SlideShare ist ein Scribd-Unternehmen logo
1 von 16
Downloaden Sie, um offline zu lesen
 
 
Finite Differences
In this chapter we shall discuss about several difference operators such as forward difference operator, backward
difference operator, central difference operator, shifting operator etc.
Forward difference operator: The operator  is called forward difference operator and defined as,
1 1r r ry y y   
where ; 0,1,2, ... ... ...,ry r n are values of y .
Backward difference operator: The operator  is called backward difference operator and defined as,
1r r ry y y   
where ; 0,1,2, ... ... ...,ry r n are values of y .
Central difference operator: The operator  is called central difference operator and defined as,
(2 1) 1
2
r r ry y y   
where ; 0,1,2, ... ... ...,ry r n are values of y .
Shifting operator: The operator E is called shifting operator and defined as,
1r rEy y 
where ; 0,1,2, ... ... ...,ry r n are values of y .
Which shows that the effect of E is to shift the functional value of y to it’s next higher value.
Averaging operator: The operator  is called averaging operator and defined as,
(2 1) (2 1)
2 2
1
2
r r ry y y  
   
 
where ; 0,1,2, ... ... ...,ry r n are values of y .
Differential operator: The operator D is called differential operator and defined as,
 r r
d
Dy y
dx

Where ; 0,1,2, ... ... ...,ry r n are values of y .
Unit operator: The unit operator 1 is defined by,
1. r ry y
where ; 0,1,2, ... ... ...,ry r n are values of y .
Forward Differences: If 0 1 2, , , , ny y y y   denote a set of values of y , then 1 0 2 1, ,y y y y 
3 2 1, , n ny y y y     are called the differences of y . If these differences are denoted as follows,
0 1 0y y y  
1 2 1y y y  
   
1 1n n ny y y   
where  is called the forward difference operator and 0 1 1, , , ny y y     are called first forward differences.
The second forward differences are,
2
0 1 0y y y    
2
1 2 1y y y    
    
2
1 1n n ny y y     
Similarly, we can determine kth forward differences.
1 1
1 1. , k k k
n n ni e y y y 
     
 
 
Forward Difference Table
Backward Differences: If 0 1 2, , , , ny y y y   denote a set of values of y , then 1 0 2 1, ,y y y y 
3 2 1, , n ny y y y     are called the differences of y . If these differences are denoted as follows,
1 1 0y y y  
2 2 1y y y  
   
1n n ny y y   
where  is called the backward difference operator and 1 2, , , ny y y    are called first backward differences.
The second backward differences are,
2
1 1 0y y y    
2
2 2 1y y y   
    
2
1n n ny y y     
Similarly, we can determine kth backward differences.
1 1
1. , k k k
n n ni e y y y 
    
Backward Difference Table
x y  2
 3
 4
 5

0x
1x
2x
3x
4x
5x
0y
1y
2y
3y
4y
5y
0y
1y
2y
3y
4y
2
0y
2
1y
2
2y
2
3y
3
0y
3
1y
3
2y
4
0y
4
1y
5
0y
x y  2
 3
 4
 5

0x
1x
2x
3x
4x
5x
0y
1y
2y
3y
4y
5y
1y
2y
3y
4y
5y
2
2y
2
3y
2
4y
2
5y
3
3y
3
4y
3
5y
4
4y
4
5y
5
5y
 
 
Central Differences: If 0 1 2, , , , ny y y y   denote a set of values of y , then 1 0 2 1, ,y y y y 
3 2 1, , n ny y y y     are called the differences of y . If these differences are denoted as follows,
1 1 0
2
y y y  
3 2 1
2
y y y  
   
(2 1) 1
2
n n ny y y   
Where  is called the central difference operator and 1 3 (2 1)
2 2 2
, , , ny y y     are called first central differences.
The second central differences are,
2
1 3 1
22
y y y   
2
2 5 3
2 2
y y y   
    
2
(2 1) (2 1)
2 2
n n ny y y    
Similarly, we can determine kth central differences.
1 1
(2 1) (2 1)
2 2
. , k k k
n n ni e y y y   
  
Central Difference Table
x y  2
 3
 4
 5

0x
1x
2x
3x
4x
5x
0y
1y
2y
3y
4y
5y
1
2
y
3
2
y
5
2
y
7
2
y
9
2
y
2
1y
2
2y
2
3y
2
4y
3
3
2
y
3
5
2
y
3
7
2
y
4
2y
4
3y
5
5
2
y
 
 
Interpolation
Interpolation is a numerical technique which is used to estimate unknown values of a function by using known values. For
example, If we are to find out the population of Bangladesh in 1978 when we know the population of Bangladesh in the
year 1971, 1975, 1979, 1984, 1988, 1992 and so on, then the process of finding the population of 1978 is known as
interpolation.
Mathematically, let ( )y f x be a function which gives 0 1 2, , , , ny y y y  for 0 1 2, , , , nx x x x  respectively. The
method of finding ( )f x for x  where  lies in the given range is called an interpolation and if  lies outside
the given range is called an extrapolation.
Assumption for interpolation: For the application of the methods of interpolation, the following fundamental
assumptions are required.
a) In the interval under consideration, the values of the function cannot be jumped or fallen down suddenly.
b) In the absence of any evidence to the contrary, the rise and fall in the values of the function must be uniform.
c) The data can be expressed as a polynomial function so that the method of finite difference be applicable.
Methods of interpolation: The various methods of interpolation are as follows:
a) Method of graph
b) Method of curve fitting
c) Method for finite differences.
In this chapter we shall discuss only interpolation formulae for finite differences. These formulae can be separated as
follows:
a) Interpolation formulae for equal intervals
b) Interpolation formulae for unequal intervals
c) Interpolation formulae for central difference.
Interpolation formulae for equal intervals: The interpolation formulae for equal intervals are given bellow:
I. Newton’s forward interpolation formula: Suppose, 0 0 1 1 2 2( , ),( , ),( , ), , ( , )n nx y x y x y x y  
be a set of ( 1)n  values of x and y . Let the values of x be equidistant,
0. , ; 0,1,2, ,ri e x x rh r n    
where h is difference between the points.
Let ( )ny x be a polynomial of nth degree such that y and ( )ny x agree at the tabulated points, which is to be determined. It
can be written as,
0 1 0 2 0 1 0 1 1( ) ( ) ( )( ) ( )( ) ( ) (1)n n ny x a a x x a x x x x a x x x x x x               
where the constants 0a , 1a , 2a , … … , na can be determine as follows:
Putting 0x x in Eq.(1) we have,
0 0a y
Putting 1x x in Eq.(1) we have,
1 0 1 1 0( )y a a x x  
1 0 1,or y y a h 
1 0
1,
y y
or a
h


0
1
y
a
h

 
Putting 2x x in Eq.(1) we have,
2 0 1 2 0 2 2 0 2 1( ) ( )( )y a a x x a x x x x     
0
2 0 2, (2 ) (2 )( )
y
or y y h a h h
h

  
 
 
2
2 0 1 0 2, 2( ) 2or y y y y a h   
2
2 1 0 2, 2 2or y y y a h  
2 1 0
2 2
2
,
2
y y y
or a
h
 

2 1 1 0
2 2
( ) ( )
,
2
y y y y
or a
h
  

1 0
2 2
,
2
y y
or a
h
  

2
0
2 2
2!
y
a
h

 
Similarly,
3
0
3 3
3!
y
a
h


4
0
4 4
4!
y
a
h


  
0
!
n
n n
y
a
n h


Using these values in Eq.(1) we have,
2
0 0 0
0 0 0 1 0 1 12
( ) ( ) ( )( ) ( )( ) ( ) (2)
2! !
n
n nn
y y y
y x y x x x x x x x x x x x x
h h n h

  
              
Setting 0x x ph  we have,
0x x ph 
1 0 1 0x x x x x x    
0 1 0( ) ( )x x x x   
ph h 
( 1)p h 
Similarly, 2 ( 2)x x p h  
3 ( 3)x x p h  
    
1 ( 1)nx x p n h   
Equation (2) becomes,
2 3
0 0 0 0 0
( 1) ( 1)( 2) ( 1) ( 1)
( ) (3)
2! 3! !
n
n
p p p p p p p p n
y x y p y y y y
n
     
        
 
  
This is called Newton’s forward interpolation formula.
Note: Newton’s forward interpolation formula is used to interpolate the values of y near the beginning of a set of tabular
values.
 
 
II. Newton’s backward interpolation formula: Suppose, 0 0 1 1 2 2( , ),( , ),( , ), , ( , )n nx y x y x y x y   be a set of ( 1)n 
values of x and y . Let the values of x be equidistant,
0. , ; 0,1,2, ,ri e x x rh r n    
where h is difference between the points.
Let ( )ny x be a polynomial of nth degree such that y and ( )ny x agree at the tabulated points, which is to be determined. It
can be written as,
0 1 2 1 1 0( ) ( ) ( )( ) ( )( ) ( ) (1)n n n n n n ny x a a x x a x x x x a x x x x x x               
where the constants 0a , 1a , 2a , … … , na can be determine as follows:
Putting nx x in Eq.(1) we have,
0 na y
Putting 1nx x  in Eq.(1) we have,
1 1 1( )n n n ny y a x x   
1 1, ( )n nor y y a h   
1
1, n ny y
or a
h


1
ny
a
h

 
Putting 2nx x  in Eq.(1) we have,
2 0 1 2 2 2 2 1( ) ( )( )n n n n n n ny a a x x a x x x x         
2 2, ( 2 ) ( 2 )( )n
n n
y
or y y h a h h
h


     
2
2 1 2, 2( ) 2n n n nor y y y y a h    
2
2 1 2, 2 2n n nor y y y a h    
1 2
2 2
2
,
2
n n ny y y
or a
h
  

1 1 2
2 2
( ) ( )
,
2
n n n ny y y y
or a
h
    

1
2 2
,
2
n ny y
or a
h
  

2
2 2
2!
ny
a
h

 
Similarly,
3
3 3
3!
ny
a
h


4
4 4
4!
ny
a
h


  
!
n
n
n n
y
a
n h


Using these values in Eq.(1) we have,
2
1 1 12
( ) ( ) ( )( ) ( )( ) ( ) (2)
2! !
n
n n n
n n n n n n nn
y y y
y x y x x x x x x x x x x x x
h h n h
 
  
              
Setting nx x ph  we have,
 
 
nx x ph 
1 1n n n nx x x x x x     
1( ) ( )n n nx x x x    
ph h 
( 1)p h 
Similarly, 2 ( 2)nx x p h  
3 ( 3)nx x p h  
    
1 ( 1)x x p n h   
Equation (2) becomes,
2 3( 1) ( 1)( 2) ( 1) ( 1)
( ) (3)
2! 3! !
n
n n n n n n
p p p p p p p p n
y x y p y y y y
n
     
        
 
  
This is called Newton’s backward interpolation formula.
Note: Newton’s backward interpolation formula is used to interpolate the values of y near the end of a set of tabular
values.
Problem-01: Construct a difference table to find the polynomial of the data      1,1 , 2,8 , 3,27 ,
     4,64 , 5,125 ,(6,216) 7,343 ,(8,512)considering appropriate method. Also find r , where (9, )r is given.
Solution: We may construct any one of forward, backward and central difference tables. Since we also have to find r for
9x  which is nearer at the end of the set of given tabular values, so we will construct the backward difference table.
The backward difference table of the given data is as follows:
x y  2
 3
 4

1
2
3
4
5
6
7
8
1
8
27
64
125
216
343
512
7
19
37
61
91
127
169
12
18
24
30
36
42
6
6
6
6
6
0
0
0
0
This is the required difference table.
Here 2 3 4
8, 1, 512, 169, 42, 6, 0.n n n n n nx h y y y y y          
8
( 8)
1
nx x x
p x
h
 
    
By Newton’s backward formula we get,
2 3( 1) ( 1)( 2) ( 1) ( 1)
( )
2! 3! !
n
n n n n n
p p p p p p p p n
y x y p y y y y
n
     
        
 
 
( 8)( 8 1) ( 8)( 8 1)( 8 2)
512 169( 8) 42 6
2! 3!
x x x x x
x
       
      
2 3 2
512 169 1352 21 315 1176 21 146 336x x x x x x         
3
x
This is the required polynomial.
 
 
2nd
part: For 9x  we get, 3
(9) 9y  729r  (Ans.)
Problem-02: From the following table of yearly premiums for policies maturing at quinquennial ages, estimate the
premiums foe policies maturing at the age of 46 years.
Age(x) 45 50 55 60 65
Premium(y) 2.871 2.404 2.083 1.862 1.712
Solution: Since 46x  is nearer at the beginning of the set of given tabular values, so we have to construct the forward
difference table.
The forward difference table of the given data is as follows:
Age(x) Premium(y)  2
 3
 4

45
50
55
60
65
2.871
2.404
2.083
1.862
1.712
-0.467
-0.321
-0.221
-0.150
0.146
0.100
0.071
-0.046
-0.029
0.017
Here 2 3 4
0 0 0 0 0 046, 5, 45, 45, 0.467, 0.146, 0.046, 0.017x h x y y y y y             
0 46 45 1
0.2
5 5
x x
p
h
 
    
By Newton’s forward formula we get,
2 3
0 0 0 0 0
( 1) ( 1)( 2) ( 1) ( 1)
( )
2! 3! !
np p p p p p p p n
y x y p y y y y
n
     
        
 
 
0.2(0.2 1) 0.2(0.2 1)(0.2 2) 0.2(0.2 1)(0.2 2)(0.2 3)
(46) 2.871 0.2 ( 0.467) (0.146) ( 0.046) (0.017)
2! 3! 4!
y
     
           
2.8710 0.0934 0.01168 0.002208 0.0005712    
2.763( .)approx
Problem-03: The values of sin x are given below for different values of x, find the value of 0
sin38 .
x 15 20 25 30 35 40
siny x 0.2588190 0.3420201 0.4226183 0.5 0.5735764 0.6427876
Solution: Since 0
38x  is nearer at the end of the set of given tabular values, so we have to construct the backward
difference table.
The backward difference table of the given data is as follows:
x siny x  2
 3
 4
 5

15
20
25
30
35
40
0.2588190
0.3420201
0.4226183
0.5
0.5735764
0.6427875
0.0832011
0.0805982
0.0773817
0.0735764
0.0692112
-0.0026029
-0.0032165
-0.0038053
-0.0043652
-0.0006136
-0.0005888
-0.0005599
0.0000248
0.0000289
0.0000041
Here 2 3
38, 40, 5, 0.6427875, 0.0692112, 0.0043652, 0.0005599,n n n n nx x h y y y y           
 
 
4 5
0.0000289, 0.0000041n ny y    .
38 40 2
0.4
5 5
nx x
p
h
 
      
By Newton’s backward formula we get,
2 3( 1) ( 1)( 2) ( 1) ( 1)
(38)
2! 3! !
n
n n n n n
p p p p p p p p n
y y p y y y y
n
     
        
 
 
( 0.4)( 0.4 1) ( 0.4)( 0.4 1)( 0.4 2)
0.6427876 ( 0.4) 0.0692112 ( 0.0043652) ( 0.0005599)
2! 3!
       
         
( 0.4)( 0.4 1)( 0.4 2)( 0.4 3) ( 0.4)( 0.4 1)( 0.4 2)( 0.4 3)( 0.4 4)
(0.0000289) (0.0000041)
4! 5!
               
   
0.6427876 0.02768448 0.00052382 0.00003583 0.00000120    
0.6156614( .)approx
Problem-04: In an examination the number of candidates who obtained marks between certain limits were as follows:
Marks 30-40 40-50 50-60 60-70 70-80
No. of Students 31 42 51 35 31
Find the number of candidates whose scores lie between 45 and 50.
Solution: First of all we construct a cumulative frequency table for the given data.
Upper limits of the class intervals 40 50 60 70 80
Cumulative frequency 31 73 124 159 190
Since 45x  is nearer at the beginning of the set of values in cumulative frequency table, so we have to construct the
forward difference table.
The forward difference table of the given data is as follows:
Marks(x) Cumulative
frequencies(y)
 2
 3
 4

40
50
60
70
80
31
73
124
159
190
42
51
35
31
9
-16
-4
-25
12
37
Here 2 3 4
0 0 0 0 0 045, 40, 10, 31, 42, 9, 25, 37x x h y y y y y             .
0 45 40 5
0.5
10 10
x x
p
h
 
    
By Newton’s forward formula we get,
2 3
0 0 0 0 0
( 1) ( 1)( 2) ( 1) ( 1)
( )
2! 3! !
np p p p p p p p n
y x y p y y y y
n
     
        
 
 
0.5(0.5 1) 0.5(0.5 1)(0.5 2) 0.5(0.5 1)(0.5 2)(0.5 3)
(45) 31 0.5 42 9 ( 25) 37
2! 3! 4!
y
     
          
31 21 1.125 1.5625 1.4452    
47.8673
48( .)approx
 
 
Problem-05: The population of a town in the last six censuses was as given below. Estimate the population for the year
1946.
Year(x) 1911 1921 1931 1941 1951 1961
Population in thousands(y) 12 15 20 27 39 52
Solution: Since 1946x  is nearer at the end of the set of given tabular values, so we have to construct the backward
difference table
The backward difference table of the given data is as follows:
( )Year x ( )Populations y  2
 3
 4
 5

1911
1921
1931
1941
1951
1961
12
15
20
27
39
52
3
5
7
12
13
2
2
5
1
0
3
-4
3
-7
-10
Here 2 3 4 5
1946, 1961, 10, 52, 13, 1, 4, 7, 10n n n n n n nx x h y y y y y y                 .
1946 1961 15
1.5
10 10
nx x
p
h
 
      
By Newton’s backward formula we get,
2 3( 1) ( 1)( 2) ( 1) ( 1)
( )
2! 3! !
n
n n n n n
p p p p p p p p n
y x y p y y y y
n
     
        
 
 
( 1.5)( 1.5 1) ( 1.5)( 1.5 1)( 1.5 2) ( 1.5)( 1.5 1)( 1.5 2)( 1.5 3)
(1946) 52 ( 1.5) 13 1 ( 4) ( 7)
2! 3! 4!
y
              
            
( 1.5)( 1.5 1)( 1.5 2)( 1.5 3)( 1.5 4)
( 10)
5!
        
  
32.3438( .)approx
Exercise:
Problem-01: The population of a village in the last six censuses was recorded as follows. Estimate the population for the
year 1945.
Year(x) 1941 1951 1961 1971 1981 1991
Population(y) 2500 2800 3200 3700 4350 5225
Problem-02: In a company the number of persons whose daily wage are as follows:
Daily wage in Tk. 0-20 20-40 40-60 60-80 80-100
No. of persons 120 145 200 250 150
Find the number of persons whose daily wage is between TK. 40 and TK.50.
Problem-03: The population of a town in decennial census was recorded as follows. Estimate the population for the year
1985.
Year(x) 1951 1961 1971 1981 1991
Population in thousands(y) 98.752 132.285 168.076 195.690 246.05
Problem-04: The population of a town in decennial census was recorded as follows. Estimate the population for the year
1895.
Year(x) 1891 1901 1911 1921 1931
Population in thousands(y) 46 66 81 93 101
Problem-05: Estimate the production of cotton in the year 1935 from the data given below.
Year(x) 1931 1932 1934 1936 1938
Production in millions of bales(y) 17.1 13.0 14.0 9.6 12.4
 
 
Interpolation formulae for unequal intervals: The interpolation formulae for unequal intervals are given bellow:
1) Newton’s Interpolation formula for unequal intervals.
2) Lagrange’s Interpolation formula for unequal intervals.
Divided Differences: Let ( )y f x be a polynomial which gives 0( )f x , 1( )f x , 2( )f x , , ( )nf x  at the points 0x ,
1x , 2x , , nx  (which are not equally spaced)respectively. Then the first divided difference for the arguments 0x and 1x
is denoted by 0 1( , )f x x or ( )f x and defined as,
0 1
0 1
0 1
( ) ( )
[ , ]
f x f x
f x x
x x



The second divided difference for the arguments 0x , 1x and 2x is denoted by 0 1 2( , , )f x x x or 2
( )f x and defined as,
0 1 1 2
0 1 2
0 2
( , ) ( , )
( , , )
f x x f x x
f x x x
x x



The third divided difference for the arguments 0x , 1x , 2x and 3x is denoted by 0 1 2 3( , , , )f x x x x or 3
( )f x and defined as,
0 1 2 1 2 3
0 1 2 3
0 3
( , , ) ( , , )
( , , , )
f x x x f x x x
f x x x x
x x



Similarly, the nth divided difference for the arguments 0x , 1x , 2x , , nx  is denoted by 0 1 2( , , , , )nf x x x x  or
( )n
f x and defined as,
0 1 1 1 2
0 1 2
0
( , , , ) ( , , , )
( , , , , ) n n
n
n
f x x x f x x x
f x x x x
x x
 


   
 
Divided Difference Table
x ( )f x  2
 3

0x
1x
2x
3x
0( )f x
1( )f x
2( )f x
3( )f x
0 1( , )f x x
1 2( , )f x x
2 3( , )f x x
0 1 2( , , )f x x x
1 2 3( , , )f x x x
0 1 2 3( , , , )f x x x x
Properties of Divided Differences: The properties are given as follows:
1) The divided differences are symmetric. 0 1 1 0. , ( , ) ( , )i e f x x f x x .
2) The nth divided differences of a polynomial of the nth degree are constant.
3) The nth divided differences can be expressed as the quotient of two determinants each of order ( 1)n  .
I). Newton’s Interpolation formula for unequal intervals: Let ( )y f x be a polynomial which gives 0( )f x , 1( )f x ,
2( )f x , , ( )nf x  at the points 0x , 1x , 2x , , nx  (which are not equally spaced)respectively. Then the first divided
difference for the arguments x and 0x is given by,
0
0
0
( ) ( )
( , )
f x f x
f x x
x x



0 0 0, ( ) ( ) ( ) ( , ) (1)or f x f x x x f x x    
The second divided difference for the arguments x , 0x and 1x is given by,
0 0 1
0 1
1
( , ) ( , )
( , , )
f x x f x x
f x x x
x x



0 0 1 1 0 1, ( , ) ( , ) ( ) ( , , ) (2)or f x x f x x x x f x x x    
 
 
The third divided difference for the arguments x , 0x
, 1x and 2x is given by,
0 1 0 1 2
0 1 2
2
( , , ) ( , , )
( , , , )
f x x x f x x x
f x x x x
x x



0 1 0 1 2 2 0 1 2, ( , , ) ( , , ) ( ) ( , , , ) (3)or f x x x f x x x x x f x x x x    
The nth divided difference for the arguments x , 0x , 1x , , nx  is given by,
0 1 1 0 1 0 1 1( , , , , ) ( , , , ) ( ) ( , , , , ) (4)n n n nf x x x x f x x x x x f x x x x          
Multiplying Eq.(2) by 0( )x x , Eq.(3) by 0( )x x 1( )x x and so on and finally the Eq. (4) by 0( )x x 1( )x x
1( )nx x   and adding with Eq.(1) we get,
0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3( ) ( ) ( ) ( , ) ( )( ) ( , , ) ( )( )( ) ( , , , )f x f x x x f x x x x x x f x x x x x x x x x f x x x x         
0 1 2 1 0 1 2( )( )( ) ( ) ( , , , ) (5)n n nx x x x x x x x f x x x x R            
where 0 1 2 0 1 2( )( )( ) ( ) ( , , , , )n n nR x x x x x x x x f x x x x x       
If ( )f x be a polynomial of degree n, then the ( 1)n  th divided difference of ( )f x will be zero.
0 1( , , , , ) 0nf x x x x  
Then the Eq. (5) can be written as,
0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3( ) ( ) ( ) ( , ) ( )( ) ( , , ) ( )( )( ) ( , , , )f x f x x x f x x x x x x f x x x x x x x x x f x x x x         
0 1 2 1 0 1 2( )( )( ) ( ) ( , , , ) (6)n nx x x x x x x x f x x x x           
This formula is called Newton’s divided difference interpolation formula for unequal intervals.
II). Lagrange’s Interpolation formula for unequal intervals: Let ( )y f x be a polynomial of degree n which gives
0( )f x , 1( )f x , 2( )f x , , ( )nf x  at the points 0x , 1x , 2x , , nx  (which are not equally spaced)respectively. This
polynomial can be written as,
0 1 2 1 0 2 2 0 1( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )n n nf x a x x x x x x a x x x x x x a x x x x x x             
0 1 1( )( ) ( ) (1)n na x x x x x x        
putting 0x x in Eq.(1) we get,
0 0 0 1 0 2 0( ) ( )( ) ( )nf x a x x x x x x   
0
0
0 1 0 2 0
( )
,
( )( ) ( )n
f x
or a
x x x x x x

   
putting 1x x in Eq.(1) we get,
1 1 1 0 1 2 1( ) ( )( ) ( )nf x a x x x x x x   
1
1
1 0 1 2 1
( )
,
( )( ) ( )n
f x
or a
x x x x x x

   
Similarly putting 2 ,x x 3x x , nx x in Eq.(1) we get,
2
2
2 0 2 1 2
( )
( )( ) ( )n
f x
a
x x x x x x

  
   
0 1 1
( )
( )( ) ( )
n
n
n n n n
f x
a
x x x x x x 

   
Substituting the values of 0 1 2, , , , na a a a in Eq.(1) we get,
1 2 0 2 0 1
0 1 2
0 1 0 2 0 1 0 1 2 1 2 0 2 1 2
( )( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )
( )( ) ( ) ( )( ) ( ) ( )( ) ( )
n n n
n n n
x x x x x x x x x x x x x x x x x x
f x f x f x f x
x x x x x x x x x x x x x x x x x x
        
  
        
  
  
0 1 1
0 1 1
( )( ) ( )
( ) (2)
( )( ) ( )
n
n
n n n n
x x x x x x
f x
x x x x x x


  

  
 
  
 
This formula is called Lagrange’s interpolation formula for unequal intervals.
 
 
NOTE: The calculation is more complicated in Lagrange’s formula than Newton’s formula. The application of the
formula is not speedy and there is always a chance of committing some error due to the number of positive and negative
signs in the numerator and denominator of each term.
Comparisons between Lagrange and Newton Interpolation:
1). The Lagrange and Newton interpolating formulas provide two different forms for an interpolating polynomial,
even though the interpolating polynomial is unique.
2). Lagrange method is numerically unstable but Newton's method is usually numerically stable and computationally
efficient.
3). Newton formula is much better for computation than the Lagrange formula.
4). Lagrange form is most often used for deriving formulas for approximating derivatives and integrals
5). Lagrange's form is more efficient then the Newton's formula when you have to interpolate several data sets on the
same data points.
Problem-01: Using Newton’s divided difference estimate (8) & (15)f f from the following table.
x 4 5 7 10 11 13
( )f x 48 100 294 900 1210 2028
Solution: The divided difference table is as follows:
x ( )f x ( )f x 2
( )f x 3
( )f x 4
( )f x
4
5
7
10
11
13
48
100
294
900
1210
2028
100 48
52
5 4



294 100
97
7 5



900 294
202
10 7



1210 900
310
11 10



2028 1210
409
13 11



97 52
15
7 4



202 97
21
10 5



310 202
27
11 7



409 310
33
13 10



21 15
1
10 4



27 21
1
11 5



33 27
1
13 7



0
0
Here, 0 1 2 3 4 54, 5, 7, 10, 11, 13x x x x x x     
0 0 1 0 1 2 0 1 2 3( ) 48, ( , ) 52, ( , , ) 15, ( , , , ) 1f x f x x f x x x f x x x x   
By Newton’s divided difference formula we get,
0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3( ) ( ) ( ) ( , ) ( )( ) ( , , ) ( )( )( ) ( , , , )f x f x x x f x x x x x x f x x x x x x x x x f x x x x         
0 1 2 1 0 1 2( )( )( ) ( ) ( , , , )n nx x x x x x x x f x x x x         
48 ( 4) 52 ( 4)( 5) 15 ( 4)( 5)( 7) 1x x x x x x            
2 3 2
48 52 208 15 135 300 16 83 140x x x x x x         
3 2
( )f x x x  
Now 3 2
(8) 8 8 512 64 448 ( .)f Ans    
And 3 2
(15) (15) (15) 3375 225 3150 ( .)f Ans    
 
 
Problem-02: Using Newton’s divided difference estimate ( )f x from the following table.
x -1 0 2 3 4
( )f x -16 -7 -1 8 29
Solution: The divided difference table is as follows:
x ( )f x ( )f x 2
( )f x 3
( )f x 4
( )f x
-1
0
2
3
4
-16
-7
-1
8
29
7 16
9
0 1
 


1 7
3
2 0
 


8 1
9
3 1



29 8
21
4 3



3 9
2
2 1

 

9 3
2
3 0



21 9
6
4 2



2 2
1
3 1



6 2
1
4 0



0
Here, 0 1 2 3 41, 0, 2, 3, 4x x x x x     
0 0 1 0 1 2 0 1 2 3( ) 16, ( , ) 9, ( , , ) 2, ( , , , ) 1f x f x x f x x x f x x x x     
By Newton’s divided difference formula we get,
0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3( ) ( ) ( ) ( , ) ( )( ) ( , , ) ( )( )( ) ( , , , )f x f x x x f x x x x x x f x x x x x x x x x f x x x x         
0 1 2 1 0 1 2( )( )( ) ( ) ( , , , )n nx x x x x x x x f x x x x         
16 ( 1) 9 ( 1) ( 2) ( 1)( 2) 1x x x x x x            
2 3 2 2
16 9 9 2 2 2 2x x x x x x x         
 3 2
( ) 3 5 7 .f x x x x Ans    
Problem-03: Using Lagrange’s formula estimate ( )f x from the following table.
x 0 1 2 5
( )f x 2 3 12 147
Solution: Here, 0 1 2 30, 1, 2, 5x x x x   
0 1 2 3( ) 2, ( ) 3, ( ) 12, ( ) 147f x f x f x f x   
By Lagrange’s formula we get,
1 2 0 2 0 1
0 1 2
0 1 0 2 0 1 0 1 2 1 2 0 2 1 2
( )( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )
( )( ) ( ) ( )( ) ( ) ( )( ) ( )
n n n
n n n
x x x x x x x x x x x x x x x x x x
f x f x f x f x
x x x x x x x x x x x x x x x x x x
        
  
        
  
  
0 1 1
0 1 1
( )( ) ( )
( )
( )( ) ( )
n
n
n n n n
x x x x x x
f x
x x x x x x


  

  
 
 
 
       
( 1)( 2)( 5) ( 0)( 2)( 5) ( 0)( 1)( 5) ( 0)( 1)( 2)
2 3 12 147
(0 1)(0 2)(0 5) (1 0)(1 2) (1 5) (2 0)(2 1)(2 5) (5 0)(5 1)(5 2)
x x x x x x x x x x x x           
       
                       
       
3 2 3 2 3 2 3 2
8 17 10 7 10 6 5 3 2
2 3 12 147
10 4 6 60
x x x x x x x x x x x x        
       
   
       
3 2 3 2 3 2
3 28 17 10 3 21 30 49 147 98
2 12 10
5 4 20
x x x x x x x x x
x x x
       
     
 
 
 
3 2 3 2 3 2 3 21
( 4 32 68 40 15 105 150 2 12 10 49 147 98 )
20
x x x x x x x x x x x x             
3 21
(20 20 20 40)
20
x x x   
3 2
2x x x   
 3 2
( ) 2 .f x x x x Ans    
Problem-04: Using Lagrange’s formula estimate (10)f from the following table.
x 5 6 9 11
( )f x 12 13 14 16
Solution: Here, 0 1 2 35, 6, 9, 11 & 10x x x x x    
0 1 2 3( ) 12, ( ) 13, ( ) 14, ( ) 16f x f x f x f x   
By Lagrange’s formula we get,
1 2 0 2 0 1
0 1 2
0 1 0 2 0 1 0 1 2 1 2 0 2 1 2
( )( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )
( )( ) ( ) ( )( ) ( ) ( )( ) ( )
n n n
n n n
x x x x x x x x x x x x x x x x x x
f x f x f x f x
x x x x x x x x x x x x x x x x x x
        
  
        
  
  
0 1 1
0 1 1
( )( ) ( )
( )
( )( ) ( )
n
n
n n n n
x x x x x x
f x
x x x x x x


  

  
 
 
 
       
(10 6)(10 9)(10 11) (10 5)(10 9)(10 11) (10 5)(10 6)(10 11) (10 5)(10 6)(10 9)
12 13 14 16
(5 6)(5 9)(5 11) (6 5)(6 9)(6 11) (9 5)(9 6)(5 11) (11 5)(11 6)(11 9)
           
       
                  
       
4 5 20 20
12 13 14 16
24 15 24 60
  
       
   
2 4.333 11.667 5.333   
14.667 ( .)Ans
Problem-05: Using Lagrange’s formula estimate 3 55 from the following table.
x 50 52 54 56
3
( )f x x 3.684 3.732 3.779 3.825
Solution: Here, 0 1 2 350, 52, 54, 56 & 55x x x x x    
0 1 2 3( ) 3.684, ( ) 3.732, ( ) 3.779, ( ) 3.825f x f x f x f x   
By Lagrange’s formula we get,
1 2 0 2 0 1
0 1 2
0 1 0 2 0 1 0 1 2 1 2 0 2 1 2
( )( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )
( )( ) ( ) ( )( ) ( ) ( )( ) ( )
n n n
n n n
x x x x x x x x x x x x x x x x x x
f x f x f x f x
x x x x x x x x x x x x x x x x x x
        
  
        
  
  
0 1 1
0 1 1
( )( ) ( )
( )
( )( ) ( )
n
n
n n n n
x x x x x x
f x
x x x x x x


  

  
 
 
 
        
(55 52)(55 54)(55 56) (55 50)(55 54)(55 56) (55 50)(55 52)(55 56) (55 50)(55 52)(55 54)
3.684 3.732 3.779 3.825
(50 52)(50 54)(50 56) (52 50)(52 54)(52 56) (54 50)(54 52)(54 56) (56 50)(56 52)(56 54)
           
       
                 
        
3 5 15 15
3.684 3.732 3.779 3.825
48 16 16 48
  
       
  
0.23025 1.16625 3.5428125 1.1953125    
3.341625 ( .)Ans
 
 
Exercise:
Problem-01: Using Lagrange’s formula estimate 0
sin39 from the following table.
x 0 10 20 30 40
( ) sinf x x 0 1.1736 0.3420 0.5000 0.6428
Problem-02: Using Lagrange’s formula estimate log5.15 from the following table.
x 5.1 5.2 5.3 5.4 5.5
( ) logf x x 0.7076 0.7160 0.7243 0.7324 0.7404
Problem-03: The following table gives the sales of a concern for the five years. Using Lagrange’s formula estimate the
sales for the years1986 &1992 .
Year 1985 1987 1989 1991 1993
Sales 40 43 48 52 57
Problem-04: Using Lagrange’s formula estimate 151 from the following table.
x 150 152 154 156
( )f x x 12.247 12.329 12.410 12.490
Problem-05: Using Lagrange’s formula estimate tan(0.15) from the following table.
x 0.10 0.13 0.20 0.22 0.30
( ) tanf x x 0.1003 0.1307 0.2027 0.2236 0.3093
Problem-06: Using Newton’s divided difference formula estimate (8)f from the following table.
x 4 5 7 10 11
( )f x 48 100 294 900 1210
Problem-07: Using Newton’s divided difference formula estimate ( )f x from the following table.
x 0 1 4 5
( )f x 8 11 68 123
Problem-08: Using Newton’s divided difference formula estimate ( )f x in powers of ( 5)x  from the following table.
x 0 2 3 4 7 9
( )f x 4 26 58 112 466 922
Problem-09: Using Newton’s divided difference formula estimate (6)f from the following table.
x 5 7 11 13 21
( )f x 150 392 1452 2366 9702
Problem-010: Using Newton’s divided difference formula estimate tan(0.12) from the following table.
x 0.10 0.13 0.20 0.22 0.30
( ) tanf x x 0.1003 0.1307 0.2027 0.2236 0.3093

Weitere ähnliche Inhalte

Was ist angesagt?

Parabola Lesson Powerpoint Presentation
Parabola Lesson Powerpoint PresentationParabola Lesson Powerpoint Presentation
Parabola Lesson Powerpoint Presentation
yanhiggins
 
Z scores lecture chapter 2 and 4
Z scores lecture chapter 2 and 4Z scores lecture chapter 2 and 4
Z scores lecture chapter 2 and 4
Karen Price
 
Fixed Point Theorems
Fixed Point TheoremsFixed Point Theorems
Fixed Point Theorems
Nikhil Simha
 

Was ist angesagt? (20)

Parabola Lesson Powerpoint Presentation
Parabola Lesson Powerpoint PresentationParabola Lesson Powerpoint Presentation
Parabola Lesson Powerpoint Presentation
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
Graph Theory: Cut-Set and Cut-Vertices
Graph Theory: Cut-Set and Cut-VerticesGraph Theory: Cut-Set and Cut-Vertices
Graph Theory: Cut-Set and Cut-Vertices
 
Stochastic Processes - part 1
Stochastic Processes - part 1Stochastic Processes - part 1
Stochastic Processes - part 1
 
Z scores lecture chapter 2 and 4
Z scores lecture chapter 2 and 4Z scores lecture chapter 2 and 4
Z scores lecture chapter 2 and 4
 
Distribuição Log Normal - Valor Esperado
Distribuição Log Normal - Valor EsperadoDistribuição Log Normal - Valor Esperado
Distribuição Log Normal - Valor Esperado
 
Jointly Distributed Random Variaables.ppt
Jointly Distributed Random Variaables.pptJointly Distributed Random Variaables.ppt
Jointly Distributed Random Variaables.ppt
 
Probability distributionv1
Probability distributionv1Probability distributionv1
Probability distributionv1
 
Multiple ppt
Multiple pptMultiple ppt
Multiple ppt
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differences
 
Fixed Point Theorems
Fixed Point TheoremsFixed Point Theorems
Fixed Point Theorems
 
legendre transformatio.pptx
legendre transformatio.pptxlegendre transformatio.pptx
legendre transformatio.pptx
 
Communication systems notes - Akshansh
Communication systems notes - AkshanshCommunication systems notes - Akshansh
Communication systems notes - Akshansh
 
Indeterminate Forms and L' Hospital Rule
Indeterminate Forms and L' Hospital RuleIndeterminate Forms and L' Hospital Rule
Indeterminate Forms and L' Hospital Rule
 
Table of transformation of laplace & z
Table of transformation of laplace & zTable of transformation of laplace & z
Table of transformation of laplace & z
 
Contour integration and Mittag Leffler theorem
Contour integration and Mittag Leffler theoremContour integration and Mittag Leffler theorem
Contour integration and Mittag Leffler theorem
 
Random variables and probability distributions
Random variables and probability distributionsRandom variables and probability distributions
Random variables and probability distributions
 
Finite difference method
Finite difference methodFinite difference method
Finite difference method
 
Newton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with ExampleNewton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with Example
 
Directional derivative and gradient
Directional derivative and gradientDirectional derivative and gradient
Directional derivative and gradient
 

Andere mochten auch

08 interpolation lagrange
08 interpolation   lagrange08 interpolation   lagrange
08 interpolation lagrange
Mohammad Tawfik
 
Lagrange's Theorem
Lagrange's TheoremLagrange's Theorem
Lagrange's Theorem
john1129
 
Interpolation
InterpolationInterpolation
Interpolation
mbhuiya6
 
interpolation
interpolationinterpolation
interpolation
8laddu8
 

Andere mochten auch (20)

Es272 ch5b
Es272 ch5bEs272 ch5b
Es272 ch5b
 
Interpolation with unequal interval
Interpolation with unequal intervalInterpolation with unequal interval
Interpolation with unequal interval
 
Interpolation 2013
Interpolation 2013Interpolation 2013
Interpolation 2013
 
Extrapolation
ExtrapolationExtrapolation
Extrapolation
 
Spatial interpolation techniques
Spatial interpolation techniquesSpatial interpolation techniques
Spatial interpolation techniques
 
08 interpolation lagrange
08 interpolation   lagrange08 interpolation   lagrange
08 interpolation lagrange
 
Presentation2
Presentation2Presentation2
Presentation2
 
Applied numerical methods lec9
Applied numerical methods lec9Applied numerical methods lec9
Applied numerical methods lec9
 
Interpolation
InterpolationInterpolation
Interpolation
 
معادلة لاغرانج
معادلة لاغرانجمعادلة لاغرانج
معادلة لاغرانج
 
Lagrange’s interpolation formula
Lagrange’s interpolation formulaLagrange’s interpolation formula
Lagrange’s interpolation formula
 
Lagrange's Theorem
Lagrange's TheoremLagrange's Theorem
Lagrange's Theorem
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functions
 
Numerical Integration
Numerical IntegrationNumerical Integration
Numerical Integration
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Interpolation
InterpolationInterpolation
Interpolation
 
interpolation
interpolationinterpolation
interpolation
 
Interpolation Generalized
Interpolation GeneralizedInterpolation Generalized
Interpolation Generalized
 
Interpolation Methods
Interpolation MethodsInterpolation Methods
Interpolation Methods
 

Ähnlich wie Finite difference & interpolation

Ähnlich wie Finite difference & interpolation (20)

Perspectives and application of fuzzy initial value problems
Perspectives and application of fuzzy initial value problemsPerspectives and application of fuzzy initial value problems
Perspectives and application of fuzzy initial value problems
 
Perspectives and application of fuzzy initial value problems
Perspectives and application of fuzzy initial value problemsPerspectives and application of fuzzy initial value problems
Perspectives and application of fuzzy initial value problems
 
E028047054
E028047054E028047054
E028047054
 
The scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equationsThe scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equations
 
Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...
Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...
Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...
 
About testing the hypothesis of equality of two bernoulli
About testing the hypothesis of equality of two bernoulliAbout testing the hypothesis of equality of two bernoulli
About testing the hypothesis of equality of two bernoulli
 
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
A Generalised Class of Unbiased Seperate Regression Type Estimator under Stra...
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
Common Fixed Theorems Using Random Implicit Iterative Schemes
Common Fixed Theorems Using Random Implicit Iterative SchemesCommon Fixed Theorems Using Random Implicit Iterative Schemes
Common Fixed Theorems Using Random Implicit Iterative Schemes
 
Amity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notesAmity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notes
 
Maths digital text
Maths digital textMaths digital text
Maths digital text
 
A04 07 0105
A04 07 0105A04 07 0105
A04 07 0105
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
A02402001011
A02402001011A02402001011
A02402001011
 
Algebra
AlgebraAlgebra
Algebra
 
On Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsOn Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their Applications
 
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsDecay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
 
Chs4
Chs4Chs4
Chs4
 
B02404014
B02404014B02404014
B02404014
 

Mehr von Daffodil International University

Ahsan Manzil
Ahsan Manzil Ahsan Manzil

Mehr von Daffodil International University (20)

Bresenham algorithm
Bresenham algorithmBresenham algorithm
Bresenham algorithm
 
Tic Tac Toe
Tic Tac ToeTic Tac Toe
Tic Tac Toe
 
The Waterfall Model & RAD MODEL
 The Waterfall Model &  RAD MODEL The Waterfall Model &  RAD MODEL
The Waterfall Model & RAD MODEL
 
Reinforcement learning
Reinforcement learningReinforcement learning
Reinforcement learning
 
online marketing
online marketingonline marketing
online marketing
 
normalization
normalizationnormalization
normalization
 
Bioinformatics lesson
Bioinformatics lessonBioinformatics lesson
Bioinformatics lesson
 
Blasta
BlastaBlasta
Blasta
 
Bioinformatics lesson
Bioinformatics lessonBioinformatics lesson
Bioinformatics lesson
 
Liver
LiverLiver
Liver
 
Numerical methods
Numerical methodsNumerical methods
Numerical methods
 
stack in assembally language
stack in assembally languagestack in assembally language
stack in assembally language
 
OSI Model
OSI ModelOSI Model
OSI Model
 
Topology
TopologyTopology
Topology
 
Complex number
Complex numberComplex number
Complex number
 
Ahsan Manzil
Ahsan Manzil Ahsan Manzil
Ahsan Manzil
 
Big data
Big dataBig data
Big data
 
Search
SearchSearch
Search
 
Encoders
EncodersEncoders
Encoders
 
Applications of numerical methods
Applications of numerical methodsApplications of numerical methods
Applications of numerical methods
 

Kürzlich hochgeladen

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 

Kürzlich hochgeladen (20)

Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Third Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxThird Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 

Finite difference & interpolation

  • 1.     Finite Differences In this chapter we shall discuss about several difference operators such as forward difference operator, backward difference operator, central difference operator, shifting operator etc. Forward difference operator: The operator  is called forward difference operator and defined as, 1 1r r ry y y    where ; 0,1,2, ... ... ...,ry r n are values of y . Backward difference operator: The operator  is called backward difference operator and defined as, 1r r ry y y    where ; 0,1,2, ... ... ...,ry r n are values of y . Central difference operator: The operator  is called central difference operator and defined as, (2 1) 1 2 r r ry y y    where ; 0,1,2, ... ... ...,ry r n are values of y . Shifting operator: The operator E is called shifting operator and defined as, 1r rEy y  where ; 0,1,2, ... ... ...,ry r n are values of y . Which shows that the effect of E is to shift the functional value of y to it’s next higher value. Averaging operator: The operator  is called averaging operator and defined as, (2 1) (2 1) 2 2 1 2 r r ry y y         where ; 0,1,2, ... ... ...,ry r n are values of y . Differential operator: The operator D is called differential operator and defined as,  r r d Dy y dx  Where ; 0,1,2, ... ... ...,ry r n are values of y . Unit operator: The unit operator 1 is defined by, 1. r ry y where ; 0,1,2, ... ... ...,ry r n are values of y . Forward Differences: If 0 1 2, , , , ny y y y   denote a set of values of y , then 1 0 2 1, ,y y y y  3 2 1, , n ny y y y     are called the differences of y . If these differences are denoted as follows, 0 1 0y y y   1 2 1y y y       1 1n n ny y y    where  is called the forward difference operator and 0 1 1, , , ny y y     are called first forward differences. The second forward differences are, 2 0 1 0y y y     2 1 2 1y y y          2 1 1n n ny y y      Similarly, we can determine kth forward differences. 1 1 1 1. , k k k n n ni e y y y       
  • 2.     Forward Difference Table Backward Differences: If 0 1 2, , , , ny y y y   denote a set of values of y , then 1 0 2 1, ,y y y y  3 2 1, , n ny y y y     are called the differences of y . If these differences are denoted as follows, 1 1 0y y y   2 2 1y y y       1n n ny y y    where  is called the backward difference operator and 1 2, , , ny y y    are called first backward differences. The second backward differences are, 2 1 1 0y y y     2 2 2 1y y y         2 1n n ny y y      Similarly, we can determine kth backward differences. 1 1 1. , k k k n n ni e y y y       Backward Difference Table x y  2  3  4  5  0x 1x 2x 3x 4x 5x 0y 1y 2y 3y 4y 5y 0y 1y 2y 3y 4y 2 0y 2 1y 2 2y 2 3y 3 0y 3 1y 3 2y 4 0y 4 1y 5 0y x y  2  3  4  5  0x 1x 2x 3x 4x 5x 0y 1y 2y 3y 4y 5y 1y 2y 3y 4y 5y 2 2y 2 3y 2 4y 2 5y 3 3y 3 4y 3 5y 4 4y 4 5y 5 5y
  • 3.     Central Differences: If 0 1 2, , , , ny y y y   denote a set of values of y , then 1 0 2 1, ,y y y y  3 2 1, , n ny y y y     are called the differences of y . If these differences are denoted as follows, 1 1 0 2 y y y   3 2 1 2 y y y       (2 1) 1 2 n n ny y y    Where  is called the central difference operator and 1 3 (2 1) 2 2 2 , , , ny y y     are called first central differences. The second central differences are, 2 1 3 1 22 y y y    2 2 5 3 2 2 y y y         2 (2 1) (2 1) 2 2 n n ny y y     Similarly, we can determine kth central differences. 1 1 (2 1) (2 1) 2 2 . , k k k n n ni e y y y       Central Difference Table x y  2  3  4  5  0x 1x 2x 3x 4x 5x 0y 1y 2y 3y 4y 5y 1 2 y 3 2 y 5 2 y 7 2 y 9 2 y 2 1y 2 2y 2 3y 2 4y 3 3 2 y 3 5 2 y 3 7 2 y 4 2y 4 3y 5 5 2 y
  • 4.     Interpolation Interpolation is a numerical technique which is used to estimate unknown values of a function by using known values. For example, If we are to find out the population of Bangladesh in 1978 when we know the population of Bangladesh in the year 1971, 1975, 1979, 1984, 1988, 1992 and so on, then the process of finding the population of 1978 is known as interpolation. Mathematically, let ( )y f x be a function which gives 0 1 2, , , , ny y y y  for 0 1 2, , , , nx x x x  respectively. The method of finding ( )f x for x  where  lies in the given range is called an interpolation and if  lies outside the given range is called an extrapolation. Assumption for interpolation: For the application of the methods of interpolation, the following fundamental assumptions are required. a) In the interval under consideration, the values of the function cannot be jumped or fallen down suddenly. b) In the absence of any evidence to the contrary, the rise and fall in the values of the function must be uniform. c) The data can be expressed as a polynomial function so that the method of finite difference be applicable. Methods of interpolation: The various methods of interpolation are as follows: a) Method of graph b) Method of curve fitting c) Method for finite differences. In this chapter we shall discuss only interpolation formulae for finite differences. These formulae can be separated as follows: a) Interpolation formulae for equal intervals b) Interpolation formulae for unequal intervals c) Interpolation formulae for central difference. Interpolation formulae for equal intervals: The interpolation formulae for equal intervals are given bellow: I. Newton’s forward interpolation formula: Suppose, 0 0 1 1 2 2( , ),( , ),( , ), , ( , )n nx y x y x y x y   be a set of ( 1)n  values of x and y . Let the values of x be equidistant, 0. , ; 0,1,2, ,ri e x x rh r n     where h is difference between the points. Let ( )ny x be a polynomial of nth degree such that y and ( )ny x agree at the tabulated points, which is to be determined. It can be written as, 0 1 0 2 0 1 0 1 1( ) ( ) ( )( ) ( )( ) ( ) (1)n n ny x a a x x a x x x x a x x x x x x                where the constants 0a , 1a , 2a , … … , na can be determine as follows: Putting 0x x in Eq.(1) we have, 0 0a y Putting 1x x in Eq.(1) we have, 1 0 1 1 0( )y a a x x   1 0 1,or y y a h  1 0 1, y y or a h   0 1 y a h    Putting 2x x in Eq.(1) we have, 2 0 1 2 0 2 2 0 2 1( ) ( )( )y a a x x a x x x x      0 2 0 2, (2 ) (2 )( ) y or y y h a h h h    
  • 5.     2 2 0 1 0 2, 2( ) 2or y y y y a h    2 2 1 0 2, 2 2or y y y a h   2 1 0 2 2 2 , 2 y y y or a h    2 1 1 0 2 2 ( ) ( ) , 2 y y y y or a h     1 0 2 2 , 2 y y or a h     2 0 2 2 2! y a h    Similarly, 3 0 3 3 3! y a h   4 0 4 4 4! y a h      0 ! n n n y a n h   Using these values in Eq.(1) we have, 2 0 0 0 0 0 0 1 0 1 12 ( ) ( ) ( )( ) ( )( ) ( ) (2) 2! ! n n nn y y y y x y x x x x x x x x x x x x h h n h                    Setting 0x x ph  we have, 0x x ph  1 0 1 0x x x x x x     0 1 0( ) ( )x x x x    ph h  ( 1)p h  Similarly, 2 ( 2)x x p h   3 ( 3)x x p h        1 ( 1)nx x p n h    Equation (2) becomes, 2 3 0 0 0 0 0 ( 1) ( 1)( 2) ( 1) ( 1) ( ) (3) 2! 3! ! n n p p p p p p p p n y x y p y y y y n                     This is called Newton’s forward interpolation formula. Note: Newton’s forward interpolation formula is used to interpolate the values of y near the beginning of a set of tabular values.
  • 6.     II. Newton’s backward interpolation formula: Suppose, 0 0 1 1 2 2( , ),( , ),( , ), , ( , )n nx y x y x y x y   be a set of ( 1)n  values of x and y . Let the values of x be equidistant, 0. , ; 0,1,2, ,ri e x x rh r n     where h is difference between the points. Let ( )ny x be a polynomial of nth degree such that y and ( )ny x agree at the tabulated points, which is to be determined. It can be written as, 0 1 2 1 1 0( ) ( ) ( )( ) ( )( ) ( ) (1)n n n n n n ny x a a x x a x x x x a x x x x x x                where the constants 0a , 1a , 2a , … … , na can be determine as follows: Putting nx x in Eq.(1) we have, 0 na y Putting 1nx x  in Eq.(1) we have, 1 1 1( )n n n ny y a x x    1 1, ( )n nor y y a h    1 1, n ny y or a h   1 ny a h    Putting 2nx x  in Eq.(1) we have, 2 0 1 2 2 2 2 1( ) ( )( )n n n n n n ny a a x x a x x x x          2 2, ( 2 ) ( 2 )( )n n n y or y y h a h h h         2 2 1 2, 2( ) 2n n n nor y y y y a h     2 2 1 2, 2 2n n nor y y y a h     1 2 2 2 2 , 2 n n ny y y or a h     1 1 2 2 2 ( ) ( ) , 2 n n n ny y y y or a h       1 2 2 , 2 n ny y or a h     2 2 2 2! ny a h    Similarly, 3 3 3 3! ny a h   4 4 4 4! ny a h      ! n n n n y a n h   Using these values in Eq.(1) we have, 2 1 1 12 ( ) ( ) ( )( ) ( )( ) ( ) (2) 2! ! n n n n n n n n n n nn y y y y x y x x x x x x x x x x x x h h n h                     Setting nx x ph  we have,
  • 7.     nx x ph  1 1n n n nx x x x x x      1( ) ( )n n nx x x x     ph h  ( 1)p h  Similarly, 2 ( 2)nx x p h   3 ( 3)nx x p h        1 ( 1)x x p n h    Equation (2) becomes, 2 3( 1) ( 1)( 2) ( 1) ( 1) ( ) (3) 2! 3! ! n n n n n n n p p p p p p p p n y x y p y y y y n                     This is called Newton’s backward interpolation formula. Note: Newton’s backward interpolation formula is used to interpolate the values of y near the end of a set of tabular values. Problem-01: Construct a difference table to find the polynomial of the data      1,1 , 2,8 , 3,27 ,      4,64 , 5,125 ,(6,216) 7,343 ,(8,512)considering appropriate method. Also find r , where (9, )r is given. Solution: We may construct any one of forward, backward and central difference tables. Since we also have to find r for 9x  which is nearer at the end of the set of given tabular values, so we will construct the backward difference table. The backward difference table of the given data is as follows: x y  2  3  4  1 2 3 4 5 6 7 8 1 8 27 64 125 216 343 512 7 19 37 61 91 127 169 12 18 24 30 36 42 6 6 6 6 6 0 0 0 0 This is the required difference table. Here 2 3 4 8, 1, 512, 169, 42, 6, 0.n n n n n nx h y y y y y           8 ( 8) 1 nx x x p x h        By Newton’s backward formula we get, 2 3( 1) ( 1)( 2) ( 1) ( 1) ( ) 2! 3! ! n n n n n n p p p p p p p p n y x y p y y y y n                    ( 8)( 8 1) ( 8)( 8 1)( 8 2) 512 169( 8) 42 6 2! 3! x x x x x x                2 3 2 512 169 1352 21 315 1176 21 146 336x x x x x x          3 x This is the required polynomial.
  • 8.     2nd part: For 9x  we get, 3 (9) 9y  729r  (Ans.) Problem-02: From the following table of yearly premiums for policies maturing at quinquennial ages, estimate the premiums foe policies maturing at the age of 46 years. Age(x) 45 50 55 60 65 Premium(y) 2.871 2.404 2.083 1.862 1.712 Solution: Since 46x  is nearer at the beginning of the set of given tabular values, so we have to construct the forward difference table. The forward difference table of the given data is as follows: Age(x) Premium(y)  2  3  4  45 50 55 60 65 2.871 2.404 2.083 1.862 1.712 -0.467 -0.321 -0.221 -0.150 0.146 0.100 0.071 -0.046 -0.029 0.017 Here 2 3 4 0 0 0 0 0 046, 5, 45, 45, 0.467, 0.146, 0.046, 0.017x h x y y y y y              0 46 45 1 0.2 5 5 x x p h        By Newton’s forward formula we get, 2 3 0 0 0 0 0 ( 1) ( 1)( 2) ( 1) ( 1) ( ) 2! 3! ! np p p p p p p p n y x y p y y y y n                    0.2(0.2 1) 0.2(0.2 1)(0.2 2) 0.2(0.2 1)(0.2 2)(0.2 3) (46) 2.871 0.2 ( 0.467) (0.146) ( 0.046) (0.017) 2! 3! 4! y                   2.8710 0.0934 0.01168 0.002208 0.0005712     2.763( .)approx Problem-03: The values of sin x are given below for different values of x, find the value of 0 sin38 . x 15 20 25 30 35 40 siny x 0.2588190 0.3420201 0.4226183 0.5 0.5735764 0.6427876 Solution: Since 0 38x  is nearer at the end of the set of given tabular values, so we have to construct the backward difference table. The backward difference table of the given data is as follows: x siny x  2  3  4  5  15 20 25 30 35 40 0.2588190 0.3420201 0.4226183 0.5 0.5735764 0.6427875 0.0832011 0.0805982 0.0773817 0.0735764 0.0692112 -0.0026029 -0.0032165 -0.0038053 -0.0043652 -0.0006136 -0.0005888 -0.0005599 0.0000248 0.0000289 0.0000041 Here 2 3 38, 40, 5, 0.6427875, 0.0692112, 0.0043652, 0.0005599,n n n n nx x h y y y y           
  • 9.     4 5 0.0000289, 0.0000041n ny y    . 38 40 2 0.4 5 5 nx x p h          By Newton’s backward formula we get, 2 3( 1) ( 1)( 2) ( 1) ( 1) (38) 2! 3! ! n n n n n n p p p p p p p p n y y p y y y y n                    ( 0.4)( 0.4 1) ( 0.4)( 0.4 1)( 0.4 2) 0.6427876 ( 0.4) 0.0692112 ( 0.0043652) ( 0.0005599) 2! 3!                   ( 0.4)( 0.4 1)( 0.4 2)( 0.4 3) ( 0.4)( 0.4 1)( 0.4 2)( 0.4 3)( 0.4 4) (0.0000289) (0.0000041) 4! 5!                     0.6427876 0.02768448 0.00052382 0.00003583 0.00000120     0.6156614( .)approx Problem-04: In an examination the number of candidates who obtained marks between certain limits were as follows: Marks 30-40 40-50 50-60 60-70 70-80 No. of Students 31 42 51 35 31 Find the number of candidates whose scores lie between 45 and 50. Solution: First of all we construct a cumulative frequency table for the given data. Upper limits of the class intervals 40 50 60 70 80 Cumulative frequency 31 73 124 159 190 Since 45x  is nearer at the beginning of the set of values in cumulative frequency table, so we have to construct the forward difference table. The forward difference table of the given data is as follows: Marks(x) Cumulative frequencies(y)  2  3  4  40 50 60 70 80 31 73 124 159 190 42 51 35 31 9 -16 -4 -25 12 37 Here 2 3 4 0 0 0 0 0 045, 40, 10, 31, 42, 9, 25, 37x x h y y y y y             . 0 45 40 5 0.5 10 10 x x p h        By Newton’s forward formula we get, 2 3 0 0 0 0 0 ( 1) ( 1)( 2) ( 1) ( 1) ( ) 2! 3! ! np p p p p p p p n y x y p y y y y n                    0.5(0.5 1) 0.5(0.5 1)(0.5 2) 0.5(0.5 1)(0.5 2)(0.5 3) (45) 31 0.5 42 9 ( 25) 37 2! 3! 4! y                  31 21 1.125 1.5625 1.4452     47.8673 48( .)approx
  • 10.     Problem-05: The population of a town in the last six censuses was as given below. Estimate the population for the year 1946. Year(x) 1911 1921 1931 1941 1951 1961 Population in thousands(y) 12 15 20 27 39 52 Solution: Since 1946x  is nearer at the end of the set of given tabular values, so we have to construct the backward difference table The backward difference table of the given data is as follows: ( )Year x ( )Populations y  2  3  4  5  1911 1921 1931 1941 1951 1961 12 15 20 27 39 52 3 5 7 12 13 2 2 5 1 0 3 -4 3 -7 -10 Here 2 3 4 5 1946, 1961, 10, 52, 13, 1, 4, 7, 10n n n n n n nx x h y y y y y y                 . 1946 1961 15 1.5 10 10 nx x p h          By Newton’s backward formula we get, 2 3( 1) ( 1)( 2) ( 1) ( 1) ( ) 2! 3! ! n n n n n n p p p p p p p p n y x y p y y y y n                    ( 1.5)( 1.5 1) ( 1.5)( 1.5 1)( 1.5 2) ( 1.5)( 1.5 1)( 1.5 2)( 1.5 3) (1946) 52 ( 1.5) 13 1 ( 4) ( 7) 2! 3! 4! y                             ( 1.5)( 1.5 1)( 1.5 2)( 1.5 3)( 1.5 4) ( 10) 5!             32.3438( .)approx Exercise: Problem-01: The population of a village in the last six censuses was recorded as follows. Estimate the population for the year 1945. Year(x) 1941 1951 1961 1971 1981 1991 Population(y) 2500 2800 3200 3700 4350 5225 Problem-02: In a company the number of persons whose daily wage are as follows: Daily wage in Tk. 0-20 20-40 40-60 60-80 80-100 No. of persons 120 145 200 250 150 Find the number of persons whose daily wage is between TK. 40 and TK.50. Problem-03: The population of a town in decennial census was recorded as follows. Estimate the population for the year 1985. Year(x) 1951 1961 1971 1981 1991 Population in thousands(y) 98.752 132.285 168.076 195.690 246.05 Problem-04: The population of a town in decennial census was recorded as follows. Estimate the population for the year 1895. Year(x) 1891 1901 1911 1921 1931 Population in thousands(y) 46 66 81 93 101 Problem-05: Estimate the production of cotton in the year 1935 from the data given below. Year(x) 1931 1932 1934 1936 1938 Production in millions of bales(y) 17.1 13.0 14.0 9.6 12.4
  • 11.     Interpolation formulae for unequal intervals: The interpolation formulae for unequal intervals are given bellow: 1) Newton’s Interpolation formula for unequal intervals. 2) Lagrange’s Interpolation formula for unequal intervals. Divided Differences: Let ( )y f x be a polynomial which gives 0( )f x , 1( )f x , 2( )f x , , ( )nf x  at the points 0x , 1x , 2x , , nx  (which are not equally spaced)respectively. Then the first divided difference for the arguments 0x and 1x is denoted by 0 1( , )f x x or ( )f x and defined as, 0 1 0 1 0 1 ( ) ( ) [ , ] f x f x f x x x x    The second divided difference for the arguments 0x , 1x and 2x is denoted by 0 1 2( , , )f x x x or 2 ( )f x and defined as, 0 1 1 2 0 1 2 0 2 ( , ) ( , ) ( , , ) f x x f x x f x x x x x    The third divided difference for the arguments 0x , 1x , 2x and 3x is denoted by 0 1 2 3( , , , )f x x x x or 3 ( )f x and defined as, 0 1 2 1 2 3 0 1 2 3 0 3 ( , , ) ( , , ) ( , , , ) f x x x f x x x f x x x x x x    Similarly, the nth divided difference for the arguments 0x , 1x , 2x , , nx  is denoted by 0 1 2( , , , , )nf x x x x  or ( )n f x and defined as, 0 1 1 1 2 0 1 2 0 ( , , , ) ( , , , ) ( , , , , ) n n n n f x x x f x x x f x x x x x x           Divided Difference Table x ( )f x  2  3  0x 1x 2x 3x 0( )f x 1( )f x 2( )f x 3( )f x 0 1( , )f x x 1 2( , )f x x 2 3( , )f x x 0 1 2( , , )f x x x 1 2 3( , , )f x x x 0 1 2 3( , , , )f x x x x Properties of Divided Differences: The properties are given as follows: 1) The divided differences are symmetric. 0 1 1 0. , ( , ) ( , )i e f x x f x x . 2) The nth divided differences of a polynomial of the nth degree are constant. 3) The nth divided differences can be expressed as the quotient of two determinants each of order ( 1)n  . I). Newton’s Interpolation formula for unequal intervals: Let ( )y f x be a polynomial which gives 0( )f x , 1( )f x , 2( )f x , , ( )nf x  at the points 0x , 1x , 2x , , nx  (which are not equally spaced)respectively. Then the first divided difference for the arguments x and 0x is given by, 0 0 0 ( ) ( ) ( , ) f x f x f x x x x    0 0 0, ( ) ( ) ( ) ( , ) (1)or f x f x x x f x x     The second divided difference for the arguments x , 0x and 1x is given by, 0 0 1 0 1 1 ( , ) ( , ) ( , , ) f x x f x x f x x x x x    0 0 1 1 0 1, ( , ) ( , ) ( ) ( , , ) (2)or f x x f x x x x f x x x    
  • 12.     The third divided difference for the arguments x , 0x , 1x and 2x is given by, 0 1 0 1 2 0 1 2 2 ( , , ) ( , , ) ( , , , ) f x x x f x x x f x x x x x x    0 1 0 1 2 2 0 1 2, ( , , ) ( , , ) ( ) ( , , , ) (3)or f x x x f x x x x x f x x x x     The nth divided difference for the arguments x , 0x , 1x , , nx  is given by, 0 1 1 0 1 0 1 1( , , , , ) ( , , , ) ( ) ( , , , , ) (4)n n n nf x x x x f x x x x x f x x x x           Multiplying Eq.(2) by 0( )x x , Eq.(3) by 0( )x x 1( )x x and so on and finally the Eq. (4) by 0( )x x 1( )x x 1( )nx x   and adding with Eq.(1) we get, 0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3( ) ( ) ( ) ( , ) ( )( ) ( , , ) ( )( )( ) ( , , , )f x f x x x f x x x x x x f x x x x x x x x x f x x x x          0 1 2 1 0 1 2( )( )( ) ( ) ( , , , ) (5)n n nx x x x x x x x f x x x x R             where 0 1 2 0 1 2( )( )( ) ( ) ( , , , , )n n nR x x x x x x x x f x x x x x        If ( )f x be a polynomial of degree n, then the ( 1)n  th divided difference of ( )f x will be zero. 0 1( , , , , ) 0nf x x x x   Then the Eq. (5) can be written as, 0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3( ) ( ) ( ) ( , ) ( )( ) ( , , ) ( )( )( ) ( , , , )f x f x x x f x x x x x x f x x x x x x x x x f x x x x          0 1 2 1 0 1 2( )( )( ) ( ) ( , , , ) (6)n nx x x x x x x x f x x x x            This formula is called Newton’s divided difference interpolation formula for unequal intervals. II). Lagrange’s Interpolation formula for unequal intervals: Let ( )y f x be a polynomial of degree n which gives 0( )f x , 1( )f x , 2( )f x , , ( )nf x  at the points 0x , 1x , 2x , , nx  (which are not equally spaced)respectively. This polynomial can be written as, 0 1 2 1 0 2 2 0 1( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )n n nf x a x x x x x x a x x x x x x a x x x x x x              0 1 1( )( ) ( ) (1)n na x x x x x x         putting 0x x in Eq.(1) we get, 0 0 0 1 0 2 0( ) ( )( ) ( )nf x a x x x x x x    0 0 0 1 0 2 0 ( ) , ( )( ) ( )n f x or a x x x x x x      putting 1x x in Eq.(1) we get, 1 1 1 0 1 2 1( ) ( )( ) ( )nf x a x x x x x x    1 1 1 0 1 2 1 ( ) , ( )( ) ( )n f x or a x x x x x x      Similarly putting 2 ,x x 3x x , nx x in Eq.(1) we get, 2 2 2 0 2 1 2 ( ) ( )( ) ( )n f x a x x x x x x         0 1 1 ( ) ( )( ) ( ) n n n n n n f x a x x x x x x       Substituting the values of 0 1 2, , , , na a a a in Eq.(1) we get, 1 2 0 2 0 1 0 1 2 0 1 0 2 0 1 0 1 2 1 2 0 2 1 2 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) n n n n n n x x x x x x x x x x x x x x x x x x f x f x f x f x x x x x x x x x x x x x x x x x x x                            0 1 1 0 1 1 ( )( ) ( ) ( ) (2) ( )( ) ( ) n n n n n n x x x x x x f x x x x x x x                 This formula is called Lagrange’s interpolation formula for unequal intervals.
  • 13.     NOTE: The calculation is more complicated in Lagrange’s formula than Newton’s formula. The application of the formula is not speedy and there is always a chance of committing some error due to the number of positive and negative signs in the numerator and denominator of each term. Comparisons between Lagrange and Newton Interpolation: 1). The Lagrange and Newton interpolating formulas provide two different forms for an interpolating polynomial, even though the interpolating polynomial is unique. 2). Lagrange method is numerically unstable but Newton's method is usually numerically stable and computationally efficient. 3). Newton formula is much better for computation than the Lagrange formula. 4). Lagrange form is most often used for deriving formulas for approximating derivatives and integrals 5). Lagrange's form is more efficient then the Newton's formula when you have to interpolate several data sets on the same data points. Problem-01: Using Newton’s divided difference estimate (8) & (15)f f from the following table. x 4 5 7 10 11 13 ( )f x 48 100 294 900 1210 2028 Solution: The divided difference table is as follows: x ( )f x ( )f x 2 ( )f x 3 ( )f x 4 ( )f x 4 5 7 10 11 13 48 100 294 900 1210 2028 100 48 52 5 4    294 100 97 7 5    900 294 202 10 7    1210 900 310 11 10    2028 1210 409 13 11    97 52 15 7 4    202 97 21 10 5    310 202 27 11 7    409 310 33 13 10    21 15 1 10 4    27 21 1 11 5    33 27 1 13 7    0 0 Here, 0 1 2 3 4 54, 5, 7, 10, 11, 13x x x x x x      0 0 1 0 1 2 0 1 2 3( ) 48, ( , ) 52, ( , , ) 15, ( , , , ) 1f x f x x f x x x f x x x x    By Newton’s divided difference formula we get, 0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3( ) ( ) ( ) ( , ) ( )( ) ( , , ) ( )( )( ) ( , , , )f x f x x x f x x x x x x f x x x x x x x x x f x x x x          0 1 2 1 0 1 2( )( )( ) ( ) ( , , , )n nx x x x x x x x f x x x x          48 ( 4) 52 ( 4)( 5) 15 ( 4)( 5)( 7) 1x x x x x x             2 3 2 48 52 208 15 135 300 16 83 140x x x x x x          3 2 ( )f x x x   Now 3 2 (8) 8 8 512 64 448 ( .)f Ans     And 3 2 (15) (15) (15) 3375 225 3150 ( .)f Ans    
  • 14.     Problem-02: Using Newton’s divided difference estimate ( )f x from the following table. x -1 0 2 3 4 ( )f x -16 -7 -1 8 29 Solution: The divided difference table is as follows: x ( )f x ( )f x 2 ( )f x 3 ( )f x 4 ( )f x -1 0 2 3 4 -16 -7 -1 8 29 7 16 9 0 1     1 7 3 2 0     8 1 9 3 1    29 8 21 4 3    3 9 2 2 1     9 3 2 3 0    21 9 6 4 2    2 2 1 3 1    6 2 1 4 0    0 Here, 0 1 2 3 41, 0, 2, 3, 4x x x x x      0 0 1 0 1 2 0 1 2 3( ) 16, ( , ) 9, ( , , ) 2, ( , , , ) 1f x f x x f x x x f x x x x      By Newton’s divided difference formula we get, 0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3( ) ( ) ( ) ( , ) ( )( ) ( , , ) ( )( )( ) ( , , , )f x f x x x f x x x x x x f x x x x x x x x x f x x x x          0 1 2 1 0 1 2( )( )( ) ( ) ( , , , )n nx x x x x x x x f x x x x          16 ( 1) 9 ( 1) ( 2) ( 1)( 2) 1x x x x x x             2 3 2 2 16 9 9 2 2 2 2x x x x x x x           3 2 ( ) 3 5 7 .f x x x x Ans     Problem-03: Using Lagrange’s formula estimate ( )f x from the following table. x 0 1 2 5 ( )f x 2 3 12 147 Solution: Here, 0 1 2 30, 1, 2, 5x x x x    0 1 2 3( ) 2, ( ) 3, ( ) 12, ( ) 147f x f x f x f x    By Lagrange’s formula we get, 1 2 0 2 0 1 0 1 2 0 1 0 2 0 1 0 1 2 1 2 0 2 1 2 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) n n n n n n x x x x x x x x x x x x x x x x x x f x f x f x f x x x x x x x x x x x x x x x x x x x                            0 1 1 0 1 1 ( )( ) ( ) ( ) ( )( ) ( ) n n n n n n x x x x x x f x x x x x x x                        ( 1)( 2)( 5) ( 0)( 2)( 5) ( 0)( 1)( 5) ( 0)( 1)( 2) 2 3 12 147 (0 1)(0 2)(0 5) (1 0)(1 2) (1 5) (2 0)(2 1)(2 5) (5 0)(5 1)(5 2) x x x x x x x x x x x x                                                    3 2 3 2 3 2 3 2 8 17 10 7 10 6 5 3 2 2 3 12 147 10 4 6 60 x x x x x x x x x x x x                             3 2 3 2 3 2 3 28 17 10 3 21 30 49 147 98 2 12 10 5 4 20 x x x x x x x x x x x x                
  • 15.     3 2 3 2 3 2 3 21 ( 4 32 68 40 15 105 150 2 12 10 49 147 98 ) 20 x x x x x x x x x x x x              3 21 (20 20 20 40) 20 x x x    3 2 2x x x     3 2 ( ) 2 .f x x x x Ans     Problem-04: Using Lagrange’s formula estimate (10)f from the following table. x 5 6 9 11 ( )f x 12 13 14 16 Solution: Here, 0 1 2 35, 6, 9, 11 & 10x x x x x     0 1 2 3( ) 12, ( ) 13, ( ) 14, ( ) 16f x f x f x f x    By Lagrange’s formula we get, 1 2 0 2 0 1 0 1 2 0 1 0 2 0 1 0 1 2 1 2 0 2 1 2 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) n n n n n n x x x x x x x x x x x x x x x x x x f x f x f x f x x x x x x x x x x x x x x x x x x x                            0 1 1 0 1 1 ( )( ) ( ) ( ) ( )( ) ( ) n n n n n n x x x x x x f x x x x x x x                        (10 6)(10 9)(10 11) (10 5)(10 9)(10 11) (10 5)(10 6)(10 11) (10 5)(10 6)(10 9) 12 13 14 16 (5 6)(5 9)(5 11) (6 5)(6 9)(6 11) (9 5)(9 6)(5 11) (11 5)(11 6)(11 9)                                                4 5 20 20 12 13 14 16 24 15 24 60                2 4.333 11.667 5.333    14.667 ( .)Ans Problem-05: Using Lagrange’s formula estimate 3 55 from the following table. x 50 52 54 56 3 ( )f x x 3.684 3.732 3.779 3.825 Solution: Here, 0 1 2 350, 52, 54, 56 & 55x x x x x     0 1 2 3( ) 3.684, ( ) 3.732, ( ) 3.779, ( ) 3.825f x f x f x f x    By Lagrange’s formula we get, 1 2 0 2 0 1 0 1 2 0 1 0 2 0 1 0 1 2 1 2 0 2 1 2 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) n n n n n n x x x x x x x x x x x x x x x x x x f x f x f x f x x x x x x x x x x x x x x x x x x x                            0 1 1 0 1 1 ( )( ) ( ) ( ) ( )( ) ( ) n n n n n n x x x x x x f x x x x x x x                         (55 52)(55 54)(55 56) (55 50)(55 54)(55 56) (55 50)(55 52)(55 56) (55 50)(55 52)(55 54) 3.684 3.732 3.779 3.825 (50 52)(50 54)(50 56) (52 50)(52 54)(52 56) (54 50)(54 52)(54 56) (56 50)(56 52)(56 54)                                                3 5 15 15 3.684 3.732 3.779 3.825 48 16 16 48               0.23025 1.16625 3.5428125 1.1953125     3.341625 ( .)Ans
  • 16.     Exercise: Problem-01: Using Lagrange’s formula estimate 0 sin39 from the following table. x 0 10 20 30 40 ( ) sinf x x 0 1.1736 0.3420 0.5000 0.6428 Problem-02: Using Lagrange’s formula estimate log5.15 from the following table. x 5.1 5.2 5.3 5.4 5.5 ( ) logf x x 0.7076 0.7160 0.7243 0.7324 0.7404 Problem-03: The following table gives the sales of a concern for the five years. Using Lagrange’s formula estimate the sales for the years1986 &1992 . Year 1985 1987 1989 1991 1993 Sales 40 43 48 52 57 Problem-04: Using Lagrange’s formula estimate 151 from the following table. x 150 152 154 156 ( )f x x 12.247 12.329 12.410 12.490 Problem-05: Using Lagrange’s formula estimate tan(0.15) from the following table. x 0.10 0.13 0.20 0.22 0.30 ( ) tanf x x 0.1003 0.1307 0.2027 0.2236 0.3093 Problem-06: Using Newton’s divided difference formula estimate (8)f from the following table. x 4 5 7 10 11 ( )f x 48 100 294 900 1210 Problem-07: Using Newton’s divided difference formula estimate ( )f x from the following table. x 0 1 4 5 ( )f x 8 11 68 123 Problem-08: Using Newton’s divided difference formula estimate ( )f x in powers of ( 5)x  from the following table. x 0 2 3 4 7 9 ( )f x 4 26 58 112 466 922 Problem-09: Using Newton’s divided difference formula estimate (6)f from the following table. x 5 7 11 13 21 ( )f x 150 392 1452 2366 9702 Problem-010: Using Newton’s divided difference formula estimate tan(0.12) from the following table. x 0.10 0.13 0.20 0.22 0.30 ( ) tanf x x 0.1003 0.1307 0.2027 0.2236 0.3093