SlideShare ist ein Scribd-Unternehmen logo
1 von 4
Downloaden Sie, um offline zu lesen
Department of Chemistry
Indian Institute of Technology Madras, Chennai
CY101: Part A II Semester
Assignment 1
Quantum Chemistry – Elementary quantum mechanical models
1) Consider an electron with a kinetic energy 2 eV. Calculate its momentum,
velocity and the de Broglie wavelength. Is it reasonable to assume that the
mass of the electron is independent of its speed?
2) Assume that an electron moves in a box of length 200 pm. Estimate the
kinetic energy of electron using a particle in a box model. State your
approximations. What is the de Broglie wavelength of the electron?
3) What are the eigenfunctions of a free particle kinetic energy operator?
Obtain the momentum eigenvalues and eigenfunctions for the free
particle. Are these wave functions “acceptable” in quantum mechanics? If
not, how do you make them “acceptable”?
4) Verify that the eigenfunctions Ψn
(x) =
2
L
sin
nπx
L
are eigenfunctions of the
Hamiltonian for the particle in a box but not its momentum.
5) The wave function for a particle in a one dimensional box is given as
ψ (x) =
2
L
c1 sin
πx
L
+ c2 sin
2πx
L
⎧
⎨
⎩
⎫
⎬
⎭
. Calculate the expectation value for the
energy and momentum of this particle. If the energy of the particle is found
to be five times the smallest eigenvalue for the particle in a box, obtain a
value for c1 and c2 Are they unique?
6) You have used a procedure for separation of variables to derive the
eigenfunctions of a particle in a 2-D or a 3-D box. Obtain by a similar
procedure the solution of the time dependent Schrodinger equation
i
∂ψ
∂t
= ˆHψ where ˆH is independent of time and ( )n xΦ are eigenfunctions
of ˆH , i.e. ˆHΦn
(x) = En
Φn
(x).
7) What are the energy eigenfunctions and eigenvalues for a particle in a 1-D
box whose boundaries are
2
L
x = ± (Box length is L and the mass of the
particle is m)?
8) For the one dimensional box, obtain an expression for the maxima of the
probability densities
2
( )nP xψ= for all n .
9) Consider the wave functions
1
( ) ikx
k x e
a
ψ = in the interval ,
2 2
a a⎛ ⎞
−⎜ ⎟
⎝ ⎠
. Are
these wave functions normalized and orthogonal in the limit a → ∞ ? Show
your answer explicitly.
10) Calculate the expectation values x , 2
x , p , 2
p for a free particle in
a 1-D box, with
2
sinn
n x
L L
π
ψ = . Calculate the product
Δx Δp = x2
− x
2
p2
− p
2
where xΔ and pΔ are
uncertainties in the particle position and momentum. Show that this
verifies the Heisenberg’s uncertainty principle.
11) For the free particle in a two dimensional box, calculate the expectation
values for the following quantities:
2 2
,xy x and y −i x
∂
∂y
− y
∂
∂x
What is your interpretation of the operator −i x
∂
∂y
− y
∂
∂x
?
12) An arbitrary normalized wave function for a particle in a one dimensional
box is given by ψ (x) = Cx2
(L − x)2
.
a) Obtain an expression for C.
b) Express ( )xψ as
1
2
( ) sinn
n
n x
x C
L L
π
ψ
∞
=
= ∑ . Obtain an expression for
the coefficient Cn.
c) What is the value of the sum
2
1
n
n
C
∞
=
∑ ?
d) What is the average value for the energy of the particle in this
state?
13) Consider the rectangular wave function
ψ (x) =
1
L
, 0 < x < L
ψ (x) = 0, otherwise
Express
1
2
( ) sinn
n
n x
x C
L L
π
ψ
∞
=
= ∑ and obtain an expression for Cn and
2
1
n
n
C
∞
=
∑ . Is this an acceptable wave function?
14) A linear one dimensional chain of conjugated polyene contains 12 C-C
links (-C=C-C=C-)3 with an average bond distance of 1.33 Angstrom.
Ignore the end effect and assume that the pi electrons are free to move
along the bonds. Determine the energy difference between the highest
occupied energy level and the lowest unoccupied energy level. Assume
that at most two electrons can occupy each energy level.
15) Calculate the commutator ˆ ˆ ˆ ˆ ˆˆ, x y zx y z p p p⎡ ⎤+ + + +⎣ ⎦.
16) If ˆA , ˆB and ˆC are three operators, show that the commutator
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , ,A BC B A C A B C⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
and ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , ,AB C A B C A C B⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
. Use these
to calculate the commutator 2 2
ˆ ˆ, xx p⎡ ⎤⎣ ⎦.
17)For the free particle in a cubical box of side L, calculate the energy E for
the first eight states and identify the degeneracy of each of them.
18) Calculate the ground state energy of the electron in the hydrogen atom
using the wave functionψ (r) = ce−r/a0
. The Hamiltonian is
H = −
2
2m
∂2
∂x2
+
∂2
∂y2
+
∂2
∂z2
⎛
⎝⎜
⎞
⎠⎟ −
e2
4πε0r
.
19) Assuming a simple 3d cubic box model, calculate the longest wave length
that an electron can have in a box of size 118 pm. Calculate the average
kinetic energy and determine what fraction this constitutes of the total
energy calculated using the exact wave function in the previous problem?
20) Examine carefully all the fifteen angular wave functions (l=1, 2 and 3) and
the animations given in your web site. Identify all angular nodes.

Weitere ähnliche Inhalte

Was ist angesagt?

Persamaan schroedinger bebas waktu
Persamaan schroedinger bebas waktuPersamaan schroedinger bebas waktu
Persamaan schroedinger bebas waktu
Fani Diamanti
 
Bound states in 1d, 2d and 3d quantum wells
Bound states in 1d, 2d and 3d quantum wellsBound states in 1d, 2d and 3d quantum wells
Bound states in 1d, 2d and 3d quantum wells
Ahmed Aslam
 
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
Computational Materials Science Initiative
 

Was ist angesagt? (20)

Ch40 ssm
Ch40 ssmCh40 ssm
Ch40 ssm
 
Physics Assignment Help
Physics Assignment HelpPhysics Assignment Help
Physics Assignment Help
 
Introduction to density functional theory
Introduction to density functional theory Introduction to density functional theory
Introduction to density functional theory
 
Persamaan schroedinger bebas waktu
Persamaan schroedinger bebas waktuPersamaan schroedinger bebas waktu
Persamaan schroedinger bebas waktu
 
Introduction to Quantum Monte Carlo
Introduction to Quantum Monte CarloIntroduction to Quantum Monte Carlo
Introduction to Quantum Monte Carlo
 
Introduction to DFT Part 2
Introduction to DFT Part 2Introduction to DFT Part 2
Introduction to DFT Part 2
 
On Application of Unbounded Hilbert Linear Operators in Quantum Mechanics
On Application of Unbounded Hilbert Linear Operators in Quantum MechanicsOn Application of Unbounded Hilbert Linear Operators in Quantum Mechanics
On Application of Unbounded Hilbert Linear Operators in Quantum Mechanics
 
NANO266 - Lecture 1 - Introduction to Quantum Mechanics
NANO266 - Lecture 1 - Introduction to Quantum MechanicsNANO266 - Lecture 1 - Introduction to Quantum Mechanics
NANO266 - Lecture 1 - Introduction to Quantum Mechanics
 
Electromagnetic waves
Electromagnetic wavesElectromagnetic waves
Electromagnetic waves
 
Density functional theory
Density functional theoryDensity functional theory
Density functional theory
 
Mit2 092 f09_lec23
Mit2 092 f09_lec23Mit2 092 f09_lec23
Mit2 092 f09_lec23
 
Bound states in 1d, 2d and 3d quantum wells
Bound states in 1d, 2d and 3d quantum wellsBound states in 1d, 2d and 3d quantum wells
Bound states in 1d, 2d and 3d quantum wells
 
Statistical Physics Assignment Help
Statistical Physics Assignment Help Statistical Physics Assignment Help
Statistical Physics Assignment Help
 
Statistical Physics Assignment Help
Statistical Physics Assignment HelpStatistical Physics Assignment Help
Statistical Physics Assignment Help
 
Applications of schrodinger equation
Applications of schrodinger equationApplications of schrodinger equation
Applications of schrodinger equation
 
NANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFTNANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFT
 
Problems and solutions statistical physics 1
Problems and solutions   statistical physics 1Problems and solutions   statistical physics 1
Problems and solutions statistical physics 1
 
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
 
Ch38 ssm
Ch38 ssmCh38 ssm
Ch38 ssm
 
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
 

Andere mochten auch

Lecture 7 8 statistical thermodynamics - introduction
Lecture 7 8 statistical thermodynamics - introductionLecture 7 8 statistical thermodynamics - introduction
Lecture 7 8 statistical thermodynamics - introduction
Viraj Dande
 
Empirical field observations
Empirical field observationsEmpirical field observations
Empirical field observations
angel salazar
 
PPP - Mnemonics - TGIYou - EMAIL Final
PPP - Mnemonics - TGIYou - EMAIL FinalPPP - Mnemonics - TGIYou - EMAIL Final
PPP - Mnemonics - TGIYou - EMAIL Final
MNEMONICS .
 
Fed Policy Compared to Islamic Banking Principles
Fed Policy Compared to Islamic Banking PrinciplesFed Policy Compared to Islamic Banking Principles
Fed Policy Compared to Islamic Banking Principles
Geoffrey Ford
 
Base de datos
Base de datosBase de datos
Base de datos
NataLui
 
Nuevo presentación de microsoft office power point
Nuevo presentación de microsoft office power pointNuevo presentación de microsoft office power point
Nuevo presentación de microsoft office power point
Viana Rodríguez
 
The odysseyobrotherwhereartthou powerpoint compressed pics
The odysseyobrotherwhereartthou powerpoint compressed picsThe odysseyobrotherwhereartthou powerpoint compressed pics
The odysseyobrotherwhereartthou powerpoint compressed pics
Chris Cooke
 
Presentacion acompañamiento tutorial
Presentacion acompañamiento tutorial Presentacion acompañamiento tutorial
Presentacion acompañamiento tutorial
UNAD
 
Còmo afrontar las reestructuraciones empresariales1
Còmo afrontar las reestructuraciones empresariales1Còmo afrontar las reestructuraciones empresariales1
Còmo afrontar las reestructuraciones empresariales1
Lidizeth Bejarano
 

Andere mochten auch (20)

Example of a Resume
Example of a ResumeExample of a Resume
Example of a Resume
 
The Oak Island Mystery
The Oak Island MysteryThe Oak Island Mystery
The Oak Island Mystery
 
Lecture 7 8 statistical thermodynamics - introduction
Lecture 7 8 statistical thermodynamics - introductionLecture 7 8 statistical thermodynamics - introduction
Lecture 7 8 statistical thermodynamics - introduction
 
Memo on the Voynich Manuscript
Memo on the Voynich ManuscriptMemo on the Voynich Manuscript
Memo on the Voynich Manuscript
 
Empirical field observations
Empirical field observationsEmpirical field observations
Empirical field observations
 
PPP - Mnemonics - TGIYou - EMAIL Final
PPP - Mnemonics - TGIYou - EMAIL FinalPPP - Mnemonics - TGIYou - EMAIL Final
PPP - Mnemonics - TGIYou - EMAIL Final
 
Down Syndrome
Down SyndromeDown Syndrome
Down Syndrome
 
RIZAL Paris to Berlin
RIZAL Paris to BerlinRIZAL Paris to Berlin
RIZAL Paris to Berlin
 
Amniotic Fluid
Amniotic FluidAmniotic Fluid
Amniotic Fluid
 
Fed Policy Compared to Islamic Banking Principles
Fed Policy Compared to Islamic Banking PrinciplesFed Policy Compared to Islamic Banking Principles
Fed Policy Compared to Islamic Banking Principles
 
Base de datos
Base de datosBase de datos
Base de datos
 
Nuevo presentación de microsoft office power point
Nuevo presentación de microsoft office power pointNuevo presentación de microsoft office power point
Nuevo presentación de microsoft office power point
 
Restaurante waldgeist xxxxx_len_hofheim
Restaurante waldgeist xxxxx_len_hofheimRestaurante waldgeist xxxxx_len_hofheim
Restaurante waldgeist xxxxx_len_hofheim
 
The odysseyobrotherwhereartthou powerpoint compressed pics
The odysseyobrotherwhereartthou powerpoint compressed picsThe odysseyobrotherwhereartthou powerpoint compressed pics
The odysseyobrotherwhereartthou powerpoint compressed pics
 
United States Supreme Court
United States Supreme CourtUnited States Supreme Court
United States Supreme Court
 
Afrodita
AfroditaAfrodita
Afrodita
 
Project consultant
Project consultantProject consultant
Project consultant
 
Presentacion acompañamiento tutorial
Presentacion acompañamiento tutorial Presentacion acompañamiento tutorial
Presentacion acompañamiento tutorial
 
Còmo afrontar las reestructuraciones empresariales1
Còmo afrontar las reestructuraciones empresariales1Còmo afrontar las reestructuraciones empresariales1
Còmo afrontar las reestructuraciones empresariales1
 
Project lead
Project leadProject lead
Project lead
 

Ähnlich wie Quantum assignment

Ähnlich wie Quantum assignment (20)

Schrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsSchrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanics
 
PART VII.2 - Quantum Electrodynamics
PART VII.2 - Quantum ElectrodynamicsPART VII.2 - Quantum Electrodynamics
PART VII.2 - Quantum Electrodynamics
 
Atomic structure
Atomic structureAtomic structure
Atomic structure
 
Ch34 ssm
Ch34 ssmCh34 ssm
Ch34 ssm
 
Chapter_4.pptx .
Chapter_4.pptx                          .Chapter_4.pptx                          .
Chapter_4.pptx .
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
Chapter2 introduction to quantum mechanics
Chapter2 introduction to quantum mechanicsChapter2 introduction to quantum mechanics
Chapter2 introduction to quantum mechanics
 
UNIT 4_BCH-106.pptx
UNIT 4_BCH-106.pptxUNIT 4_BCH-106.pptx
UNIT 4_BCH-106.pptx
 
Jee main questions
Jee main questionsJee main questions
Jee main questions
 
Particle in a Box problem Quantum Chemistry
Particle in a Box problem Quantum ChemistryParticle in a Box problem Quantum Chemistry
Particle in a Box problem Quantum Chemistry
 
Introduction to Diffusion Monte Carlo
Introduction to Diffusion Monte CarloIntroduction to Diffusion Monte Carlo
Introduction to Diffusion Monte Carlo
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanics
 
What are free particles in quantum mechanics
What are free particles in quantum mechanicsWhat are free particles in quantum mechanics
What are free particles in quantum mechanics
 
Light induced real-time dynamics for electrons
Light induced real-time dynamics for electronsLight induced real-time dynamics for electrons
Light induced real-time dynamics for electrons
 
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONSAPPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
 
Quantum course
Quantum courseQuantum course
Quantum course
 
Statistical Physics Assignment Help
Statistical Physics Assignment HelpStatistical Physics Assignment Help
Statistical Physics Assignment Help
 
King_Notes_Density_of_States_2D1D0D.pdf
King_Notes_Density_of_States_2D1D0D.pdfKing_Notes_Density_of_States_2D1D0D.pdf
King_Notes_Density_of_States_2D1D0D.pdf
 
Dft calculation by vasp
Dft calculation by vaspDft calculation by vasp
Dft calculation by vasp
 
Electronics devices unit 1.pptx
Electronics devices unit 1.pptxElectronics devices unit 1.pptx
Electronics devices unit 1.pptx
 

Quantum assignment

  • 1. Department of Chemistry Indian Institute of Technology Madras, Chennai CY101: Part A II Semester Assignment 1 Quantum Chemistry – Elementary quantum mechanical models 1) Consider an electron with a kinetic energy 2 eV. Calculate its momentum, velocity and the de Broglie wavelength. Is it reasonable to assume that the mass of the electron is independent of its speed? 2) Assume that an electron moves in a box of length 200 pm. Estimate the kinetic energy of electron using a particle in a box model. State your approximations. What is the de Broglie wavelength of the electron? 3) What are the eigenfunctions of a free particle kinetic energy operator? Obtain the momentum eigenvalues and eigenfunctions for the free particle. Are these wave functions “acceptable” in quantum mechanics? If not, how do you make them “acceptable”? 4) Verify that the eigenfunctions Ψn (x) = 2 L sin nπx L are eigenfunctions of the Hamiltonian for the particle in a box but not its momentum. 5) The wave function for a particle in a one dimensional box is given as ψ (x) = 2 L c1 sin πx L + c2 sin 2πx L ⎧ ⎨ ⎩ ⎫ ⎬ ⎭ . Calculate the expectation value for the energy and momentum of this particle. If the energy of the particle is found to be five times the smallest eigenvalue for the particle in a box, obtain a value for c1 and c2 Are they unique? 6) You have used a procedure for separation of variables to derive the eigenfunctions of a particle in a 2-D or a 3-D box. Obtain by a similar procedure the solution of the time dependent Schrodinger equation
  • 2. i ∂ψ ∂t = ˆHψ where ˆH is independent of time and ( )n xΦ are eigenfunctions of ˆH , i.e. ˆHΦn (x) = En Φn (x). 7) What are the energy eigenfunctions and eigenvalues for a particle in a 1-D box whose boundaries are 2 L x = ± (Box length is L and the mass of the particle is m)? 8) For the one dimensional box, obtain an expression for the maxima of the probability densities 2 ( )nP xψ= for all n . 9) Consider the wave functions 1 ( ) ikx k x e a ψ = in the interval , 2 2 a a⎛ ⎞ −⎜ ⎟ ⎝ ⎠ . Are these wave functions normalized and orthogonal in the limit a → ∞ ? Show your answer explicitly. 10) Calculate the expectation values x , 2 x , p , 2 p for a free particle in a 1-D box, with 2 sinn n x L L π ψ = . Calculate the product Δx Δp = x2 − x 2 p2 − p 2 where xΔ and pΔ are uncertainties in the particle position and momentum. Show that this verifies the Heisenberg’s uncertainty principle. 11) For the free particle in a two dimensional box, calculate the expectation values for the following quantities: 2 2 ,xy x and y −i x ∂ ∂y − y ∂ ∂x What is your interpretation of the operator −i x ∂ ∂y − y ∂ ∂x ? 12) An arbitrary normalized wave function for a particle in a one dimensional box is given by ψ (x) = Cx2 (L − x)2 . a) Obtain an expression for C.
  • 3. b) Express ( )xψ as 1 2 ( ) sinn n n x x C L L π ψ ∞ = = ∑ . Obtain an expression for the coefficient Cn. c) What is the value of the sum 2 1 n n C ∞ = ∑ ? d) What is the average value for the energy of the particle in this state? 13) Consider the rectangular wave function ψ (x) = 1 L , 0 < x < L ψ (x) = 0, otherwise Express 1 2 ( ) sinn n n x x C L L π ψ ∞ = = ∑ and obtain an expression for Cn and 2 1 n n C ∞ = ∑ . Is this an acceptable wave function? 14) A linear one dimensional chain of conjugated polyene contains 12 C-C links (-C=C-C=C-)3 with an average bond distance of 1.33 Angstrom. Ignore the end effect and assume that the pi electrons are free to move along the bonds. Determine the energy difference between the highest occupied energy level and the lowest unoccupied energy level. Assume that at most two electrons can occupy each energy level. 15) Calculate the commutator ˆ ˆ ˆ ˆ ˆˆ, x y zx y z p p p⎡ ⎤+ + + +⎣ ⎦. 16) If ˆA , ˆB and ˆC are three operators, show that the commutator ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , ,A BC B A C A B C⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ and ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , ,AB C A B C A C B⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . Use these to calculate the commutator 2 2 ˆ ˆ, xx p⎡ ⎤⎣ ⎦. 17)For the free particle in a cubical box of side L, calculate the energy E for the first eight states and identify the degeneracy of each of them. 18) Calculate the ground state energy of the electron in the hydrogen atom using the wave functionψ (r) = ce−r/a0 . The Hamiltonian is
  • 4. H = − 2 2m ∂2 ∂x2 + ∂2 ∂y2 + ∂2 ∂z2 ⎛ ⎝⎜ ⎞ ⎠⎟ − e2 4πε0r . 19) Assuming a simple 3d cubic box model, calculate the longest wave length that an electron can have in a box of size 118 pm. Calculate the average kinetic energy and determine what fraction this constitutes of the total energy calculated using the exact wave function in the previous problem? 20) Examine carefully all the fifteen angular wave functions (l=1, 2 and 3) and the animations given in your web site. Identify all angular nodes.