SlideShare ist ein Scribd-Unternehmen logo
1 von 20
STABILITY ENHANCEMENT
OF GUJARAT GRID
THROUGH SHUNT
COMPENSATION
By
1. Yagnik Utsav P. (M.E. Scholar, SSEC)
2. Solanki Mehul D. (Asst. Prof., SSEC)
Electrical Engineering
Paper ID - 149
04 April 2016 NCERTE-2016 1
Outline
04 April 2016 NCERTE-2016 2
• Abstract (4)
• Network Considered (5)
• Network Parameters (6)
• Why this network? (7)
• Other considerations (8)
• Computation using Power World Simulator (9)
• Power World Simulator results without
compensation (10)
Outline
• Power World Simulator results with
compensation (11)
• Computation using MATLAB (12)
• MATAB results (13)
• Table of improvement (14)
• Another observation in simulation (15)
• Conclusion (16)
• Future work (17)
• I am thankful to… (18)
• References (19)
04 April 2016 NCERTE-2016 3
Abstract
• Blackout is a major concern to the power system
administrator, as it can lead to the collapse of whole system or
grid and this situation is arising out of maintaining the supply
to the buses tackling bulk of power and is considered to be
weaker and left uncompensated. In this paper, Gujarat power
system network of 220kV has been considered and its power
flow simulation has been carried out to identify the weak bus
in case of given loading. Weak bus has been compensated
with shunt compensation to keep the voltage of that
particular bus regulated within a tight band and not allowed
to collapsing below specified limits.
04 April 2016 NCERTE-2016 4
Network considered
04 April 2016 NCERTE-2016 5
Network parameters
• Total 11, 220kV buses showing maximum
loading conditions during April-2013.
• 1 slack bus(Gandhinagar)
• 3 Generator buses(Wanakbori, Kadana, Ukai)
• 7 Load buses(Soja, Karamsad, Asoj, Godhara,
Mehsana, Jambuva, Ranasan)
• Transmission lines made up of Zebra
Conductors having r = 0.08 Ω/km and x =
0.402 Ω/km
04 April 2016 NCERTE-2016 6
Why this network?
• The considered buses in the network are to be
energized first in case of blackout, so if these
buses can maintain their voltage limits, then it
will be easier to maintain the network alive in
case of sudden load changes and an island of
Gujarat grid system will survive.
• But if we can’t do the same, these buses will
also go into the blackout.
04 April 2016 NCERTE-2016 7
Other Considerations
• Here considering maximum loadings in the
April-2013, the load flow study has been run
to identify the weakest buses in the network
i.e. Karamsad and Jambuva.
• Once identified, proper compensation has
been provided on Karamsad bus to
compensate and to bring its voltage limits
back in to tolerable limits.
04 April 2016 NCERTE-2016 8
Creating
the
network
Running
Load
Flow
Identifying
the weak
bus
Providing
compensation
Computation using Power World
Simulator
04 April 2016 NCERTE-2016 9
Power World Simulator Results
without compensation
Name NomkV PUVolt Volt(kV) Angle(Deg) LoadMW LoadMvar GenMW GenMvar SwitchedShuntsMvar ActGShuntMW
Gandhinagar1 220 1.0000 220.0000 0.0000 103.0000 58.0000 263.1100 391.2200 0.0000
Wanakbori2 220 1.0000 220.0010 19.7700 196.0000 96.0000 875.0000 386.4000 0.0000
Kadana3 220 1.0000 220.0010 16.3400 203.0000 126.0000 240.0000 193.5300 0.0000
Ukai4 220 1.0000 220.0010 27.0700 150.0000 87.0000 300.0000 147.3800 0.0000
Soja5 220 0.9518 209.3860 -3.4500 123.0000 60.0000 0.0000
Karamsad6 220 0.8700 191.4010 8.4100 88.0000 52.0000 0.0000 0.0000 0.0000 0.0000
Asoj7 220 0.9066 199.4540 14.5200 80.0000 52.0000 0.0000
Godhra8 220 0.9537 209.8130 15.4600 256.0000 139.0000 0.0000
Mehsana9 220 0.9122 200.6750 -6.7700 177.0000 77.0000 0.0000
Jambuva10 220 0.8871 195.1650 13.2100 120.0000 64.0000 0.0000
Ranasan11 220 0.9324 205.1300 6.3800 134.0000 65.0000 0.0000
04 April 2016 NCERTE-2016 10
Power World Simulator Results with
compensation
Name NomkV PUVolt Volt(kV) Angle(Deg)LoadMW LoadMvarGenMW GenMvar SwitchedShuntsMvar
Gandhinagar1 220 1.0000 220.0000 0.0000 103.0000 58.0000 258.8200 348.3300
Wanakbori2 220 1.0000 220.0000 19.2600 196.0000 96.0000 875.0000 297.2400
Kadana3 220 1.0000 220.0000 15.8200 203.0000 126.0000 240.0000 193.5300
Ukai4 220 1.0000 220.0000 25.9700 150.0000 87.0000 300.0000 116.6300
Soja5 220 0.9518 209.3860 -3.4500 123.0000 60.0000
Karamsad6 220 0.9702 213.4540 7.3500 88.0000 52.0000 0.0000 0.0000 141.21
Asoj7 220 0.9406 206.9260 13.6800 80.0000 52.0000
Godhra8 220 0.9537 209.8120 14.9400 256.0000 139.0000
Mehsana9 220 0.9122 200.6750 -6.7700 177.0000 77.0000
Jambuva10 220 0.9353 205.7750 12.2400 120.0000 64.0000
Ranasan11 220 0.9574 210.6200 6.0700 134.0000 65.0000
04 April 2016 NCERTE-2016 11
Computation using MATLAB
• Weak bus
considered PV
bus injecting
reactive power
• In this case
Karamsad
• All generator
buses
considered
operating at
their limit
Enter the case
data
• Gauss Seidel
method
Run load flow
• Voltage profile
improvement
over Power
World
Simulator
results
Observing the
improved
voltage profile
04 April 2016 NCERTE-2016 12
MATLAB results
Bus
No.
Bus Name Bus
type
Nomina
l
Voltage
(kV)
Per Unit
Voltage
Voltage
(kV)
Angle
(Degree)
Real
Load
(MW)
Reactive
Load
(MVAR)
Real
Power
Generatio
n
(MW)
Reactive
Power
Generation
(MVAR)
Shunt
Capacitor
(MVAR)
1 Gandhinagar 1 232 1.05 231 0 103 58 0.00 0.00
2 Wanakbori 2 230 1.03 226.6 12.2805 196 96 875 656.00
3 Kadana 2 230 1.03 226.6 9.09780 203 126 240 180.00
4 Ukai 2 230 1.03 226.6 17.1885 150 87 300 225.00
5 Soja 3 220 0.9962 219.164 -3.0102 123 60
6 Karamsad 2 220 1.0000 216.678 1.0292 88 52 0 141.21 141.21
7 Asoj 3 220 0.9352 204.578 5.1492 80 52
8 Godhra 3 220 0.9888 217.536 8.2266 256 139
9 Mehsana 3 220 0.9560 210.320 -5.9675 177 77
10 Jambuva 3 220 0.9446 206.206 4.2883 120 64
11 Ranasan 3 220 1.0029 219.846 2.4452 134 65
04 April 2016 NCERTE-2016 13
Table of improvement
Bus No. and Name Voltage (p.u.)
without
compensation
Voltage (p.u.) with
compensation in
PWS
Voltage (p.u.) with
compensation in
MATLAB
1 Gandinagar 1.0000 1.0000 1.0500
2 Wanakbori 1.0000 1.0000 1.0300
3 Kadana 1.0000 1.0000 1.0300
4 Ukai 1.0000 1.0000 1.0300
5 Soja 0.9518 0.9518 0.9962
6 Karamsad 0.8700 0.9702 1.0000
7 Asoj 0.9066 0.9406 0.9352
8 Godhra 0.9537 0.9537 0.9888
9 Mehsana 0.9122 0.9122 0.9560
10 Jambuva 0.8871 0.9353 0.9446
11 Ranasan 0.9324 0.9574 1.0029
04 April 2016 NCERTE-2016 14
Another observation in simulation
• Slack bus is Gandhinagar instead of Wanakbori
so 4 buses other than slack and generator (i.e.
Asoj, Godhara, Jambuva, Ranasan) showing
positive angles as they are in between load
buses and generation buses.
04 April 2016 NCERTE-2016 15
Conclusion
• Gujarat island with its most heavily loaded buses
considered in April 2013 with maximum loads in the
season of summer.
• Weak bus Karamsad and Jambuva identified and
provided required compensation at Karamsad bus but
still slack bus operates at very poor power factor.
• Once the capacitor value is found out, the voltage profile
is further improved in MATLAB by considering all
generator buses (PV buses) operating at 0.8 power factor
which is minimum required limit. So that slack bus gets
little less burden of providing reactive power.
04 April 2016 NCERTE-2016 16
Future Work
• A self operating load dependent FACT device
can be realized in place of fixed capacitor at
weak bus.
04 April 2016 NCERTE-2016 17
I am thankful to…
• Mr. Mukund Upadhyaya (Ex. Chief Engineer,
GSECL)
• Asst. Prof. Neepa Shah (Project Guide in B.E. at
VGEC)
• My colleagues at B.E. level…
1. Mr. Keyur Dhagia (Hindalco)
2. Mr. Karan Gandhi (S.K. Power)
3. Mr. Arpit Kothari (Infosys)
4. Mr. Santosh Grampurohit (Infosys)
04 April 2016 NCERTE-2016 18
References
1. D.P. Kothari, I.J. Nagrath, ‘Modern Power System Analysis’, Vol. 16,
Tata McGraw Hill Education Private Limited, pp. 204-213, 2003.
2. John J. Grainger, William D. Stevenson, ‘Power System Analysis’,
McGraw Hill Publications, pp. 5-11 & pp. 335-342, 1994.
3. P. Srikanth, O. Rajendra, A. Yesuraj, M. Tilak, “Load Flow Analysis
of IEEE 14 Bus System Using MATLAB”, International Journal of
Engineering Research & Technology (IJERT), Vol. 2 Issue 5, May –
2013.
4. ‘Recovery procedure for western region’, Power System Operation
Corporation Ltd.(POSCO), pp. 22-37, December – 2013,
5. Dharamjit, D.K.Tanti, “Load Flow Analysis on IEEE 30 bus System”,
International Journal of Scientific and Research Publications,
Volume 2, Issue 11, November 2012
04 April 2016 NCERTE-2016 19
THANK YOU
04 April 2016 NCERTE-2016 20

Weitere ähnliche Inhalte

Was ist angesagt?

controlling the vibration of automobile suspension system using pid controller
controlling the vibration of automobile suspension system using pid controllercontrolling the vibration of automobile suspension system using pid controller
controlling the vibration of automobile suspension system using pid controllersiva kumar
 
Presentation on Solar Car
Presentation on Solar CarPresentation on Solar Car
Presentation on Solar CarAkshay Mistri
 
EMVT Reluctance Machines
EMVT Reluctance MachinesEMVT Reluctance Machines
EMVT Reluctance MachinesDutch Power
 
Traction Application Insight by Jaguar Land Rover
Traction Application Insight by Jaguar Land RoverTraction Application Insight by Jaguar Land Rover
Traction Application Insight by Jaguar Land RoverAutomotive IQ
 
Generation Of Power using Railway Track
Generation Of Power using Railway TrackGeneration Of Power using Railway Track
Generation Of Power using Railway TrackIRJET Journal
 
Electricity Generation using Treadmill Tricycle
Electricity Generation using Treadmill TricycleElectricity Generation using Treadmill Tricycle
Electricity Generation using Treadmill TricycleIRJET Journal
 
Electricity generation using speed breaker
Electricity generation using speed breakerElectricity generation using speed breaker
Electricity generation using speed breakerRaza Ishtiaq
 
Power generation through speed breaker
Power generation through speed breakerPower generation through speed breaker
Power generation through speed breakervaibhav patel
 
OZO brochure : Ebikes conversion kits, battery Lithium expert, Ebikes parts
OZO brochure : Ebikes conversion kits, battery Lithium expert, Ebikes partsOZO brochure : Ebikes conversion kits, battery Lithium expert, Ebikes parts
OZO brochure : Ebikes conversion kits, battery Lithium expert, Ebikes partsMagali Veltz
 
TRAIN WHEEL POWER GENERATION
TRAIN WHEEL POWER GENERATIONTRAIN WHEEL POWER GENERATION
TRAIN WHEEL POWER GENERATIONMd Aftab Saifi
 
eco friendly power generation through Speed breaker using water pressure
  eco friendly power generation through Speed breaker using water pressure  eco friendly power generation through Speed breaker using water pressure
eco friendly power generation through Speed breaker using water pressureSamir9064
 
P.generation from speed breaker
P.generation from speed breakerP.generation from speed breaker
P.generation from speed breakerMuhammad Chhajro
 
Magnetic components used in train pantograph to reduce arcing
Magnetic components used in train pantograph to reduce arcingMagnetic components used in train pantograph to reduce arcing
Magnetic components used in train pantograph to reduce arcingSaurabh Mishra
 
Power Generation from Speed Breakers
Power Generation from Speed BreakersPower Generation from Speed Breakers
Power Generation from Speed BreakersMahim Srivastava
 

Was ist angesagt? (18)

MasterThesis
MasterThesisMasterThesis
MasterThesis
 
controlling the vibration of automobile suspension system using pid controller
controlling the vibration of automobile suspension system using pid controllercontrolling the vibration of automobile suspension system using pid controller
controlling the vibration of automobile suspension system using pid controller
 
Presentation on Solar Car
Presentation on Solar CarPresentation on Solar Car
Presentation on Solar Car
 
EMVT Reluctance Machines
EMVT Reluctance MachinesEMVT Reluctance Machines
EMVT Reluctance Machines
 
Traction Application Insight by Jaguar Land Rover
Traction Application Insight by Jaguar Land RoverTraction Application Insight by Jaguar Land Rover
Traction Application Insight by Jaguar Land Rover
 
Suspension system
Suspension systemSuspension system
Suspension system
 
Generation Of Power using Railway Track
Generation Of Power using Railway TrackGeneration Of Power using Railway Track
Generation Of Power using Railway Track
 
Electricity Generation using Treadmill Tricycle
Electricity Generation using Treadmill TricycleElectricity Generation using Treadmill Tricycle
Electricity Generation using Treadmill Tricycle
 
Electricity generation using speed breaker
Electricity generation using speed breakerElectricity generation using speed breaker
Electricity generation using speed breaker
 
Power generation through speed breaker
Power generation through speed breakerPower generation through speed breaker
Power generation through speed breaker
 
OZO brochure : Ebikes conversion kits, battery Lithium expert, Ebikes parts
OZO brochure : Ebikes conversion kits, battery Lithium expert, Ebikes partsOZO brochure : Ebikes conversion kits, battery Lithium expert, Ebikes parts
OZO brochure : Ebikes conversion kits, battery Lithium expert, Ebikes parts
 
Ugsolar太阳能
Ugsolar太阳能Ugsolar太阳能
Ugsolar太阳能
 
TRAIN WHEEL POWER GENERATION
TRAIN WHEEL POWER GENERATIONTRAIN WHEEL POWER GENERATION
TRAIN WHEEL POWER GENERATION
 
eco friendly power generation through Speed breaker using water pressure
  eco friendly power generation through Speed breaker using water pressure  eco friendly power generation through Speed breaker using water pressure
eco friendly power generation through Speed breaker using water pressure
 
poer generation
poer generationpoer generation
poer generation
 
P.generation from speed breaker
P.generation from speed breakerP.generation from speed breaker
P.generation from speed breaker
 
Magnetic components used in train pantograph to reduce arcing
Magnetic components used in train pantograph to reduce arcingMagnetic components used in train pantograph to reduce arcing
Magnetic components used in train pantograph to reduce arcing
 
Power Generation from Speed Breakers
Power Generation from Speed BreakersPower Generation from Speed Breakers
Power Generation from Speed Breakers
 

Andere mochten auch

CMPSA IEEE PPT 150430707017
CMPSA IEEE PPT 150430707017CMPSA IEEE PPT 150430707017
CMPSA IEEE PPT 150430707017Utsav Yagnik
 
GSECL Electrical branch Training Report
GSECL Electrical branch Training ReportGSECL Electrical branch Training Report
GSECL Electrical branch Training ReportUtsav Yagnik
 
RS dc-dc converter 2004
RS dc-dc converter 2004RS dc-dc converter 2004
RS dc-dc converter 2004Utsav Yagnik
 
Solar Power Satellite System
Solar Power Satellite SystemSolar Power Satellite System
Solar Power Satellite SystemHarish Rajula
 
Smart grid paper presentation
Smart grid paper presentationSmart grid paper presentation
Smart grid paper presentationUtsav Yagnik
 
1-ф to 1-ф Cycloconverter ppt
1-ф to 1-ф Cycloconverter ppt1-ф to 1-ф Cycloconverter ppt
1-ф to 1-ф Cycloconverter pptUtsav Yagnik
 
Pid controller tuning using fuzzy logic
Pid controller tuning using fuzzy logicPid controller tuning using fuzzy logic
Pid controller tuning using fuzzy logicRoni Roshni
 

Andere mochten auch (13)

CMPSA IEEE PPT 150430707017
CMPSA IEEE PPT 150430707017CMPSA IEEE PPT 150430707017
CMPSA IEEE PPT 150430707017
 
IEEE APE
IEEE APEIEEE APE
IEEE APE
 
GSECL Electrical branch Training Report
GSECL Electrical branch Training ReportGSECL Electrical branch Training Report
GSECL Electrical branch Training Report
 
EMMA IEEE
EMMA IEEEEMMA IEEE
EMMA IEEE
 
RS dc-dc converter 2004
RS dc-dc converter 2004RS dc-dc converter 2004
RS dc-dc converter 2004
 
Solar Power Satellite System
Solar Power Satellite SystemSolar Power Satellite System
Solar Power Satellite System
 
Smart grid paper presentation
Smart grid paper presentationSmart grid paper presentation
Smart grid paper presentation
 
Smart grid
Smart gridSmart grid
Smart grid
 
AI IEEE
AI IEEEAI IEEE
AI IEEE
 
FACTS IEEE
FACTS IEEEFACTS IEEE
FACTS IEEE
 
1-ф to 1-ф Cycloconverter ppt
1-ф to 1-ф Cycloconverter ppt1-ф to 1-ф Cycloconverter ppt
1-ф to 1-ф Cycloconverter ppt
 
Ape thyristor
Ape thyristorApe thyristor
Ape thyristor
 
Pid controller tuning using fuzzy logic
Pid controller tuning using fuzzy logicPid controller tuning using fuzzy logic
Pid controller tuning using fuzzy logic
 

Ähnlich wie paper 149

ANALYSIS AND DESIGN OF MULTIPHASE INDUCTION MACHINE.pptx
ANALYSIS AND DESIGN OF MULTIPHASE INDUCTION MACHINE.pptxANALYSIS AND DESIGN OF MULTIPHASE INDUCTION MACHINE.pptx
ANALYSIS AND DESIGN OF MULTIPHASE INDUCTION MACHINE.pptxSomu Gupta
 
FYP Review 3 Presentation about EV c.pdf
FYP Review 3 Presentation about EV c.pdfFYP Review 3 Presentation about EV c.pdf
FYP Review 3 Presentation about EV c.pdfsauravdesignnedits
 
Power Generation by Multiple Road Humps
Power Generation by Multiple Road HumpsPower Generation by Multiple Road Humps
Power Generation by Multiple Road HumpsIRJET Journal
 
Masterarbeit_Verteidigung
Masterarbeit_VerteidigungMasterarbeit_Verteidigung
Masterarbeit_VerteidigungAmr Awad
 
Ministry electric power_myanmar_2_27_13
Ministry electric power_myanmar_2_27_13Ministry electric power_myanmar_2_27_13
Ministry electric power_myanmar_2_27_13Seokho Shin
 
Operational description of 400kv switchyard NTPC Ramagundam RSTPS
Operational description of 400kv switchyard NTPC Ramagundam RSTPSOperational description of 400kv switchyard NTPC Ramagundam RSTPS
Operational description of 400kv switchyard NTPC Ramagundam RSTPSPradeep Avanigadda
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Analysis for underground cable system, lakeside pokhara
Analysis for underground cable system, lakeside pokharaAnalysis for underground cable system, lakeside pokhara
Analysis for underground cable system, lakeside pokharaBishal Rimal
 
Proposal for a 2MW fspv system and e-transport
Proposal for a 2MW fspv system and e-transportProposal for a 2MW fspv system and e-transport
Proposal for a 2MW fspv system and e-transportAnkit Singh
 
Power generation by using railway track\\Final year project
Power generation by using railway track\\Final year projectPower generation by using railway track\\Final year project
Power generation by using railway track\\Final year projectVarun deep singh
 
Summer Training Report of WCR Kota(EE)
Summer Training Report of WCR Kota(EE)Summer Training Report of WCR Kota(EE)
Summer Training Report of WCR Kota(EE)Chirag Jain
 
Design of Stand-Alone Solar PV System
Design of Stand-Alone Solar PV SystemDesign of Stand-Alone Solar PV System
Design of Stand-Alone Solar PV Systemsangeetkhule
 
Solar car powered autonomous car
Solar car powered autonomous carSolar car powered autonomous car
Solar car powered autonomous carSas3 N
 
Analysis optimization and monitoring system
Analysis optimization and monitoring system Analysis optimization and monitoring system
Analysis optimization and monitoring system slmnsvn
 
ELECTRICITY GENERATION USING RAILWAY TRACK
ELECTRICITY GENERATION USING RAILWAY TRACKELECTRICITY GENERATION USING RAILWAY TRACK
ELECTRICITY GENERATION USING RAILWAY TRACKIRJET Journal
 
Powergrid Corporation of India Limited.
Powergrid Corporation of India Limited. Powergrid Corporation of India Limited.
Powergrid Corporation of India Limited. Sai Chaithanya Sharma
 

Ähnlich wie paper 149 (20)

ANALYSIS AND DESIGN OF MULTIPHASE INDUCTION MACHINE.pptx
ANALYSIS AND DESIGN OF MULTIPHASE INDUCTION MACHINE.pptxANALYSIS AND DESIGN OF MULTIPHASE INDUCTION MACHINE.pptx
ANALYSIS AND DESIGN OF MULTIPHASE INDUCTION MACHINE.pptx
 
FYP Review 3 Presentation about EV c.pdf
FYP Review 3 Presentation about EV c.pdfFYP Review 3 Presentation about EV c.pdf
FYP Review 3 Presentation about EV c.pdf
 
Power Generation by Multiple Road Humps
Power Generation by Multiple Road HumpsPower Generation by Multiple Road Humps
Power Generation by Multiple Road Humps
 
Masterarbeit_Verteidigung
Masterarbeit_VerteidigungMasterarbeit_Verteidigung
Masterarbeit_Verteidigung
 
Ministry electric power_myanmar_2_27_13
Ministry electric power_myanmar_2_27_13Ministry electric power_myanmar_2_27_13
Ministry electric power_myanmar_2_27_13
 
Operational description of 400kv switchyard NTPC Ramagundam RSTPS
Operational description of 400kv switchyard NTPC Ramagundam RSTPSOperational description of 400kv switchyard NTPC Ramagundam RSTPS
Operational description of 400kv switchyard NTPC Ramagundam RSTPS
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Analysis for underground cable system, lakeside pokhara
Analysis for underground cable system, lakeside pokharaAnalysis for underground cable system, lakeside pokhara
Analysis for underground cable system, lakeside pokhara
 
Proposal for a 2MW fspv system and e-transport
Proposal for a 2MW fspv system and e-transportProposal for a 2MW fspv system and e-transport
Proposal for a 2MW fspv system and e-transport
 
[IJET-V2I3P23] Authors: Dhanashree N Chaudhari, Pundlik N Patil
[IJET-V2I3P23] Authors: Dhanashree N Chaudhari, Pundlik N Patil[IJET-V2I3P23] Authors: Dhanashree N Chaudhari, Pundlik N Patil
[IJET-V2I3P23] Authors: Dhanashree N Chaudhari, Pundlik N Patil
 
Power generation by using railway track\\Final year project
Power generation by using railway track\\Final year projectPower generation by using railway track\\Final year project
Power generation by using railway track\\Final year project
 
Summer Training Report of WCR Kota(EE)
Summer Training Report of WCR Kota(EE)Summer Training Report of WCR Kota(EE)
Summer Training Report of WCR Kota(EE)
 
internship_report_manorama_kumari (1) (1).pdf
internship_report_manorama_kumari (1) (1).pdfinternship_report_manorama_kumari (1) (1).pdf
internship_report_manorama_kumari (1) (1).pdf
 
Design of Stand-Alone Solar PV System
Design of Stand-Alone Solar PV SystemDesign of Stand-Alone Solar PV System
Design of Stand-Alone Solar PV System
 
Solar car powered autonomous car
Solar car powered autonomous carSolar car powered autonomous car
Solar car powered autonomous car
 
Analysis optimization and monitoring system
Analysis optimization and monitoring system Analysis optimization and monitoring system
Analysis optimization and monitoring system
 
ELECTRICITY GENERATION USING RAILWAY TRACK
ELECTRICITY GENERATION USING RAILWAY TRACKELECTRICITY GENERATION USING RAILWAY TRACK
ELECTRICITY GENERATION USING RAILWAY TRACK
 
Octavius
OctaviusOctavius
Octavius
 
Powergrid Corporation of India Limited.
Powergrid Corporation of India Limited. Powergrid Corporation of India Limited.
Powergrid Corporation of India Limited.
 
Suspensioncontrollerdesignproject
SuspensioncontrollerdesignprojectSuspensioncontrollerdesignproject
Suspensioncontrollerdesignproject
 

Mehr von Utsav Yagnik

2022 SWAYAM NPTEL & A Student.pdf
2022 SWAYAM NPTEL &  A Student.pdf2022 SWAYAM NPTEL &  A Student.pdf
2022 SWAYAM NPTEL & A Student.pdfUtsav Yagnik
 
2022 SWAYAM NPTEL & A Faculty Member.pdf
2022 SWAYAM NPTEL &  A Faculty Member.pdf2022 SWAYAM NPTEL &  A Faculty Member.pdf
2022 SWAYAM NPTEL & A Faculty Member.pdfUtsav Yagnik
 
2022 FEBRUARY LAST MONTH IN ELECTRICAL ENGINEERING
2022 FEBRUARY LAST MONTH IN ELECTRICAL ENGINEERING2022 FEBRUARY LAST MONTH IN ELECTRICAL ENGINEERING
2022 FEBRUARY LAST MONTH IN ELECTRICAL ENGINEERINGUtsav Yagnik
 
2020 SWAYAM NPTEL & a student
2020 SWAYAM NPTEL & a student2020 SWAYAM NPTEL & a student
2020 SWAYAM NPTEL & a studentUtsav Yagnik
 
SWAYAM NPTEL & A STUDENT 2019-20
SWAYAM NPTEL & A STUDENT 2019-20SWAYAM NPTEL & A STUDENT 2019-20
SWAYAM NPTEL & A STUDENT 2019-20Utsav Yagnik
 
Gauss's law to differential volume
Gauss's law to differential volumeGauss's law to differential volume
Gauss's law to differential volumeUtsav Yagnik
 
I-V characteristics of SCR final
I-V characteristics of SCR finalI-V characteristics of SCR final
I-V characteristics of SCR finalUtsav Yagnik
 

Mehr von Utsav Yagnik (7)

2022 SWAYAM NPTEL & A Student.pdf
2022 SWAYAM NPTEL &  A Student.pdf2022 SWAYAM NPTEL &  A Student.pdf
2022 SWAYAM NPTEL & A Student.pdf
 
2022 SWAYAM NPTEL & A Faculty Member.pdf
2022 SWAYAM NPTEL &  A Faculty Member.pdf2022 SWAYAM NPTEL &  A Faculty Member.pdf
2022 SWAYAM NPTEL & A Faculty Member.pdf
 
2022 FEBRUARY LAST MONTH IN ELECTRICAL ENGINEERING
2022 FEBRUARY LAST MONTH IN ELECTRICAL ENGINEERING2022 FEBRUARY LAST MONTH IN ELECTRICAL ENGINEERING
2022 FEBRUARY LAST MONTH IN ELECTRICAL ENGINEERING
 
2020 SWAYAM NPTEL & a student
2020 SWAYAM NPTEL & a student2020 SWAYAM NPTEL & a student
2020 SWAYAM NPTEL & a student
 
SWAYAM NPTEL & A STUDENT 2019-20
SWAYAM NPTEL & A STUDENT 2019-20SWAYAM NPTEL & A STUDENT 2019-20
SWAYAM NPTEL & A STUDENT 2019-20
 
Gauss's law to differential volume
Gauss's law to differential volumeGauss's law to differential volume
Gauss's law to differential volume
 
I-V characteristics of SCR final
I-V characteristics of SCR finalI-V characteristics of SCR final
I-V characteristics of SCR final
 

paper 149

  • 1. STABILITY ENHANCEMENT OF GUJARAT GRID THROUGH SHUNT COMPENSATION By 1. Yagnik Utsav P. (M.E. Scholar, SSEC) 2. Solanki Mehul D. (Asst. Prof., SSEC) Electrical Engineering Paper ID - 149 04 April 2016 NCERTE-2016 1
  • 2. Outline 04 April 2016 NCERTE-2016 2 • Abstract (4) • Network Considered (5) • Network Parameters (6) • Why this network? (7) • Other considerations (8) • Computation using Power World Simulator (9) • Power World Simulator results without compensation (10)
  • 3. Outline • Power World Simulator results with compensation (11) • Computation using MATLAB (12) • MATAB results (13) • Table of improvement (14) • Another observation in simulation (15) • Conclusion (16) • Future work (17) • I am thankful to… (18) • References (19) 04 April 2016 NCERTE-2016 3
  • 4. Abstract • Blackout is a major concern to the power system administrator, as it can lead to the collapse of whole system or grid and this situation is arising out of maintaining the supply to the buses tackling bulk of power and is considered to be weaker and left uncompensated. In this paper, Gujarat power system network of 220kV has been considered and its power flow simulation has been carried out to identify the weak bus in case of given loading. Weak bus has been compensated with shunt compensation to keep the voltage of that particular bus regulated within a tight band and not allowed to collapsing below specified limits. 04 April 2016 NCERTE-2016 4
  • 5. Network considered 04 April 2016 NCERTE-2016 5
  • 6. Network parameters • Total 11, 220kV buses showing maximum loading conditions during April-2013. • 1 slack bus(Gandhinagar) • 3 Generator buses(Wanakbori, Kadana, Ukai) • 7 Load buses(Soja, Karamsad, Asoj, Godhara, Mehsana, Jambuva, Ranasan) • Transmission lines made up of Zebra Conductors having r = 0.08 Ω/km and x = 0.402 Ω/km 04 April 2016 NCERTE-2016 6
  • 7. Why this network? • The considered buses in the network are to be energized first in case of blackout, so if these buses can maintain their voltage limits, then it will be easier to maintain the network alive in case of sudden load changes and an island of Gujarat grid system will survive. • But if we can’t do the same, these buses will also go into the blackout. 04 April 2016 NCERTE-2016 7
  • 8. Other Considerations • Here considering maximum loadings in the April-2013, the load flow study has been run to identify the weakest buses in the network i.e. Karamsad and Jambuva. • Once identified, proper compensation has been provided on Karamsad bus to compensate and to bring its voltage limits back in to tolerable limits. 04 April 2016 NCERTE-2016 8
  • 10. Power World Simulator Results without compensation Name NomkV PUVolt Volt(kV) Angle(Deg) LoadMW LoadMvar GenMW GenMvar SwitchedShuntsMvar ActGShuntMW Gandhinagar1 220 1.0000 220.0000 0.0000 103.0000 58.0000 263.1100 391.2200 0.0000 Wanakbori2 220 1.0000 220.0010 19.7700 196.0000 96.0000 875.0000 386.4000 0.0000 Kadana3 220 1.0000 220.0010 16.3400 203.0000 126.0000 240.0000 193.5300 0.0000 Ukai4 220 1.0000 220.0010 27.0700 150.0000 87.0000 300.0000 147.3800 0.0000 Soja5 220 0.9518 209.3860 -3.4500 123.0000 60.0000 0.0000 Karamsad6 220 0.8700 191.4010 8.4100 88.0000 52.0000 0.0000 0.0000 0.0000 0.0000 Asoj7 220 0.9066 199.4540 14.5200 80.0000 52.0000 0.0000 Godhra8 220 0.9537 209.8130 15.4600 256.0000 139.0000 0.0000 Mehsana9 220 0.9122 200.6750 -6.7700 177.0000 77.0000 0.0000 Jambuva10 220 0.8871 195.1650 13.2100 120.0000 64.0000 0.0000 Ranasan11 220 0.9324 205.1300 6.3800 134.0000 65.0000 0.0000 04 April 2016 NCERTE-2016 10
  • 11. Power World Simulator Results with compensation Name NomkV PUVolt Volt(kV) Angle(Deg)LoadMW LoadMvarGenMW GenMvar SwitchedShuntsMvar Gandhinagar1 220 1.0000 220.0000 0.0000 103.0000 58.0000 258.8200 348.3300 Wanakbori2 220 1.0000 220.0000 19.2600 196.0000 96.0000 875.0000 297.2400 Kadana3 220 1.0000 220.0000 15.8200 203.0000 126.0000 240.0000 193.5300 Ukai4 220 1.0000 220.0000 25.9700 150.0000 87.0000 300.0000 116.6300 Soja5 220 0.9518 209.3860 -3.4500 123.0000 60.0000 Karamsad6 220 0.9702 213.4540 7.3500 88.0000 52.0000 0.0000 0.0000 141.21 Asoj7 220 0.9406 206.9260 13.6800 80.0000 52.0000 Godhra8 220 0.9537 209.8120 14.9400 256.0000 139.0000 Mehsana9 220 0.9122 200.6750 -6.7700 177.0000 77.0000 Jambuva10 220 0.9353 205.7750 12.2400 120.0000 64.0000 Ranasan11 220 0.9574 210.6200 6.0700 134.0000 65.0000 04 April 2016 NCERTE-2016 11
  • 12. Computation using MATLAB • Weak bus considered PV bus injecting reactive power • In this case Karamsad • All generator buses considered operating at their limit Enter the case data • Gauss Seidel method Run load flow • Voltage profile improvement over Power World Simulator results Observing the improved voltage profile 04 April 2016 NCERTE-2016 12
  • 13. MATLAB results Bus No. Bus Name Bus type Nomina l Voltage (kV) Per Unit Voltage Voltage (kV) Angle (Degree) Real Load (MW) Reactive Load (MVAR) Real Power Generatio n (MW) Reactive Power Generation (MVAR) Shunt Capacitor (MVAR) 1 Gandhinagar 1 232 1.05 231 0 103 58 0.00 0.00 2 Wanakbori 2 230 1.03 226.6 12.2805 196 96 875 656.00 3 Kadana 2 230 1.03 226.6 9.09780 203 126 240 180.00 4 Ukai 2 230 1.03 226.6 17.1885 150 87 300 225.00 5 Soja 3 220 0.9962 219.164 -3.0102 123 60 6 Karamsad 2 220 1.0000 216.678 1.0292 88 52 0 141.21 141.21 7 Asoj 3 220 0.9352 204.578 5.1492 80 52 8 Godhra 3 220 0.9888 217.536 8.2266 256 139 9 Mehsana 3 220 0.9560 210.320 -5.9675 177 77 10 Jambuva 3 220 0.9446 206.206 4.2883 120 64 11 Ranasan 3 220 1.0029 219.846 2.4452 134 65 04 April 2016 NCERTE-2016 13
  • 14. Table of improvement Bus No. and Name Voltage (p.u.) without compensation Voltage (p.u.) with compensation in PWS Voltage (p.u.) with compensation in MATLAB 1 Gandinagar 1.0000 1.0000 1.0500 2 Wanakbori 1.0000 1.0000 1.0300 3 Kadana 1.0000 1.0000 1.0300 4 Ukai 1.0000 1.0000 1.0300 5 Soja 0.9518 0.9518 0.9962 6 Karamsad 0.8700 0.9702 1.0000 7 Asoj 0.9066 0.9406 0.9352 8 Godhra 0.9537 0.9537 0.9888 9 Mehsana 0.9122 0.9122 0.9560 10 Jambuva 0.8871 0.9353 0.9446 11 Ranasan 0.9324 0.9574 1.0029 04 April 2016 NCERTE-2016 14
  • 15. Another observation in simulation • Slack bus is Gandhinagar instead of Wanakbori so 4 buses other than slack and generator (i.e. Asoj, Godhara, Jambuva, Ranasan) showing positive angles as they are in between load buses and generation buses. 04 April 2016 NCERTE-2016 15
  • 16. Conclusion • Gujarat island with its most heavily loaded buses considered in April 2013 with maximum loads in the season of summer. • Weak bus Karamsad and Jambuva identified and provided required compensation at Karamsad bus but still slack bus operates at very poor power factor. • Once the capacitor value is found out, the voltage profile is further improved in MATLAB by considering all generator buses (PV buses) operating at 0.8 power factor which is minimum required limit. So that slack bus gets little less burden of providing reactive power. 04 April 2016 NCERTE-2016 16
  • 17. Future Work • A self operating load dependent FACT device can be realized in place of fixed capacitor at weak bus. 04 April 2016 NCERTE-2016 17
  • 18. I am thankful to… • Mr. Mukund Upadhyaya (Ex. Chief Engineer, GSECL) • Asst. Prof. Neepa Shah (Project Guide in B.E. at VGEC) • My colleagues at B.E. level… 1. Mr. Keyur Dhagia (Hindalco) 2. Mr. Karan Gandhi (S.K. Power) 3. Mr. Arpit Kothari (Infosys) 4. Mr. Santosh Grampurohit (Infosys) 04 April 2016 NCERTE-2016 18
  • 19. References 1. D.P. Kothari, I.J. Nagrath, ‘Modern Power System Analysis’, Vol. 16, Tata McGraw Hill Education Private Limited, pp. 204-213, 2003. 2. John J. Grainger, William D. Stevenson, ‘Power System Analysis’, McGraw Hill Publications, pp. 5-11 & pp. 335-342, 1994. 3. P. Srikanth, O. Rajendra, A. Yesuraj, M. Tilak, “Load Flow Analysis of IEEE 14 Bus System Using MATLAB”, International Journal of Engineering Research & Technology (IJERT), Vol. 2 Issue 5, May – 2013. 4. ‘Recovery procedure for western region’, Power System Operation Corporation Ltd.(POSCO), pp. 22-37, December – 2013, 5. Dharamjit, D.K.Tanti, “Load Flow Analysis on IEEE 30 bus System”, International Journal of Scientific and Research Publications, Volume 2, Issue 11, November 2012 04 April 2016 NCERTE-2016 19
  • 20. THANK YOU 04 April 2016 NCERTE-2016 20