SlideShare ist ein Scribd-Unternehmen logo
1 von 27
1
LED電源回路アプリケーションガイド
NJM2377–Boost DC/DC Converter
2017年10月27日
マルツエレック株式会社
Contents
Slide #
1. NJM2377 – Boost DC/DC Converter Circuit...........................................................................
2. PWM – Boost DC/DC Converter Basic Operation and Design................................................
2.1 Boost DC/DC Converter – VOUT........................................................................................
2.2 Boost DC/DC Converter – tON /tOFF....................................................................................
2.3 Boost DC/DC Converter – Inductor Selection...................................................................
2.4 Boost DC/DC Converter – Inductor Peak Current.............................................................
2.5 Boost DC/DC Converter – COUT Selection........................................................................
3. NJM2377 – Application Circuit Configuration..........................................................................
3.1 NJM2377 – Soft Start Time Setting...................................................................................
3.2 NJM2377 – Oscillation Frequency Setting........................................................................
3.3 Error Amp Feed Back Loop Setting..................................................................................
4. Performance Characteristics……………………………...........................................................
4.1 Output Start-Up Voltage and Current................................................................................
4.2 Output Ripple Voltage.......................................................................................................
4.3 Efficiency..........................................................................................................................
4.4 Step-Load Response…….................................................................................................
5. Voltage and Current Simulation Result...................................................................................
6. Losses
6.1 Bipolar Junction Transistor Losses...................................................................................
6.2 Schottky Barrier Diode Losses..........................................................................................
7. Waveforms
7.1 Start-Up Sequencing Waveforms......................................................................................
7.2 Switching Waveform at Load 50mA..................................................................................
7.3 Switching Waveform at Load 10mA..................................................................................
Simulations index.........................................................................................................................
Simulations Settings....................................................................................................................
3
4
5
6
7
8
9
10
11-12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27-28
2
1. NJM2377 – Boost DC/DC Converter Circuit
3
CLP
100pF
Rf
560k
ESR
0.103
Cin
220uF
L
150u
1 2
Rload
180
R1
9.1k
R2
150k
Q1
Q2SD2623
OUT
R3
0.8
U1
NJM2377
-IN
FB
GND
OUTV+
CS
CT
REF
Rt
24k
Ct
470pF
IC = 0
D1
HRU0302A
0
V+
5V
0
IN
Cout
220uF
Rsf
160k
CS
4.7uF
IC = 0
0
Rsr
180k
0
5V to 9V at 50mA Boost DC/DC Converter (fOSC=150kHz, Vripple=30mVp-p)
U1: New Japan Radio NJM2377 Control IC
Q1: Panasonic 2SD2623 NPN
D1: Renesas HRU0302A Schottky Barrier Diode
2. PWM – Boost DC/DC Converter Basic Operation and Design
ESR
IN
L
1 2
Rload
OUT
R1
R2
Q1
QN_SW
V+
0
Cout
D1
PWM Control
Circuit
4
PWM output
pulse
VOUT=9V
tON tOFF
VIN=5V L: IL
• VOUT is monitored by R1 and R2 then compared to reference voltage VB in NJM2377.
• Error voltage is pulse width modulated with sawtooth waveform.
• PWM output pulse width is proportional to the error level. This signal will control the
switch ON/OFF(tON /tOFF).
• Therefore VOUT, which is proportional to tON /tOFF, is controlled to the desired voltage.
2.1)
2.5)
2.2)
2.3),
2.4)
2.1 Boost DC/DC Converter – VOUT
• VOUT is determined by R1 and R2, without considering I(IN-) of NJM2377 VOUT is calculated as
below.
• For VOUT=9V, R1=9.1kΩ, R2=150kΩ are selected.
5
9.09V0.521
9.1k
150k
1
1
2













 REFOUT V
R
R
V
2.2 Boost DC/DC Converter – tON /tOFF
• If the circuit works in continuous conduction mode (CCM), output voltage (VOUT) and ON/OFF
time (tON /tOFF) follow the equation below.
then
• From VIN =5V, VOUT =9V and fOSC =150kHz, these result as tON /tOFF are tON=2.96μs, tOFF=3.71μs,
and duty=45%.
6
IN
OFF
OFFON
OUT V
t
tt
V 




 

OSCOUT
INOUT
ON
fV
VV
t



2.3 Boost DC/DC Converter – Inductor Selection
• LMIN value for the convertor to work in continuous conduction mode (CCM), is calculated as
below.
• From VIN =5V, VOUT =9V, IOUT =50mA and tON=2.96μs, these result as LMIN=82.2μH.
• A larger value will be used to increase the available output current, but limit it to around
twice the LMIN value. L =150μH is selected.
7
ON
OUTOUT
IN
MIN t
IV
V
L 


2
2
MINMIN LLL  2
Time
86.810ms 86.816ms 86.822ms 86.828ms
I(L)
0A
50mA
100mA
150mA
200mA
(86.818m,140.985m)
(86.821m,40.531m)
• PSpice is used to verify the circuit design.
• IL, PK=140.985mA and IL,PK=140.985m-
40.531m=100.454mA
2.4 Boost DC/DC Converter – Inductor
Peak Current• IL, PK is calculated as below.
• And the current ripple - IL, PK is calculated
as below
8
140mA2.96μ
150μ2
5
5
0.059
2









 ON
IN
IN
OUTOUT
L,PK t
L
V
V
IV
I
mA992.96μ
150μ
5

 ON
IN
L,PK t
L
V
ΔI
• Add trace I(L)
• Zoom to check the peak value.
IL, PK
• PSpice is used to verify the circuit design.
• IL,PK=101.168mA, ton=3μs.
• Vripple =14.8mVp-p
• Irms
*=53.856mArms.
 Irms is larger than calculated value due to feedback loop
response ripple current.
Time
87.5484ms 87.5684ms
V(OUT)
9.06V
9.07V
9.08V
9.09V
SEL>>
(87.556m,9.0792)
(87.553m,9.0644)
I(L) rms(I(Cout))
0A
100mA
200mA
(87.556m,141.564m)
(87.553m,40.396m)
• COUT is determined from the Vripple Spec
(30mVp-p).
• If COUT >> IOUTton/Vripple
(50m2.96μ/30m=4.933μF), Vripple will
mainly caused by ESR.
• Select the capacitor that can handle the
ripple current Irms.
• COUT=220μF, ESR=103m is selected.




m103
99m
30m
)(
L
ppripple
I
V
ESR
2.5 Boost DC/DC Converter – COUT
Selection
9
IL, PK
13mArms
6.67μ
2.96μ
32
99m
32




t
tonI
I
L
rms
Irms
Vripple
CLP
100pF
Rf
560k
ESR
0.103
Cin
220uF
L
150u
1 2
Rload
180
R1
9.1k
R2
150k
Q1
Q2SD2623
OUT
R3
0.8
U1
NJM2377
-IN
FB
GND
OUTV+
CS
CT
REF
Rt
24k
Ct
470pF
IC = 0
D1
HRU0302A
0
V+
5V
0
IN
Cout
220uF
Rsf
160k
CS
4.7uF
IC = 0
0
Rsr
180k
0
3. NJM2377 – Application Circuit Configuration
10
5V to 9V at 50mA Boost DC/DC Converter (fOSC=150kHz)
U1: New Japan Radio NJM2377 Control IC
Q1: Panasonic 2SD2623 NPN
D1: Renesas HRU0302A Schottky Barrier Diode
3.1)
3.2)
3.3)
• First, caculate Rsr by
Rsr>VTHLA(max.)/ICHG(min.)
(1.8V/10μA=180k)
• During steady state operation,
I(CS)=IBCS=250ns. Maximum duty cycle is
determined by V(CS). Set
V(CS)=VTHCS(max.)=0.8V, Rsf is calculated by
160k ΩRsf
1.5
Rsf180k
180k
0.8
.)(max






 REFTHCS V
RsfRsr
Rsr
V
• Soft-start time or tduty(max.) is time needed for
V(CS) to reach VTHCS(max.) by charging capacitor
Cs.
• CS is charged by current Ics, calculated by:
then
3.1 NJM2377 – Soft Start Time Setting
11
NJM2377 soft-start time is determined by Rsr, CS and Rsf
4.41uA
160k180k
1.5





RsfRsr
V
I
REF
CS
109ms
30μ4.41μ
4.7μ0.8
.)(max
.)(max







CHGCS
THCS
duty
II
CsV
t
3.1 NJM2377 – Soft Start Time Setting
(Simulation)
12
NJM2377 soft-start time is determined by Rsr, Rsf and CS
• Select Rsr, Rsf, and CS then check tduty(max.) by
simulation.
• tduty(max.)=109.170ms. for CS=4.7uF
• tduty(max.)=76.653ms for CS=3.3uF and
tduty(max.)=157.953ms for CS=6.8uF.
CS
{CS}
IC = 0
PARAMETERS:
CS = 4.7u
CLP
100pF
Rf
560k
Cin
220uF
U1
NJM2377
-IN
FB
GND
OUTV+
CS
CT
REF
Rt
10MEG
Ct
10nF
IC = 0
0 CS
V+
5V
IN
REF
0
Rsf
160k
0
Rsr
180k
0
R1
1MEG
.TRAN 0 500ms 0 Time
0s 250ms 500ms
V(CS)
0V
0.5V
1.0V
1.5V
(109.170m,800.000m)
(76.653m,800.000m)
(157.953m,800.000m)
3.2 NJM2377 – Oscillation Frequency
Setting
• CT = 470pF and RT = 24kΩ to set an oscillation frequency to be 150kHz.
13
V
CLP
100pF
Rf
560k
Cin
220uF
U1
NJM2377
-IN
FB
GND
OUTV+
CS
CT
REF
Rt
24k
Ct
470pF
IC = 0
0
V+
5V
IN
0
Rsf
160k
CS
4.7uF
IC = 0
0
Rsr
180k
0
R1
1MEG
NJM2377 oscillation frequency fOSC is determined by CT and RT
fosc=150kHz
RT=24k
3.3 Error Amp Feed Back Loop Setting
• For F.B loop gain G > 100, Rf is calculated
as:
• CLP is suggested to use value between
100pF~1,000pF
• Inappropriate F.B loop design can cause an
oscillation. PSpice is used to verify the
ripple voltage vs. Rf and CLP values.
• Simulation result shows Vripple of the circuit with
RF=1000k  compare to the circuit with
RF=560k.
• Changing RF to be 560k  can reduce Vripple from
34mVp-p to less than 20mVp-p.
14
1000kRf
177
150k//9.1k
1,000k
2//1



RR
Rf
G
Error Amp Feed Back Loop is determined by R1, R2, Rf and CLP
Time
79.00ms 79.25ms 79.50ms 79.75ms 80.00ms
V(OUT)
9.04V
9.06V
9.08V
9.10V
9.12V
RF=1000k, CLP=100pF
RF=560k, CLP=100pF
4. Performance Characteristics
CLP
100pF
Rf
560k
ESR
0.103
Cin
220uF
L
150u
1 2
Rload
180
R1
9.1k
R2
150k
Q1
Q2SD2623
OUT
R3
0.8
U1
NJM2377
-IN
FB
GND
OUTV+
CS
CT
REF
Rt
24k
Ct
470pF
IC = 0
D1
HRU0302A
0
V+
5V
0
IN
Cout
220uF
Rsf
160k
CS
4.7uF
IC = 0
0
Rsr
180k
0
15
• VIN=5V
• VOUT=9V
• IOUT=50mA
• Vripple(P-P)= less than 30mV
• Efficiency= 75% at IOUT=50mA
U1: New Japan Radio NJM2377 Control IC
Q1: Panasonic 2SD2623 NPN
D1: Renesas HRU0302A Schottky Barrier Diode
4.1 Output Start-Up Voltage and Current
• Simulation result shows output start-up time of the circuit. This circuit needs
55ms to reach steady state.
16
Time
0s 20ms 40ms 60ms 80ms 90ms
V(OUT)
4V
5V
6V
7V
8V
9V
10V
I(Rload)
20mA
30mA
40mA
50mA
SEL>>
V(OUT)
I(Rload)
Time
60ms 65ms 70ms 75ms 80ms 85ms 90ms
V(OUT)
9.05V
9.06V
9.07V
9.08V
9.09V
9.10V
SEL>>
Time
89.90ms 89.91ms 89.92ms 89.93ms 89.94ms 89.95ms 89.96ms 89.97ms 89.98ms 89.99ms
V(OUT)
9.060V
9.065V
9.070V
9.075V
9.080V
4.2 Output Ripple Voltage
• Simulation result shows output ripple voltage caused by switching(18mVP-P) and
F.B loop oscillation(25mVP-P).
17
V(OUT)
V(OUT)
[ZOOM] 18mVP-P
25mVP-P
4.3 Efficiency
• Efficiency of the converter at load IOUT=50mA is 75.5%.
18
Time
70ms 75ms 80ms 85ms 90ms
100*W(Rload)/rms(-W(V+))
0
25
50
75
100
(90.000m,75.500)
Efficiency
4.4 Step-Load Response
• Simulation result shows the transient response of the circuit, when load currents are 50mA to
10mA to 50mA steps .
19
V(OUT)
I(L)
I(Load)
Time
60ms 65ms 70ms 75ms 80ms 85ms 90ms
V(OUT)
9.050V
9.075V
9.100V
9.125V
I(L)
0A
100mA
200mA
I(I1)
0A
20mA
30mA
40mA
50mA
SEL>>
5. Voltage and Current Simulation Result
• Simulation result shows voltage and current of the devices.
• Select L and Cout that can handle their Irms value.
• The absolute maximum value of Q1 and D1 are compared to simulation result for stress analysis.
20
Time
0s 20ms 40ms 60ms 80ms 90ms
1 V(Cout:1) 2 rms(I(Cout))
0V
5V
10V
1
0A
50mA
100mA
2
SEL>>SEL>>
1 V(D1:2)- V(D1:1) 2 I(D1) avg(I(D1))
0V
10V
20V
1
100mA
200mA
300mA
2
>>
1 V(Q1:c) 2 I(Q1:c)
0V
5V
10V
15V
20V
1
250mA
500mA
2
>>
I(L) rms(I(L))
0A
200mAI(L) peak,
rms
I(L) = 261.054mA(peak) , 94.1399mA(rms)
V(Q1:C),
I(Q1:C)
Q1 2SD2623: VCEO=20V, ICMAX=0.5A
V(D1:K,D1:A),
IF(D1)
D1 HRU0302A: VRRM=20V, IO=0.3A(avg), IFSM=3A
V(Cout),
I(Cout) rms
I(Cout) = 50.255mA(rms)
100% of Rated Value
100% of Rated Value
Time
89.964ms 89.966ms 89.968ms 89.970ms 89.972ms 89.974ms
1 V(Q1:c) 2 I(Q1:c)
0V
5V
10V
15V
20V
1
>>
0A
100mA
200mA
300mA
2
1 V(Q1:c)*I(Q1:c) 2 avg(W(Q1))
0W
200mW
400mW
600mW
1
SEL>>
0W
50mW
100mW
150mW
2
SEL>>
6.1 Bipolar Junction Transistor Losses
• Simulation result shows waveforms of IC and VCE of transistor Q1.Loss in peak and
average values are also shown.
21
100% of Rated Value (PC, max.=150mW)
PC, avg.=17.254mW
turn-on loss
Conduction loss
turn-off loss
V(Q1:C),
I(Q1:C)
P(Q1)
peak, avg
Time
89.964ms 89.965ms 89.966ms 89.967ms 89.968ms 89.969ms 89.970ms 89.971ms 89.972ms 89.973ms
1 V(D1:1,D1:2) 2 I(D1)
-10V
-5V
0V
5V
10V
1
-200mA
-100mA
0A
100mA
200mA
2
SEL>>SEL>>
W(D1) avg(W(D1))
-100mW
-50mW
0W
50mW
100mW
6.2 Schottky Barrier Diode Losses
• Simulation result shows waveforms of IF and VAK of diode D1.Loss in peak and
average values are also shown.
22
PD, avg.=18.45mW
Reverse
recovery loss
Conduction loss
V(D1:A,D1:K),
I(D1
P(D1)
peak, avg
Reverse
leakage loss
Reverse recovery
characteristic
7.1 Start-Up Sequencing Waveforms
• Simulation result shows start-up sequencing waveforms, including V(OUT) and control signal
(VRAMP, VOSC, and VFB).
23
V(OUT)
V(FB)
VOSC: V(CT)
VRAMP: V(CS)
Time
0s 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms
V(OUT)
5.0V
6.0V
7.0V
8.0V
9.0V
V(U1:CT) V(U1:CS) V(U1:FB)
0V
0.5V
1.0V
1.5V
2.0V
2.5V
SEL>>
7.2 Switching Waveforms at Load 50 mA (RL=180)
• Simulation result shows boost converter switching waveforms at load 50mA, including IL,
VC(Q1), IC(Q1), I(D1) and V(OUT)
24
I(D1)
I(L)
VC(Q1)
IC(Q1)
V(OUT)
Time
89.950ms 89.960ms 89.970ms 89.980ms89.944ms
V(OUT)
9.050V
9.075V
9.100V
SEL>>
I(D1)
-50mA
0A
50mA
100mA
150mA
1 V(Q1:c) 2 I(Q1:c)
0V
2.5V
5.0V
7.5V
10.0V
1
0A
100mA
150mA
200mA
2
>>
I(L)
0A
50mA
100mA
150mA
200mA
7.3 Switching Waveforms at Load 10 mA (RL=900)
• Simulation result shows boost converter switching waveforms at load 10mA, including IL,
VC(Q1), IC(Q1), I(D1) and V(OUT)
25
I(D1)
I(L)
VC(Q1)
IC(Q1)
V(OUT)
Time
89.944ms 89.952ms 89.960ms 89.968ms 89.976ms 89.984ms
V(OUT)
9.075V
9.100V
9.125V
I(D1)
-25mA
25mA
50mA
75mA
SEL>>
1 V(Q1:c) 2 I(Q1:c)
-4V
4V
8V
12V
1
>>
-25mA
0A
25mA
50mA
75mA
2
I(L)
-25mA
0A
25mA
50mA
75mA
SIMULATION SETTINGS 1
• .TRAN 0 90ms 0.1ms 150n
• .OPTIONS ABSTOL= 10.0n
• .OPTIONS RELTOL= 0.01
• .OPTIONS VNTOL= 10.0u
26
These settings are for:
• Start-Up Transient Simulation (0~90ms.)
• Voltage and Current Simulation
• Step-Load Response
SIMULATION SETTINGS 2
• .TRAN 0 90ms 70ms 100n
• .OPTIONS ABSTOL= 10.0n
• .OPTIONS RELTOL= 0.01
• .OPTIONS VNTOL= 10.0u
27
These settings are for:
• Efficiency and Losses
• Switching Waveforms

Weitere ähnliche Inhalte

Was ist angesagt?

Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...IAES-IJPEDS
 
Lecture 2 basics of electric machines
Lecture 2 basics of electric machinesLecture 2 basics of electric machines
Lecture 2 basics of electric machinesArslan Ahmed Amin
 
Tutorial on Distance and Over Current Protection
Tutorial on Distance and Over  Current ProtectionTutorial on Distance and Over  Current Protection
Tutorial on Distance and Over Current ProtectionSARAVANAN A
 
04 ret670 test report
04 ret670 test report04 ret670 test report
04 ret670 test reportniranjan131
 
Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
		 Wide Vin DC/DC Converters: Reliable Power for Demanding Applications		 Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
Wide Vin DC/DC Converters: Reliable Power for Demanding ApplicationsDesign World
 
196444650 ee-2257-control-system-lab-manual
196444650 ee-2257-control-system-lab-manual196444650 ee-2257-control-system-lab-manual
196444650 ee-2257-control-system-lab-manualhomeworkping3
 
Original N-Channel Mosfet FMH23N50E 23N50E 500V 23A TO-247 New Fuji
Original N-Channel Mosfet FMH23N50E 23N50E 500V 23A TO-247 New FujiOriginal N-Channel Mosfet FMH23N50E 23N50E 500V 23A TO-247 New Fuji
Original N-Channel Mosfet FMH23N50E 23N50E 500V 23A TO-247 New FujiAUTHELECTRONIC
 
Selective Coodination
Selective CoodinationSelective Coodination
Selective Coodinationmichaeljmack
 
Original MOSFET P20NM60 20NM60 20N60C3 20N60 New
Original MOSFET P20NM60 20NM60 20N60C3 20N60 NewOriginal MOSFET P20NM60 20NM60 20N60C3 20N60 New
Original MOSFET P20NM60 20NM60 20N60C3 20N60 NewAUTHELECTRONIC
 
Oscillography analysis
Oscillography analysisOscillography analysis
Oscillography analysismichaeljmack
 
PDDR Direct Drive Rotary Motor
PDDR Direct Drive Rotary Motor PDDR Direct Drive Rotary Motor
PDDR Direct Drive Rotary Motor juliangoal
 
Simulation of sinosoidal pulse width modulation
Simulation of sinosoidal pulse width modulationSimulation of sinosoidal pulse width modulation
Simulation of sinosoidal pulse width modulationTanzeel Ahmad
 
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541マルツエレック株式会社 marutsuelec
 
Generator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsGenerator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsPower System Operation
 
Energy conservation Activites of thermal power plant
Energy conservation Activites of thermal power plantEnergy conservation Activites of thermal power plant
Energy conservation Activites of thermal power plantMANOJ KUMAR MAHARANA
 

Was ist angesagt? (20)

Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third...
 
Lecture 2 basics of electric machines
Lecture 2 basics of electric machinesLecture 2 basics of electric machines
Lecture 2 basics of electric machines
 
Tutorial on Distance and Over Current Protection
Tutorial on Distance and Over  Current ProtectionTutorial on Distance and Over  Current Protection
Tutorial on Distance and Over Current Protection
 
04 ret670 test report
04 ret670 test report04 ret670 test report
04 ret670 test report
 
Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
		 Wide Vin DC/DC Converters: Reliable Power for Demanding Applications		 Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
 
196444650 ee-2257-control-system-lab-manual
196444650 ee-2257-control-system-lab-manual196444650 ee-2257-control-system-lab-manual
196444650 ee-2257-control-system-lab-manual
 
Pwm techniques for converters
Pwm techniques for convertersPwm techniques for converters
Pwm techniques for converters
 
Original N-Channel Mosfet FMH23N50E 23N50E 500V 23A TO-247 New Fuji
Original N-Channel Mosfet FMH23N50E 23N50E 500V 23A TO-247 New FujiOriginal N-Channel Mosfet FMH23N50E 23N50E 500V 23A TO-247 New Fuji
Original N-Channel Mosfet FMH23N50E 23N50E 500V 23A TO-247 New Fuji
 
Selective Coodination
Selective CoodinationSelective Coodination
Selective Coodination
 
Original MOSFET P20NM60 20NM60 20N60C3 20N60 New
Original MOSFET P20NM60 20NM60 20N60C3 20N60 NewOriginal MOSFET P20NM60 20NM60 20N60C3 20N60 New
Original MOSFET P20NM60 20NM60 20N60C3 20N60 New
 
Sinusoidal pwm
Sinusoidal pwmSinusoidal pwm
Sinusoidal pwm
 
Kf3617641768
Kf3617641768Kf3617641768
Kf3617641768
 
Oscillography analysis
Oscillography analysisOscillography analysis
Oscillography analysis
 
Ucc 3895 dw
Ucc 3895 dwUcc 3895 dw
Ucc 3895 dw
 
PDDR Direct Drive Rotary Motor
PDDR Direct Drive Rotary Motor PDDR Direct Drive Rotary Motor
PDDR Direct Drive Rotary Motor
 
Simulation of sinosoidal pulse width modulation
Simulation of sinosoidal pulse width modulationSimulation of sinosoidal pulse width modulation
Simulation of sinosoidal pulse width modulation
 
David Clark: 2013 Sandia National Laboratoies Wind Plant Reliability Workshop
David Clark: 2013 Sandia National Laboratoies Wind Plant Reliability WorkshopDavid Clark: 2013 Sandia National Laboratoies Wind Plant Reliability Workshop
David Clark: 2013 Sandia National Laboratoies Wind Plant Reliability Workshop
 
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
 
Generator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsGenerator Protection Relay Setting Calculations
Generator Protection Relay Setting Calculations
 
Energy conservation Activites of thermal power plant
Energy conservation Activites of thermal power plantEnergy conservation Activites of thermal power plant
Energy conservation Activites of thermal power plant
 

Ähnlich wie LED電源回路アプリケーションガイド 金沢プレゼン資料

LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)
LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)
LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)Tsuyoshi Horigome
 
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 NewOriginal IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 Newauthelectroniccom
 
Fairchild semiconductor hgtg30n60a4d 320413
Fairchild semiconductor hgtg30n60a4d 320413Fairchild semiconductor hgtg30n60a4d 320413
Fairchild semiconductor hgtg30n60a4d 320413ask0122
 
Uc3842 b d fuente 24vdc stacotec
Uc3842 b d  fuente 24vdc stacotecUc3842 b d  fuente 24vdc stacotec
Uc3842 b d fuente 24vdc stacotectavobecker
 
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On SemiconductorOriginal PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductorauthelectroniccom
 
Original MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V New
Original MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V NewOriginal MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V New
Original MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V NewAUTHELECTRONIC
 
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 NewOriginal Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 NewAUTHELECTRONIC
 
Low dropout regulator(ldo)
Low dropout regulator(ldo)Low dropout regulator(ldo)
Low dropout regulator(ldo)altaf423
 
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronicsauthelectroniccom
 
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronicsAUTHELECTRONIC
 
Original Analog Switch IC CD74HC4066PWR SN74HC4066DR 4066DR 4066PWR 4066 SOP...
Original Analog Switch IC CD74HC4066PWR  SN74HC4066DR 4066DR 4066PWR 4066 SOP...Original Analog Switch IC CD74HC4066PWR  SN74HC4066DR 4066DR 4066PWR 4066 SOP...
Original Analog Switch IC CD74HC4066PWR SN74HC4066DR 4066DR 4066PWR 4066 SOP...AUTHELECTRONIC
 
Ruben EscaleraG00092506Lab 5 Series and Pa.docx
Ruben EscaleraG00092506Lab 5 Series and Pa.docxRuben EscaleraG00092506Lab 5 Series and Pa.docx
Ruben EscaleraG00092506Lab 5 Series and Pa.docxjoellemurphey
 
Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...
Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...
Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...authelectroniccom
 
132kv-substation-settings_compress.pdf
132kv-substation-settings_compress.pdf132kv-substation-settings_compress.pdf
132kv-substation-settings_compress.pdfssuser4d1f4f
 
Powerelectronics Chapter7 090331060223 Phpapp02
Powerelectronics Chapter7 090331060223 Phpapp02Powerelectronics Chapter7 090331060223 Phpapp02
Powerelectronics Chapter7 090331060223 Phpapp02kuppam engg college
 
Power Electronics Chapter 7
Power Electronics  Chapter 7Power Electronics  Chapter 7
Power Electronics Chapter 7guest8ae54cfb
 
Original N-CHANNEL Mosfet FQPF10N60 10N60 10A 600V TO-220F New Fairchild
Original N-CHANNEL Mosfet FQPF10N60 10N60 10A 600V TO-220F New FairchildOriginal N-CHANNEL Mosfet FQPF10N60 10N60 10A 600V TO-220F New Fairchild
Original N-CHANNEL Mosfet FQPF10N60 10N60 10A 600V TO-220F New FairchildAUTHELECTRONIC
 

Ähnlich wie LED電源回路アプリケーションガイド 金沢プレゼン資料 (20)

LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)
LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)
LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)
 
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 NewOriginal IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
 
Fairchild semiconductor hgtg30n60a4d 320413
Fairchild semiconductor hgtg30n60a4d 320413Fairchild semiconductor hgtg30n60a4d 320413
Fairchild semiconductor hgtg30n60a4d 320413
 
Uc3842 b d fuente 24vdc stacotec
Uc3842 b d  fuente 24vdc stacotecUc3842 b d  fuente 24vdc stacotec
Uc3842 b d fuente 24vdc stacotec
 
Nte2361
Nte2361Nte2361
Nte2361
 
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On SemiconductorOriginal PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
 
Original MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V New
Original MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V NewOriginal MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V New
Original MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V New
 
Lm555
Lm555Lm555
Lm555
 
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 NewOriginal Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
 
Low dropout regulator(ldo)
Low dropout regulator(ldo)Low dropout regulator(ldo)
Low dropout regulator(ldo)
 
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
 
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
 
Original Analog Switch IC CD74HC4066PWR SN74HC4066DR 4066DR 4066PWR 4066 SOP...
Original Analog Switch IC CD74HC4066PWR  SN74HC4066DR 4066DR 4066PWR 4066 SOP...Original Analog Switch IC CD74HC4066PWR  SN74HC4066DR 4066DR 4066PWR 4066 SOP...
Original Analog Switch IC CD74HC4066PWR SN74HC4066DR 4066DR 4066PWR 4066 SOP...
 
Ruben EscaleraG00092506Lab 5 Series and Pa.docx
Ruben EscaleraG00092506Lab 5 Series and Pa.docxRuben EscaleraG00092506Lab 5 Series and Pa.docx
Ruben EscaleraG00092506Lab 5 Series and Pa.docx
 
Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...
Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...
Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...
 
132kv-substation-settings_compress.pdf
132kv-substation-settings_compress.pdf132kv-substation-settings_compress.pdf
132kv-substation-settings_compress.pdf
 
Powerelectronics Chapter7 090331060223 Phpapp02
Powerelectronics Chapter7 090331060223 Phpapp02Powerelectronics Chapter7 090331060223 Phpapp02
Powerelectronics Chapter7 090331060223 Phpapp02
 
Power Electronics Chapter 7
Power Electronics  Chapter 7Power Electronics  Chapter 7
Power Electronics Chapter 7
 
Uc2907 dw
Uc2907 dwUc2907 dw
Uc2907 dw
 
Original N-CHANNEL Mosfet FQPF10N60 10N60 10A 600V TO-220F New Fairchild
Original N-CHANNEL Mosfet FQPF10N60 10N60 10A 600V TO-220F New FairchildOriginal N-CHANNEL Mosfet FQPF10N60 10N60 10A 600V TO-220F New Fairchild
Original N-CHANNEL Mosfet FQPF10N60 10N60 10A 600V TO-220F New Fairchild
 

Mehr von Tsuyoshi Horigome

Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspiceTsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is ErrorTsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintTsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsTsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hiresTsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)Tsuyoshi Horigome
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモTsuyoshi Horigome
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?Tsuyoshi Horigome
 

Mehr von Tsuyoshi Horigome (20)

Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?
 

Kürzlich hochgeladen

MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 

Kürzlich hochgeladen (20)

MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 

LED電源回路アプリケーションガイド 金沢プレゼン資料

  • 2. Contents Slide # 1. NJM2377 – Boost DC/DC Converter Circuit........................................................................... 2. PWM – Boost DC/DC Converter Basic Operation and Design................................................ 2.1 Boost DC/DC Converter – VOUT........................................................................................ 2.2 Boost DC/DC Converter – tON /tOFF.................................................................................... 2.3 Boost DC/DC Converter – Inductor Selection................................................................... 2.4 Boost DC/DC Converter – Inductor Peak Current............................................................. 2.5 Boost DC/DC Converter – COUT Selection........................................................................ 3. NJM2377 – Application Circuit Configuration.......................................................................... 3.1 NJM2377 – Soft Start Time Setting................................................................................... 3.2 NJM2377 – Oscillation Frequency Setting........................................................................ 3.3 Error Amp Feed Back Loop Setting.................................................................................. 4. Performance Characteristics……………………………........................................................... 4.1 Output Start-Up Voltage and Current................................................................................ 4.2 Output Ripple Voltage....................................................................................................... 4.3 Efficiency.......................................................................................................................... 4.4 Step-Load Response……................................................................................................. 5. Voltage and Current Simulation Result................................................................................... 6. Losses 6.1 Bipolar Junction Transistor Losses................................................................................... 6.2 Schottky Barrier Diode Losses.......................................................................................... 7. Waveforms 7.1 Start-Up Sequencing Waveforms...................................................................................... 7.2 Switching Waveform at Load 50mA.................................................................................. 7.3 Switching Waveform at Load 10mA.................................................................................. Simulations index......................................................................................................................... Simulations Settings.................................................................................................................... 3 4 5 6 7 8 9 10 11-12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27-28 2
  • 3. 1. NJM2377 – Boost DC/DC Converter Circuit 3 CLP 100pF Rf 560k ESR 0.103 Cin 220uF L 150u 1 2 Rload 180 R1 9.1k R2 150k Q1 Q2SD2623 OUT R3 0.8 U1 NJM2377 -IN FB GND OUTV+ CS CT REF Rt 24k Ct 470pF IC = 0 D1 HRU0302A 0 V+ 5V 0 IN Cout 220uF Rsf 160k CS 4.7uF IC = 0 0 Rsr 180k 0 5V to 9V at 50mA Boost DC/DC Converter (fOSC=150kHz, Vripple=30mVp-p) U1: New Japan Radio NJM2377 Control IC Q1: Panasonic 2SD2623 NPN D1: Renesas HRU0302A Schottky Barrier Diode
  • 4. 2. PWM – Boost DC/DC Converter Basic Operation and Design ESR IN L 1 2 Rload OUT R1 R2 Q1 QN_SW V+ 0 Cout D1 PWM Control Circuit 4 PWM output pulse VOUT=9V tON tOFF VIN=5V L: IL • VOUT is monitored by R1 and R2 then compared to reference voltage VB in NJM2377. • Error voltage is pulse width modulated with sawtooth waveform. • PWM output pulse width is proportional to the error level. This signal will control the switch ON/OFF(tON /tOFF). • Therefore VOUT, which is proportional to tON /tOFF, is controlled to the desired voltage. 2.1) 2.5) 2.2) 2.3), 2.4)
  • 5. 2.1 Boost DC/DC Converter – VOUT • VOUT is determined by R1 and R2, without considering I(IN-) of NJM2377 VOUT is calculated as below. • For VOUT=9V, R1=9.1kΩ, R2=150kΩ are selected. 5 9.09V0.521 9.1k 150k 1 1 2               REFOUT V R R V
  • 6. 2.2 Boost DC/DC Converter – tON /tOFF • If the circuit works in continuous conduction mode (CCM), output voltage (VOUT) and ON/OFF time (tON /tOFF) follow the equation below. then • From VIN =5V, VOUT =9V and fOSC =150kHz, these result as tON /tOFF are tON=2.96μs, tOFF=3.71μs, and duty=45%. 6 IN OFF OFFON OUT V t tt V         OSCOUT INOUT ON fV VV t   
  • 7. 2.3 Boost DC/DC Converter – Inductor Selection • LMIN value for the convertor to work in continuous conduction mode (CCM), is calculated as below. • From VIN =5V, VOUT =9V, IOUT =50mA and tON=2.96μs, these result as LMIN=82.2μH. • A larger value will be used to increase the available output current, but limit it to around twice the LMIN value. L =150μH is selected. 7 ON OUTOUT IN MIN t IV V L    2 2 MINMIN LLL  2
  • 8. Time 86.810ms 86.816ms 86.822ms 86.828ms I(L) 0A 50mA 100mA 150mA 200mA (86.818m,140.985m) (86.821m,40.531m) • PSpice is used to verify the circuit design. • IL, PK=140.985mA and IL,PK=140.985m- 40.531m=100.454mA 2.4 Boost DC/DC Converter – Inductor Peak Current• IL, PK is calculated as below. • And the current ripple - IL, PK is calculated as below 8 140mA2.96μ 150μ2 5 5 0.059 2           ON IN IN OUTOUT L,PK t L V V IV I mA992.96μ 150μ 5   ON IN L,PK t L V ΔI • Add trace I(L) • Zoom to check the peak value. IL, PK
  • 9. • PSpice is used to verify the circuit design. • IL,PK=101.168mA, ton=3μs. • Vripple =14.8mVp-p • Irms *=53.856mArms.  Irms is larger than calculated value due to feedback loop response ripple current. Time 87.5484ms 87.5684ms V(OUT) 9.06V 9.07V 9.08V 9.09V SEL>> (87.556m,9.0792) (87.553m,9.0644) I(L) rms(I(Cout)) 0A 100mA 200mA (87.556m,141.564m) (87.553m,40.396m) • COUT is determined from the Vripple Spec (30mVp-p). • If COUT >> IOUTton/Vripple (50m2.96μ/30m=4.933μF), Vripple will mainly caused by ESR. • Select the capacitor that can handle the ripple current Irms. • COUT=220μF, ESR=103m is selected.     m103 99m 30m )( L ppripple I V ESR 2.5 Boost DC/DC Converter – COUT Selection 9 IL, PK 13mArms 6.67μ 2.96μ 32 99m 32     t tonI I L rms Irms Vripple
  • 10. CLP 100pF Rf 560k ESR 0.103 Cin 220uF L 150u 1 2 Rload 180 R1 9.1k R2 150k Q1 Q2SD2623 OUT R3 0.8 U1 NJM2377 -IN FB GND OUTV+ CS CT REF Rt 24k Ct 470pF IC = 0 D1 HRU0302A 0 V+ 5V 0 IN Cout 220uF Rsf 160k CS 4.7uF IC = 0 0 Rsr 180k 0 3. NJM2377 – Application Circuit Configuration 10 5V to 9V at 50mA Boost DC/DC Converter (fOSC=150kHz) U1: New Japan Radio NJM2377 Control IC Q1: Panasonic 2SD2623 NPN D1: Renesas HRU0302A Schottky Barrier Diode 3.1) 3.2) 3.3)
  • 11. • First, caculate Rsr by Rsr>VTHLA(max.)/ICHG(min.) (1.8V/10μA=180k) • During steady state operation, I(CS)=IBCS=250ns. Maximum duty cycle is determined by V(CS). Set V(CS)=VTHCS(max.)=0.8V, Rsf is calculated by 160k ΩRsf 1.5 Rsf180k 180k 0.8 .)(max        REFTHCS V RsfRsr Rsr V • Soft-start time or tduty(max.) is time needed for V(CS) to reach VTHCS(max.) by charging capacitor Cs. • CS is charged by current Ics, calculated by: then 3.1 NJM2377 – Soft Start Time Setting 11 NJM2377 soft-start time is determined by Rsr, CS and Rsf 4.41uA 160k180k 1.5      RsfRsr V I REF CS 109ms 30μ4.41μ 4.7μ0.8 .)(max .)(max        CHGCS THCS duty II CsV t
  • 12. 3.1 NJM2377 – Soft Start Time Setting (Simulation) 12 NJM2377 soft-start time is determined by Rsr, Rsf and CS • Select Rsr, Rsf, and CS then check tduty(max.) by simulation. • tduty(max.)=109.170ms. for CS=4.7uF • tduty(max.)=76.653ms for CS=3.3uF and tduty(max.)=157.953ms for CS=6.8uF. CS {CS} IC = 0 PARAMETERS: CS = 4.7u CLP 100pF Rf 560k Cin 220uF U1 NJM2377 -IN FB GND OUTV+ CS CT REF Rt 10MEG Ct 10nF IC = 0 0 CS V+ 5V IN REF 0 Rsf 160k 0 Rsr 180k 0 R1 1MEG .TRAN 0 500ms 0 Time 0s 250ms 500ms V(CS) 0V 0.5V 1.0V 1.5V (109.170m,800.000m) (76.653m,800.000m) (157.953m,800.000m)
  • 13. 3.2 NJM2377 – Oscillation Frequency Setting • CT = 470pF and RT = 24kΩ to set an oscillation frequency to be 150kHz. 13 V CLP 100pF Rf 560k Cin 220uF U1 NJM2377 -IN FB GND OUTV+ CS CT REF Rt 24k Ct 470pF IC = 0 0 V+ 5V IN 0 Rsf 160k CS 4.7uF IC = 0 0 Rsr 180k 0 R1 1MEG NJM2377 oscillation frequency fOSC is determined by CT and RT fosc=150kHz RT=24k
  • 14. 3.3 Error Amp Feed Back Loop Setting • For F.B loop gain G > 100, Rf is calculated as: • CLP is suggested to use value between 100pF~1,000pF • Inappropriate F.B loop design can cause an oscillation. PSpice is used to verify the ripple voltage vs. Rf and CLP values. • Simulation result shows Vripple of the circuit with RF=1000k  compare to the circuit with RF=560k. • Changing RF to be 560k  can reduce Vripple from 34mVp-p to less than 20mVp-p. 14 1000kRf 177 150k//9.1k 1,000k 2//1    RR Rf G Error Amp Feed Back Loop is determined by R1, R2, Rf and CLP Time 79.00ms 79.25ms 79.50ms 79.75ms 80.00ms V(OUT) 9.04V 9.06V 9.08V 9.10V 9.12V RF=1000k, CLP=100pF RF=560k, CLP=100pF
  • 15. 4. Performance Characteristics CLP 100pF Rf 560k ESR 0.103 Cin 220uF L 150u 1 2 Rload 180 R1 9.1k R2 150k Q1 Q2SD2623 OUT R3 0.8 U1 NJM2377 -IN FB GND OUTV+ CS CT REF Rt 24k Ct 470pF IC = 0 D1 HRU0302A 0 V+ 5V 0 IN Cout 220uF Rsf 160k CS 4.7uF IC = 0 0 Rsr 180k 0 15 • VIN=5V • VOUT=9V • IOUT=50mA • Vripple(P-P)= less than 30mV • Efficiency= 75% at IOUT=50mA U1: New Japan Radio NJM2377 Control IC Q1: Panasonic 2SD2623 NPN D1: Renesas HRU0302A Schottky Barrier Diode
  • 16. 4.1 Output Start-Up Voltage and Current • Simulation result shows output start-up time of the circuit. This circuit needs 55ms to reach steady state. 16 Time 0s 20ms 40ms 60ms 80ms 90ms V(OUT) 4V 5V 6V 7V 8V 9V 10V I(Rload) 20mA 30mA 40mA 50mA SEL>> V(OUT) I(Rload)
  • 17. Time 60ms 65ms 70ms 75ms 80ms 85ms 90ms V(OUT) 9.05V 9.06V 9.07V 9.08V 9.09V 9.10V SEL>> Time 89.90ms 89.91ms 89.92ms 89.93ms 89.94ms 89.95ms 89.96ms 89.97ms 89.98ms 89.99ms V(OUT) 9.060V 9.065V 9.070V 9.075V 9.080V 4.2 Output Ripple Voltage • Simulation result shows output ripple voltage caused by switching(18mVP-P) and F.B loop oscillation(25mVP-P). 17 V(OUT) V(OUT) [ZOOM] 18mVP-P 25mVP-P
  • 18. 4.3 Efficiency • Efficiency of the converter at load IOUT=50mA is 75.5%. 18 Time 70ms 75ms 80ms 85ms 90ms 100*W(Rload)/rms(-W(V+)) 0 25 50 75 100 (90.000m,75.500) Efficiency
  • 19. 4.4 Step-Load Response • Simulation result shows the transient response of the circuit, when load currents are 50mA to 10mA to 50mA steps . 19 V(OUT) I(L) I(Load) Time 60ms 65ms 70ms 75ms 80ms 85ms 90ms V(OUT) 9.050V 9.075V 9.100V 9.125V I(L) 0A 100mA 200mA I(I1) 0A 20mA 30mA 40mA 50mA SEL>>
  • 20. 5. Voltage and Current Simulation Result • Simulation result shows voltage and current of the devices. • Select L and Cout that can handle their Irms value. • The absolute maximum value of Q1 and D1 are compared to simulation result for stress analysis. 20 Time 0s 20ms 40ms 60ms 80ms 90ms 1 V(Cout:1) 2 rms(I(Cout)) 0V 5V 10V 1 0A 50mA 100mA 2 SEL>>SEL>> 1 V(D1:2)- V(D1:1) 2 I(D1) avg(I(D1)) 0V 10V 20V 1 100mA 200mA 300mA 2 >> 1 V(Q1:c) 2 I(Q1:c) 0V 5V 10V 15V 20V 1 250mA 500mA 2 >> I(L) rms(I(L)) 0A 200mAI(L) peak, rms I(L) = 261.054mA(peak) , 94.1399mA(rms) V(Q1:C), I(Q1:C) Q1 2SD2623: VCEO=20V, ICMAX=0.5A V(D1:K,D1:A), IF(D1) D1 HRU0302A: VRRM=20V, IO=0.3A(avg), IFSM=3A V(Cout), I(Cout) rms I(Cout) = 50.255mA(rms) 100% of Rated Value 100% of Rated Value
  • 21. Time 89.964ms 89.966ms 89.968ms 89.970ms 89.972ms 89.974ms 1 V(Q1:c) 2 I(Q1:c) 0V 5V 10V 15V 20V 1 >> 0A 100mA 200mA 300mA 2 1 V(Q1:c)*I(Q1:c) 2 avg(W(Q1)) 0W 200mW 400mW 600mW 1 SEL>> 0W 50mW 100mW 150mW 2 SEL>> 6.1 Bipolar Junction Transistor Losses • Simulation result shows waveforms of IC and VCE of transistor Q1.Loss in peak and average values are also shown. 21 100% of Rated Value (PC, max.=150mW) PC, avg.=17.254mW turn-on loss Conduction loss turn-off loss V(Q1:C), I(Q1:C) P(Q1) peak, avg
  • 22. Time 89.964ms 89.965ms 89.966ms 89.967ms 89.968ms 89.969ms 89.970ms 89.971ms 89.972ms 89.973ms 1 V(D1:1,D1:2) 2 I(D1) -10V -5V 0V 5V 10V 1 -200mA -100mA 0A 100mA 200mA 2 SEL>>SEL>> W(D1) avg(W(D1)) -100mW -50mW 0W 50mW 100mW 6.2 Schottky Barrier Diode Losses • Simulation result shows waveforms of IF and VAK of diode D1.Loss in peak and average values are also shown. 22 PD, avg.=18.45mW Reverse recovery loss Conduction loss V(D1:A,D1:K), I(D1 P(D1) peak, avg Reverse leakage loss Reverse recovery characteristic
  • 23. 7.1 Start-Up Sequencing Waveforms • Simulation result shows start-up sequencing waveforms, including V(OUT) and control signal (VRAMP, VOSC, and VFB). 23 V(OUT) V(FB) VOSC: V(CT) VRAMP: V(CS) Time 0s 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms V(OUT) 5.0V 6.0V 7.0V 8.0V 9.0V V(U1:CT) V(U1:CS) V(U1:FB) 0V 0.5V 1.0V 1.5V 2.0V 2.5V SEL>>
  • 24. 7.2 Switching Waveforms at Load 50 mA (RL=180) • Simulation result shows boost converter switching waveforms at load 50mA, including IL, VC(Q1), IC(Q1), I(D1) and V(OUT) 24 I(D1) I(L) VC(Q1) IC(Q1) V(OUT) Time 89.950ms 89.960ms 89.970ms 89.980ms89.944ms V(OUT) 9.050V 9.075V 9.100V SEL>> I(D1) -50mA 0A 50mA 100mA 150mA 1 V(Q1:c) 2 I(Q1:c) 0V 2.5V 5.0V 7.5V 10.0V 1 0A 100mA 150mA 200mA 2 >> I(L) 0A 50mA 100mA 150mA 200mA
  • 25. 7.3 Switching Waveforms at Load 10 mA (RL=900) • Simulation result shows boost converter switching waveforms at load 10mA, including IL, VC(Q1), IC(Q1), I(D1) and V(OUT) 25 I(D1) I(L) VC(Q1) IC(Q1) V(OUT) Time 89.944ms 89.952ms 89.960ms 89.968ms 89.976ms 89.984ms V(OUT) 9.075V 9.100V 9.125V I(D1) -25mA 25mA 50mA 75mA SEL>> 1 V(Q1:c) 2 I(Q1:c) -4V 4V 8V 12V 1 >> -25mA 0A 25mA 50mA 75mA 2 I(L) -25mA 0A 25mA 50mA 75mA
  • 26. SIMULATION SETTINGS 1 • .TRAN 0 90ms 0.1ms 150n • .OPTIONS ABSTOL= 10.0n • .OPTIONS RELTOL= 0.01 • .OPTIONS VNTOL= 10.0u 26 These settings are for: • Start-Up Transient Simulation (0~90ms.) • Voltage and Current Simulation • Step-Load Response
  • 27. SIMULATION SETTINGS 2 • .TRAN 0 90ms 70ms 100n • .OPTIONS ABSTOL= 10.0n • .OPTIONS RELTOL= 0.01 • .OPTIONS VNTOL= 10.0u 27 These settings are for: • Efficiency and Losses • Switching Waveforms