SlideShare ist ein Scribd-Unternehmen logo
1 von 30
C.K.PITHAWALA COLLEGE OF
ENGINEERING & TECHNOLOGY, SURAT
Branch:- computer 1st Year (Div. D)
ALA Subject:- Calculus
ALA Topic Name:- Power series, Taylor’s & Maclaurin’s series
Group No:- D9
Student Roll No Enrolment No Name
403 160090107051 Sharma Shubham
421 160090107028 Naik Rohan
455 160090107027 Modi Yash
456 160090107054 Solanki Divyesh
Submitted To
Gautam Hathiwala
Power Series
Taylor’s and Maclaurin’s Series
Introduction to Taylor’s series & Maclaurin’s series
› A Taylor series is a representation of a function as an infinite sum of
terms that are calculated from the values of the function’s derivatives at
a single point.
› The concept of Taylor series was discovered by the Scottish
mathematician James Gregory and formally introduced by the English
mathematician Brook Taylor in 1715.
› A Maclaurin series is a Taylor series expansion of a function about zero.
› It is named after Scottish mathematician Colin Maclaurin, who made
extensive use of this special case of Taylor series.
Statement of Taylor’s series
If 𝑓 𝑥 + ℎ is a given function of h which can be expanded into a
convergent series of positive ascending integral power of h then,
𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′
𝑥 + ℎ2
𝑓′′
𝑥
1
2!
+
ℎ3 𝑓′′′ 𝑥
1
3!
+. . . . . . . . .
ℎ 𝑛
𝑛!
𝑓 𝑛 𝑥 +. . . . . . .
Proof of Taylor’s series
› Let 𝑓(𝑥 + ℎ) be a function of h which can be expanded into a convergent series of
positive ascending integral powers of h then
𝑓 𝑥 + ℎ = 𝑎 𝑜 + 𝑎1ℎ + 𝑎2ℎ2
+ 𝑎3ℎ3
+. . . . . . . . . .
Differentiating w.r.t. h successively,
(1)
𝑓′
𝑥 + ℎ = 𝑎1 + 𝑎2. 2ℎ + 𝑎3. 3ℎ2
+. . . . . . . . . .
𝑓′′ 𝑥 + ℎ = 𝑎2. 2 + 𝑎3. 6ℎ+. . . . . . . . . .
and so on.
(2)
(3)
Putting h=0 in Eq. (1) (2) & (3),
𝑎0 = 𝑓 𝑥
𝑎1 = 𝑓′ 𝑥
𝑎2 = 𝑓′′ 𝑥 and so on
Substituting 𝑎0, 𝑎1, 𝑎2 in Eq.(1) we get,
𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′
𝑥 + ℎ2
𝑓′′
𝑥
1
2!
+
ℎ3 𝑓′′′ 𝑥
1
3!
+. . . . . . . . .
ℎ 𝑛
𝑛!
𝑓 𝑛 𝑥 +. . . . . . .
This is known as Taylor’s series.
Putting 𝑥 = 𝑎 and ℎ = 𝑥 − 𝑎 in the series, we get Taylor’s series in the powers
of 𝑥 − 𝑎 as,
𝑓 𝑥 = 𝑓(𝑎) +(𝑥 − 𝑎)𝑓′
𝑎 + (𝑥 − 𝑎)2
𝑓′′
𝑎
1
2!
+
(𝑥 − 𝑎)3 𝑓′′′ 𝑎
1
3!
+. . . . . . . . .
(𝑥−𝑎) 𝑛
𝑛!
𝑓 𝑛 𝑎 +. . . . . . .
NOTE : To express a function in ascending power of 𝑥, express h in terms of 𝑥.
Statement of Maclaurin’s series
If 𝑓 𝑥 is a given function of 𝑥 which can be expanded into a convergent
series of positive ascending integral power of 𝑥 then,
𝑓 𝑥 = 𝑓(𝑥) +ℎ𝑓′
0 + ℎ2
𝑓′′
0
1
2!
+
ℎ3 𝑓′′′ 0
1
3!
+. . . . . . . . .
ℎ 𝑛
𝑛!
𝑓 𝑛 0 +. . . . . . .
Proof of Maclaurin series
› Let 𝑓(𝑥) be a function of 𝑥 which can be expanded into positive ascending integral
powers of 𝑥 then
𝑓 𝑥 = 𝑎 𝑜 + 𝑎1 𝑥 + 𝑎2 𝑥2
+ 𝑎3 𝑥3
+. . . . . . . . . .
Differentiating w.r.t. 𝑥 successively,
(1
)
𝑓′
𝑥 = 𝑎1 + 𝑎2. 2𝑥 + 𝑎3. 3𝑥2
+. . . . . . . . . .
𝑓′′ 𝑥 = 𝑎2. 2 + 𝑎3. 6𝑥+. . . . . . . . . .
and so
on.
(2)
(3)
Putting 𝑥 =0 in Eq. (1) (2) & (3),
𝑎0 = 𝑓 0
𝑎1 = 𝑓′
0
𝑎2 = 𝑓′′
0 and so on
Substituting 𝑎0, 𝑎1, 𝑎2 in Eq.(1) we get,
𝑓 𝑥 = 𝑓(0) +𝑥𝑓′
0 + 𝑥2
𝑓′′
0
1
2!
+ 𝑥3
𝑓′′′
0
1
3!
+. . . . . . . . .
𝑥 𝑛
𝑛!
𝑓 𝑛
0 +. . . . . . .
This is known as Maclaurin’s series.
› The Taylor’s series and Maclaurin’s series gives the expansion of a function 𝑓(𝑥) as a
power series under the assumption of possibility of expansion of 𝑓 𝑥 .
› Such an investigation will not give any information regarding the range of values 𝑥 for
which the expansion is valid.
› In order to find the range of values of 𝑥, it is necessary to examine the behaviour of 𝑅 𝑛,
where 𝑅 𝑛 is the Remainder after n terms.
We have,
𝑓 𝑥 = 𝑓(𝑎) + 𝑥 − 𝑎 𝑓′ 𝑎 + 𝑥 − 𝑎 2 𝑓′′ 𝑎
1
2!
+
𝑥 − 𝑎 3 𝑓′′′ 𝑎
1
3!
+. . . . . . . . .
𝑥 − 𝑎 𝑛−1
𝑛 − 1 !
𝑓 𝑛−1 𝑎 + 𝑅 𝑛
Where 𝑅 𝑛 is the remainder after n terms defined as,
(1)
𝑅 𝑛 =
𝑥−𝑎 𝑛
𝑛!
𝑓 𝑛 𝜀 : 𝑎 < 𝜀 < 𝑥.
when this expansion (1) converges over a certain range of value of 𝑥 that is
𝑅 𝑛 → 0 𝑎𝑛𝑑 𝑛 → ∾ then the expansion is called Taylor series of 𝑓(𝑥) expanded
about a with the range values of 𝑥. (also known as 𝑟𝑎dius of convergence) for
which the expansion is valid.
Examples of Taylor’s series
Example 1.
Prove that: 𝑓 𝑚𝑥 = 𝑓 𝑥 + 𝑚 − 1 𝑥𝑓′
𝑥 +
𝑚−1 2
2!
𝑥2
𝑓′′(𝑥) + ⋯
Solution
𝑓 𝑚𝑥 = 𝑓 𝑚𝑥 − 𝑥 + 𝑥 = 𝑓 𝑥 + 𝑚 − 1 𝑥
By Taylor’s series,
𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′
𝑥 + ℎ2
𝑓′′
𝑥
1
2!
+ ℎ3
𝑓′′′
𝑥
1
3!
+. . . .
Putting ℎ = 𝑚 − 1 𝑥,
𝑓 𝑥 + 𝑚 − 1 𝑥 = 𝑓 𝑚𝑥 = 𝑓 𝑥 + 𝑚 − 1 𝑥𝑓′ 𝑥 +
𝑚−1 2
2!
𝑥2 𝑓′′(𝑥) + ⋯
Example 2:
Prove that:
𝑓
𝑥2
1 + 𝑥
= 𝑓 𝑥 −
𝑥
1 + 𝑥
𝑓′
𝑥 +
𝑥2
2! 1 + 𝑥 2 𝑓′′(𝑥) −
𝑥3
3! 1 + 𝑥 3 𝑓′′′(𝑥) … …
Solution:
𝑥2
1 + 𝑥
= 𝑥 −
𝑥
1 + 𝑥
By Taylor’s series,
𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′ 𝑥 + ℎ2 𝑓′′ 𝑥
1
2!
+ ℎ3 𝑓′′′ 𝑥
1
3!
+. . . .
Putting ℎ = −
𝑥
1+𝑥
𝑓 𝑥 −
𝑥
1 + 𝑥
= 𝑓
𝑥2
1 + 𝑥
𝑓
𝑥2
1 + 𝑥
= 𝑓 𝑥 −
𝑥
1 + 𝑥
𝑓′ 𝑥 +
𝑥2
2! 1 + 𝑥 2
𝑓′′ 𝑥
−
𝑥3
3! 1 + 𝑥 3
𝑓′′′(𝑥) … …
Hence proved.
Example 3:
Express 𝑓 𝑥 = 2𝑥3 + 3𝑥2 − 8𝑥 + 7 in terms of 𝑓(𝑥 − 2)
Solution:
𝑓(𝑥) = 2𝑥3
+ 3𝑥2
− 8𝑥 + 7
By Taylor’s series,
𝑓 𝑥 = 𝑓(𝑎) +(𝑥 − 𝑎)𝑓′ 𝑎 + (𝑥 − 𝑎)2 𝑓′′ 𝑎
1
2!
+
(𝑥 − 𝑎)3 𝑓′′′ 𝑎
1
3!
+. . . . . . . . .
(𝑥−𝑎) 𝑛
𝑛!
𝑓 𝑛 𝑎 +. . . . . . .
Putting 𝑎 = 2,
𝑓 𝑥 = 𝑓(2) +(𝑥 − 2)𝑓′
𝑎 + (𝑥 − 2)2
𝑓′′
2
1
2!
+ (𝑥 − 2)3
𝑓′′′
2
1
3!
+. . . . . . (1)
𝑓(𝑥) = 2𝑥3 + 3𝑥2 − 8𝑥 + 7, 𝑓 2 = 16 + 12 − 16 + 7 = 19
𝑓′ 𝑥 = 6𝑥2 + 6𝑥 − 8, 𝑓′ 2 = 24 + 12 − 8 = 28
𝑓′′ 𝑥 = 12𝑥 + 6, 𝑓′′ 2 = 24 + 6 = 30
𝑓′′′
𝑥 = 12, 𝑓′′′
2 = 12 and so on.
Substituting in Eq.(1),
𝑓 𝑥 = 19 + 𝑥 − 2 28 + (𝑥 − 2)2
30
2!
+ (𝑥 − 2)3
12
3!
+. . . . . .
𝑓 𝑥 = 19 + 𝑥 − 2 28 + 15(𝑥 − 2)2
+ 2(𝑥 − 2)3
+. . . . . .
Example 4.
Express 5 + 4 𝑥 − 1 2
− 3 𝑥 − 1 3
+ 𝑥 − 1 4
in ascending powers of x.
Solution:
Let, 𝑓 𝑥 − 1 = 5 + 4 𝑥 − 1 2
− 3 𝑥 − 1 3
+ 𝑥 − 1 4
𝑓 𝑥 = 5 + 4𝑥2
− 3𝑥3
+ 𝑥4
By Taylor’s series,
𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′ 𝑥 + ℎ2 𝑓′′ 𝑥
1
2!
+ ℎ3 𝑓′′′ 𝑥
1
3!
+. . . .
putting ℎ = −1,
𝑓 𝑥 − 1 = 𝑓(𝑥) +(−1)𝑓′ 𝑥 + −1 2 𝑓′′ 𝑥
1
2!
+ −1 3 𝑓′′′ 𝑥
1
3!
+. . . .
= 5 + 4𝑥2 − 3𝑥3 + 𝑥4 + −1 8𝑥 − 9𝑥2 + 4𝑥3 + −1 2(8 − 18𝑥 +
Solution:
Let, 𝑓 𝑥 +
𝜋
4
= tan 𝑥 +
𝜋
4
𝑓 𝑥 = tan 𝑥
By Taylor’s series,
𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′
𝑥 + ℎ2
𝑓′′
𝑥
1
2!
+ ℎ3
𝑓′′′
𝑥
1
3!
+. . . .
Putting 𝑥 =
𝜋
4
, ℎ = 𝑥,
𝑓
𝜋
4
+ 𝑥 = 𝑓(𝜋/4) +𝑥𝑓′ 𝜋/4 + 𝑥2 𝑓′′ 𝜋/4
1
2!
+ 𝑥3 𝑓′′′ 𝜋/4
1
3!
+. . . . (1)
𝑓 𝑥 = tan 𝑥 , 𝑓 𝜋/4 = tan 𝜋/4 = 1
𝑓′
𝑥 = sec2
𝑥, 𝑓′
𝜋/4 = sec2
𝜋/4 = 2
𝑓′′
𝑥 = 2 sec 𝑥 . sec 𝑥 tan 𝑥 , 𝑓′′ 𝜋
4
= 2 tan
𝜋
4
+ 2 tan3 𝜋
4
= 4
= 2 1 + tan2 𝑥 tan 𝑥 ,
= 2 tan 𝑥 + 2 tan3
𝑥
𝑓′′′ 𝑥 = 2 sec2 𝑥 + 6 tan2 𝑥 sec2 𝑥 , 𝑓′′′ 𝜋
4
= 2 + 8 tan2 𝜋
4
+ 6 tan4 𝜋
4
= 16
= 2 1 + tan2
𝑥 + 6 tan2
𝑥 1 + tan2
𝑥
= 2 + 8 tan2 𝑥 + 6 tan4 𝑥
𝑓4
𝑥 = 16 tan 𝑥 . sec2
𝑥 + 24 tan3
𝑥 . sec2
𝑥 ,
𝑓4 𝜋
4
= 16 tan
𝜋
4
. sec2 𝜋
4
+ 24 tan3 𝜋
4
. sec2 𝜋
4
=80 and so on.
Substituting in Eq.(1),
𝑓
𝜋
4
+ 𝑥 = 1 + 𝑥 2 + 𝑥2
4
2!
+ 𝑥3
16
3!
+ 𝑥4
80
4!
. . . .
tan
𝜋
4
+ 𝑥 = 1 + 2𝑥 + 2𝑥2 +
8
3
𝑥3 +
10
3
𝑥4 …
Now tan 43 𝑜
= tan(45 𝑜
− 2 𝑜
)
= tan
𝜋
4
−
2𝜋
180
= tan
𝜋
4
− 0.0349
=1 + 2(0.0349) + 2(0.0349)2
+
8
3
(0.0349)3
+
10
3
(0.0349)4
…
= 0.9326 𝑎𝑝𝑝𝑟𝑜𝑥.
Maclaurin series expansion of some standard functions
𝑒 𝑥
= 1 + 𝑥 +
𝑥2
2!
+
𝑥3
3!
+ ⋯
sin 𝑥 = 𝑥 −
𝑥3
3!
+
𝑥5
5!
− ⋯
cos 𝑥 = 1 −
𝑥2
2!
+
𝑥4
4!
− ⋯
tan 𝑥 = 𝑥 +
𝑥3
3
+
2𝑥5
15
+ ⋯
log 1 + 𝑥 = 𝑥 −
𝑥2
2!
+
𝑥3
3!
…
(1 + 𝑥) 𝑚= 1 + 𝑚𝑥 +
𝑚 𝑚 − 1
2!
𝑥2 +
𝑚 𝑚 − 1 (𝑚 − 2)
3!
𝑥3 + ⋯
Examples of Maclaurin’s series
Example 1.
𝑒𝑥𝑝𝑎𝑛𝑑 5 𝑥 𝑢𝑝𝑡𝑜 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑡ℎ𝑟𝑒𝑒 𝑛𝑜𝑛 𝑧𝑒𝑟𝑜 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑟𝑖𝑒𝑠.
Solution :
Let 𝑓 𝑥 = 5 𝑥
By Maclaurin’s series,
𝑓 𝑥 = 𝑓 0 + 𝑥𝑓′
𝑥 +
𝑥2
2!
𝑓′′
𝑥 … … (1)
𝑓 𝑥 = 5 𝑥
, 𝑓 0 = 50
= 1
𝑓′ 𝑥 = 5 𝑥 log 5, 𝑓′ 0 = 50 log 5 = log 5
𝑓′′
𝑥 = 5 𝑥
log 5 2
𝑓′′
0 = 50
log 5 2
= log 5 2
Substituting in Eq.(1),
𝑓 𝑥 = 5 𝑥
= 1 + 𝑥 log 5
𝑥2
2!
log 5 2
… …
OR
Using Exponential series expansion,
𝑓 𝑥 = 5 𝑥 = 𝑒log 5 𝑥
= 𝑒 𝑥 log 5
= 1 + 𝑥 log 5 +
𝑥 log 5 2
2!
+ ⋯
Example 2.
𝑖𝑓 𝑥 = 𝑦 −
𝑦2
2
+
𝑦3
3
−
𝑦4
4
+ ⋯ prove that,
𝑦 = 𝑥 +
𝑥2
2
+
𝑥3
3
+
𝑥4
4
+ ⋯ and conversely.
Solution :
𝑥 = log(1 + 𝑦)
1 + 𝑦 = 𝑒 𝑥
𝑦 = 𝑒 𝑥 − 1
By using exponential series expansion we get,
𝑦 = 𝑥 +
𝑥2
2
+
𝑥3
3
+
𝑥4
4
+ ⋯
Conversely,
𝑦 = 𝑒 𝑥 − 1
𝑒 𝑥
= 1 + 𝑦
𝑥 = log(1 + 𝑦)
= 𝑦 −
𝑦2
2
+
𝑦3
3
−
𝑦4
4
+ ⋯
Example 3.
Prove that tan−1
𝑥 = 𝑥 −
𝑥3
3
+
𝑥5
5
−
𝑥7
7
+ ⋯
Solution :
Let 𝑦 = tan−1 𝑥
𝑑𝑦
𝑑𝑥
=
1
1 + 𝑥2
= 1 + 𝑥2 −1
= 1 − 𝑥2
+ 𝑥4
− 𝑥6
+ ⋯
Integrating the Eq.(1),
𝑦 = 𝑐 + 𝑥 −
𝑥3
3
+
𝑥5
5
−
𝑥7
7
+ ⋯
tan−1 𝑥 = 𝑐 + 𝑥 −
𝑥3
3
+
𝑥5
5
−
𝑥7
7
+ ⋯
Putting 𝑥 = 0,
tan−1 0 = 𝑐,
𝑐 = 0
Hence, tan−1 𝑥 = 𝑥 −
𝑥3
3
+
𝑥5
5
−
𝑥7
7
+ ⋯
Example 4.
Expand sec−1 1
1−2𝑥2
Solution :
Let, 𝑦 = sec−1 1
1−2𝑥2
Putting 𝑥 = 𝑠𝑖𝑛θ,
𝑦 = sec−1
1
1 − 2𝑠𝑖𝑛2θ
= sec−1
1
cos 2θ
= sec−1 sec 2θ
= 2θ
2 sin−1 𝑥
Using expansion series of sin−1
𝑥,
𝑦 = 2 𝑥 +
𝑥3
6
+
3𝑥5
40
+ ⋯
Example 5.
Prove that
𝑒 𝑒 𝑥
= 𝑒 1 + 𝑥 + 𝑥2
+
5𝑥3
6
+ ⋯
Solution :
𝑒 𝑒 𝑥
= 𝑒
1+𝑥+
𝑥2
2!
+
𝑥3
3!
+⋯
= 𝑒𝑒 𝑥+
𝑥2
2!
+
𝑥3
3!
+⋯
= 𝑒 1 + 𝑥 +
𝑥2
2!
+
𝑥3
3!
+ ⋯ +
1
2!
𝑥 +
𝑥2
2!
+ ⋯
2
+
1
3!
𝑥 + ⋯ 3
…
= 𝑒 1 + 𝑥 + 𝑥2
1
2
+
1
2
+ 𝑥3
1
6
+
1
2
+
1
6
+ ⋯
= 𝑒 1 + 𝑥 + 𝑥2
+
5𝑥3
6
+ ⋯
Example 6.
Expand (1 + sin 𝑥)
Solution :
(1 + sin 𝑥) = sin
𝑥
2
+ cos
𝑥
2
=
𝑥
2
−
1
3!
𝑥
2
3
+ ⋯ + 1 −
1
2!
𝑥
2
2
+
1
4!
𝑥
2
4
− ⋯
= 1 +
𝑥
2
−
𝑥2
8
−
𝑥3
48
+
𝑥4
384
− ⋯
End of Presentation
Thank You

Weitere ähnliche Inhalte

Was ist angesagt?

Taylor and Maclaurin Series
Taylor and Maclaurin SeriesTaylor and Maclaurin Series
Taylor and Maclaurin SeriesHarsh Pathak
 
Solving Systems of Linear Inequalities
Solving Systems of Linear InequalitiesSolving Systems of Linear Inequalities
Solving Systems of Linear Inequalitiesswartzje
 
Cauchy integral theorem &amp; formula (complex variable & numerical method )
Cauchy integral theorem &amp; formula (complex variable & numerical method )Cauchy integral theorem &amp; formula (complex variable & numerical method )
Cauchy integral theorem &amp; formula (complex variable & numerical method )Digvijaysinh Gohil
 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equationssaahil kshatriya
 
Runge-Kutta methods with examples
Runge-Kutta methods with examplesRunge-Kutta methods with examples
Runge-Kutta methods with examplesSajjad Hossain
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolationHarshad Koshti
 
Logarithm lesson
Logarithm lessonLogarithm lesson
Logarithm lessonyrubins
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equationsNisarg Amin
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficientSanjay Singh
 
Group abstract algebra
Group  abstract algebraGroup  abstract algebra
Group abstract algebraNaliniSPatil
 

Was ist angesagt? (20)

taylors theorem
taylors theoremtaylors theorem
taylors theorem
 
GAUSS ELIMINATION METHOD
 GAUSS ELIMINATION METHOD GAUSS ELIMINATION METHOD
GAUSS ELIMINATION METHOD
 
Taylor and Maclaurin Series
Taylor and Maclaurin SeriesTaylor and Maclaurin Series
Taylor and Maclaurin Series
 
Solving Systems of Linear Inequalities
Solving Systems of Linear InequalitiesSolving Systems of Linear Inequalities
Solving Systems of Linear Inequalities
 
Cauchy integral theorem &amp; formula (complex variable & numerical method )
Cauchy integral theorem &amp; formula (complex variable & numerical method )Cauchy integral theorem &amp; formula (complex variable & numerical method )
Cauchy integral theorem &amp; formula (complex variable & numerical method )
 
Sequences And Series
Sequences And SeriesSequences And Series
Sequences And Series
 
Vector analysis
Vector analysisVector analysis
Vector analysis
 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equations
 
Runge-Kutta methods with examples
Runge-Kutta methods with examplesRunge-Kutta methods with examples
Runge-Kutta methods with examples
 
Taylor series
Taylor seriesTaylor series
Taylor series
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolation
 
Power series
Power series Power series
Power series
 
Taylors series
Taylors series Taylors series
Taylors series
 
Real analysis
Real analysis Real analysis
Real analysis
 
Logarithm lesson
Logarithm lessonLogarithm lesson
Logarithm lesson
 
Inverse laplace transforms
Inverse laplace transformsInverse laplace transforms
Inverse laplace transforms
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equations
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficient
 
Group abstract algebra
Group  abstract algebraGroup  abstract algebra
Group abstract algebra
 

Andere mochten auch

Taylor and maclaurian series
Taylor and maclaurian seriesTaylor and maclaurian series
Taylor and maclaurian seriesNishant Patel
 
Taylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesTaylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesHernanFula
 
The Power Series Power Prospecting
The Power Series    Power ProspectingThe Power Series    Power Prospecting
The Power Series Power ProspectingRichard Mulvey
 
Introductory Lecture to Applied Mathematics Stream
Introductory Lecture to Applied Mathematics StreamIntroductory Lecture to Applied Mathematics Stream
Introductory Lecture to Applied Mathematics StreamSSA KPI
 
Digital to Analog Converter by LDCE students
Digital to Analog Converter by LDCE studentsDigital to Analog Converter by LDCE students
Digital to Analog Converter by LDCE studentsMitul Lakhani
 
What is analytic functions
What is analytic functionsWhat is analytic functions
What is analytic functionsTarun Gehlot
 
Power series & Radius of convergence
Power series & Radius of convergencePower series & Radius of convergence
Power series & Radius of convergenceDhruv Darji
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
Cpd ch 9 engage deeply
Cpd ch 9 engage deeplyCpd ch 9 engage deeply
Cpd ch 9 engage deeplyKamlesh Joshi
 
Calculus II - 30
Calculus II - 30Calculus II - 30
Calculus II - 30David Mao
 

Andere mochten auch (20)

Taylor and maclaurian series
Taylor and maclaurian seriesTaylor and maclaurian series
Taylor and maclaurian series
 
Taylor’s series
Taylor’s   seriesTaylor’s   series
Taylor’s series
 
Taylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesTaylor series and maclaurin with exercices
Taylor series and maclaurin with exercices
 
Act math lnes
Act math   lnesAct math   lnes
Act math lnes
 
The Power Series Power Prospecting
The Power Series    Power ProspectingThe Power Series    Power Prospecting
The Power Series Power Prospecting
 
Introductory Lecture to Applied Mathematics Stream
Introductory Lecture to Applied Mathematics StreamIntroductory Lecture to Applied Mathematics Stream
Introductory Lecture to Applied Mathematics Stream
 
Digital to Analog Converter by LDCE students
Digital to Analog Converter by LDCE studentsDigital to Analog Converter by LDCE students
Digital to Analog Converter by LDCE students
 
On the Zeros of Analytic Functions inside the Unit Disk
On the Zeros of Analytic Functions inside the Unit DiskOn the Zeros of Analytic Functions inside the Unit Disk
On the Zeros of Analytic Functions inside the Unit Disk
 
What is analytic functions
What is analytic functionsWhat is analytic functions
What is analytic functions
 
Arrays in C language
Arrays in C languageArrays in C language
Arrays in C language
 
Power series & Radius of convergence
Power series & Radius of convergencePower series & Radius of convergence
Power series & Radius of convergence
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
Taylor series
Taylor seriesTaylor series
Taylor series
 
1605 power series
1605 power series1605 power series
1605 power series
 
Power series
Power seriesPower series
Power series
 
Taylor series
Taylor seriesTaylor series
Taylor series
 
Cpd ch 9 engage deeply
Cpd ch 9 engage deeplyCpd ch 9 engage deeply
Cpd ch 9 engage deeply
 
Taylor Series
Taylor SeriesTaylor Series
Taylor Series
 
Taylor series
Taylor seriesTaylor series
Taylor series
 
Calculus II - 30
Calculus II - 30Calculus II - 30
Calculus II - 30
 

Ähnlich wie Power Series,Taylor's and Maclaurin's Series

Study Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential EquationsStudy Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential EquationsMeenakshisundaram N
 
Laurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxLaurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxjyotidighole2
 
Semana 30 series álgebra uni ccesa007
Semana 30 series  álgebra uni ccesa007Semana 30 series  álgebra uni ccesa007
Semana 30 series álgebra uni ccesa007Demetrio Ccesa Rayme
 
ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقي
ملزمة الرياضيات للصف السادس العلمي  الاحيائي -  التطبيقيملزمة الرياضيات للصف السادس العلمي  الاحيائي -  التطبيقي
ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقيanasKhalaf4
 
taller transformaciones lineales
taller transformaciones linealestaller transformaciones lineales
taller transformaciones linealesemojose107
 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1tinardo
 
Laplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxLaplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxjyotidighole2
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential EquationsAMINULISLAM439
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfHebaEng
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variablesSanthanam Krishnan
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Март
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau
 
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsx
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsxClass-10-Mathematics-Chapter-1-CBSE-NCERT.ppsx
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsxSoftcare Solution
 

Ähnlich wie Power Series,Taylor's and Maclaurin's Series (20)

Study Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential EquationsStudy Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential Equations
 
Laurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxLaurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptx
 
Semana 30 series álgebra uni ccesa007
Semana 30 series  álgebra uni ccesa007Semana 30 series  álgebra uni ccesa007
Semana 30 series álgebra uni ccesa007
 
ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقي
ملزمة الرياضيات للصف السادس العلمي  الاحيائي -  التطبيقيملزمة الرياضيات للصف السادس العلمي  الاحيائي -  التطبيقي
ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقي
 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4
 
taller transformaciones lineales
taller transformaciones linealestaller transformaciones lineales
taller transformaciones lineales
 
Derivación 1.
Derivación 1.Derivación 1.
Derivación 1.
 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1
 
doc
docdoc
doc
 
Laplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxLaplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptx
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential Equations
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel Problem
 
Lecture5_Laplace_ODE.pdf
Lecture5_Laplace_ODE.pdfLecture5_Laplace_ODE.pdf
Lecture5_Laplace_ODE.pdf
 
Lecture 3
Lecture 3Lecture 3
Lecture 3
 
Lecture 3
Lecture 3Lecture 3
Lecture 3
 
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsx
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsxClass-10-Mathematics-Chapter-1-CBSE-NCERT.ppsx
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsx
 

Kürzlich hochgeladen

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 

Kürzlich hochgeladen (20)

Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 

Power Series,Taylor's and Maclaurin's Series

  • 1. C.K.PITHAWALA COLLEGE OF ENGINEERING & TECHNOLOGY, SURAT Branch:- computer 1st Year (Div. D) ALA Subject:- Calculus ALA Topic Name:- Power series, Taylor’s & Maclaurin’s series Group No:- D9 Student Roll No Enrolment No Name 403 160090107051 Sharma Shubham 421 160090107028 Naik Rohan 455 160090107027 Modi Yash 456 160090107054 Solanki Divyesh Submitted To Gautam Hathiwala
  • 2. Power Series Taylor’s and Maclaurin’s Series
  • 3. Introduction to Taylor’s series & Maclaurin’s series › A Taylor series is a representation of a function as an infinite sum of terms that are calculated from the values of the function’s derivatives at a single point. › The concept of Taylor series was discovered by the Scottish mathematician James Gregory and formally introduced by the English mathematician Brook Taylor in 1715. › A Maclaurin series is a Taylor series expansion of a function about zero. › It is named after Scottish mathematician Colin Maclaurin, who made extensive use of this special case of Taylor series.
  • 4. Statement of Taylor’s series If 𝑓 𝑥 + ℎ is a given function of h which can be expanded into a convergent series of positive ascending integral power of h then, 𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′ 𝑥 + ℎ2 𝑓′′ 𝑥 1 2! + ℎ3 𝑓′′′ 𝑥 1 3! +. . . . . . . . . ℎ 𝑛 𝑛! 𝑓 𝑛 𝑥 +. . . . . . .
  • 5. Proof of Taylor’s series › Let 𝑓(𝑥 + ℎ) be a function of h which can be expanded into a convergent series of positive ascending integral powers of h then 𝑓 𝑥 + ℎ = 𝑎 𝑜 + 𝑎1ℎ + 𝑎2ℎ2 + 𝑎3ℎ3 +. . . . . . . . . . Differentiating w.r.t. h successively, (1) 𝑓′ 𝑥 + ℎ = 𝑎1 + 𝑎2. 2ℎ + 𝑎3. 3ℎ2 +. . . . . . . . . . 𝑓′′ 𝑥 + ℎ = 𝑎2. 2 + 𝑎3. 6ℎ+. . . . . . . . . . and so on. (2) (3)
  • 6. Putting h=0 in Eq. (1) (2) & (3), 𝑎0 = 𝑓 𝑥 𝑎1 = 𝑓′ 𝑥 𝑎2 = 𝑓′′ 𝑥 and so on Substituting 𝑎0, 𝑎1, 𝑎2 in Eq.(1) we get, 𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′ 𝑥 + ℎ2 𝑓′′ 𝑥 1 2! + ℎ3 𝑓′′′ 𝑥 1 3! +. . . . . . . . . ℎ 𝑛 𝑛! 𝑓 𝑛 𝑥 +. . . . . . . This is known as Taylor’s series.
  • 7. Putting 𝑥 = 𝑎 and ℎ = 𝑥 − 𝑎 in the series, we get Taylor’s series in the powers of 𝑥 − 𝑎 as, 𝑓 𝑥 = 𝑓(𝑎) +(𝑥 − 𝑎)𝑓′ 𝑎 + (𝑥 − 𝑎)2 𝑓′′ 𝑎 1 2! + (𝑥 − 𝑎)3 𝑓′′′ 𝑎 1 3! +. . . . . . . . . (𝑥−𝑎) 𝑛 𝑛! 𝑓 𝑛 𝑎 +. . . . . . . NOTE : To express a function in ascending power of 𝑥, express h in terms of 𝑥.
  • 8. Statement of Maclaurin’s series If 𝑓 𝑥 is a given function of 𝑥 which can be expanded into a convergent series of positive ascending integral power of 𝑥 then, 𝑓 𝑥 = 𝑓(𝑥) +ℎ𝑓′ 0 + ℎ2 𝑓′′ 0 1 2! + ℎ3 𝑓′′′ 0 1 3! +. . . . . . . . . ℎ 𝑛 𝑛! 𝑓 𝑛 0 +. . . . . . .
  • 9. Proof of Maclaurin series › Let 𝑓(𝑥) be a function of 𝑥 which can be expanded into positive ascending integral powers of 𝑥 then 𝑓 𝑥 = 𝑎 𝑜 + 𝑎1 𝑥 + 𝑎2 𝑥2 + 𝑎3 𝑥3 +. . . . . . . . . . Differentiating w.r.t. 𝑥 successively, (1 ) 𝑓′ 𝑥 = 𝑎1 + 𝑎2. 2𝑥 + 𝑎3. 3𝑥2 +. . . . . . . . . . 𝑓′′ 𝑥 = 𝑎2. 2 + 𝑎3. 6𝑥+. . . . . . . . . . and so on. (2) (3)
  • 10. Putting 𝑥 =0 in Eq. (1) (2) & (3), 𝑎0 = 𝑓 0 𝑎1 = 𝑓′ 0 𝑎2 = 𝑓′′ 0 and so on Substituting 𝑎0, 𝑎1, 𝑎2 in Eq.(1) we get, 𝑓 𝑥 = 𝑓(0) +𝑥𝑓′ 0 + 𝑥2 𝑓′′ 0 1 2! + 𝑥3 𝑓′′′ 0 1 3! +. . . . . . . . . 𝑥 𝑛 𝑛! 𝑓 𝑛 0 +. . . . . . . This is known as Maclaurin’s series.
  • 11. › The Taylor’s series and Maclaurin’s series gives the expansion of a function 𝑓(𝑥) as a power series under the assumption of possibility of expansion of 𝑓 𝑥 . › Such an investigation will not give any information regarding the range of values 𝑥 for which the expansion is valid. › In order to find the range of values of 𝑥, it is necessary to examine the behaviour of 𝑅 𝑛, where 𝑅 𝑛 is the Remainder after n terms. We have, 𝑓 𝑥 = 𝑓(𝑎) + 𝑥 − 𝑎 𝑓′ 𝑎 + 𝑥 − 𝑎 2 𝑓′′ 𝑎 1 2! + 𝑥 − 𝑎 3 𝑓′′′ 𝑎 1 3! +. . . . . . . . . 𝑥 − 𝑎 𝑛−1 𝑛 − 1 ! 𝑓 𝑛−1 𝑎 + 𝑅 𝑛 Where 𝑅 𝑛 is the remainder after n terms defined as, (1)
  • 12. 𝑅 𝑛 = 𝑥−𝑎 𝑛 𝑛! 𝑓 𝑛 𝜀 : 𝑎 < 𝜀 < 𝑥. when this expansion (1) converges over a certain range of value of 𝑥 that is 𝑅 𝑛 → 0 𝑎𝑛𝑑 𝑛 → ∾ then the expansion is called Taylor series of 𝑓(𝑥) expanded about a with the range values of 𝑥. (also known as 𝑟𝑎dius of convergence) for which the expansion is valid.
  • 13. Examples of Taylor’s series Example 1. Prove that: 𝑓 𝑚𝑥 = 𝑓 𝑥 + 𝑚 − 1 𝑥𝑓′ 𝑥 + 𝑚−1 2 2! 𝑥2 𝑓′′(𝑥) + ⋯ Solution 𝑓 𝑚𝑥 = 𝑓 𝑚𝑥 − 𝑥 + 𝑥 = 𝑓 𝑥 + 𝑚 − 1 𝑥 By Taylor’s series, 𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′ 𝑥 + ℎ2 𝑓′′ 𝑥 1 2! + ℎ3 𝑓′′′ 𝑥 1 3! +. . . . Putting ℎ = 𝑚 − 1 𝑥, 𝑓 𝑥 + 𝑚 − 1 𝑥 = 𝑓 𝑚𝑥 = 𝑓 𝑥 + 𝑚 − 1 𝑥𝑓′ 𝑥 + 𝑚−1 2 2! 𝑥2 𝑓′′(𝑥) + ⋯
  • 14. Example 2: Prove that: 𝑓 𝑥2 1 + 𝑥 = 𝑓 𝑥 − 𝑥 1 + 𝑥 𝑓′ 𝑥 + 𝑥2 2! 1 + 𝑥 2 𝑓′′(𝑥) − 𝑥3 3! 1 + 𝑥 3 𝑓′′′(𝑥) … … Solution: 𝑥2 1 + 𝑥 = 𝑥 − 𝑥 1 + 𝑥 By Taylor’s series, 𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′ 𝑥 + ℎ2 𝑓′′ 𝑥 1 2! + ℎ3 𝑓′′′ 𝑥 1 3! +. . . . Putting ℎ = − 𝑥 1+𝑥
  • 15. 𝑓 𝑥 − 𝑥 1 + 𝑥 = 𝑓 𝑥2 1 + 𝑥 𝑓 𝑥2 1 + 𝑥 = 𝑓 𝑥 − 𝑥 1 + 𝑥 𝑓′ 𝑥 + 𝑥2 2! 1 + 𝑥 2 𝑓′′ 𝑥 − 𝑥3 3! 1 + 𝑥 3 𝑓′′′(𝑥) … … Hence proved. Example 3: Express 𝑓 𝑥 = 2𝑥3 + 3𝑥2 − 8𝑥 + 7 in terms of 𝑓(𝑥 − 2) Solution: 𝑓(𝑥) = 2𝑥3 + 3𝑥2 − 8𝑥 + 7
  • 16. By Taylor’s series, 𝑓 𝑥 = 𝑓(𝑎) +(𝑥 − 𝑎)𝑓′ 𝑎 + (𝑥 − 𝑎)2 𝑓′′ 𝑎 1 2! + (𝑥 − 𝑎)3 𝑓′′′ 𝑎 1 3! +. . . . . . . . . (𝑥−𝑎) 𝑛 𝑛! 𝑓 𝑛 𝑎 +. . . . . . . Putting 𝑎 = 2, 𝑓 𝑥 = 𝑓(2) +(𝑥 − 2)𝑓′ 𝑎 + (𝑥 − 2)2 𝑓′′ 2 1 2! + (𝑥 − 2)3 𝑓′′′ 2 1 3! +. . . . . . (1) 𝑓(𝑥) = 2𝑥3 + 3𝑥2 − 8𝑥 + 7, 𝑓 2 = 16 + 12 − 16 + 7 = 19 𝑓′ 𝑥 = 6𝑥2 + 6𝑥 − 8, 𝑓′ 2 = 24 + 12 − 8 = 28 𝑓′′ 𝑥 = 12𝑥 + 6, 𝑓′′ 2 = 24 + 6 = 30 𝑓′′′ 𝑥 = 12, 𝑓′′′ 2 = 12 and so on.
  • 17. Substituting in Eq.(1), 𝑓 𝑥 = 19 + 𝑥 − 2 28 + (𝑥 − 2)2 30 2! + (𝑥 − 2)3 12 3! +. . . . . . 𝑓 𝑥 = 19 + 𝑥 − 2 28 + 15(𝑥 − 2)2 + 2(𝑥 − 2)3 +. . . . . . Example 4. Express 5 + 4 𝑥 − 1 2 − 3 𝑥 − 1 3 + 𝑥 − 1 4 in ascending powers of x. Solution: Let, 𝑓 𝑥 − 1 = 5 + 4 𝑥 − 1 2 − 3 𝑥 − 1 3 + 𝑥 − 1 4 𝑓 𝑥 = 5 + 4𝑥2 − 3𝑥3 + 𝑥4 By Taylor’s series, 𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′ 𝑥 + ℎ2 𝑓′′ 𝑥 1 2! + ℎ3 𝑓′′′ 𝑥 1 3! +. . . .
  • 18. putting ℎ = −1, 𝑓 𝑥 − 1 = 𝑓(𝑥) +(−1)𝑓′ 𝑥 + −1 2 𝑓′′ 𝑥 1 2! + −1 3 𝑓′′′ 𝑥 1 3! +. . . . = 5 + 4𝑥2 − 3𝑥3 + 𝑥4 + −1 8𝑥 − 9𝑥2 + 4𝑥3 + −1 2(8 − 18𝑥 +
  • 19. Solution: Let, 𝑓 𝑥 + 𝜋 4 = tan 𝑥 + 𝜋 4 𝑓 𝑥 = tan 𝑥 By Taylor’s series, 𝑓 𝑥 + ℎ = 𝑓(𝑥) +ℎ𝑓′ 𝑥 + ℎ2 𝑓′′ 𝑥 1 2! + ℎ3 𝑓′′′ 𝑥 1 3! +. . . . Putting 𝑥 = 𝜋 4 , ℎ = 𝑥, 𝑓 𝜋 4 + 𝑥 = 𝑓(𝜋/4) +𝑥𝑓′ 𝜋/4 + 𝑥2 𝑓′′ 𝜋/4 1 2! + 𝑥3 𝑓′′′ 𝜋/4 1 3! +. . . . (1) 𝑓 𝑥 = tan 𝑥 , 𝑓 𝜋/4 = tan 𝜋/4 = 1 𝑓′ 𝑥 = sec2 𝑥, 𝑓′ 𝜋/4 = sec2 𝜋/4 = 2
  • 20. 𝑓′′ 𝑥 = 2 sec 𝑥 . sec 𝑥 tan 𝑥 , 𝑓′′ 𝜋 4 = 2 tan 𝜋 4 + 2 tan3 𝜋 4 = 4 = 2 1 + tan2 𝑥 tan 𝑥 , = 2 tan 𝑥 + 2 tan3 𝑥 𝑓′′′ 𝑥 = 2 sec2 𝑥 + 6 tan2 𝑥 sec2 𝑥 , 𝑓′′′ 𝜋 4 = 2 + 8 tan2 𝜋 4 + 6 tan4 𝜋 4 = 16 = 2 1 + tan2 𝑥 + 6 tan2 𝑥 1 + tan2 𝑥 = 2 + 8 tan2 𝑥 + 6 tan4 𝑥 𝑓4 𝑥 = 16 tan 𝑥 . sec2 𝑥 + 24 tan3 𝑥 . sec2 𝑥 , 𝑓4 𝜋 4 = 16 tan 𝜋 4 . sec2 𝜋 4 + 24 tan3 𝜋 4 . sec2 𝜋 4 =80 and so on.
  • 21. Substituting in Eq.(1), 𝑓 𝜋 4 + 𝑥 = 1 + 𝑥 2 + 𝑥2 4 2! + 𝑥3 16 3! + 𝑥4 80 4! . . . . tan 𝜋 4 + 𝑥 = 1 + 2𝑥 + 2𝑥2 + 8 3 𝑥3 + 10 3 𝑥4 … Now tan 43 𝑜 = tan(45 𝑜 − 2 𝑜 ) = tan 𝜋 4 − 2𝜋 180 = tan 𝜋 4 − 0.0349 =1 + 2(0.0349) + 2(0.0349)2 + 8 3 (0.0349)3 + 10 3 (0.0349)4 … = 0.9326 𝑎𝑝𝑝𝑟𝑜𝑥.
  • 22. Maclaurin series expansion of some standard functions 𝑒 𝑥 = 1 + 𝑥 + 𝑥2 2! + 𝑥3 3! + ⋯ sin 𝑥 = 𝑥 − 𝑥3 3! + 𝑥5 5! − ⋯ cos 𝑥 = 1 − 𝑥2 2! + 𝑥4 4! − ⋯ tan 𝑥 = 𝑥 + 𝑥3 3 + 2𝑥5 15 + ⋯ log 1 + 𝑥 = 𝑥 − 𝑥2 2! + 𝑥3 3! … (1 + 𝑥) 𝑚= 1 + 𝑚𝑥 + 𝑚 𝑚 − 1 2! 𝑥2 + 𝑚 𝑚 − 1 (𝑚 − 2) 3! 𝑥3 + ⋯
  • 23. Examples of Maclaurin’s series Example 1. 𝑒𝑥𝑝𝑎𝑛𝑑 5 𝑥 𝑢𝑝𝑡𝑜 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑡ℎ𝑟𝑒𝑒 𝑛𝑜𝑛 𝑧𝑒𝑟𝑜 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑟𝑖𝑒𝑠. Solution : Let 𝑓 𝑥 = 5 𝑥 By Maclaurin’s series, 𝑓 𝑥 = 𝑓 0 + 𝑥𝑓′ 𝑥 + 𝑥2 2! 𝑓′′ 𝑥 … … (1) 𝑓 𝑥 = 5 𝑥 , 𝑓 0 = 50 = 1 𝑓′ 𝑥 = 5 𝑥 log 5, 𝑓′ 0 = 50 log 5 = log 5 𝑓′′ 𝑥 = 5 𝑥 log 5 2 𝑓′′ 0 = 50 log 5 2 = log 5 2 Substituting in Eq.(1), 𝑓 𝑥 = 5 𝑥 = 1 + 𝑥 log 5 𝑥2 2! log 5 2 … …
  • 24. OR Using Exponential series expansion, 𝑓 𝑥 = 5 𝑥 = 𝑒log 5 𝑥 = 𝑒 𝑥 log 5 = 1 + 𝑥 log 5 + 𝑥 log 5 2 2! + ⋯ Example 2. 𝑖𝑓 𝑥 = 𝑦 − 𝑦2 2 + 𝑦3 3 − 𝑦4 4 + ⋯ prove that, 𝑦 = 𝑥 + 𝑥2 2 + 𝑥3 3 + 𝑥4 4 + ⋯ and conversely. Solution : 𝑥 = log(1 + 𝑦) 1 + 𝑦 = 𝑒 𝑥 𝑦 = 𝑒 𝑥 − 1
  • 25. By using exponential series expansion we get, 𝑦 = 𝑥 + 𝑥2 2 + 𝑥3 3 + 𝑥4 4 + ⋯ Conversely, 𝑦 = 𝑒 𝑥 − 1 𝑒 𝑥 = 1 + 𝑦 𝑥 = log(1 + 𝑦) = 𝑦 − 𝑦2 2 + 𝑦3 3 − 𝑦4 4 + ⋯ Example 3. Prove that tan−1 𝑥 = 𝑥 − 𝑥3 3 + 𝑥5 5 − 𝑥7 7 + ⋯
  • 26. Solution : Let 𝑦 = tan−1 𝑥 𝑑𝑦 𝑑𝑥 = 1 1 + 𝑥2 = 1 + 𝑥2 −1 = 1 − 𝑥2 + 𝑥4 − 𝑥6 + ⋯ Integrating the Eq.(1), 𝑦 = 𝑐 + 𝑥 − 𝑥3 3 + 𝑥5 5 − 𝑥7 7 + ⋯ tan−1 𝑥 = 𝑐 + 𝑥 − 𝑥3 3 + 𝑥5 5 − 𝑥7 7 + ⋯ Putting 𝑥 = 0, tan−1 0 = 𝑐, 𝑐 = 0 Hence, tan−1 𝑥 = 𝑥 − 𝑥3 3 + 𝑥5 5 − 𝑥7 7 + ⋯
  • 27. Example 4. Expand sec−1 1 1−2𝑥2 Solution : Let, 𝑦 = sec−1 1 1−2𝑥2 Putting 𝑥 = 𝑠𝑖𝑛θ, 𝑦 = sec−1 1 1 − 2𝑠𝑖𝑛2θ = sec−1 1 cos 2θ = sec−1 sec 2θ = 2θ 2 sin−1 𝑥 Using expansion series of sin−1 𝑥, 𝑦 = 2 𝑥 + 𝑥3 6 + 3𝑥5 40 + ⋯
  • 28. Example 5. Prove that 𝑒 𝑒 𝑥 = 𝑒 1 + 𝑥 + 𝑥2 + 5𝑥3 6 + ⋯ Solution : 𝑒 𝑒 𝑥 = 𝑒 1+𝑥+ 𝑥2 2! + 𝑥3 3! +⋯ = 𝑒𝑒 𝑥+ 𝑥2 2! + 𝑥3 3! +⋯ = 𝑒 1 + 𝑥 + 𝑥2 2! + 𝑥3 3! + ⋯ + 1 2! 𝑥 + 𝑥2 2! + ⋯ 2 + 1 3! 𝑥 + ⋯ 3 …
  • 29. = 𝑒 1 + 𝑥 + 𝑥2 1 2 + 1 2 + 𝑥3 1 6 + 1 2 + 1 6 + ⋯ = 𝑒 1 + 𝑥 + 𝑥2 + 5𝑥3 6 + ⋯ Example 6. Expand (1 + sin 𝑥) Solution : (1 + sin 𝑥) = sin 𝑥 2 + cos 𝑥 2 = 𝑥 2 − 1 3! 𝑥 2 3 + ⋯ + 1 − 1 2! 𝑥 2 2 + 1 4! 𝑥 2 4 − ⋯ = 1 + 𝑥 2 − 𝑥2 8 − 𝑥3 48 + 𝑥4 384 − ⋯