SlideShare ist ein Scribd-Unternehmen logo
1 von 1
Downloaden Sie, um offline zu lesen
Improving System Performance and Frequency Stability with New VCXOs

Oscillators provide a consistent and stable timing reference for an electronic system or for a module(s) within the system.
In some applications, the output frequency of the oscillator needs to be adjusted after the system is in operation. System
designers can use a voltage-controlled oscillator (VCXO) which has the capability to adjust its output frequency.

This frequency tuning technique can be used in many types of equipment including products developed for telecom,
networking, wireless communications, instrumentation, audio/video and FPGA-based applications. One reason to use a
VCXO is when the output frequency needs to be synchonized to an external reference frequency. For example, when
data is transmitted from one end of a system to another (either wired or wirelessly), the data stream must synchronize on
the receiving side. If the data does not match, a VCXO on the reciever side will use the embedded clock information to
adjust or “pull” its frequency to synchronize with the exact frequency of the transitting side.

The VCXO is pulled by changing the control voltage. In quartz-based oscillators, this is typically done by placing a
varactor diode on both sides of the quartz crystal oscillator and changing the capacitance by applying a reverse bias. In
such devices, the total amount of frequency tuning may be limited by the characteristics of the crystal and the varactor
diodes.
In oscillators that use micro electro-mechanical systems (MEMS) technology, a silicon resonator is used instead of a
quartz resonator, and tuning is achieved through use of a phase locked loop (PLL). With any type of VCXO used in a high
performance system, pull range, tuning slope (Kv), phase noise and frequency stability are important design
considerations. Parameters for these key specifications vary considerably depending on the design and technology used
for the timing device.
       Pull/tuning range: With quartz devices, the output frequency can only be adjusted up to a couple of hundred parts
        per million (+/- 100 to 200 ppm). In MEMS-based oscillators, the device is not limited with quartz crystals that
        have a small pull range. The frequency in MEMS VCXOs can be adjusted up to several hundred parts per million
        (± 25 to ± 1600 ppm), offering an extremely wide pull range.

       Tuning slope/linearity: With quartz devices, the varactor is non-linear and this translates to a non-linear slope in
        tuning gain especially close to 0V or Vdd. As voltage increases, frequency should increase at a constant rate.
        However, with quartz the slope deviates in the range of +/- 10%. In contrast, MEMS timing devices are extremely
        linear and have superior tuning slope consistency in the range of +/- 0.1 to 1%.

       Frequency stability: To achieve higher pull range in quartz VCXOs, a lower quality (low-Q) crystal must be used.
        Lower Q-factor quartz oscillators have more jitter. This negatively affects frequency stability and phase noise –
        two performance characteristics that are very important in applications that use VCXOs. With MEMS devices, this
        is not an issue because they do not use quartz crystals.

       Temperature drift: Voltage control can be used in temperature-compensated oscillators (TCXOs). Timing devices
        with this combined capability are called VCTCOXs. In quartz devices, allowances for temperature drift need to be
        made. Temperature drift is a problem with VCXOs since temperature varies over the voltage control range.
        Temperature-compensation helps to reduce drift.

In high performance systems, frequency stability and low phase noise are critical and have a direct impact on system
performance. In quartz-based VCXOs, noise in the tuning slope negatively affects phase noise. Quartz devices are less
flexible with limited pull range. Plus they have lower performance in terms of linearity, stability and drift. In contrast,
MEMS-based VCXOs have a much wider pull range without the performance tradeoffs. In addition, MEMS timing devices
across all categories – XOs, VCXOs, TCXOs and clock generators – have much higher reliability and more flexibility with
customizable features. As designers look for new solutions to optimize their systems, they are implementing control
techniques such as those employed in VCXOs, TCXOs, as well as using new MEMS technology to further enhance
performance.

Weitere ähnliche Inhalte

Kürzlich hochgeladen

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Kürzlich hochgeladen (20)

AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelNavi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 

Empfohlen

Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
Kurio // The Social Media Age(ncy)
 

Empfohlen (20)

AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
 
ChatGPT webinar slides
ChatGPT webinar slidesChatGPT webinar slides
ChatGPT webinar slides
 
More than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike RoutesMore than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike Routes
 

Improving System Performance and Frequency Stability with New VCXOs

  • 1. Improving System Performance and Frequency Stability with New VCXOs Oscillators provide a consistent and stable timing reference for an electronic system or for a module(s) within the system. In some applications, the output frequency of the oscillator needs to be adjusted after the system is in operation. System designers can use a voltage-controlled oscillator (VCXO) which has the capability to adjust its output frequency. This frequency tuning technique can be used in many types of equipment including products developed for telecom, networking, wireless communications, instrumentation, audio/video and FPGA-based applications. One reason to use a VCXO is when the output frequency needs to be synchonized to an external reference frequency. For example, when data is transmitted from one end of a system to another (either wired or wirelessly), the data stream must synchronize on the receiving side. If the data does not match, a VCXO on the reciever side will use the embedded clock information to adjust or “pull” its frequency to synchronize with the exact frequency of the transitting side. The VCXO is pulled by changing the control voltage. In quartz-based oscillators, this is typically done by placing a varactor diode on both sides of the quartz crystal oscillator and changing the capacitance by applying a reverse bias. In such devices, the total amount of frequency tuning may be limited by the characteristics of the crystal and the varactor diodes. In oscillators that use micro electro-mechanical systems (MEMS) technology, a silicon resonator is used instead of a quartz resonator, and tuning is achieved through use of a phase locked loop (PLL). With any type of VCXO used in a high performance system, pull range, tuning slope (Kv), phase noise and frequency stability are important design considerations. Parameters for these key specifications vary considerably depending on the design and technology used for the timing device.  Pull/tuning range: With quartz devices, the output frequency can only be adjusted up to a couple of hundred parts per million (+/- 100 to 200 ppm). In MEMS-based oscillators, the device is not limited with quartz crystals that have a small pull range. The frequency in MEMS VCXOs can be adjusted up to several hundred parts per million (± 25 to ± 1600 ppm), offering an extremely wide pull range.  Tuning slope/linearity: With quartz devices, the varactor is non-linear and this translates to a non-linear slope in tuning gain especially close to 0V or Vdd. As voltage increases, frequency should increase at a constant rate. However, with quartz the slope deviates in the range of +/- 10%. In contrast, MEMS timing devices are extremely linear and have superior tuning slope consistency in the range of +/- 0.1 to 1%.  Frequency stability: To achieve higher pull range in quartz VCXOs, a lower quality (low-Q) crystal must be used. Lower Q-factor quartz oscillators have more jitter. This negatively affects frequency stability and phase noise – two performance characteristics that are very important in applications that use VCXOs. With MEMS devices, this is not an issue because they do not use quartz crystals.  Temperature drift: Voltage control can be used in temperature-compensated oscillators (TCXOs). Timing devices with this combined capability are called VCTCOXs. In quartz devices, allowances for temperature drift need to be made. Temperature drift is a problem with VCXOs since temperature varies over the voltage control range. Temperature-compensation helps to reduce drift. In high performance systems, frequency stability and low phase noise are critical and have a direct impact on system performance. In quartz-based VCXOs, noise in the tuning slope negatively affects phase noise. Quartz devices are less flexible with limited pull range. Plus they have lower performance in terms of linearity, stability and drift. In contrast, MEMS-based VCXOs have a much wider pull range without the performance tradeoffs. In addition, MEMS timing devices across all categories – XOs, VCXOs, TCXOs and clock generators – have much higher reliability and more flexibility with customizable features. As designers look for new solutions to optimize their systems, they are implementing control techniques such as those employed in VCXOs, TCXOs, as well as using new MEMS technology to further enhance performance.