SlideShare ist ein Scribd-Unternehmen logo
1 von 35
Downloaden Sie, um offline zu lesen
A Tactile P300-based
Brain-computer Interface
Accuracy Improvement
201420642 Takumi Kodama
Multimedia Laboratory, Department of Computer Science
Supervisors: Shoji Makino and Tomasz M. Rutkowski*
1
*The university of Tokyo, Tokyo, Japan
@ Midterm Presentation for Master’s Degree on July, 2016
1: Introduction - What’s BCI?
● Brain Computer Interface (BCI)
○ Neurotechnology
○ Exploits user intention ONLY using brain waves
2
1: Introduction - ALS Patiens
● Amyotrophic lateral sclerosis (ALS) patients
○ Have difficulty to move their muscle by themselves
○ BCI could be a communicating tool for ALS patients
3
http://www.businessinsider.com/an-eye-tracking-interface-helps-als-patients-use-computers-2015-9
Dr. Hawkins
● Tactile (Touch) P300-based BCI paradigm
○ P300 responses were evoked by external (touch) stimuli
○ Predict user’s intentions with finding P300 responses
1: Introduction - Research Approach
41, Stimulate touch sensories 2, Classify brain response
A
B
A
B
3, Predict user intention
92.0% 43.3%
A B
Target
Non-Target
P300 brainwave response
● Full-body Tactile P300-based BCI (fbBCI) [1]
○ Applied six vibrotactile stimulus patterns to user’s back
○ User can use fbBCI with their body laying down
1: Introduction - Our Method
5[1] Kodama T, Shimizu K, Rutkowski TM. Full Body Spatial Tactile BCI for Direct Brain-robot Control. In: Proceedings of the Sixth International
Brain-Computer Interface Meeting. Asilomar Conference Center, Pacific Grove, CA USA: Verlag der Technischen Universitaet Graz; 2016. p. 68.
● Full-body Tactile P300-based BCI (fbBCI)
1: Introduction - Demonstration
6
https://www.youtube.com/watch?v=sn6OEBBKsPQ
● P300 responses were confirmed (> 4 μV) in each channel
1: Introduction - fbBCI results (1)
7
Target
Non-Target
● Problem: Not high Online classification accuracies
○ SWLDA : 53.67 % (10 users average)
● not enough online results to assert fbBCI validity ...
1: Introduction - fbBCI results (2)
8
● Improve the fbBCI classification accuracies
● Affirm the potential validity of proposed fbBCI
modality
1: Introduction - Research Purpose
9
● Test several signal preprocessing combinations ①
○ Downsampling
○ Epoch averaging
● Classify with three different machine learning methods ②
○ SWLDA
○ Linear SVM
○ Non-linear SVM (Gaussian kernel)
2: Method - Conditions
10
CommandBrainwave
① ②
● How to train the P300-based BCI classifier?
○ Each stimulus pattern were given 10 times randomly
○ Altogether 360 (60×6) times for a training classifier
2: Method - Training phase
11
ω1 : Target
Classifier (2cls)
Target 1
1
2
34
5
6
1
6
5
4
3
2
ω2 : Non-Target
× 10
× 10
× 10
× 10
× 10
× 10
Session: 1/6
● How to train the P300-based BCI classifier?
○ Each stimulus pattern were given 10 times randomly
○ Altogether 360 (60×6) times for a training classifier
2: Method - Training phase
12
ω1 : Target
Classifier (2cls)
Target 2
1
2
34
5
6
1 × 10
2 × 10
Session: 2/6
6
5
4
3
2
ω2 : Non-Target
× 20
× 20
× 20
× 20
× 10
1 × 10
● How to train the P300-based BCI classifier?
○ Each stimulus pattern were given 10 times randomly
○ Altogether 360 (60×6) times for a training classifier
2: Method - Training phase
13
ω1 : Target
Classifier (2cls)
Target 3
1
2
34
5
6 ω2 : Non-Target
Session: 3/6
1 × 10
2 × 10
6
5
4
3
2
× 30
× 30
× 30
× 20
× 20
1 × 20
3 × 10
● How to train the P300-based BCI classifier?
○ Each stimulus pattern were given 10 times randomly
○ Altogether 360 (60×6) times for a training classifier
2: Method - Training phase
14
ω1 : Target
Classifier (2cls)
Target 4
1
2
34
5
6 ω2 : Non-Target
Session: 4/6
1 × 10
2 × 10
6
5
4
3
2
× 40
× 40
× 30
× 30
× 30
1 × 30
3 × 10
4 × 10
● How to train the P300-based BCI classifier?
○ Each stimulus pattern were given 10 times randomly
○ Altogether 360 (60×6) times for a training classifier
2: Method - Training phase
15
ω1 : Target
Classifier (2cls)
Target 5
1
2
34
5
6 ω2 : Non-Target
Session: 5/6
1 × 10
2 × 10
6
5
4
3
2
× 50
× 40
× 40
× 40
× 40
1 × 40
3 × 10
4 × 10
5 × 10
● How to train the P300-based BCI classifier?
○ Each stimulus pattern were given 10 times randomly
○ Altogether 360 (60×6) times for a training classifier
2: Method - Training phase
16
ω1 : Target
Classifier (2cls)
Target 6
1
2
34
5
6 ω2 : Non-Target
Session: 6/6
1 × 10
2 × 10
6
5
4
3
2
× 50
× 50
× 50
× 50
× 50
1 × 50
3 × 10
4 × 10
5 × 10
6 × 10
60 300
2: Method - Evaluation phase
● How to predict user’s intention with trained classifier?
○ Correct example
17
ω1 : Target
Classifier
(2cls)
1 × 10
72.6 %
Target 1
Session: 1/6
ω1 : Target
Classifier
(2cls)
2 × 10
24.4 %
ω1 : Target
Classifier
(2cls)
3 × 10
56.3 %
ω1 : Target
Classifier
(2cls)
4 × 10
44.1 %
ω1 : Target
Classifier
(2cls)
5 × 10
62.9 %
ω1 : Target
Classifier
(2cls)
6 × 10
39.8 %
1
2
34
5
6
2: Method - Evaluation phase
18
ω1 : Target
Classifier
(2cls)
1 × 10
35.1 %
Target 6
Session: 6/6
ω1 : Target
Classifier
(2cls)
2 × 10
48.1 %
ω1 : Target
Classifier
(2cls)
3 × 10
69.2 %
ω1 : Target
Classifier
(2cls)
4 × 10
54.3 %
ω1 : Target
Classifier
(2cls)
5 × 10
50.9 %
ω1 : Target
Classifier
(2cls)
6 × 10
64.3 %
1
2
34
5
6
● How to predict user’s intention with trained classifier?
○ Wrong example
2: Method - Evaluation phase
Target 11/6
5
Target 2
Target 3
3
5
● Calculate stimulus pattern classification accuracy
○ How many sessions could the user classify targets?
Target 4
Target 5
Target 6
2
4
Result
1
Session
2/6
3/6
4/6
5/6
6/6
1 Trial
Classification accuracy rate:
4/6 = 0.667
⇒ 66.7 %
Correct
Correct
Wrong
Correct
Correct
Wrong
Target Status
2: Method - Signal Acquisition
20
● Event related potential (ERP) interval
○ Captures 800 ms long after vibrotactile stimulus onsets
○ will be converted to feature vectors with their potentials
ex.)
fs = 512 [Hz]
ERPinterval = 800 [ms] = 0.8 [sec]
Vlength = ceil(512・0.8) = 410
Vlength
VCh○○
p[0]
…
p[Vlength - 1]
Vlength = ceil( fs・ERPinterval)
where fs [Hz] , ERPinterval [sec]
Ch○○
2: Method - Signal Preprocessing(2)
21
● Downsampling
○ ERPs were decimated by
2 (256 Hz), 4 (128 Hz), 8 (64 Hz),
16 (32 Hz) or kept intact (512 Hz)
○ To reduce vector length Vlength
nd = 2 (256 Hz) nd = 16 (32 Hz)
Ch○○ Ch○○
22
● Epoch averaging
○ ERPs were averaged using 2, 5
or 10 ERPs, or no averaging
○ To reject background noise
ne = 1 ne = 10
Ch○○ Ch○○
2: Method - Signal Preprocessing(3)
● Concatenating feature vectors
2: Method - Feature Extraction
ex.)
fs = 256 [Hz] (nd = 2)
Vlength = ceil(256・0.8) = 205
23
…
Vlength
VCz …
Vlength
VPz …
Vlength
VCP6
…
…
… … ……V
ex.) VlengthALL = Vlength・8 = 205・8 = 1640
VlengthALL
…
Ch1 Ch2 Ch8
● Machine learning methods
○ SWLDA
○ Linear SVM
… K(u,v’) = u v’
○ Non-linear SVM (Gaussian)
… K(u,v’) = exp(-γ||u-v|| )
γ = 1/VlengthALL , c = 1
2: Method - Classification (1)
24
T
2
● Training the classifier
2: Method - Classification (2)
25
VT1
VT2
VlengthALL VlengthALL
VN1
VN2
VTmax
・
・
・
・
・
・
VNmax
・
・
・
VTmax = 60 / ne VNmax = 300 / ne
Classifier (2cls)
Non-TargetTarget
● Training the classifier
2: Method - Classification (2)
26
VT1
VT2
VlengthALL VlengthALL
VN1
VN2
Classifier (2cls)
VTmax
・
・
・
・
・
・
VNmax
VTmax = 60 / ne VNmax = 60 / ne
Random choose
as many as Tmax
}
Non-TargetTarget
● Evaluation with trained classifier
○ Same nd and ne were applied
2: Method - Classification (3)
27
VT1
VlengthALL
・
・
VTmax = 10 / ne
Target? or
Non-Target? Classifier (2cls)
Test data
● SWLDA classification accuracies
○ BEST: 56.33 % (nd = 4, ne = 1)
3: Results - SWLDA
28
Number of epoch averaging (ne)
Signal decimation (nd)
● Linear SVM classification accuracies
○ BEST: 57.33 % (nd = 16, ne = 10)
3: Results - Linear SVM
29
Signal decimation (nd)
Number of epoch averaging (ne)
● Non-linear SVM classification accuracies
○ BEST: 59.83 % (nd = 4, ne = 1)
3: Results - Non-linear SVM
30
Signal decimation (nd)
Number of epoch averaging (ne)
4: Discussion and conclusions
31
● fbBCI classification accuracy has been improved
○ Both nd and ne combinations were tested
○ 53.67 % in previous reported results
⇒ 59.83 % by non-linear SVM (nd = 4, ne = 1)
○ 57.33 % by linear SVM and 56.33 % by SWLDA
● The potential validity of fbBCI modality was reconfirmed
○ Expect to improve a QoL for ALS patients
● However, more analyses would be required
○ Only 10 healthy users of fbBCI paradigm
○ Need higher accuracies for a practical application
● [1] Kodama T, Shimizu K, Rutkowski TM. Full Body Spatial Tactile BCI for Direct
Brain-robot Control. In: Proceedings of the Sixth International Brain-Computer
Interface Meeting: BCI Past, Present, and Future. Asilomar Conference Center,
Pacific Grove, CA USA: Verlag der Technischen Universitaet Graz; 2016. p. 68.
● [2] Kodama T, Shimizu K, Makino S, Rutkowski TM. Tactile Brain–computer
Interface Based on Classification of P300 Responses Evoked by Spatial Vibrotactile
Stimuli Delivered to the User’s Full Body. In: Asia-Pacific Signal and Information
Processing Association, 2016 Annual Summit and Conference (APSIPA ASC 2016).
APSIPA. Jeju, Korea: IEEE Press; 2016. p. (submitted).
● [3] Kodama T, Shimizu K, Makino S, Rutkowski TM. Full–body Tactile P300–based
Brain–computer Interface Accuracy Refinement. In: Proceedings of the International
Conference on Bio-engineering for Smart Technologies (BioSMART 2016). Dubai,
UAE: IEEE Press; 2016. p. (submitted).
● [4] Kodama T, Makino S, Rutkowski TM. Toward a QoL improvement of ALS
patients: Development of the Full-body P300-based Tactile Brain--Computer
Interface. In: Proceedings of The AEARU Young Researchers International
Conference (YRIC-2016). University of Tsukuba; 2016. p. (submitted).
Publications
32
● [5] Shimizu K, Kodama T, Jurica P, Cichocki A, Rutkowski TM. Tactile BCI
Paradigms for Robots’ Control. In: 6th Conference on Systems Neuroscience and
Rehabilitation 2015 (SNR 2015). Tokorozawa, Japan; 2015. p. 28.
● [6] Rutkowski TM, Shimizu K, Kodama T, Jurica P, Cichocki A, Shinoda H.
Controlling a Robot with Tactile Brain-computer Interfaces. In: Abstracts of the 38th
Annual Meeting of the Japan Neuroscience Society - Neuroscience 2015. BMI/BCI.
Kobe, Japan: Japan Neuroscience Society; 2015. p. 2P332.
● [7] Shimizu K, Aminaka D, Kodama T, Nakaizumi C, Jurica P, Cichocki A, et al.
Brain-robot Interfaces Using Spatial Tactile and Visual BCI Paradigms - Brains
Connecting to the Internet of Things Approach. In: The International Conference on
Brain Informatics & Health - Type II Paper: Proceedings 2015. London, UK: Imperial
College London; 2015. p. 9-10.
● [8] Rutkowski TM, Shimizu K, Kodama T, Jurica P, Cichocki A. Brain--robot
Interfaces Using Spatial Tactile BCI Paradigms - Symbiotic Brain-robot Applications.
In: Symbiotic Interaction. vol. 9359 of Lecture Notes in Computer Science.
Switzerland: Springer International Publishing; 2015. p. 132-137.
Publications (co-author)
33
34
Thanks for the listening!
● Bandpass filtering
○ Set at 0.1 ~ 30 Hz (fixed)
○ To limit noise of exciters (40 Hz)
2: Method - Signal Preprocessing(1)
35
Ch○○

Weitere ähnliche Inhalte

Ähnlich wie A Tactile P300-based Brain-Computer Interface Accuracy Improvement

Convolutional Neural Network Architecture and Input Volume Matrix Design for ...
Convolutional Neural Network Architecture and Input Volume Matrix Design for ...Convolutional Neural Network Architecture and Input Volume Matrix Design for ...
Convolutional Neural Network Architecture and Input Volume Matrix Design for ...Takumi Kodama
 
Full Body Spatial Vibrotactile Brain Computer Interface Paradigm
Full Body Spatial Vibrotactile Brain Computer Interface ParadigmFull Body Spatial Vibrotactile Brain Computer Interface Paradigm
Full Body Spatial Vibrotactile Brain Computer Interface ParadigmTakumi Kodama
 
Integration of Unsupervised and Supervised Criteria for DNNs Training
Integration of Unsupervised and Supervised Criteria for DNNs TrainingIntegration of Unsupervised and Supervised Criteria for DNNs Training
Integration of Unsupervised and Supervised Criteria for DNNs TrainingFrancisco Zamora-Martinez
 
Recurrent Neural Networks RNN - Xavier Giro - UPC TelecomBCN Barcelona 2020
Recurrent Neural Networks RNN - Xavier Giro - UPC TelecomBCN Barcelona 2020Recurrent Neural Networks RNN - Xavier Giro - UPC TelecomBCN Barcelona 2020
Recurrent Neural Networks RNN - Xavier Giro - UPC TelecomBCN Barcelona 2020Universitat Politècnica de Catalunya
 
Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...
Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...
Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...sugiuralab
 
A Study of Wearable Accelerometers Layout for Human Activity Recognition(Asia...
A Study of Wearable Accelerometers Layout for Human Activity Recognition(Asia...A Study of Wearable Accelerometers Layout for Human Activity Recognition(Asia...
A Study of Wearable Accelerometers Layout for Human Activity Recognition(Asia...sugiuralab
 
Introduction to computing Processing and performance.pdf
Introduction to computing Processing and performance.pdfIntroduction to computing Processing and performance.pdf
Introduction to computing Processing and performance.pdfTulasiramKandula1
 
1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jef...
1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jef...1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jef...
1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jef...PyData
 
Vladimir Milov and Andrey Savchenko - Classification of Dangerous Situations...
Vladimir Milov and  Andrey Savchenko - Classification of Dangerous Situations...Vladimir Milov and  Andrey Savchenko - Classification of Dangerous Situations...
Vladimir Milov and Andrey Savchenko - Classification of Dangerous Situations...AIST
 
Deep learning @ University of Oradea - part I (16 Jan. 2018)
Deep learning @ University of Oradea - part I (16 Jan. 2018)Deep learning @ University of Oradea - part I (16 Jan. 2018)
Deep learning @ University of Oradea - part I (16 Jan. 2018)Vlad Ovidiu Mihalca
 
The Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intelligence)
The Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intelligence)The Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intelligence)
The Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intelligence)Universitat Politècnica de Catalunya
 
Methodology (DLAI D6L2 2017 UPC Deep Learning for Artificial Intelligence)
Methodology (DLAI D6L2 2017 UPC Deep Learning for Artificial Intelligence)Methodology (DLAI D6L2 2017 UPC Deep Learning for Artificial Intelligence)
Methodology (DLAI D6L2 2017 UPC Deep Learning for Artificial Intelligence)Universitat Politècnica de Catalunya
 
Computer Architecture and Organization
Computer Architecture and OrganizationComputer Architecture and Organization
Computer Architecture and Organizationssuserdfc773
 
Recsys 2016: Modeling Contextual Information in Session-Aware Recommender Sys...
Recsys 2016: Modeling Contextual Information in Session-Aware Recommender Sys...Recsys 2016: Modeling Contextual Information in Session-Aware Recommender Sys...
Recsys 2016: Modeling Contextual Information in Session-Aware Recommender Sys...Bartlomiej Twardowski
 
Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...
Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...
Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...Ricardo Guerrero Gómez-Olmedo
 

Ähnlich wie A Tactile P300-based Brain-Computer Interface Accuracy Improvement (20)

Convolutional Neural Network Architecture and Input Volume Matrix Design for ...
Convolutional Neural Network Architecture and Input Volume Matrix Design for ...Convolutional Neural Network Architecture and Input Volume Matrix Design for ...
Convolutional Neural Network Architecture and Input Volume Matrix Design for ...
 
Full Body Spatial Vibrotactile Brain Computer Interface Paradigm
Full Body Spatial Vibrotactile Brain Computer Interface ParadigmFull Body Spatial Vibrotactile Brain Computer Interface Paradigm
Full Body Spatial Vibrotactile Brain Computer Interface Paradigm
 
Integration of Unsupervised and Supervised Criteria for DNNs Training
Integration of Unsupervised and Supervised Criteria for DNNs TrainingIntegration of Unsupervised and Supervised Criteria for DNNs Training
Integration of Unsupervised and Supervised Criteria for DNNs Training
 
Recurrent Neural Networks RNN - Xavier Giro - UPC TelecomBCN Barcelona 2020
Recurrent Neural Networks RNN - Xavier Giro - UPC TelecomBCN Barcelona 2020Recurrent Neural Networks RNN - Xavier Giro - UPC TelecomBCN Barcelona 2020
Recurrent Neural Networks RNN - Xavier Giro - UPC TelecomBCN Barcelona 2020
 
IDS for IoT.pptx
IDS for IoT.pptxIDS for IoT.pptx
IDS for IoT.pptx
 
Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...
Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...
Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...
 
PSIVT2015_slide
PSIVT2015_slidePSIVT2015_slide
PSIVT2015_slide
 
A Study of Wearable Accelerometers Layout for Human Activity Recognition(Asia...
A Study of Wearable Accelerometers Layout for Human Activity Recognition(Asia...A Study of Wearable Accelerometers Layout for Human Activity Recognition(Asia...
A Study of Wearable Accelerometers Layout for Human Activity Recognition(Asia...
 
Introduction to computing Processing and performance.pdf
Introduction to computing Processing and performance.pdfIntroduction to computing Processing and performance.pdf
Introduction to computing Processing and performance.pdf
 
1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jef...
1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jef...1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jef...
1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jef...
 
FYP presentation
FYP presentationFYP presentation
FYP presentation
 
Vladimir Milov and Andrey Savchenko - Classification of Dangerous Situations...
Vladimir Milov and  Andrey Savchenko - Classification of Dangerous Situations...Vladimir Milov and  Andrey Savchenko - Classification of Dangerous Situations...
Vladimir Milov and Andrey Savchenko - Classification of Dangerous Situations...
 
Deep learning @ University of Oradea - part I (16 Jan. 2018)
Deep learning @ University of Oradea - part I (16 Jan. 2018)Deep learning @ University of Oradea - part I (16 Jan. 2018)
Deep learning @ University of Oradea - part I (16 Jan. 2018)
 
Csc446: Pattern Recognition
Csc446: Pattern Recognition Csc446: Pattern Recognition
Csc446: Pattern Recognition
 
Eye deep
Eye deepEye deep
Eye deep
 
The Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intelligence)
The Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intelligence)The Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intelligence)
The Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intelligence)
 
Methodology (DLAI D6L2 2017 UPC Deep Learning for Artificial Intelligence)
Methodology (DLAI D6L2 2017 UPC Deep Learning for Artificial Intelligence)Methodology (DLAI D6L2 2017 UPC Deep Learning for Artificial Intelligence)
Methodology (DLAI D6L2 2017 UPC Deep Learning for Artificial Intelligence)
 
Computer Architecture and Organization
Computer Architecture and OrganizationComputer Architecture and Organization
Computer Architecture and Organization
 
Recsys 2016: Modeling Contextual Information in Session-Aware Recommender Sys...
Recsys 2016: Modeling Contextual Information in Session-Aware Recommender Sys...Recsys 2016: Modeling Contextual Information in Session-Aware Recommender Sys...
Recsys 2016: Modeling Contextual Information in Session-Aware Recommender Sys...
 
Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...
Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...
Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...
 

Mehr von Takumi Kodama

Brain-Computer interface の現状 (The state-of-art of the Brain-Computer Interfac...
Brain-Computer interface の現状 (The state-of-art of the Brain-Computer Interfac...Brain-Computer interface の現状 (The state-of-art of the Brain-Computer Interfac...
Brain-Computer interface の現状 (The state-of-art of the Brain-Computer Interfac...Takumi Kodama
 
研究留学ってどうよ? | How was the studying abroad for a research institute?
研究留学ってどうよ? | How was the studying abroad for a research institute?研究留学ってどうよ? | How was the studying abroad for a research institute?
研究留学ってどうよ? | How was the studying abroad for a research institute?Takumi Kodama
 
Full Body Tactile Brain-Computer Interface
Full Body Tactile Brain-Computer InterfaceFull Body Tactile Brain-Computer Interface
Full Body Tactile Brain-Computer InterfaceTakumi Kodama
 
観光用リアルタイム画像認識システムの構築 | Development of the real-time image recognition system ...
観光用リアルタイム画像認識システムの構築 | Development of the real-time image recognition system ...観光用リアルタイム画像認識システムの構築 | Development of the real-time image recognition system ...
観光用リアルタイム画像認識システムの構築 | Development of the real-time image recognition system ...Takumi Kodama
 
Spatial tactile brain-computer interface paradigm by applying vibration stimu...
Spatial tactile brain-computer interface paradigm by applying vibration stimu...Spatial tactile brain-computer interface paradigm by applying vibration stimu...
Spatial tactile brain-computer interface paradigm by applying vibration stimu...Takumi Kodama
 
Hybrid BCI combination with Tactile P300 and SSVEP Paradigm
Hybrid BCI combination with Tactile P300 and SSVEP ParadigmHybrid BCI combination with Tactile P300 and SSVEP Paradigm
Hybrid BCI combination with Tactile P300 and SSVEP ParadigmTakumi Kodama
 

Mehr von Takumi Kodama (6)

Brain-Computer interface の現状 (The state-of-art of the Brain-Computer Interfac...
Brain-Computer interface の現状 (The state-of-art of the Brain-Computer Interfac...Brain-Computer interface の現状 (The state-of-art of the Brain-Computer Interfac...
Brain-Computer interface の現状 (The state-of-art of the Brain-Computer Interfac...
 
研究留学ってどうよ? | How was the studying abroad for a research institute?
研究留学ってどうよ? | How was the studying abroad for a research institute?研究留学ってどうよ? | How was the studying abroad for a research institute?
研究留学ってどうよ? | How was the studying abroad for a research institute?
 
Full Body Tactile Brain-Computer Interface
Full Body Tactile Brain-Computer InterfaceFull Body Tactile Brain-Computer Interface
Full Body Tactile Brain-Computer Interface
 
観光用リアルタイム画像認識システムの構築 | Development of the real-time image recognition system ...
観光用リアルタイム画像認識システムの構築 | Development of the real-time image recognition system ...観光用リアルタイム画像認識システムの構築 | Development of the real-time image recognition system ...
観光用リアルタイム画像認識システムの構築 | Development of the real-time image recognition system ...
 
Spatial tactile brain-computer interface paradigm by applying vibration stimu...
Spatial tactile brain-computer interface paradigm by applying vibration stimu...Spatial tactile brain-computer interface paradigm by applying vibration stimu...
Spatial tactile brain-computer interface paradigm by applying vibration stimu...
 
Hybrid BCI combination with Tactile P300 and SSVEP Paradigm
Hybrid BCI combination with Tactile P300 and SSVEP ParadigmHybrid BCI combination with Tactile P300 and SSVEP Paradigm
Hybrid BCI combination with Tactile P300 and SSVEP Paradigm
 

Kürzlich hochgeladen

Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000Sapana Sha
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSSLeenakshiTyagi
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfSumit Kumar yadav
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.Nitya salvi
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencySheetal Arora
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 

Kürzlich hochgeladen (20)

Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSS
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 

A Tactile P300-based Brain-Computer Interface Accuracy Improvement

  • 1. A Tactile P300-based Brain-computer Interface Accuracy Improvement 201420642 Takumi Kodama Multimedia Laboratory, Department of Computer Science Supervisors: Shoji Makino and Tomasz M. Rutkowski* 1 *The university of Tokyo, Tokyo, Japan @ Midterm Presentation for Master’s Degree on July, 2016
  • 2. 1: Introduction - What’s BCI? ● Brain Computer Interface (BCI) ○ Neurotechnology ○ Exploits user intention ONLY using brain waves 2
  • 3. 1: Introduction - ALS Patiens ● Amyotrophic lateral sclerosis (ALS) patients ○ Have difficulty to move their muscle by themselves ○ BCI could be a communicating tool for ALS patients 3 http://www.businessinsider.com/an-eye-tracking-interface-helps-als-patients-use-computers-2015-9 Dr. Hawkins
  • 4. ● Tactile (Touch) P300-based BCI paradigm ○ P300 responses were evoked by external (touch) stimuli ○ Predict user’s intentions with finding P300 responses 1: Introduction - Research Approach 41, Stimulate touch sensories 2, Classify brain response A B A B 3, Predict user intention 92.0% 43.3% A B Target Non-Target P300 brainwave response
  • 5. ● Full-body Tactile P300-based BCI (fbBCI) [1] ○ Applied six vibrotactile stimulus patterns to user’s back ○ User can use fbBCI with their body laying down 1: Introduction - Our Method 5[1] Kodama T, Shimizu K, Rutkowski TM. Full Body Spatial Tactile BCI for Direct Brain-robot Control. In: Proceedings of the Sixth International Brain-Computer Interface Meeting. Asilomar Conference Center, Pacific Grove, CA USA: Verlag der Technischen Universitaet Graz; 2016. p. 68.
  • 6. ● Full-body Tactile P300-based BCI (fbBCI) 1: Introduction - Demonstration 6 https://www.youtube.com/watch?v=sn6OEBBKsPQ
  • 7. ● P300 responses were confirmed (> 4 μV) in each channel 1: Introduction - fbBCI results (1) 7 Target Non-Target
  • 8. ● Problem: Not high Online classification accuracies ○ SWLDA : 53.67 % (10 users average) ● not enough online results to assert fbBCI validity ... 1: Introduction - fbBCI results (2) 8
  • 9. ● Improve the fbBCI classification accuracies ● Affirm the potential validity of proposed fbBCI modality 1: Introduction - Research Purpose 9
  • 10. ● Test several signal preprocessing combinations ① ○ Downsampling ○ Epoch averaging ● Classify with three different machine learning methods ② ○ SWLDA ○ Linear SVM ○ Non-linear SVM (Gaussian kernel) 2: Method - Conditions 10 CommandBrainwave ① ②
  • 11. ● How to train the P300-based BCI classifier? ○ Each stimulus pattern were given 10 times randomly ○ Altogether 360 (60×6) times for a training classifier 2: Method - Training phase 11 ω1 : Target Classifier (2cls) Target 1 1 2 34 5 6 1 6 5 4 3 2 ω2 : Non-Target × 10 × 10 × 10 × 10 × 10 × 10 Session: 1/6
  • 12. ● How to train the P300-based BCI classifier? ○ Each stimulus pattern were given 10 times randomly ○ Altogether 360 (60×6) times for a training classifier 2: Method - Training phase 12 ω1 : Target Classifier (2cls) Target 2 1 2 34 5 6 1 × 10 2 × 10 Session: 2/6 6 5 4 3 2 ω2 : Non-Target × 20 × 20 × 20 × 20 × 10 1 × 10
  • 13. ● How to train the P300-based BCI classifier? ○ Each stimulus pattern were given 10 times randomly ○ Altogether 360 (60×6) times for a training classifier 2: Method - Training phase 13 ω1 : Target Classifier (2cls) Target 3 1 2 34 5 6 ω2 : Non-Target Session: 3/6 1 × 10 2 × 10 6 5 4 3 2 × 30 × 30 × 30 × 20 × 20 1 × 20 3 × 10
  • 14. ● How to train the P300-based BCI classifier? ○ Each stimulus pattern were given 10 times randomly ○ Altogether 360 (60×6) times for a training classifier 2: Method - Training phase 14 ω1 : Target Classifier (2cls) Target 4 1 2 34 5 6 ω2 : Non-Target Session: 4/6 1 × 10 2 × 10 6 5 4 3 2 × 40 × 40 × 30 × 30 × 30 1 × 30 3 × 10 4 × 10
  • 15. ● How to train the P300-based BCI classifier? ○ Each stimulus pattern were given 10 times randomly ○ Altogether 360 (60×6) times for a training classifier 2: Method - Training phase 15 ω1 : Target Classifier (2cls) Target 5 1 2 34 5 6 ω2 : Non-Target Session: 5/6 1 × 10 2 × 10 6 5 4 3 2 × 50 × 40 × 40 × 40 × 40 1 × 40 3 × 10 4 × 10 5 × 10
  • 16. ● How to train the P300-based BCI classifier? ○ Each stimulus pattern were given 10 times randomly ○ Altogether 360 (60×6) times for a training classifier 2: Method - Training phase 16 ω1 : Target Classifier (2cls) Target 6 1 2 34 5 6 ω2 : Non-Target Session: 6/6 1 × 10 2 × 10 6 5 4 3 2 × 50 × 50 × 50 × 50 × 50 1 × 50 3 × 10 4 × 10 5 × 10 6 × 10 60 300
  • 17. 2: Method - Evaluation phase ● How to predict user’s intention with trained classifier? ○ Correct example 17 ω1 : Target Classifier (2cls) 1 × 10 72.6 % Target 1 Session: 1/6 ω1 : Target Classifier (2cls) 2 × 10 24.4 % ω1 : Target Classifier (2cls) 3 × 10 56.3 % ω1 : Target Classifier (2cls) 4 × 10 44.1 % ω1 : Target Classifier (2cls) 5 × 10 62.9 % ω1 : Target Classifier (2cls) 6 × 10 39.8 % 1 2 34 5 6
  • 18. 2: Method - Evaluation phase 18 ω1 : Target Classifier (2cls) 1 × 10 35.1 % Target 6 Session: 6/6 ω1 : Target Classifier (2cls) 2 × 10 48.1 % ω1 : Target Classifier (2cls) 3 × 10 69.2 % ω1 : Target Classifier (2cls) 4 × 10 54.3 % ω1 : Target Classifier (2cls) 5 × 10 50.9 % ω1 : Target Classifier (2cls) 6 × 10 64.3 % 1 2 34 5 6 ● How to predict user’s intention with trained classifier? ○ Wrong example
  • 19. 2: Method - Evaluation phase Target 11/6 5 Target 2 Target 3 3 5 ● Calculate stimulus pattern classification accuracy ○ How many sessions could the user classify targets? Target 4 Target 5 Target 6 2 4 Result 1 Session 2/6 3/6 4/6 5/6 6/6 1 Trial Classification accuracy rate: 4/6 = 0.667 ⇒ 66.7 % Correct Correct Wrong Correct Correct Wrong Target Status
  • 20. 2: Method - Signal Acquisition 20 ● Event related potential (ERP) interval ○ Captures 800 ms long after vibrotactile stimulus onsets ○ will be converted to feature vectors with their potentials ex.) fs = 512 [Hz] ERPinterval = 800 [ms] = 0.8 [sec] Vlength = ceil(512・0.8) = 410 Vlength VCh○○ p[0] … p[Vlength - 1] Vlength = ceil( fs・ERPinterval) where fs [Hz] , ERPinterval [sec] Ch○○
  • 21. 2: Method - Signal Preprocessing(2) 21 ● Downsampling ○ ERPs were decimated by 2 (256 Hz), 4 (128 Hz), 8 (64 Hz), 16 (32 Hz) or kept intact (512 Hz) ○ To reduce vector length Vlength nd = 2 (256 Hz) nd = 16 (32 Hz) Ch○○ Ch○○
  • 22. 22 ● Epoch averaging ○ ERPs were averaged using 2, 5 or 10 ERPs, or no averaging ○ To reject background noise ne = 1 ne = 10 Ch○○ Ch○○ 2: Method - Signal Preprocessing(3)
  • 23. ● Concatenating feature vectors 2: Method - Feature Extraction ex.) fs = 256 [Hz] (nd = 2) Vlength = ceil(256・0.8) = 205 23 … Vlength VCz … Vlength VPz … Vlength VCP6 … … … … ……V ex.) VlengthALL = Vlength・8 = 205・8 = 1640 VlengthALL … Ch1 Ch2 Ch8
  • 24. ● Machine learning methods ○ SWLDA ○ Linear SVM … K(u,v’) = u v’ ○ Non-linear SVM (Gaussian) … K(u,v’) = exp(-γ||u-v|| ) γ = 1/VlengthALL , c = 1 2: Method - Classification (1) 24 T 2
  • 25. ● Training the classifier 2: Method - Classification (2) 25 VT1 VT2 VlengthALL VlengthALL VN1 VN2 VTmax ・ ・ ・ ・ ・ ・ VNmax ・ ・ ・ VTmax = 60 / ne VNmax = 300 / ne Classifier (2cls) Non-TargetTarget
  • 26. ● Training the classifier 2: Method - Classification (2) 26 VT1 VT2 VlengthALL VlengthALL VN1 VN2 Classifier (2cls) VTmax ・ ・ ・ ・ ・ ・ VNmax VTmax = 60 / ne VNmax = 60 / ne Random choose as many as Tmax } Non-TargetTarget
  • 27. ● Evaluation with trained classifier ○ Same nd and ne were applied 2: Method - Classification (3) 27 VT1 VlengthALL ・ ・ VTmax = 10 / ne Target? or Non-Target? Classifier (2cls) Test data
  • 28. ● SWLDA classification accuracies ○ BEST: 56.33 % (nd = 4, ne = 1) 3: Results - SWLDA 28 Number of epoch averaging (ne) Signal decimation (nd)
  • 29. ● Linear SVM classification accuracies ○ BEST: 57.33 % (nd = 16, ne = 10) 3: Results - Linear SVM 29 Signal decimation (nd) Number of epoch averaging (ne)
  • 30. ● Non-linear SVM classification accuracies ○ BEST: 59.83 % (nd = 4, ne = 1) 3: Results - Non-linear SVM 30 Signal decimation (nd) Number of epoch averaging (ne)
  • 31. 4: Discussion and conclusions 31 ● fbBCI classification accuracy has been improved ○ Both nd and ne combinations were tested ○ 53.67 % in previous reported results ⇒ 59.83 % by non-linear SVM (nd = 4, ne = 1) ○ 57.33 % by linear SVM and 56.33 % by SWLDA ● The potential validity of fbBCI modality was reconfirmed ○ Expect to improve a QoL for ALS patients ● However, more analyses would be required ○ Only 10 healthy users of fbBCI paradigm ○ Need higher accuracies for a practical application
  • 32. ● [1] Kodama T, Shimizu K, Rutkowski TM. Full Body Spatial Tactile BCI for Direct Brain-robot Control. In: Proceedings of the Sixth International Brain-Computer Interface Meeting: BCI Past, Present, and Future. Asilomar Conference Center, Pacific Grove, CA USA: Verlag der Technischen Universitaet Graz; 2016. p. 68. ● [2] Kodama T, Shimizu K, Makino S, Rutkowski TM. Tactile Brain–computer Interface Based on Classification of P300 Responses Evoked by Spatial Vibrotactile Stimuli Delivered to the User’s Full Body. In: Asia-Pacific Signal and Information Processing Association, 2016 Annual Summit and Conference (APSIPA ASC 2016). APSIPA. Jeju, Korea: IEEE Press; 2016. p. (submitted). ● [3] Kodama T, Shimizu K, Makino S, Rutkowski TM. Full–body Tactile P300–based Brain–computer Interface Accuracy Refinement. In: Proceedings of the International Conference on Bio-engineering for Smart Technologies (BioSMART 2016). Dubai, UAE: IEEE Press; 2016. p. (submitted). ● [4] Kodama T, Makino S, Rutkowski TM. Toward a QoL improvement of ALS patients: Development of the Full-body P300-based Tactile Brain--Computer Interface. In: Proceedings of The AEARU Young Researchers International Conference (YRIC-2016). University of Tsukuba; 2016. p. (submitted). Publications 32
  • 33. ● [5] Shimizu K, Kodama T, Jurica P, Cichocki A, Rutkowski TM. Tactile BCI Paradigms for Robots’ Control. In: 6th Conference on Systems Neuroscience and Rehabilitation 2015 (SNR 2015). Tokorozawa, Japan; 2015. p. 28. ● [6] Rutkowski TM, Shimizu K, Kodama T, Jurica P, Cichocki A, Shinoda H. Controlling a Robot with Tactile Brain-computer Interfaces. In: Abstracts of the 38th Annual Meeting of the Japan Neuroscience Society - Neuroscience 2015. BMI/BCI. Kobe, Japan: Japan Neuroscience Society; 2015. p. 2P332. ● [7] Shimizu K, Aminaka D, Kodama T, Nakaizumi C, Jurica P, Cichocki A, et al. Brain-robot Interfaces Using Spatial Tactile and Visual BCI Paradigms - Brains Connecting to the Internet of Things Approach. In: The International Conference on Brain Informatics & Health - Type II Paper: Proceedings 2015. London, UK: Imperial College London; 2015. p. 9-10. ● [8] Rutkowski TM, Shimizu K, Kodama T, Jurica P, Cichocki A. Brain--robot Interfaces Using Spatial Tactile BCI Paradigms - Symbiotic Brain-robot Applications. In: Symbiotic Interaction. vol. 9359 of Lecture Notes in Computer Science. Switzerland: Springer International Publishing; 2015. p. 132-137. Publications (co-author) 33
  • 34. 34 Thanks for the listening!
  • 35. ● Bandpass filtering ○ Set at 0.1 ~ 30 Hz (fixed) ○ To limit noise of exciters (40 Hz) 2: Method - Signal Preprocessing(1) 35 Ch○○