SlideShare ist ein Scribd-Unternehmen logo
1 von 5
Downloaden Sie, um offline zu lesen
http://www.uneeducationpourdemain.org	
  	
  
	
  
Page 1 sur 5	
  
Humanisation de l'éducation mathématique
C. J. Breen
Si l’on essaie d’examiner de plus près les activités mathématiques pour essayer d’explorer
leurs possibilités, je crois que nous devons partir des paroles et des idées d’éducateurs en
math tels que David Kent, Caleb Gattegno et David Wheeler plutôt que de nos opinions
préconçues. Par exemple, quelles sont nos opinions sur les possibilités mathématiques des
enfants ?
Sommes-nous d’accord avec Gattegno quand il écrit: “Les enfants restent spontanément avec
les problèmes. Ils y restent tout le temps nécessaire. Ils considèrent naturellement
l’abstraction (le fait d’accentuer et d’ignorer simultanément) comme un droit de naissance. Ils
montrent qu’ils connaissent de nombreux concepts mais, en plus, qu’ils savent les produire
dans leur conscience. Et plus encore, ils vivent au contact de leurs pouvoirs de transformation
et de leur dynamique mentale”. (Gattegno, 1981)
Je crois que nous devons prendre le temps de regarder les jeunes enfants quand ils apprennent
à trouver une logique dans le monde qui est à redécouvrir, et d’apprécier les pouvoirs qui leur
sont propres. Si nous sommes touchés par certaines des questions posées par Gattegno dans
l’article ci-dessus, nous commençons peut-être à partager avec Wheeler “la puissante
conviction rationnelle que les enfants disposent des fonctionnements nécessaires à la
mathématisation”. (Wheeler, 1975)
Gattegno est convaincu qu’il y a des leçons qu’on peut tirer de telles observations: “Il existe
une méthode d’éducation pour le futur. Si nous savons comment reconnaître ce qui nous est
donné qui est déjà en nous et, avec ceci, rencontrer ce qui existe mais qui ne fait pas encore
partie de nous... Il s’est trouvé que chacun de nous, dans l’enfance, a fait précisément ceci.
Pendant un moment nous n’avons ni causé ni parlé, puis, au bout d’un moment, nous avons
fait les deux. Cela veut dire : nous avons rencontré ce qui était et nous nous sommes arrangés
pour le faire nôtre.” (Gattegno, 1970)
Il est important de démarrer avec la foi dans les pouvoirs des enfants et leur capacité de
mathématiser, avant d’aborder la question des activités mathématiques centrées sur l’élève
parce que, si nous ne reconnaissons pas ces pouvoirs, nous ne pouvons jamais être en mesure
de fournir les tâches adéquates.
Wheeler (1975), nous fournit un point de vue supplémentaire des façons dont nous avons
permis que les activités mathématiques deviennent contraintes: ”Nous devons réfléchir à la
façon d’éviter le danger que l’activité mathématique ne devienne une étiquette pour quelque
chose de trop diffus et général, une façon d’étudier dans laquelle presque n’importe quoi est
accepté. Cela pourrait être un autre pas... que de substituer à l’encouragement de l’activité
mathématique une éducation qui se concentre sur la mathématisation. Le changement
d’éclairage peut nous entraîner encore plus loin d’une dépendance exclusive des critères
externes de qualité tirés des mathématiques du passé.”
“En dépit du fait que le but de l’activité mathématique ait été étudié pour donner plus
d’importance au processus qu’au produit, nous avons eu tendance à nous rassurer que ce que
nous encouragions était une véritable activité mathématique en nous assurant que le produit
faisait partie des mathématiques qu’on pouvait reconnaître comme familières. Ainsi, en
quelque sorte, la nature du produit continue à dominer nos jugements.”
Je suis certain que c’est là le dilemme essentiel que rencontre quiconque essaie d’installer une
http://www.uneeducationpourdemain.org	
  	
  
	
  
Page 2 sur 5	
  
activité mathématique centrée sur l’élève dans sa classe. Comment puis-je justifier le temps
passé ? Le travail qu’ils font est-il au programme ? Travaillent-ils assez silencieusement ?
N’est-ce qu’une leçon amusante ? Est-ce que je crois vraiment que cette activité est profitable
à leur apprentissage ?
Si toute cette activité ne sert qu’à rendre les leçons plus amusantes, nous pouvons apprendre
quelque chose des prises de conscience de John Trivett : “Je commençais à voir ce que j’avais
fait pendant toutes les années passées : donner de la séduction aux mathématiques, les
obscurcir... pour les rendre attractives et agréables pour les élèves. J’avais enjolivé le sujet et
son étude d’une façon qui impliquait subtilement que les véritables mathématiques sont dures
et ennuyeuses et hors d’atteinte pour la majorité des filles et des garçons et qu’en
conséquence, le mieux que nous, enseignants, puissions faire, est d’adoucir l‘apparence
extérieure, donner des récompenses diverses et nous laisser aller à les amuser pour adoucir la
pilule amère.” (Trivett 1981)
Ces commentaires mettent en question tout le rôle des professeurs de mathématiques pendant
les activités centrées sur l’élève. La réponse clef à ce problème se trouve peut-être dans une
foi authentique dans les idées suivantes exprimées au cours du siècle dernier.
“Que si le vrai succès est d’accompagner l’effort d’amener un homme à une place définie, on
doit d’abord prendre la peine de le trouver là où il se tient et de commencer à cet endroit…Car
être un professeur ne signifie pas simplement d’affirmer que telle chose est ainsi ou de faire
un cours magistral, etc. ... Non. Etre un professeur, au bon sens du terme, c’est être un
apprenti: mettez-vous à sa place pour pouvoir comprendre ce qu’il comprend et la façon dont
il le comprend... ” (Kierkegaard, 1854)
Je maintiens que la seule façon dont nous puissions tenter de satisfaire à ce que je crois être
les exigences essentielles de l’enseignement, c’est de nous retirer du centre de la scène. Pour
le faire de façon réaliste, il nous faut concevoir un matériel qui occupe les enfants et ceci
donne aux activités mathématiques une attraction accrue.
David Wheeler décrit sa vision du rôle du professeur comme suit :
“...le professeur doit retirer autant de lui-même qu’il peut dans la situation d’enseignement...
Il doit essayer, par tous les moyens, de fixer l’attention des enfants sur le problème et cela
veut dire qu’il doit s’effacer de leur attention...”
“Si nous observons le professeur à l’ouvrage nous voyons que :
▪ Il crée la situation en donnant l’information essentielle mais, en dehors de ça, il ne dit rien
aux élèves.
▪ Il obtient des élèves autant d’information qu’il peut, en observant, en posant des questions
et en demandant des actions spécifiques.
▪ Il travaille sans attendre avec ce feedback.
▪ Sauf en de rares occasions, il n’indique pas si une réponse est bonne ou non bien qu’il
demande souvent aux élèves ce qu’il en est.
▪ Il accepte les erreurs comme un feedback important qui lui en dit plus que des réponses
correctes et, en ramenant l’attention des enfants vers le problème, il les encourage à
utiliser ce qu’ils savent pour se corriger eux-mêmes.” (Wheeler, 1970)
Le plus grand problème qui subsiste si nous reconnaissons la valeur de ce modèle
d'enseignement, est de “créer la situation”. Il est certain que nous ne nous sentons pas libres
de ne tenir aucun compte du programme et de nous satisfaire (sans parler des inspecteurs !)
que c’est sans importance si le point final de l’activité n’est pas d’apparence mathématique.
Quel genre d’activité pouvons-nous proposer qui nous permettra de satisfaire ces exigences
http://www.uneeducationpourdemain.org	
  	
  
	
  
Page 3 sur 5	
  
quant à notre rôle ? Je crois qu’il y a au moins trois niveaux différents auxquels nous pouvons
choisir de travailler et, pour chacun d’eux, il y a des lignes directrices qui peuvent nous aider.
a) Recherches
Lingard (1980), présente un compte rendu de l’emploi des recherches mathématiques en
classe. Une recherche se caractérise par la présentation d’une situation dont la question est
posée comme une invitation sans limite à la recherche. Ceci laisse à l’élève la possibilité de
choisir l’aspect du problème qu’il trouve intéressant, d’identifier et de définir ses paramètres
et ses règles et de décider quand la tâche est accomplie.
Exemple : Tirez 4 lignes droites sur une feuille de papier de façon à obtenir le plus grand
nombre d’intersections possible. Combien d’espaces intérieurs obtenez-vous ? Et combien
d’extérieurs ? Cherchez avec d’autres nombres de droites.
L’avantage de ce type d’activité, est que les problèmes sont intéressants et donnent à
l’enseignant l’occasion d’expérimenter un rôle différent : celui qui écoute. L’inconvénient
évident est que les sujets employés ne sont généralement pas au programme et, de toute façon,
si l’enseignant a abandonné sa position d’autorité, il ne peut plus garantir ni la route suivie, ni
la destination.
Néanmoins, mes expériences en utilisant les livres ATM cités ci-dessous, comme ressources
pour une introduction aux leçons centrées sur les élèves, ont été, pour eux comme pour moi
très positives et je recommande fortement leur emploi à toute personne qui envisage
sérieusement cette approche.
b) Avoir des activités, en parler et en prendre note
“The Open University” a préparé un excellent cours intitulé : “Developing Mathematical
Thinking”. Dans un recueil (Floyd 1981), et une série de 5 livres de sujets (qui utilisent un
accompagnement sonore et des accessoires vidéo) ils développent l’idée de concevoir des
activités qui permettent aux élèves de rester longtemps avec elles en les obligeant à
s’impliquer, puis à en parler entre eux et, finalement, à essayer de noter ce qu’ils ont fait. Le
petit livre du cinquième sujet sur les fractions est très utile. Il entraîne l’élève dans le
processus de concevoir et de perfectionner un ensemble d’activités adéquates en utilisant le
matériel de documentation disponible comme point de départ. Ils identifient les idées qui
promettent, les discutent et les perfectionnent jusqu’à ce que le présentateur estime que le
travail est correct.
Par exemple : pour jouer au jeu de “Shade In”, il vous faut chacun 4 feuilles de brouillon.
Vous devez plier chaque feuille en deux, puis encore en deux. Puis pliez les feuilles encore
deux fois. Quand vous dépliez les feuilles, vous devez trouver que les lignes de pliage
délimitent seize parties égales. Chaque groupe devra avoir un dé marqué : un seizième, un
huitième, un quart, deux huitièmes, trois seizièmes et un demi. Vous lancerez le dé chacun à
votre tour. La face du dé vous dit quelle fraction noircir sur une feuille de papier. Petit à petit,
la première feuille va se remplir et il vous faudra passer à une nouvelle feuille. Le premier à
noircir toutes ses 4 feuilles est le vainqueur du premier tour. En retournant les 4 feuilles, vous
pouvez jouer un second tour.
MAIS personne n’a le droit de noircir une partie de sa feuille sans avoir dit à tous les autres
membres du groupe quelle surface ils vont remplir et pourquoi. C’est pour cela que le jeu
s’appelle: “What-and-why Shade-in game”.
Des enseignants en formation ont trouvé que cette approche pour concevoir un matériel de
documentation approprié au travail mathématique a été très utile et instructive.
http://www.uneeducationpourdemain.org	
  	
  
	
  
Page 4 sur 5	
  
c) Structures plus profondes
Alors que les deux paragraphes précédents permettent de commencer dans la recherche vers
un travail mathématique centré sur l’élève, je ne serai pas satisfait tant que je n’aurai pas
essayé d’intégrer le travail aux notions cruciales qui se trouvent dans le programme. La tâche
devient, dès lors, très difficile.
Pour moi, les prises de conscience essentielles que je dois mettre en évidence en essayant de
pénétrer la structure profonde du sujet sont :
▪ Quelles sont les notions clefs mises en cause par le sujet ?
▪ Quelles prises de conscience sont requises pour l’accès au sujet ?
▪ Quels points de départ peuvent aider l’élève ?
Gattegno (1982), discute le dilemme de la conception des activités. “Comment puis-je
présenter ce défi de façon que :
a. je m’assure que chacun peut entamer le travail,
b. que chacun le trouve engageant et gratifiant et,
c. qu’il soit facilement étendu à d’autres défis ?
Wheeler (1975) l’exprime de façon quelque peu différente :
“Nous devons accepter la responsabilité de les mettre face à des défis significatifs”.
a. ni trop hors de leur portée,
b. ni trop faciles au point de paraître sans importance,
c. ni trop mécaniques au point d’abrutir,
d. mais certainement propres à stimuler”.
“Ceci semble très décourageant et abstrait. Qu’est-ce que cela signifie lorsque nous portons
notre attention sur le programme, par exemple l’enseignement de la géométrie ? Peut-être
devrions-nous poser des questions du genre :
“Qu’est-ce que les enfants savent déjà avant que nous essayions de leur enseigner la
géométrie et que nous pourrions utiliser ? Quels sont les pouvoirs et les fonctionnements
nécessaires que les enfants apportent avec eux ?
“Etant donné que les enfants ont déjà des expériences pertinentes et les capacités de travailler
sur elles, quelles structurations particulières de leur expérience conduiront à la géométrie ?”
(Wheeler, 1975)
Le passage de ces questions à des instructions soigneusement formulées pour un travail
mathématique qui force chaque élève à se retrouver aux prises avec la notion essentielle sera,
sans aucun doute, lent et pénible. Pour faire un quelconque progrès, il nous faudra devenir des
élèves et reconnaître notre ignorance.
Je crois que c’est là le stade final dans la recherche vers une activité mathématique
authentiquement centrée sur les élèves. Peut-être ne serons-nous jamais capables de nous
mesurer au défi mais, au moins, en essayant, nous nous éloignons des pseudo-activités qui ne
consistent en rien d’autre que dorer la pilule.
Références
ATM. (1980) Points of Departure 1. Derby: ATM ATM. (1982) Points of Departure
http://www.uneeducationpourdemain.org	
  	
  
	
  
Page 5 sur 5	
  
2. Derby: ATM Floyd, A. (ed) (1981) Developing Mathematical Thinking.
London: Addison-Wesley Gattegno, C. (1970) What We Owe Children. London: Routledge
and Kegan Paul __________ (1981) “Children and Mathematics: A New Appraisal.”
Mathematical Thinking, 94, 5-7. __________ (1982) “Thirty Years Later.” Mathematical
Thinking, 100, 42-45. Kent, D. (1978) “Linda’s Story.” Mathematical Thinking, 83, 13-15
Kierkegaard, S. (1854) The Journals. Oxford: Oxford University Press Lingard, D. (1980)
Mathematical Investigations in the Classroom, Derby: ATM Trivett, D. (1981) “The Rise
and Fall of the Coloured Rods.” Mathematical Teaching, 96, 37-41 Wheeler, D. (1970) “The
Role of the Teacher.” Mathematical Thinking, 50, 23-29 __________ (1975) “Humanistic
Mathematical Education. Mathematical Thinking, 71, 4-9
© C. J. Breen Education Department, University of Capetown Capetown, South Africa [A
slightly different version of this paper appeared previously in the Proceedings of the
Mathematical Association of South Africa, 8th National Congress]
La Science de l'Education en Questions - N° 12 - février 1999
Humanisation de l'éducation mathématique de C. J. Breen est mis à disposition selon les
termes de la licence Creative Commons Paternité - Pas de Modification 3.0 non transposé

Weitere ähnliche Inhalte

Was ist angesagt?

Was ist angesagt? (10)

Apprendre et enseigner à l’ère numérique : Savoirs, Méthodes actives & Hybrid...
Apprendre et enseigner à l’ère numérique : Savoirs, Méthodes actives & Hybrid...Apprendre et enseigner à l’ère numérique : Savoirs, Méthodes actives & Hybrid...
Apprendre et enseigner à l’ère numérique : Savoirs, Méthodes actives & Hybrid...
 
La classe inversée, une méthode de formation parmi d’autres ? Les classes inv...
La classe inversée, une méthode de formation parmi d’autres ? Les classes inv...La classe inversée, une méthode de formation parmi d’autres ? Les classes inv...
La classe inversée, une méthode de formation parmi d’autres ? Les classes inv...
 
Se former : les classes inversées, une opportunité pédagogique pour le retour...
Se former : les classes inversées, une opportunité pédagogique pour le retour...Se former : les classes inversées, une opportunité pédagogique pour le retour...
Se former : les classes inversées, une opportunité pédagogique pour le retour...
 
L’hybridation, une « simple » question de présence et de distance ou alors un...
L’hybridation, une « simple » question de présence et de distance ou alors un...L’hybridation, une « simple » question de présence et de distance ou alors un...
L’hybridation, une « simple » question de présence et de distance ou alors un...
 
« Oser son projet » ce que disent les jeunes!
« Oser son projet » ce que disent les jeunes!« Oser son projet » ce que disent les jeunes!
« Oser son projet » ce que disent les jeunes!
 
Quand le coronavirus nous oblige à inverser - encore une fois - la classe inv...
Quand le coronavirus nous oblige à inverser - encore une fois - la classe inv...Quand le coronavirus nous oblige à inverser - encore une fois - la classe inv...
Quand le coronavirus nous oblige à inverser - encore une fois - la classe inv...
 
Enseignement hybride, Enseignement à distance : Explorons LEURS modalités
Enseignement hybride, Enseignement à distance : Explorons LEURS modalitésEnseignement hybride, Enseignement à distance : Explorons LEURS modalités
Enseignement hybride, Enseignement à distance : Explorons LEURS modalités
 
Enseignements à tirer des pratiques et des recherches sur les classes invers...
Enseignements à tirer  des pratiques et des recherches sur les classes invers...Enseignements à tirer  des pratiques et des recherches sur les classes invers...
Enseignements à tirer des pratiques et des recherches sur les classes invers...
 
Concevoir, analyser, évaluer ... des dispositifs "innovants" pour favoriser l...
Concevoir, analyser, évaluer ... des dispositifs "innovants" pour favoriser l...Concevoir, analyser, évaluer ... des dispositifs "innovants" pour favoriser l...
Concevoir, analyser, évaluer ... des dispositifs "innovants" pour favoriser l...
 
l'animation pédagogique
l'animation pédagogiquel'animation pédagogique
l'animation pédagogique
 

Andere mochten auch

D’une pratique de stage vers une pratique professionnelle.
D’une pratique de stage vers une pratique professionnelle.D’une pratique de stage vers une pratique professionnelle.
D’une pratique de stage vers une pratique professionnelle.
Réseau Pro Santé
 
Ft m1,2y3 aportes tutoria convivencia
Ft m1,2y3 aportes tutoria convivenciaFt m1,2y3 aportes tutoria convivencia
Ft m1,2y3 aportes tutoria convivencia
Ariel030405
 
Juego de informática
Juego de informáticaJuego de informática
Juego de informática
shanned
 
Catalogues produits 03: électroniques de pesage - transmetteurs de poids & in...
Catalogues produits 03: électroniques de pesage - transmetteurs de poids & in...Catalogues produits 03: électroniques de pesage - transmetteurs de poids & in...
Catalogues produits 03: électroniques de pesage - transmetteurs de poids & in...
LAUMAS
 
Les systèmes de santé en europe dans le contexte de crise financière.
Les systèmes de santé en europe dans le contexte de crise financière.Les systèmes de santé en europe dans le contexte de crise financière.
Les systèmes de santé en europe dans le contexte de crise financière.
Réseau Pro Santé
 
Dossier Thomas Benharrous
Dossier Thomas BenharrousDossier Thomas Benharrous
Dossier Thomas Benharrous
le_SLIP
 

Andere mochten auch (20)

D’une pratique de stage vers une pratique professionnelle.
D’une pratique de stage vers une pratique professionnelle.D’une pratique de stage vers une pratique professionnelle.
D’une pratique de stage vers une pratique professionnelle.
 
La communication en bibliothèque uiversitaire
La communication en bibliothèque uiversitaireLa communication en bibliothèque uiversitaire
La communication en bibliothèque uiversitaire
 
Ft m1,2y3 aportes tutoria convivencia
Ft m1,2y3 aportes tutoria convivenciaFt m1,2y3 aportes tutoria convivencia
Ft m1,2y3 aportes tutoria convivencia
 
Tocou me
Tocou meTocou me
Tocou me
 
Trabajo de fisica (victor cardona) parcial 2
Trabajo de fisica (victor cardona) parcial 2Trabajo de fisica (victor cardona) parcial 2
Trabajo de fisica (victor cardona) parcial 2
 
Monnet: qualité et production française:
Monnet: qualité et production française: Monnet: qualité et production française:
Monnet: qualité et production française:
 
Livre Mémoire JCE Lyon : 60 ans d'actions innovantes pour Lyon
Livre Mémoire JCE Lyon : 60 ans d'actions innovantes pour LyonLivre Mémoire JCE Lyon : 60 ans d'actions innovantes pour Lyon
Livre Mémoire JCE Lyon : 60 ans d'actions innovantes pour Lyon
 
desencadenadores
desencadenadoresdesencadenadores
desencadenadores
 
Faim amour apocalypse... Pierre ST Vincent
Faim amour apocalypse... Pierre ST VincentFaim amour apocalypse... Pierre ST Vincent
Faim amour apocalypse... Pierre ST Vincent
 
Juego de informática
Juego de informáticaJuego de informática
Juego de informática
 
Modelo OSI
Modelo OSIModelo OSI
Modelo OSI
 
Le futur simple
Le futur simpleLe futur simple
Le futur simple
 
Saison culturelle 2014 2015
Saison culturelle 2014 2015Saison culturelle 2014 2015
Saison culturelle 2014 2015
 
Aurora de Fitte de Garies
Aurora de Fitte de GariesAurora de Fitte de Garies
Aurora de Fitte de Garies
 
Maîtriser et optimiser votre e-réputation - Blog StratégiEntreprise décembre ...
Maîtriser et optimiser votre e-réputation - Blog StratégiEntreprise décembre ...Maîtriser et optimiser votre e-réputation - Blog StratégiEntreprise décembre ...
Maîtriser et optimiser votre e-réputation - Blog StratégiEntreprise décembre ...
 
Catalogues produits 03: électroniques de pesage - transmetteurs de poids & in...
Catalogues produits 03: électroniques de pesage - transmetteurs de poids & in...Catalogues produits 03: électroniques de pesage - transmetteurs de poids & in...
Catalogues produits 03: électroniques de pesage - transmetteurs de poids & in...
 
Les systèmes de santé en europe dans le contexte de crise financière.
Les systèmes de santé en europe dans le contexte de crise financière.Les systèmes de santé en europe dans le contexte de crise financière.
Les systèmes de santé en europe dans le contexte de crise financière.
 
Dossier Thomas Benharrous
Dossier Thomas BenharrousDossier Thomas Benharrous
Dossier Thomas Benharrous
 
Ejercicios planificacion
Ejercicios planificacionEjercicios planificacion
Ejercicios planificacion
 
Guía 4
Guía 4Guía 4
Guía 4
 

Ähnlich wie Articles fr les mathematiques_2

M1 2013 apprendre & courants pédagos
M1 2013   apprendre & courants pédagos M1 2013   apprendre & courants pédagos
M1 2013 apprendre & courants pédagos
Philippe Watrelot
 
PDS Namur - Construire une animation scientifique
PDS Namur - Construire une animation scientifiquePDS Namur - Construire une animation scientifique
PDS Namur - Construire une animation scientifique
szaghdan
 
Etape 1 : définition du projet
Etape 1 : définition du projetEtape 1 : définition du projet
Etape 1 : définition du projet
cdicondorcet02
 

Ähnlich wie Articles fr les mathematiques_2 (20)

M1 2013 apprendre & courants pédagos
M1 2013   apprendre & courants pédagos M1 2013   apprendre & courants pédagos
M1 2013 apprendre & courants pédagos
 
Carte heuristique et acte d'apprendre juin 2010
Carte heuristique et acte d'apprendre juin 2010Carte heuristique et acte d'apprendre juin 2010
Carte heuristique et acte d'apprendre juin 2010
 
Approche communicative
Approche communicative Approche communicative
Approche communicative
 
Notes sur le JDA - journal des apprentissages - par Philippe Clauzard
Notes sur le JDA - journal des apprentissages - par Philippe ClauzardNotes sur le JDA - journal des apprentissages - par Philippe Clauzard
Notes sur le JDA - journal des apprentissages - par Philippe Clauzard
 
Mini guide du formateur, compil de P. Clauzard
Mini guide du formateur, compil de P. ClauzardMini guide du formateur, compil de P. Clauzard
Mini guide du formateur, compil de P. Clauzard
 
L'évaluation de La classe inversée par la recherche
L'évaluation de La classe inversée par la rechercheL'évaluation de La classe inversée par la recherche
L'évaluation de La classe inversée par la recherche
 
une gestion de classe explicite donner des ailles à l'éléve en difficulté
une gestion de classe explicite donner des ailles à l'éléve en difficultéune gestion de classe explicite donner des ailles à l'éléve en difficulté
une gestion de classe explicite donner des ailles à l'éléve en difficulté
 
Enseigner autrement à l’ère du numérique
Enseigner autrement à l’ère du numériqueEnseigner autrement à l’ère du numérique
Enseigner autrement à l’ère du numérique
 
L'art de poser des questions pour former et évaluer
L'art de poser des questions pour former et évaluerL'art de poser des questions pour former et évaluer
L'art de poser des questions pour former et évaluer
 
Ph w évaluation-lyon-nov17-séance 4
Ph w évaluation-lyon-nov17-séance 4Ph w évaluation-lyon-nov17-séance 4
Ph w évaluation-lyon-nov17-séance 4
 
La classe inversée, une méthode de formation parmi d’autres ?
La classe inversée, une méthode de formation parmi d’autres ?La classe inversée, une méthode de formation parmi d’autres ?
La classe inversée, une méthode de formation parmi d’autres ?
 
diaporama - ..pptx
diaporama - ..pptxdiaporama - ..pptx
diaporama - ..pptx
 
PDS Namur - Construire une animation scientifique
PDS Namur - Construire une animation scientifiquePDS Namur - Construire une animation scientifique
PDS Namur - Construire une animation scientifique
 
Atelier doctorants Active Learning
Atelier doctorants Active LearningAtelier doctorants Active Learning
Atelier doctorants Active Learning
 
Apprendre à apprendre : ça s'apprend ! (Le mindmapping)
Apprendre à apprendre : ça s'apprend ! (Le mindmapping)Apprendre à apprendre : ça s'apprend ! (Le mindmapping)
Apprendre à apprendre : ça s'apprend ! (Le mindmapping)
 
Construire une animation
Construire une animationConstruire une animation
Construire une animation
 
Expo
ExpoExpo
Expo
 
Etape 1 : définition du projet
Etape 1 : définition du projetEtape 1 : définition du projet
Etape 1 : définition du projet
 
Les différentes méthodes pédagogiques diaporama
Les différentes méthodes pédagogiques diaporamaLes différentes méthodes pédagogiques diaporama
Les différentes méthodes pédagogiques diaporama
 
Expo
ExpoExpo
Expo
 

Mehr von Centre de ressources pédagogique : formations et matériels

Mehr von Centre de ressources pédagogique : formations et matériels (20)

La « classe » en pédagogie des Mathématiques - Caleb Gattegno
La « classe » en pédagogie des Mathématiques - Caleb GattegnoLa « classe » en pédagogie des Mathématiques - Caleb Gattegno
La « classe » en pédagogie des Mathématiques - Caleb Gattegno
 
Articles en silent way_13
Articles en silent way_13Articles en silent way_13
Articles en silent way_13
 
Articles fr les mathematiques_1
Articles fr les mathematiques_1Articles fr les mathematiques_1
Articles fr les mathematiques_1
 
Articles fr lecture en couleurs_12
Articles fr lecture en couleurs_12Articles fr lecture en couleurs_12
Articles fr lecture en couleurs_12
 
Articles en words_incolor_13
Articles en words_incolor_13Articles en words_incolor_13
Articles en words_incolor_13
 
Articles en words_incolor_12
Articles en words_incolor_12Articles en words_incolor_12
Articles en words_incolor_12
 
Articles en words_incolor_11
Articles en words_incolor_11Articles en words_incolor_11
Articles en words_incolor_11
 
Articles en words_incolor_10
Articles en words_incolor_10Articles en words_incolor_10
Articles en words_incolor_10
 
Articles en words_incolor_9
Articles en words_incolor_9Articles en words_incolor_9
Articles en words_incolor_9
 
Articles en words_incolor_8
Articles en words_incolor_8Articles en words_incolor_8
Articles en words_incolor_8
 
Articles en words_incolor_7
Articles en words_incolor_7Articles en words_incolor_7
Articles en words_incolor_7
 
Articles en words_incolor_5
Articles en words_incolor_5Articles en words_incolor_5
Articles en words_incolor_5
 
Articles en words_incolor_4
Articles en words_incolor_4Articles en words_incolor_4
Articles en words_incolor_4
 
Articles en words_incolor_3
Articles en words_incolor_3Articles en words_incolor_3
Articles en words_incolor_3
 
Articles en words_incolor_2
Articles en words_incolor_2Articles en words_incolor_2
Articles en words_incolor_2
 
Articles en words_incolor_1
Articles en words_incolor_1Articles en words_incolor_1
Articles en words_incolor_1
 
Articles en therotical_reflections_9
Articles en therotical_reflections_9Articles en therotical_reflections_9
Articles en therotical_reflections_9
 
Articles en therotical_reflections_8
Articles en therotical_reflections_8Articles en therotical_reflections_8
Articles en therotical_reflections_8
 
Articles en therotical_reflections_6
Articles en therotical_reflections_6Articles en therotical_reflections_6
Articles en therotical_reflections_6
 
Articles en therotical_reflections_5
Articles en therotical_reflections_5Articles en therotical_reflections_5
Articles en therotical_reflections_5
 

Articles fr les mathematiques_2

  • 1. http://www.uneeducationpourdemain.org       Page 1 sur 5   Humanisation de l'éducation mathématique C. J. Breen Si l’on essaie d’examiner de plus près les activités mathématiques pour essayer d’explorer leurs possibilités, je crois que nous devons partir des paroles et des idées d’éducateurs en math tels que David Kent, Caleb Gattegno et David Wheeler plutôt que de nos opinions préconçues. Par exemple, quelles sont nos opinions sur les possibilités mathématiques des enfants ? Sommes-nous d’accord avec Gattegno quand il écrit: “Les enfants restent spontanément avec les problèmes. Ils y restent tout le temps nécessaire. Ils considèrent naturellement l’abstraction (le fait d’accentuer et d’ignorer simultanément) comme un droit de naissance. Ils montrent qu’ils connaissent de nombreux concepts mais, en plus, qu’ils savent les produire dans leur conscience. Et plus encore, ils vivent au contact de leurs pouvoirs de transformation et de leur dynamique mentale”. (Gattegno, 1981) Je crois que nous devons prendre le temps de regarder les jeunes enfants quand ils apprennent à trouver une logique dans le monde qui est à redécouvrir, et d’apprécier les pouvoirs qui leur sont propres. Si nous sommes touchés par certaines des questions posées par Gattegno dans l’article ci-dessus, nous commençons peut-être à partager avec Wheeler “la puissante conviction rationnelle que les enfants disposent des fonctionnements nécessaires à la mathématisation”. (Wheeler, 1975) Gattegno est convaincu qu’il y a des leçons qu’on peut tirer de telles observations: “Il existe une méthode d’éducation pour le futur. Si nous savons comment reconnaître ce qui nous est donné qui est déjà en nous et, avec ceci, rencontrer ce qui existe mais qui ne fait pas encore partie de nous... Il s’est trouvé que chacun de nous, dans l’enfance, a fait précisément ceci. Pendant un moment nous n’avons ni causé ni parlé, puis, au bout d’un moment, nous avons fait les deux. Cela veut dire : nous avons rencontré ce qui était et nous nous sommes arrangés pour le faire nôtre.” (Gattegno, 1970) Il est important de démarrer avec la foi dans les pouvoirs des enfants et leur capacité de mathématiser, avant d’aborder la question des activités mathématiques centrées sur l’élève parce que, si nous ne reconnaissons pas ces pouvoirs, nous ne pouvons jamais être en mesure de fournir les tâches adéquates. Wheeler (1975), nous fournit un point de vue supplémentaire des façons dont nous avons permis que les activités mathématiques deviennent contraintes: ”Nous devons réfléchir à la façon d’éviter le danger que l’activité mathématique ne devienne une étiquette pour quelque chose de trop diffus et général, une façon d’étudier dans laquelle presque n’importe quoi est accepté. Cela pourrait être un autre pas... que de substituer à l’encouragement de l’activité mathématique une éducation qui se concentre sur la mathématisation. Le changement d’éclairage peut nous entraîner encore plus loin d’une dépendance exclusive des critères externes de qualité tirés des mathématiques du passé.” “En dépit du fait que le but de l’activité mathématique ait été étudié pour donner plus d’importance au processus qu’au produit, nous avons eu tendance à nous rassurer que ce que nous encouragions était une véritable activité mathématique en nous assurant que le produit faisait partie des mathématiques qu’on pouvait reconnaître comme familières. Ainsi, en quelque sorte, la nature du produit continue à dominer nos jugements.” Je suis certain que c’est là le dilemme essentiel que rencontre quiconque essaie d’installer une
  • 2. http://www.uneeducationpourdemain.org       Page 2 sur 5   activité mathématique centrée sur l’élève dans sa classe. Comment puis-je justifier le temps passé ? Le travail qu’ils font est-il au programme ? Travaillent-ils assez silencieusement ? N’est-ce qu’une leçon amusante ? Est-ce que je crois vraiment que cette activité est profitable à leur apprentissage ? Si toute cette activité ne sert qu’à rendre les leçons plus amusantes, nous pouvons apprendre quelque chose des prises de conscience de John Trivett : “Je commençais à voir ce que j’avais fait pendant toutes les années passées : donner de la séduction aux mathématiques, les obscurcir... pour les rendre attractives et agréables pour les élèves. J’avais enjolivé le sujet et son étude d’une façon qui impliquait subtilement que les véritables mathématiques sont dures et ennuyeuses et hors d’atteinte pour la majorité des filles et des garçons et qu’en conséquence, le mieux que nous, enseignants, puissions faire, est d’adoucir l‘apparence extérieure, donner des récompenses diverses et nous laisser aller à les amuser pour adoucir la pilule amère.” (Trivett 1981) Ces commentaires mettent en question tout le rôle des professeurs de mathématiques pendant les activités centrées sur l’élève. La réponse clef à ce problème se trouve peut-être dans une foi authentique dans les idées suivantes exprimées au cours du siècle dernier. “Que si le vrai succès est d’accompagner l’effort d’amener un homme à une place définie, on doit d’abord prendre la peine de le trouver là où il se tient et de commencer à cet endroit…Car être un professeur ne signifie pas simplement d’affirmer que telle chose est ainsi ou de faire un cours magistral, etc. ... Non. Etre un professeur, au bon sens du terme, c’est être un apprenti: mettez-vous à sa place pour pouvoir comprendre ce qu’il comprend et la façon dont il le comprend... ” (Kierkegaard, 1854) Je maintiens que la seule façon dont nous puissions tenter de satisfaire à ce que je crois être les exigences essentielles de l’enseignement, c’est de nous retirer du centre de la scène. Pour le faire de façon réaliste, il nous faut concevoir un matériel qui occupe les enfants et ceci donne aux activités mathématiques une attraction accrue. David Wheeler décrit sa vision du rôle du professeur comme suit : “...le professeur doit retirer autant de lui-même qu’il peut dans la situation d’enseignement... Il doit essayer, par tous les moyens, de fixer l’attention des enfants sur le problème et cela veut dire qu’il doit s’effacer de leur attention...” “Si nous observons le professeur à l’ouvrage nous voyons que : ▪ Il crée la situation en donnant l’information essentielle mais, en dehors de ça, il ne dit rien aux élèves. ▪ Il obtient des élèves autant d’information qu’il peut, en observant, en posant des questions et en demandant des actions spécifiques. ▪ Il travaille sans attendre avec ce feedback. ▪ Sauf en de rares occasions, il n’indique pas si une réponse est bonne ou non bien qu’il demande souvent aux élèves ce qu’il en est. ▪ Il accepte les erreurs comme un feedback important qui lui en dit plus que des réponses correctes et, en ramenant l’attention des enfants vers le problème, il les encourage à utiliser ce qu’ils savent pour se corriger eux-mêmes.” (Wheeler, 1970) Le plus grand problème qui subsiste si nous reconnaissons la valeur de ce modèle d'enseignement, est de “créer la situation”. Il est certain que nous ne nous sentons pas libres de ne tenir aucun compte du programme et de nous satisfaire (sans parler des inspecteurs !) que c’est sans importance si le point final de l’activité n’est pas d’apparence mathématique. Quel genre d’activité pouvons-nous proposer qui nous permettra de satisfaire ces exigences
  • 3. http://www.uneeducationpourdemain.org       Page 3 sur 5   quant à notre rôle ? Je crois qu’il y a au moins trois niveaux différents auxquels nous pouvons choisir de travailler et, pour chacun d’eux, il y a des lignes directrices qui peuvent nous aider. a) Recherches Lingard (1980), présente un compte rendu de l’emploi des recherches mathématiques en classe. Une recherche se caractérise par la présentation d’une situation dont la question est posée comme une invitation sans limite à la recherche. Ceci laisse à l’élève la possibilité de choisir l’aspect du problème qu’il trouve intéressant, d’identifier et de définir ses paramètres et ses règles et de décider quand la tâche est accomplie. Exemple : Tirez 4 lignes droites sur une feuille de papier de façon à obtenir le plus grand nombre d’intersections possible. Combien d’espaces intérieurs obtenez-vous ? Et combien d’extérieurs ? Cherchez avec d’autres nombres de droites. L’avantage de ce type d’activité, est que les problèmes sont intéressants et donnent à l’enseignant l’occasion d’expérimenter un rôle différent : celui qui écoute. L’inconvénient évident est que les sujets employés ne sont généralement pas au programme et, de toute façon, si l’enseignant a abandonné sa position d’autorité, il ne peut plus garantir ni la route suivie, ni la destination. Néanmoins, mes expériences en utilisant les livres ATM cités ci-dessous, comme ressources pour une introduction aux leçons centrées sur les élèves, ont été, pour eux comme pour moi très positives et je recommande fortement leur emploi à toute personne qui envisage sérieusement cette approche. b) Avoir des activités, en parler et en prendre note “The Open University” a préparé un excellent cours intitulé : “Developing Mathematical Thinking”. Dans un recueil (Floyd 1981), et une série de 5 livres de sujets (qui utilisent un accompagnement sonore et des accessoires vidéo) ils développent l’idée de concevoir des activités qui permettent aux élèves de rester longtemps avec elles en les obligeant à s’impliquer, puis à en parler entre eux et, finalement, à essayer de noter ce qu’ils ont fait. Le petit livre du cinquième sujet sur les fractions est très utile. Il entraîne l’élève dans le processus de concevoir et de perfectionner un ensemble d’activités adéquates en utilisant le matériel de documentation disponible comme point de départ. Ils identifient les idées qui promettent, les discutent et les perfectionnent jusqu’à ce que le présentateur estime que le travail est correct. Par exemple : pour jouer au jeu de “Shade In”, il vous faut chacun 4 feuilles de brouillon. Vous devez plier chaque feuille en deux, puis encore en deux. Puis pliez les feuilles encore deux fois. Quand vous dépliez les feuilles, vous devez trouver que les lignes de pliage délimitent seize parties égales. Chaque groupe devra avoir un dé marqué : un seizième, un huitième, un quart, deux huitièmes, trois seizièmes et un demi. Vous lancerez le dé chacun à votre tour. La face du dé vous dit quelle fraction noircir sur une feuille de papier. Petit à petit, la première feuille va se remplir et il vous faudra passer à une nouvelle feuille. Le premier à noircir toutes ses 4 feuilles est le vainqueur du premier tour. En retournant les 4 feuilles, vous pouvez jouer un second tour. MAIS personne n’a le droit de noircir une partie de sa feuille sans avoir dit à tous les autres membres du groupe quelle surface ils vont remplir et pourquoi. C’est pour cela que le jeu s’appelle: “What-and-why Shade-in game”. Des enseignants en formation ont trouvé que cette approche pour concevoir un matériel de documentation approprié au travail mathématique a été très utile et instructive.
  • 4. http://www.uneeducationpourdemain.org       Page 4 sur 5   c) Structures plus profondes Alors que les deux paragraphes précédents permettent de commencer dans la recherche vers un travail mathématique centré sur l’élève, je ne serai pas satisfait tant que je n’aurai pas essayé d’intégrer le travail aux notions cruciales qui se trouvent dans le programme. La tâche devient, dès lors, très difficile. Pour moi, les prises de conscience essentielles que je dois mettre en évidence en essayant de pénétrer la structure profonde du sujet sont : ▪ Quelles sont les notions clefs mises en cause par le sujet ? ▪ Quelles prises de conscience sont requises pour l’accès au sujet ? ▪ Quels points de départ peuvent aider l’élève ? Gattegno (1982), discute le dilemme de la conception des activités. “Comment puis-je présenter ce défi de façon que : a. je m’assure que chacun peut entamer le travail, b. que chacun le trouve engageant et gratifiant et, c. qu’il soit facilement étendu à d’autres défis ? Wheeler (1975) l’exprime de façon quelque peu différente : “Nous devons accepter la responsabilité de les mettre face à des défis significatifs”. a. ni trop hors de leur portée, b. ni trop faciles au point de paraître sans importance, c. ni trop mécaniques au point d’abrutir, d. mais certainement propres à stimuler”. “Ceci semble très décourageant et abstrait. Qu’est-ce que cela signifie lorsque nous portons notre attention sur le programme, par exemple l’enseignement de la géométrie ? Peut-être devrions-nous poser des questions du genre : “Qu’est-ce que les enfants savent déjà avant que nous essayions de leur enseigner la géométrie et que nous pourrions utiliser ? Quels sont les pouvoirs et les fonctionnements nécessaires que les enfants apportent avec eux ? “Etant donné que les enfants ont déjà des expériences pertinentes et les capacités de travailler sur elles, quelles structurations particulières de leur expérience conduiront à la géométrie ?” (Wheeler, 1975) Le passage de ces questions à des instructions soigneusement formulées pour un travail mathématique qui force chaque élève à se retrouver aux prises avec la notion essentielle sera, sans aucun doute, lent et pénible. Pour faire un quelconque progrès, il nous faudra devenir des élèves et reconnaître notre ignorance. Je crois que c’est là le stade final dans la recherche vers une activité mathématique authentiquement centrée sur les élèves. Peut-être ne serons-nous jamais capables de nous mesurer au défi mais, au moins, en essayant, nous nous éloignons des pseudo-activités qui ne consistent en rien d’autre que dorer la pilule. Références ATM. (1980) Points of Departure 1. Derby: ATM ATM. (1982) Points of Departure
  • 5. http://www.uneeducationpourdemain.org       Page 5 sur 5   2. Derby: ATM Floyd, A. (ed) (1981) Developing Mathematical Thinking. London: Addison-Wesley Gattegno, C. (1970) What We Owe Children. London: Routledge and Kegan Paul __________ (1981) “Children and Mathematics: A New Appraisal.” Mathematical Thinking, 94, 5-7. __________ (1982) “Thirty Years Later.” Mathematical Thinking, 100, 42-45. Kent, D. (1978) “Linda’s Story.” Mathematical Thinking, 83, 13-15 Kierkegaard, S. (1854) The Journals. Oxford: Oxford University Press Lingard, D. (1980) Mathematical Investigations in the Classroom, Derby: ATM Trivett, D. (1981) “The Rise and Fall of the Coloured Rods.” Mathematical Teaching, 96, 37-41 Wheeler, D. (1970) “The Role of the Teacher.” Mathematical Thinking, 50, 23-29 __________ (1975) “Humanistic Mathematical Education. Mathematical Thinking, 71, 4-9 © C. J. Breen Education Department, University of Capetown Capetown, South Africa [A slightly different version of this paper appeared previously in the Proceedings of the Mathematical Association of South Africa, 8th National Congress] La Science de l'Education en Questions - N° 12 - février 1999 Humanisation de l'éducation mathématique de C. J. Breen est mis à disposition selon les termes de la licence Creative Commons Paternité - Pas de Modification 3.0 non transposé