finite convex tree T we define:
ΛT (F, G, H) :=
I×J∈T R4
F(u, y)G(x, v)H(x, y)
ϕd
I (u)ϕd
I (x)ψd
J (v)ψd
J (y) du dx dv dy
Θ
(2)
T (F1, F2, F3, F4) :=
I×J∈T R4
F1(u, v)F2(x, v)F3(u, y)F4(x, y)
ϕd
I (u)ϕd
I (x)ψd
J (v)ψd
J (y) du dv dx dy
Θ
(1)
T (F1, F2, F3, F4) :=
I×J∈T R4
F1(u, v)F2(x, v)F3(u, y)F4(x, y)
ψd
I (u)ψd
I (x) ϕd
Jleft
(v)ϕd
Jleft
(y) + ϕd
Jright
(v)ϕd
Jright
(y) du dv dx dy
Observe that ΛT (F, G, H) = Θ
(2)
T (1, G, F, H).
A notion from additive combinatorics
For Q = I × J ∈ C we define:
Gowers box inner-product and norm
[F1, F2, F3, F4] (Q) :=
1
|Q|2
I I J J
F1(u, v)F2(x, v)F3(u, y)F4(x, y) du dx dv dy
F (Q) := [F, F, F, F]
1/4
(Q)
The box Cauchy-Schwarz inequality:
[F1, F2, F3, F4] (Q) ≤ F1 (Q) F2 (Q) F3 (Q) F4 (Q)
A special case of Brascamp-Lieb inequalities:
F (Q) ≤ 1
|Q| Q |F|2 1/2
Local forms
For any finite collection of squares F we define:
ΞF (F1, F2, F3, F4) :=
Q∈F
|Q| F1, F2, F3, F4 (Q)
=
I×J∈F R4
F1(u, v)F2(x, v)F3(u, y)F4(x, y)
ϕd
I (u)ϕd
I (x)ϕd
J (v)ϕd
J (y) du dv dx dy
A single-scale estimate:
ΞL(T )(F1, F2, F3, F4) ≤ |QT |
4
j=1
max
Q∈L(T )
Fj (Q)
Telescoping identity over trees
Lemma (Telescoping identity)
For any finite convex tree T with root QT we have
Θ
(1)
T (F1, F2, F3, F4) + Θ
(2)
T (F1, F2, F3, F4)
= ΞL(T )(F1, F2, F3, F4) − Ξ{QT }(F1, F2, F3, F4)
Telescoping identity over trees
Lemma (Telescoping identity)
For any finite convex tree T with root QT we have
Θ
(1)
T (F1, F2, F3, F4) + Θ
(2)
T (F1, F2, F3, F4)
= ΞL(T )(F1, F2, F3, F4) − Ξ{QT }(F1, F2, F3, F4)
Proof, part 1.
When T consists of only one square, the identity reduces to
j∈{left,right}
ψd
I (u)ψd
I (x)ϕd
Jj
(v)ϕd
Jj
(y) + ϕd
I (u)ϕd
I (x)ψd
J (v)ψd
J (y)
=
i,j∈{left,right}
ϕd
Ii
(u)ϕd
Ii
(x)ϕd
Jj
(v)ϕd
Jj
(y) − ϕd
I (u)ϕd
I (x)ϕd
J (v)ϕd
J (y)
Telescoping identity over trees
Lemma (Telescoping identity)
For any finite convex tree T with root QT we have
Θ
(1)
T (F1, F2, F3, F4) + Θ
(2)
T (F1, F2, F3, F4)
= ΞL(T )(F1, F2, F3, F4) − Ξ{QT }(F1, F2, F3, F4)
Proof, part 2.
For a general finite convex tree T the following sum
Q∈T Q is a child of Q
Ξ{Q}
− Ξ{Q}
telescopes into the right hand side.
Reduction inequalities
Lemma (Reduction inequalities)
Θ
(1)
T (F1, F2, F3, F4) ≤ Θ
(1)
T (F1, F1, F3, F3)
1
2 Θ
(1)
T (F2, F2, F4, F4)
1
2
Θ
(2)
T (F1, F2, F3, F4) ≤ Θ
(2)
T (F1, F2, F1, F2)
1
2 Θ
(2)
T (F3, F4, F3, F4)
1
2
Reduction inequalities
Lemma (Reduction inequalities)
Θ
(1)
T (F1, F2, F3, F4) ≤ Θ
(1)
T (F1, F1, F3, F3)
1
2 Θ
(1)
T (F2, F2, F4, F4)
1
2
Θ
(2)
T (F1, F2, F3, F4) ≤ Θ
(2)
T (F1, F2, F1, F2)
1
2 Θ
(2)
T (F3, F4, F3, F4)
1
2
Proof.
Rewrite Θ
(2)
T (F1, F2, F3, F4) as
I×J∈T R2 R
F1(u, v)F2(x, v)ψd
J (v)dv
·
R
F3(u, y)F4(x, y)ψd
J (y)dy ϕd
I (u)ϕd
I (x) du dx
and apply the Cauchy-Schwarz inequality, first over (u, x) ∈ I × I,
and then over I × J ∈ T .
Single tree estimate
For any finite convex tree T we have:
Proposition (Single tree estimate)
Θ
(2)
T (F1, F2, F3, F4) |QT |
4
j=1
max
Q∈L(T )
Fj (Q)
ΛT (F, G, H)
|QT | max
Q∈L(T )
F (Q) max
Q∈L(T )
G (Q) max
Q∈L(T )
H (Q)
Proof of the single tree estimate
Θ
(2)
T (F1, F2, F3, F4)
ww ''
Θ
(2)
T (F1, F2, F1, F2)

Θ
(2)
T (F3, F4, F3, F4)

Θ
(1)
T (F1, F2, F1, F2)
~~
Θ
(1)
T (F3, F4, F3, F4)
~~
Θ
(1)
T (F1, F1, F1, F1) Θ
(1)
T (F2, F2, F2, F2) Θ
(1)
T (F3, F3, F3, F3) Θ
(1)
T (F4, F4, F4, F4)
Proof of the single tree estimate
How do we control Θ
(1)
T (Fj , Fj , Fj , Fj ) ?
Θ
(1)
T (Fj , Fj , Fj , Fj )
≥0
+ Θ
(2)
T (Fj , Fj , Fj , Fj )
≥0
+ Ξ{QT }(Fj , Fj , Fj , Fj )
≥0 if Fj ≥0
= ΞL(T )(Fj , Fj , Fj , Fj )
Estimates in the local L2
range
Proposition
|Λd(F, G, H)| p,q,r F Lp G Lq H Lr
for 1
p + 1
q + 1
r = 1, 2  p, q, r  ∞
Estimates in the local L2
range
Proposition
|Λd(F, G, H)| p,q,r F Lp G Lq H Lr
for 1
p + 1
q + 1
r = 1, 2  p, q, r  ∞
Proof, part 1.
PF
k := Q : 2k ≤ supQ ⊇Q F (Q )  2k+1
MF
k = maximal squares in PF
k
PG
k , MG
k , PH
k , MH
k defined analogously
Pk1,k2,k3 := PF
k1
∩ PG
k2
∩ PH
k3
Mk1,k2,k3 = maximal squares in Pk1,k2,k3
Estimates in the local L2
range
Proposition
|Λd(F, G, H)| p,q,r F Lp G Lq H Lr
for 1
p + 1
q + 1
r = 1, 2  p, q, r  ∞
Proof, part 2.
For each Q ∈ Mk1,k2,k3
TQ := {Q ∈ Pk1,k2,k3 : Q ⊆ Q}
is a convex tree with root Q. We apply the single tree estimate to
each of the trees TQ.
It remains to show
k1,k2,k3∈Z
2k1+k2+k3
Q∈Mk1,k2,k3
|Q| p,q,r F Lp G Lq H Lr
Estimates in the local L2
range
Proposition
|Λd(F, G, H)| p,q,r F Lp G Lq H Lr
for 1
p + 1
q + 1
r = 1, 2  p, q, r  ∞
Proof, part 3.
i.e.
k1,k2,k3∈Z
2k1+k2+k3
min
Q∈MF
k1
|Q|,
Q∈MG
k2
|Q|,
Q∈MH
k3
|Q|
p,q,r F Lp G Lq H Lr
i.e.
k∈Z
2pk
Q∈MF
k
|Q| p F p
Lp ,
k∈Z
2qk
Q∈MG
k
|Q| q G q
Lq ,
k∈Z
2rk
Q∈MH
k
|Q| r H r
Lr
Estimates in the local L2
range
Proposition
|Λd(F, G, H)| p,q,r F Lp G Lq H Lr
for 1
p + 1
q + 1
r = 1, 2  p, q, r  ∞
Proof, part 4.
M2F := sup
Q∈C
1
|Q| Q
|F|2
1/2
1Q
For each Q ∈ MF
k we have 1
|Q| Q |F|2 1/2
≥ F (Q) ≥ 2k and
so by disjointness
Q∈MF
k
|Q| ≤ |{M2F ≥ 2k
}|
k∈Z
2pk
|{M2F ≥ 2k
}| ∼p M2F p
Lp p F p
Lp
Extending the range of exponents
Proposition (Bernicot, 2010)
If for some (p, q), 1  p, q  ∞
Td(F, G) Lpq/(p+q) p,q F Lp G Lq
then
Td(F, G) Lp/(p+1),∞ p,q F Lp G L1
Td(F, G) Lq/(q+1),∞ p,q F L1 G Lq
Extending the range of exponents
Proposition (Bernicot, 2010)
If for some (p, q), 1  p, q  ∞
Td(F, G) Lpq/(p+q) p,q F Lp G Lq
then
Td(F, G) Lp/(p+1),∞ p,q F Lp G L1
Td(F, G) Lq/(q+1),∞ p,q F L1 G Lq
Proof.
Perform one-dimensional Calder´on-Zygmund decomposition in
each fiber F(·, y) or G(x, ·).
Even simpler in the dyadic setting: there is no contribution of “the
bad part” outside of “the bad set”.
Bounding the continuous version
Let us assume that ψk = φk+1 − φk for some φ Schwartz,
R φ = 1. The general case is obtained by composing with a
bounded Fourier multiplier in the second variable.
Proposition (Jones, Seeger, Wright, 2008)
If ϕ is Schwartz and R ϕ = 1, then the square function
SJSWf :=
k∈Z
Pϕk
f − Ekf
2 1/2
satisfies SJSWf Lp(R) p f Lp(R)
for 1  p  ∞.
Bounding the continuous version
Proposition
Tc(F, G) − Td(F, G) Lpq/(p+q) p,q F Lp G Lq
Bounding the continuous version
Proposition
Tc(F, G) − Td(F, G) Lpq/(p+q) p,q F Lp G Lq
Proof, part 1.
Taux(F, G) :=
k∈Z
(E
(1)
k F)(P
(2)
ψk
G)
Tc(F, G) − Taux(F, G)
≤
k∈Z
P(1)
ϕk
F − E
(1)
k F
2 1/2
S
(1)
JSWF
k∈Z
P
(2)
ψk
G
2 1/2
S(2)G
Bounding the continuous version
Proposition
Tc(F, G) − Td(F, G) Lpq/(p+q) p,q F Lp G Lq
Proof, part 2.
Taux(F, G) = FG −
k∈Z
(∆
(1)
k F)(P
(2)
φk+1
G)
Td(F, G) = FG −
k∈Z
(∆
(1)
k F)(E
(2)
k+1G)
Taux(F, G) − Td(F, G)
≤
k∈Z
∆
(1)
k F
2 1/2
S
(1)
d F
k∈Z
P
(2)
φk
G − E
(2)
k G
2 1/2
S
(2)
JSWG
Endpoint counterexample
We disprove
L∞
(R2
) × Lq
(R2
) → Lq,∞
(R2
)
for 1 ≤ q  ∞.
G(x, y) := 1[0,2−n)(x)
n
k=1
Rk(y)
Rk := k-th Rademacher function =
J⊆[0,1), |J|=2−k+1
(1Jleft
− 1Jright
)
G Lq ∼q 2−n/qn1/2 by Khintchine’s inequality
(∆
(2)
k G)(x, y) = 1[0,2−n)(x)Rk+1(y) for k = 0, 1, . . . , n − 1
Endpoint counterexample
We choose F so that there is no cancellation between different
scales in Td(F, G).
(E
(1)
k F)(x, y) = Rk+1(y) for x ∈ [0, 2−n), k = 0, 1, . . . , n − 1
F(x, y) :=
2Rj (y) − Rj+1(y), for x ∈ [2−j , 2−j+1), j = 1, . . . , n−1
Rn(y), for x ∈ [0, 2−n+1)
Then Td(F, G) = n 1[0,2−n)×[0,1)
Td(F, G) Lq,∞
F L∞ G Lq
q
2−n/qn
2−n/qn1/2
= n1/2
A byproduct of the proof
Theorem (K., 2010)
Θ(2)
(F1, F2, F3, F4) :=
I×J∈C R4
F1(u, v)F2(x, v)F3(u, y)F4(x, y)
ϕd
I (u)ϕd
I (x)ψd
J (v)ψd
J (y) du dv dx dy
Θ(2)
(F1, F2, F3, F4) p1,p2,p3,p4
4
j=1
Fj L
pj ,
for 1
p1
+ 1
p2
+ 1
p3
+ 1
p4
= 1, 2  p1, p2, p3, p4  ∞
Higher-dimensional generalizations are straightforward.
Subsequent research
The next step in the Demeter-Thiele program:
More singular 2D bilinear Hilbert transform
p.v.
R
F(x − t, y) G(x, y − t)
dt
t
A reason for caution:
Bi-parameter bilinear Hilbert transform
p.v.
R2
F(x − s, y − t) G(x + s, y + t)
ds
s
dt
t
satisfies no Lp estimates – Muscalu, Pipher, Tao, Thiele (2004)

Weitere ähnliche Inhalte

Was ist angesagt?

Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...VjekoslavKovac1
 
A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsVjekoslavKovac1
 
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsA T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsVjekoslavKovac1
 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling SetsVjekoslavKovac1
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureVjekoslavKovac1
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsVjekoslavKovac1
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesVjekoslavKovac1
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restrictionVjekoslavKovac1
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
Paraproducts with general dilations
Paraproducts with general dilationsParaproducts with general dilations
Paraproducts with general dilationsVjekoslavKovac1
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsVjekoslavKovac1
 
Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Jurgen Riedel
 
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Rene Kotze
 

Was ist angesagt? (20)

Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
 
A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentials
 
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsA T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling Sets
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structure
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurations
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restriction
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cube
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 
Paraproducts with general dilations
Paraproducts with general dilationsParaproducts with general dilations
Paraproducts with general dilations
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
 Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli... Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
 
Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
 

Ähnlich wie Boundedness of the Twisted Paraproduct

Tele4653 l1
Tele4653 l1Tele4653 l1
Tele4653 l1Vin Voro
 
Tele3113 wk2wed
Tele3113 wk2wedTele3113 wk2wed
Tele3113 wk2wedVin Voro
 
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCETHE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCEFrank Nielsen
 
LIBOR Market Model Presentation
LIBOR Market Model PresentationLIBOR Market Model Presentation
LIBOR Market Model PresentationStephan Chang
 
On the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansOn the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansFrank Nielsen
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)inventionjournals
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化Akira Tanimoto
 
Fixed point theorem of discontinuity and weak compatibility in non complete n...
Fixed point theorem of discontinuity and weak compatibility in non complete n...Fixed point theorem of discontinuity and weak compatibility in non complete n...
Fixed point theorem of discontinuity and weak compatibility in non complete n...Alexander Decker
 
11.fixed point theorem of discontinuity and weak compatibility in non complet...
11.fixed point theorem of discontinuity and weak compatibility in non complet...11.fixed point theorem of discontinuity and weak compatibility in non complet...
11.fixed point theorem of discontinuity and weak compatibility in non complet...Alexander Decker
 
A Note on Latent LSTM Allocation
A Note on Latent LSTM AllocationA Note on Latent LSTM Allocation
A Note on Latent LSTM AllocationTomonari Masada
 
Geometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderGeometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderJuliho Castillo
 
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equationOn the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equationCemal Ardil
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...Francesco Tudisco
 
A Fibonacci-like universe expansion on time-scale
A Fibonacci-like universe expansion on time-scaleA Fibonacci-like universe expansion on time-scale
A Fibonacci-like universe expansion on time-scaleOctavianPostavaru
 
Inverse Laplace Transform
Inverse Laplace TransformInverse Laplace Transform
Inverse Laplace TransformVishnu V
 

Ähnlich wie Boundedness of the Twisted Paraproduct (20)

Tele4653 l1
Tele4653 l1Tele4653 l1
Tele4653 l1
 
Inverse laplace
Inverse laplaceInverse laplace
Inverse laplace
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
Tele3113 wk2wed
Tele3113 wk2wedTele3113 wk2wed
Tele3113 wk2wed
 
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCETHE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
 
A Note on TopicRNN
A Note on TopicRNNA Note on TopicRNN
A Note on TopicRNN
 
LIBOR Market Model Presentation
LIBOR Market Model PresentationLIBOR Market Model Presentation
LIBOR Market Model Presentation
 
On the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansOn the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract means
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化
 
Fixed point theorem of discontinuity and weak compatibility in non complete n...
Fixed point theorem of discontinuity and weak compatibility in non complete n...Fixed point theorem of discontinuity and weak compatibility in non complete n...
Fixed point theorem of discontinuity and weak compatibility in non complete n...
 
11.fixed point theorem of discontinuity and weak compatibility in non complet...
11.fixed point theorem of discontinuity and weak compatibility in non complet...11.fixed point theorem of discontinuity and weak compatibility in non complet...
11.fixed point theorem of discontinuity and weak compatibility in non complet...
 
A Note on Latent LSTM Allocation
A Note on Latent LSTM AllocationA Note on Latent LSTM Allocation
A Note on Latent LSTM Allocation
 
Geometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderGeometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first order
 
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equationOn the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
 
Tables
TablesTables
Tables
 
A Fibonacci-like universe expansion on time-scale
A Fibonacci-like universe expansion on time-scaleA Fibonacci-like universe expansion on time-scale
A Fibonacci-like universe expansion on time-scale
 
Inverse Laplace Transform
Inverse Laplace TransformInverse Laplace Transform
Inverse Laplace Transform
 

Kürzlich hochgeladen

Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professormuralinath2
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLkantirani197
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learninglevieagacer
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxseri bangash
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....muralinath2
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learninglevieagacer
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Serviceshivanisharma5244
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxSuji236384
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusNazaninKarimi6
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Servicemonikaservice1
 
Introduction to Viruses
Introduction to VirusesIntroduction to Viruses
Introduction to VirusesAreesha Ahmad
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and ClassificationsAreesha Ahmad
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceAlex Henderson
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsSérgio Sacani
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .Poonam Aher Patil
 

Kürzlich hochgeladen (20)

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
 
Introduction to Viruses
Introduction to VirusesIntroduction to Viruses
Introduction to Viruses
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 

Boundedness of the Twisted Paraproduct

  • 1. Boundedness of the Twisted Paraproduct Vjekoslav Kovaˇc, UCLA Indiana University, Bloomington January 13, 2011 Mathematical Institute, University of Bonn February 3, 2011
  • 2. Ordinary paraproduct Dyadic version Td(f , g) := k∈Z (Ekf )(∆kg) Ekf := |I|=2−k 1 |I| I f 1I , ∆kg := Ek+1g − Ekg Continuous version Tc(f , g) := k∈Z (Pϕk f )(Pψk g) Pϕk f := f ∗ ϕk, Pψk g := g ∗ ψk ϕ, ψ Schwartz, supp( ˆψ) ⊆ {ξ ∈ R : 1 2 ≤|ξ| ≤ 2} ϕk(x) := 2kϕ(2kx), ψk(x) := 2kψ(2kx)
  • 3. Twisted paraproduct Dyadic version Td(F, G) := k∈Z (E (1) k F)(∆ (2) k G) E (1) k martingale averages in the 1st variable ∆ (2) k martingale differences in the 2nd variable Continuous version Tc(F, G) := k∈Z (P(1) ϕk F)(P (2) ψk G) P (1) ϕk , P (2) ψk Littlewood-Paley projections in the 1st and the 2nd variable respectively (P (1) ϕk F)(x, y) := R F(x−t, y)ϕk(t)dt (P (2) ψk G)(x, y) := R G(x, y −t)ψk(t)dt
  • 4. Twisted paraproduct – Estimates We are interested in strong-type estimates T(F, G) Lpq/(p+q)(R2) p,q F Lp(R2) G Lq(R2) weak-type estimates α |T(F, G)| > α (p+q)/pq p,q F Lp(R2) G Lq(R2) Theorem (K., 2010) Operators Td and Tc satisfy the strong bound if 1 < p, q < ∞, 1 p + 1 q > 1 2. Additionally, operators Td and Tc satisfy the weak bound when p = 1, 1 ≤ q < ∞ or q = 1, 1 ≤ p < ∞. The weak estimate fails for p = ∞ or q = ∞.
  • 5. Range of exponents B( ), _ 2 1 C( )_ 2 1 , _ 2 1 1 2 _,1 4 _ )(E D( )_ 2 1 , 0 0,1 2 _ )(A _ 4 1 _1 q p 1_ 1 0 10 the shaded region – the strong estimate two solid sides of the square – the weak estimate two dashed sides of the square – no estimates the white region – unresolved
  • 6. Proof outline B( ), _ 2 1 C( )_ 2 1 , _ 2 1 1 2 _,1 4 _ )(E D( )_ 2 1 , 0 0,1 2 _ )(A _ 4 1 _1 q p 1_ 1 0 10 Dyadic version Td ABC – direct proof, K. (2010) the rest of the shaded region – conditional proof, Bernicot (2010) dashed segments – counterexamples, K. (2010) points D, E – the direct proof simplifies Continuous version Tc transition using the Jones-Seeger-Wright square function
  • 7. Some motivation 1D bilinear Hilbert transform Tα,β(f , g)(x) := p.v. R f (x − αt) g(x − βt) dt t Bounds proved by Lacey and Thiele (1997–1999). 2D bilinear Hilbert transform TA,B(F, G)(x, y) := p.v. R2 F (x, y) − A(s, t) G (x, y) − B(s, t) K(s, t) ds dt |∂α ˆK(ξ, η)| α (ξ2 + η2)−|α|/2 Introduced by Demeter and Thiele (2008). They proved bounds in the range 2 < p, q < ∞, 1 p + 1 q > 1 2, and for almost all cases depending on matrices A and B.
  • 8. Some motivation Essentially the only unresolved case was (denoted “Case 6”): T(F, G)(x, y) := p.v. R2 F(x − s, y) G(x, y − t) K(s, t) ds dt Using “cone decomposition” it reduces to bilinear multipliers with symbols ˆK(ξ, η) = k∈Z ˆϕ(2−k ξ) ˆψ(2−k η) which are twisted paraproducts.
  • 9. Bounding the dyadic version ϕd I := |I|−1/21I the Haar scaling function ψd I := |I|−1/2(1Ileft − 1Iright ) the Haar wavelet C = dyadic squares in R2 Td(F, G)(x, y) = I×J∈C R2 F(u, y)G(x, v)ϕd I (u)ϕd I (x)ψd J (v)ψd J (y)dudv Λd(F, G, H) = R2 Td(F, G)(x, y)H(x, y) dx dy = I×J∈C R4 F(u, y)G(x, v)H(x, y) ϕd I (u)ϕd I (x)ψd J (v)ψd J (y) du dx dv dy
  • 10. Introducing trees A finite convex tree is a collection T of dyadic squares such that There exists QT ∈ T , called the root of T , satisfying Q ⊆ QT for every Q ∈ T . Whenever Q1 ⊆ Q2 ⊆ Q3 and Q1, Q3 ∈ T , then also Q2 ∈ T . A leaf of T is a square that is not contained in T , but its parent is. L(T ) = the family of leaves of T Squares in L(T ) partition QT .
  • 11. Local forms For any finite convex tree T we define: ΛT (F, G, H) := I×J∈T R4 F(u, y)G(x, v)H(x, y) ϕd I (u)ϕd I (x)ψd J (v)ψd J (y) du dx dv dy Θ (2) T (F1, F2, F3, F4) := I×J∈T R4 F1(u, v)F2(x, v)F3(u, y)F4(x, y) ϕd I (u)ϕd I (x)ψd J (v)ψd J (y) du dv dx dy Θ (1) T (F1, F2, F3, F4) := I×J∈T R4 F1(u, v)F2(x, v)F3(u, y)F4(x, y) ψd I (u)ψd I (x) ϕd Jleft (v)ϕd Jleft (y) + ϕd Jright (v)ϕd Jright (y) du dv dx dy Observe that ΛT (F, G, H) = Θ (2) T (1, G, F, H).
  • 12. A notion from additive combinatorics For Q = I × J ∈ C we define: Gowers box inner-product and norm [F1, F2, F3, F4] (Q) := 1 |Q|2 I I J J F1(u, v)F2(x, v)F3(u, y)F4(x, y) du dx dv dy F (Q) := [F, F, F, F] 1/4 (Q) The box Cauchy-Schwarz inequality: [F1, F2, F3, F4] (Q) ≤ F1 (Q) F2 (Q) F3 (Q) F4 (Q) A special case of Brascamp-Lieb inequalities: F (Q) ≤ 1 |Q| Q |F|2 1/2
  • 13. Local forms For any finite collection of squares F we define: ΞF (F1, F2, F3, F4) := Q∈F |Q| F1, F2, F3, F4 (Q) = I×J∈F R4 F1(u, v)F2(x, v)F3(u, y)F4(x, y) ϕd I (u)ϕd I (x)ϕd J (v)ϕd J (y) du dv dx dy A single-scale estimate: ΞL(T )(F1, F2, F3, F4) ≤ |QT | 4 j=1 max Q∈L(T ) Fj (Q)
  • 14. Telescoping identity over trees Lemma (Telescoping identity) For any finite convex tree T with root QT we have Θ (1) T (F1, F2, F3, F4) + Θ (2) T (F1, F2, F3, F4) = ΞL(T )(F1, F2, F3, F4) − Ξ{QT }(F1, F2, F3, F4)
  • 15. Telescoping identity over trees Lemma (Telescoping identity) For any finite convex tree T with root QT we have Θ (1) T (F1, F2, F3, F4) + Θ (2) T (F1, F2, F3, F4) = ΞL(T )(F1, F2, F3, F4) − Ξ{QT }(F1, F2, F3, F4) Proof, part 1. When T consists of only one square, the identity reduces to j∈{left,right} ψd I (u)ψd I (x)ϕd Jj (v)ϕd Jj (y) + ϕd I (u)ϕd I (x)ψd J (v)ψd J (y) = i,j∈{left,right} ϕd Ii (u)ϕd Ii (x)ϕd Jj (v)ϕd Jj (y) − ϕd I (u)ϕd I (x)ϕd J (v)ϕd J (y)
  • 16. Telescoping identity over trees Lemma (Telescoping identity) For any finite convex tree T with root QT we have Θ (1) T (F1, F2, F3, F4) + Θ (2) T (F1, F2, F3, F4) = ΞL(T )(F1, F2, F3, F4) − Ξ{QT }(F1, F2, F3, F4) Proof, part 2. For a general finite convex tree T the following sum Q∈T Q is a child of Q Ξ{Q} − Ξ{Q} telescopes into the right hand side.
  • 17. Reduction inequalities Lemma (Reduction inequalities) Θ (1) T (F1, F2, F3, F4) ≤ Θ (1) T (F1, F1, F3, F3) 1 2 Θ (1) T (F2, F2, F4, F4) 1 2 Θ (2) T (F1, F2, F3, F4) ≤ Θ (2) T (F1, F2, F1, F2) 1 2 Θ (2) T (F3, F4, F3, F4) 1 2
  • 18. Reduction inequalities Lemma (Reduction inequalities) Θ (1) T (F1, F2, F3, F4) ≤ Θ (1) T (F1, F1, F3, F3) 1 2 Θ (1) T (F2, F2, F4, F4) 1 2 Θ (2) T (F1, F2, F3, F4) ≤ Θ (2) T (F1, F2, F1, F2) 1 2 Θ (2) T (F3, F4, F3, F4) 1 2 Proof. Rewrite Θ (2) T (F1, F2, F3, F4) as I×J∈T R2 R F1(u, v)F2(x, v)ψd J (v)dv · R F3(u, y)F4(x, y)ψd J (y)dy ϕd I (u)ϕd I (x) du dx and apply the Cauchy-Schwarz inequality, first over (u, x) ∈ I × I, and then over I × J ∈ T .
  • 19. Single tree estimate For any finite convex tree T we have: Proposition (Single tree estimate) Θ (2) T (F1, F2, F3, F4) |QT | 4 j=1 max Q∈L(T ) Fj (Q) ΛT (F, G, H) |QT | max Q∈L(T ) F (Q) max Q∈L(T ) G (Q) max Q∈L(T ) H (Q)
  • 20. Proof of the single tree estimate Θ (2) T (F1, F2, F3, F4) ww '' Θ (2) T (F1, F2, F1, F2) Θ (2) T (F3, F4, F3, F4) Θ (1) T (F1, F2, F1, F2) ~~ Θ (1) T (F3, F4, F3, F4) ~~ Θ (1) T (F1, F1, F1, F1) Θ (1) T (F2, F2, F2, F2) Θ (1) T (F3, F3, F3, F3) Θ (1) T (F4, F4, F4, F4)
  • 21. Proof of the single tree estimate How do we control Θ (1) T (Fj , Fj , Fj , Fj ) ? Θ (1) T (Fj , Fj , Fj , Fj ) ≥0 + Θ (2) T (Fj , Fj , Fj , Fj ) ≥0 + Ξ{QT }(Fj , Fj , Fj , Fj ) ≥0 if Fj ≥0 = ΞL(T )(Fj , Fj , Fj , Fj )
  • 22. Estimates in the local L2 range Proposition |Λd(F, G, H)| p,q,r F Lp G Lq H Lr for 1 p + 1 q + 1 r = 1, 2 p, q, r ∞
  • 23. Estimates in the local L2 range Proposition |Λd(F, G, H)| p,q,r F Lp G Lq H Lr for 1 p + 1 q + 1 r = 1, 2 p, q, r ∞ Proof, part 1. PF k := Q : 2k ≤ supQ ⊇Q F (Q ) 2k+1 MF k = maximal squares in PF k PG k , MG k , PH k , MH k defined analogously Pk1,k2,k3 := PF k1 ∩ PG k2 ∩ PH k3 Mk1,k2,k3 = maximal squares in Pk1,k2,k3
  • 24. Estimates in the local L2 range Proposition |Λd(F, G, H)| p,q,r F Lp G Lq H Lr for 1 p + 1 q + 1 r = 1, 2 p, q, r ∞ Proof, part 2. For each Q ∈ Mk1,k2,k3 TQ := {Q ∈ Pk1,k2,k3 : Q ⊆ Q} is a convex tree with root Q. We apply the single tree estimate to each of the trees TQ. It remains to show k1,k2,k3∈Z 2k1+k2+k3 Q∈Mk1,k2,k3 |Q| p,q,r F Lp G Lq H Lr
  • 25. Estimates in the local L2 range Proposition |Λd(F, G, H)| p,q,r F Lp G Lq H Lr for 1 p + 1 q + 1 r = 1, 2 p, q, r ∞ Proof, part 3. i.e. k1,k2,k3∈Z 2k1+k2+k3 min Q∈MF k1 |Q|, Q∈MG k2 |Q|, Q∈MH k3 |Q| p,q,r F Lp G Lq H Lr i.e. k∈Z 2pk Q∈MF k |Q| p F p Lp , k∈Z 2qk Q∈MG k |Q| q G q Lq , k∈Z 2rk Q∈MH k |Q| r H r Lr
  • 26. Estimates in the local L2 range Proposition |Λd(F, G, H)| p,q,r F Lp G Lq H Lr for 1 p + 1 q + 1 r = 1, 2 p, q, r ∞ Proof, part 4. M2F := sup Q∈C 1 |Q| Q |F|2 1/2 1Q For each Q ∈ MF k we have 1 |Q| Q |F|2 1/2 ≥ F (Q) ≥ 2k and so by disjointness Q∈MF k |Q| ≤ |{M2F ≥ 2k }| k∈Z 2pk |{M2F ≥ 2k }| ∼p M2F p Lp p F p Lp
  • 27. Extending the range of exponents Proposition (Bernicot, 2010) If for some (p, q), 1 p, q ∞ Td(F, G) Lpq/(p+q) p,q F Lp G Lq then Td(F, G) Lp/(p+1),∞ p,q F Lp G L1 Td(F, G) Lq/(q+1),∞ p,q F L1 G Lq
  • 28. Extending the range of exponents Proposition (Bernicot, 2010) If for some (p, q), 1 p, q ∞ Td(F, G) Lpq/(p+q) p,q F Lp G Lq then Td(F, G) Lp/(p+1),∞ p,q F Lp G L1 Td(F, G) Lq/(q+1),∞ p,q F L1 G Lq Proof. Perform one-dimensional Calder´on-Zygmund decomposition in each fiber F(·, y) or G(x, ·). Even simpler in the dyadic setting: there is no contribution of “the bad part” outside of “the bad set”.
  • 29. Bounding the continuous version Let us assume that ψk = φk+1 − φk for some φ Schwartz, R φ = 1. The general case is obtained by composing with a bounded Fourier multiplier in the second variable. Proposition (Jones, Seeger, Wright, 2008) If ϕ is Schwartz and R ϕ = 1, then the square function SJSWf := k∈Z Pϕk f − Ekf 2 1/2 satisfies SJSWf Lp(R) p f Lp(R) for 1 p ∞.
  • 30. Bounding the continuous version Proposition Tc(F, G) − Td(F, G) Lpq/(p+q) p,q F Lp G Lq
  • 31. Bounding the continuous version Proposition Tc(F, G) − Td(F, G) Lpq/(p+q) p,q F Lp G Lq Proof, part 1. Taux(F, G) := k∈Z (E (1) k F)(P (2) ψk G) Tc(F, G) − Taux(F, G) ≤ k∈Z P(1) ϕk F − E (1) k F 2 1/2 S (1) JSWF k∈Z P (2) ψk G 2 1/2 S(2)G
  • 32. Bounding the continuous version Proposition Tc(F, G) − Td(F, G) Lpq/(p+q) p,q F Lp G Lq Proof, part 2. Taux(F, G) = FG − k∈Z (∆ (1) k F)(P (2) φk+1 G) Td(F, G) = FG − k∈Z (∆ (1) k F)(E (2) k+1G) Taux(F, G) − Td(F, G) ≤ k∈Z ∆ (1) k F 2 1/2 S (1) d F k∈Z P (2) φk G − E (2) k G 2 1/2 S (2) JSWG
  • 33. Endpoint counterexample We disprove L∞ (R2 ) × Lq (R2 ) → Lq,∞ (R2 ) for 1 ≤ q ∞. G(x, y) := 1[0,2−n)(x) n k=1 Rk(y) Rk := k-th Rademacher function = J⊆[0,1), |J|=2−k+1 (1Jleft − 1Jright ) G Lq ∼q 2−n/qn1/2 by Khintchine’s inequality (∆ (2) k G)(x, y) = 1[0,2−n)(x)Rk+1(y) for k = 0, 1, . . . , n − 1
  • 34. Endpoint counterexample We choose F so that there is no cancellation between different scales in Td(F, G). (E (1) k F)(x, y) = Rk+1(y) for x ∈ [0, 2−n), k = 0, 1, . . . , n − 1 F(x, y) := 2Rj (y) − Rj+1(y), for x ∈ [2−j , 2−j+1), j = 1, . . . , n−1 Rn(y), for x ∈ [0, 2−n+1) Then Td(F, G) = n 1[0,2−n)×[0,1) Td(F, G) Lq,∞ F L∞ G Lq q 2−n/qn 2−n/qn1/2 = n1/2
  • 35. A byproduct of the proof Theorem (K., 2010) Θ(2) (F1, F2, F3, F4) := I×J∈C R4 F1(u, v)F2(x, v)F3(u, y)F4(x, y) ϕd I (u)ϕd I (x)ψd J (v)ψd J (y) du dv dx dy Θ(2) (F1, F2, F3, F4) p1,p2,p3,p4 4 j=1 Fj L pj , for 1 p1 + 1 p2 + 1 p3 + 1 p4 = 1, 2 p1, p2, p3, p4 ∞ Higher-dimensional generalizations are straightforward.
  • 36. Subsequent research The next step in the Demeter-Thiele program: More singular 2D bilinear Hilbert transform p.v. R F(x − t, y) G(x, y − t) dt t A reason for caution: Bi-parameter bilinear Hilbert transform p.v. R2 F(x − s, y − t) G(x + s, y + t) ds s dt t satisfies no Lp estimates – Muscalu, Pipher, Tao, Thiele (2004)