SlideShare ist ein Scribd-Unternehmen logo
1 von 83
Downloaden Sie, um offline zu lesen
No 116 (2023)
Sciences of Europe
(Praha, Czech Republic)
ISSN 3162-2364
The journal is registered and published in Czech Republic.
Articles in all spheres of sciences are published in the journal.
Journal is published in Czech, English, Polish, Russian, Chinese, German and French, Ukrainian.
Articles are accepted each month.
Frequency: 24 issues per year.
Format - A4
All articles are reviewed
Free access to the electronic version of journal
Edition of journal does not carry responsibility for the materials published in a journal.
Sending the article to the editorial the author confirms it’s uniqueness and takes full responsibility for possible
consequences for breaking copyright laws.
Chief editor: Petr Bohacek
Managing editor: Michal Hudecek
• Jiří Pospíšil (Organic and Medicinal Chemistry) Zentiva
• Jaroslav Fähnrich (Organic Chemistry) Institute of Organic Chemistry and Biochemistry
Academy of Sciences of the Czech Republic
• Smirnova Oksana K., Doctor of Pedagogical Sciences, Professor, Department of History
(Moscow, Russia);
• Rasa Boháček – Ph.D. člen Česká zemědělská univerzita v Praze
• Naumov Jaroslav S., MD, Ph.D., assistant professor of history of medicine and the social
sciences and humanities. (Kiev, Ukraine)
• Viktor Pour – Ph.D. člen Univerzita Pardubice
• Petrenko Svyatoslav, PhD in geography, lecturer in social and economic geography.
(Kharkov, Ukraine)
• Karel Schwaninger – Ph.D. člen Vysoká škola báňská – Technická univerzita Ostrava
• Kozachenko Artem Leonidovich, Doctor of Pedagogical Sciences, Professor, Department
of History (Moscow, Russia);
• Václav Pittner -Ph.D. člen Technická univerzita v Liberci
• Dudnik Oleg Arturovich, Doctor of Physical and Mathematical Sciences, Professor, De-
partment of Physical and Mathematical management methods. (Chernivtsi, Ukraine)
• Konovalov Artem Nikolaevich, Doctor of Psychology, Professor, Chair of General Psy-
chology and Pedagogy. (Minsk, Belarus)
«Sciences of Europe» -
Editorial office: Křižíkova 384/101 Karlín, 186 00 Praha
E-mail: info@european-science.org
Web: www.european-science.org
CONTENT
AGRICULTURAL SCIENCES
Marupov A., Turamuratova G., Marupov U.
AGROBIOLIGIC METHOD Of CONTROL OF THE
FUSARIUM WILT OF COTTON IN UZBEKISTAN............4
Mkrtchyan A., Gukasyan A.,
Osipova R., Khachatryan N.
DESCRIPTION AND ECONOMIC INDICATORS OF
WINTER BARLEY VARIETY SIS.................................. 10
EARTH SCIENCES
Mammadov A., Mammadov R.,
Sultanova A., Gurbanov P.
TO THE QUESTION OF REGULATION OF THE
OPERATING MODES OF THE OPERATING FUND OF
WELLS TAKING INTO ACCOUNT THE INTERACTION..16
ECONOMIC SCIENCES
Vinnytska O.
THEORETICAL ASPECTS OF STATE TAX POLICY .........20
GEOLOGICAL AND MINERALOGICAL SCIENCES
Davlatov M.
GLOBAL WATER INITIATIVES OF TAJIKISTAN: AN
APPRAISAL OF ROBUST INITIATIVES.........................23
HISTORICAL SCIENCES
Krasivskyi O.
POLITICAL DISCOURSE OF UKRAINE REGARDING THE
RUSSIAN-GEORGIAN WAR OF 2008.........................26
MEDICAL SCIENCES
Bayramova N., Vahabova G.,
Hasanova Sh., Maharramova S.
ANTITUMOR MARKERS ELIMINATION LEVELS IN THE
DIFFERENTIAL DIAGNOSIS OF COLORECTAL CANCER
AND ADENOMATOUS POLYPOSIS............................30
Bayramova N., Dashdamirova G.,
Rahimova R., Vahabova G.
PREDICTIVE IMMUNOLOGICAL MARKERS IN
COLORECTAL CANCER DETECTION.......................... 34
PEDAGOGICAL SCIENCES
Breslavska H.
THE MODEL OF FORMATION OF A CULTURE OF
STUDENTS’ PERMISSION THROUGH PROJECTS IN
OUT-OF-COURSE WORK..........................................36
Komar O.
CHALLENGES IN IMPLEMENTING COMMUNICATIVE
ENGLISH LANGUAGE TEACHING METHODOLOGIES. 43
PHARMACEUTICAL SCIENCES
Abduraxmanov B., Umarova О.,
Tilovova G., Khalilov R.
SELECTION OF OPTIMAL DRYING CONDITIONS FOR
ABOVEGROUND PARTS OF HYPERICUM SCABRUM
AND HYPERICUM PERFORATUM .............................47
PHILOLOGICAL SCIENCES
Varichenko G., Prakonina V.
LITERARY TEXT IN A FOREIGN AUDIENCE (LEARNING
TO READ ON THE EXAMPLE OF VALENTIN RASPUTIN'S
STORY "FRENCH LESSONS").....................................55
PHYSICS AND MATHEMATICS
Ibrahimov F., Jabrayilova N., Ilyasov Kh.
INTERPRETATION OF THE PROCESS OF MASTERING
"THEORETICAL AND TECHNOLOGICAL BASES OF
SOLVING THE SYSTEM OF LINEAR ALGEBRAIC
EQUATIONS" IN THE TEACHING OF "ALGEBRA" .......60
SOCIAL SCIENCES
Artemenko S., Hrand O., Grishko K.,
Onishchuk I., Skvortsova D., Yanchenko V.
INDIVIDUAL WORK OF STUDENTS OF SOCIOLOGICAL
SPECIALTIES AS AN EFFECTIVE MEANS OF APPLYING
INTERDISCIPLINARY CONNECTIONS IN LEARNING A
FOREIGN LANGUAGE ..............................................67
TECHNICAL SCIENCES
Aliyev M.
SOCIAL MEDIA MARKETING STRATEGY FOR
AZERBAIJAN TECHNICAL UNIVERSITY DEPARTMENTS
...............................................................................72
Huseynzade G.
CYBER SECURITY MACRO TRENDS AND
DEVELOPMENT DIRECTIONS OF THE CYBER SECURITY
INDUSTRY...............................................................76
Vyshinsky V.
THE LAW OF THE NATURE OF THE EXISTENCE OF
MATTER IN THE FORM OF SUBSTANCE GENERATES
FUNDAMENTAL SCIENCES ...................................... 80
4 Sciences of Europe # 116, (2023)
AGRICULTURAL SCIENCES
AGROBIOLIGIC METHOD Of CONTROL OF THE FUSARIUM WILT OF COTTON IN
UZBEKISTAN
Marupov A.,
Turamuratova G.,
Marupov U.
Research institute of quarantine and plant protection,
Tashkent, Uzbekistan
DOI: 10.5281/zenodo.7907243
ABSTRACT
It has been established that during soil solarization, the causative agent of the wilt fungus Fusarium sp. is
eradicated in the arable horizon, along with it, other soil microorganisms are also destroyed. Soil greening after
solarization restores the natural microbiological potential of the soil and increases its antibiotic activity, as well
as reduces the incidence of wilt plants at an early stage of their development, preserves the number of plants and
increases the cotton yield.
Keywords: Fusarium wilt, pathogen, microorganisms, soil, solarization, mustard, cotton.
Introduction. Global climate change affects not
only higher plants, but also plant pests. Ensuring food
security directly depends on the protection of cultivated
crops from harmful organisms that cause great damage
to the crop and its quality.
In recent years, in Uzbekistan, there has been an
increasing damage to zoned cotton varieties by
Fusarium wilt, caused by a soil wilt pathogenic fungus
from the genus Fusarium.
A particularly new form of Fusarium wilt patho-
gen caused by a fungus Fusarium verticillioides (Sacc.)
Nirenberg causes significant damage to young cotton
plants in the Bukhara and Navoi regions, as a result, the
latter die and their density on the field is greatly re-
duced. Plants affected by wilt lose their yield, the qual-
ity of cotton fiber and the quality of seeds deteriorate.
Failure to use anti-wilt measures on farms can
cause repetition of wilt epiphytoties on cotton that arose
in the 60s and 70s of the last century.
President of Uzbekistan Sh. M. Mirziyoyev, at a
selector meeting held on May 25, 2021, specifically
pointed out “On measures to improve plant protection
systems”, emphasized the improvement of research
work in the field of combating cotton wilt disease in the
Bukhara region.
The wilt pathogen constantly accumulates in the
soil, and not the use of scientifically based anti-wilt
crop rotation on farms only contributes to the defeat of
new cotton varieties, due to the high adaptive ability of
pathogens to new zoned varieties.
The increase in wilt damage to zoned cotton vari-
eties is facilitated by non-compliance with the phyto-
sanitary condition of the fields, as well as the spread of
highly virulent and aggressive forms (races) of patho-
gens that constantly accumulate in the soil during per-
manent cultivation of the same cotton variety.
A large number of dormant forms of the pathogen
(microsclerotia or chlamydospores) are formed on in-
fected plants or their residues, when they are embedded
in the soil, as a result of the decomposition of plant res-
idues, they fall back into the soil and cause an increase
in infection.
K. Baker (Baker, 1968) found that one cotton plant
infected with verticillium can leave about 250 thousand
microsclerotia in the soil.
In cotton fields, the main number of V. dahliae is
infected in the horizon up to 40 cm, and the number of
fungi is low in the horizons below 40 cm (Mirpulatova,
1969; Kireeva, 1972; Ramazonova and Gulyamova,
1974; Marupov, 1993; 2003).
The adaptation of the pathogen to a high level of
residence in the soil and the exactingness of plants to
the agroecological environment allow pathogens to re-
main in the soil for a long time, which makes it difficult
to fight them.
According to N.S. Mirpulotova (1973), wilt path-
ogens are mainly located at a depth of 5-25 cm in the
arable soil layer. The favorable temperature for the vital
activity of the wilting fungus is 24-260
C, at 280
C it
stops developing and dies at temperatures above 300
C.
Therefore, the eradication of the causative agent of
wilt in the soil is a very productive way to fight.
N. Kenneth and Y. Katan (1972); Y. Katan (1981);
Y. Catan and J. De Vey (1991); A. Jamliel and Y. Katan
(2012) used soil solarization against soil pathogens of
cotton, vegetables and other crops as one of the radical
methods of dealing with them.
With this method, when the soil was covered with
a film of 0.038-0.050 mm for 7-8 weeks, the soil tem-
perature was 42-550
C at a depth of 5-10 cm and 32-
370
C at a depth of 45 cm, DeVay, 1991).
This method is widely used in the USA, Israel,
Australia, Spain and other countries against soil patho-
gens. In the conditions of Uzbekistan, this method has
not been previously used and is a new innovative ap-
proach in the fight against soil pathogens, especially in
the fight against cotton wilt. In Uzbekistan, the method
of soil solarization in the fight against soil pathogens
has not been studied before.
Back in 1992, we planned a joint study with pro-
fessors J. Katan (J. Katan, Hebrew Univ., Isr.) and J.E.
De Vay (Davis Univ., CA, USA), but due to lack of
funds were able to realize this idea.
Sciences of Europe # 116, (2023) 5
Materials and methods of research
Experiments on this problem were carried out in
2015-2016 on a naturally heavily contaminated field of
the farm named after. "Kulkhatib" Vobkent district of
the Bukhara region.
Experience Options
1. Cotton by cotton
2. Wheat + cotton
3. Wheat + solarization + cotton
4. Wheat + solarization + mustard (green manure)
+ cotton
The experience was laid according to the method-
ology (Soyuz NIHI, 1981).
After harvesting wheat for grain, the experimental
plot was prepared for sowing according to the generally
accepted method in the farm (July 11). Then, according
to the variants of the experiment, the plots were covered
with a film of 0.05 in size (July 17). After 48 days, i.e.
On September 4, the film was removed from the exper-
imental plots. According to the variants of the experi-
ment, mustard was sown (September 5) according to
the recommendation of A. Marupov (1988).
Microbiological analyzes of the soil were carried
out after harvesting wheat (July 11) and after solariza-
tion of the soil (September 29) before sowing mustard
according to the generally accepted method of limiting
dilutions according to S.F. Lazarev (1963).
Soil samples for analysis were taken from a hori-
zon of 0-40 cm before sowing plants, during the bud-
ding period and during flowering - the fruiting of cot-
ton. The growth of bacteria was determined on meat
peptone agar (MPA), actinomycetes - on ammonium
starch medium (АSM) and fungi - on Czapek's medium
with pH 4.5-5. Czapek's medium was acidified with
50% citric acid. Accounts of isolated colonies of micro-
organisms were carried out on days 3-5-7.
Growing mustard was fed with nitrogen at a rate
of 50 kg/ha. Plants were watered 3 times during the
growing season.
When plants reached a height of 1.0 m, their Phyto
mass was crushed and plowed into the soil to a depth of
40 cm (November 10). When plowing mustard Phyto
mass, 70% of phosphorus and 50% of potassium were
added from the annual rate of cotton fertilizer
(Marupov, 1988).
In 2016, Bukhara-10 cotton was sown at the
optimal time for the farmer.
RESULTS AND DISCUSSION.
The data of the microbiological analysis of the soil
(2015) after harvesting wheat and after solarization of
the soil are given in Table 1. From the data in the table,
it can be seen that after harvesting wheat (July 11), the
total number of fungi is 9.0 thousand, bacteria 42.0
thousand. pcs and actinomycetes 10.0 million pcs in 1g.
abs. dry soil.
Table 1.
The total number of microorganisms in 1 g abs. dry soil.
Bukhara region, Vobkent district, farm "Kulkhatib", Variety Bukhara-10
2015
№ Experience options Fungus, thous. Bacteria, thous. Actenomycytes, mln.
After the wheat harvest (July 11)
Wheat 9,0 42,0 10,0
After solarization of the soil (September 4)
1 Cotton by cotton 10,0 76,0 9,25
2 Wheat 11,7 116,0 9,27
3 Wheat + solarization 2,0 50,5 7,15
In the same variant (September 4), an increase in
the total number of microorganisms is noted due to the
enrichment of the loot layer of soil with root and stub-
ble residues of wheat. The total number of fungi is 11.7
thousand pieces, bacteria 116.0 thousand pieces and ac-
tinomycetes 9.27 million pieces in 1g abs. dry soil.
Under cotton (owner's sowing), these indicators
were respectively 10.0 for microorganisms; 76.0 and
9.25 mln. in 1 g abs. dry soil.
In the variant where soil solarization was carried
out, the total number of microorganisms declined
sharply and their number was: fungi 2.0 thousand
pieces, bacteria 50.5 thousand pieces and actinomy-
cetes 7.15 million pieces in 1 g abs. dry soil. Isolation
of fungi of the genus Fusarium from the soil was not
observed. Thermophilic fungi from the genus Aspergil-
lus dominated mainly (Fig. 1). Despite a significant de-
crease in the number of bacteria from 116.0 to 50.5
thousand pieces in 1 g abs. dry soil, among them there
were many colonies with antagonistic activity against
the Fusarium fungus, which is of great theoretical and
practical interest in further research (Fig. 2).
6 Sciences of Europe # 116, (2023)
Fig. 1. Fungus under cotton, after wheat harvest
and after solarization.
Fig. 2. Bacterial antagonists after solarization and
sideration.
A decrease in the total number of actinomycetes
was also observed. Its number of microorganisms de-
clined sharply and their number was: fungi 2.0 thou-
sand pieces, bacteria 50.5 thousand pieces and actino-
mycetes 7.15 million pieces in 1 g abs. dry soil. Isola-
tion of fungi of the genus Fusarium from the soil was
not observed.
Apparently, the high temperature and humidity of
the soil created under the film inhibit the total number
of microorganisms, especially fungi.
This pattern indicates the need to replenish the ar-
able horizon of the soil with the necessary organic ma-
terials in order to restore the beneficial natural microbi-
ological potential of the soil after solarization.
In our experiments, mustard served as such a ma-
terial.
Harvest of green manure culture of mustard before
ploughing. According to the variants of the experiment,
after harvesting the film, we sowed mustard on Septem-
ber 5th. During the vegetation period, the plants were
irrigated twice. Once fed with nitrogen at a rate of 30
kg/ha.
The density of standing plants before plowing was
310.0 thousand pieces. per hectare. The average height
of the stems was 95.0 cm. In total, the green mass of
mustard with roots was plowed under the fall - 532.0
kg / ha.
In 2016, against a prepared background, in 2015,
cotton planting of the Bukhara-10 variety was sown.
Microbiological analyzes of the soil. Table 1
shows the data of microbiological analysis of the soil
before sowing and during the period of cotton ripening.
From the data of Table 1, it can be seen that with cotton
monoculture, the total number of fungi before cotton
sowing is 7.75 thousand pieces and, growing during the
growing season of plants, it reaches 15.0 thousand
pieces per 1 gram. abs. dry soil.
In the wheat + cotton variant, almost the same pat-
tern is noted. In the variant wheat + solarization + cot-
ton, the number of mushrooms does not exceed 2.0
pieces per 1 gram. abs. dry soil. Apparently, solariza-
tion had a detrimental effect on the development of
fungi. In the variant wheat + solarization + mustard on
green manure + cotton, rapid development of fungi is
noted in the period before cotton sowing and decreases
by almost 50.0% in the period of cotton ripening.
This is due to the terms of decomposition of easily
mobilizable organic material, which in our experience
is the mustard Phyto mass.
The development of bacteria and actinomycetes
also proceeded intensively in the variant where a large
amount of organic material was plowed in, where bac-
teria amounted to 265.0 thousand pieces and actinomy-
cetes 19.12 million pieces per 1 g. abs. dry soil. Among
the bacteria, antagonistic forms predominated, which
strongly inhibited the growth of the pathogen in pure
culture.
Table 2 presents data on the isolation of various
types of fungi into pure culture.
Tabular data show that with cotton monoculture,
the total number of fungi is 7.75 thousand pieces in 1 g
of abs. dry soil. Among isolated fungi were dominated
by fungi such as Aspergillus, Penicillium and
Fusarium. Isolation of Trichoderma is not observed. In
the variant wheat + cotton with a total number of mush-
rooms in 1g abs. dry soil 7.75 thousand pieces Asper-
gillus was 3.0 thousand pieces, Penicillium 0.25 and
Fusarium 0.75 thousand pieces in 1 year abs. dry soil.
In the variant wheat + cotton + solarization, the
depressing effect of solarization is noted for all fungi,
except for fungi of the genus Aspergillus.
In the variant wheat + solarization + mustard for
green manure + cotton, before cotton sowing, there is a
rapid development of fungi, especially from the genus
Aspergillus 8.25 thousand pieces per 1 g abs. dry soil.
Mushrooms from the genus Penicillium accounted for
1.75 thousand pieces in 1 g abs. dry soil. This variant
had a detrimental effect on the development of fungi
from the genus Fusarium. It was noted that the isolation
of fungi from the genus Trichoderma in the amount of
0.25 thousand pieces per 1 g abs. dry soil.
During the period of cotton ripening, a decrease in
the total number of fungi is observed, however, the
number of fungi from the genus Trichoderma increases
sharply and reaches 3.0 thousand pieces per 1 g of abs.
dry soil (Fig.3).
Sciences of Europe # 116, (2023) 7
Fig. 3. Natural strains of the fungus of the genus Trichoderma sp. dedicated from the option wheat +
solarization + green manure.
As is known, among the fungi of the genus Trichoderma there are a lot of strains that are antagonists of soil
pathogens, they may also have a detrimental effect on the development of fungi from the genus Fusarium simul-
taneously with solarization and sideration with mustard Phyto mass.
Table 2.
The total number of microorganisms in 1 g abs. dry soil.
Bukhara region, Vobkent district, farm "Kulkhatib", Variety Bukhara-10
April, August 2016
№ Experience options
Fungus, thous. Bacteria, thous. Actinomycetes, mln.
before
sowing
in
maturation
before
sowing
in
maturation
before
sowing
in
maturation
1. Cotton by cotton 7,75 15,0 65,0 30,0 14,3 8,4
2. Wheat + cotton 6,75 14,0 57,5 70,0 14,97 11,1
3.
Wheat + solarization +
cotton
2,0 2,0 60,0 20,0 10,85 7,0
4.
Wheat + solarization +
mustard (green manure) +
cotton
13,25 7,0 265,0 260,0 19,12 9,6
Wilt development dynamics. Data on the dynam-
ics of wilt development on cotton plants of the Bu-
khara-10 variety are presented in Table 3.
The table data show that in the cotton monoculture
variant with 2-4 true leaves of plants, wilt-affected
plants account for 35.0% (plant density 57.0 thousand
units/ha). It should be noted that precise sowing was
carried out at the rate of 90 thousand units/ha. Losses
in the number of plants from wilt are almost 50.0%.
During budding and maturation, the percentage of dis-
eased plants is 8.0% and 15.0%, respectively. During
the ripening period of cotton (September 17), diseased
plants accounted for 25.0% of external symptoms and
28.0% of wood tissue necrosis. Dried plants from the
disease were not noted.
Almost similar results were obtained in the wheat
+ cotton variant during the cotton ripening period (the
number of plants is 56.5 thousand pieces/ha), the per-
centage of plants with wilt is reduced by more than
50.0% (Fig. 4).
8 Sciences of Europe # 116, (2023)
Fig. 4. Growth of cotton after wheat on field heavily
infected with wilt.
Fig. 5. Cotton growth after wheat solarization+
mustard for green manure under the fall.
In the variant wheat + solarization with the number of plants 85.5 thousand units/ha, diseased plants accounted
for 3.5% - 4.0%. The best results were obtained in the variant wheat + solarization + mustard for green manure +
cotton, at a plant density of 86.5 thousand pieces/ha, diseased plants ranged from 0.5% to 2.5% (Fig. 5).
Table 3
Dynamics of wilt development in cotton.
Bukhara region, Vobkent district, farm "Kulkhatib", Variety Bukhara - 10
2016
№ Experience Options
Quantity
plants,
thous./ha
Plants affected by wilt, %
2-4
present
leaves
budding
Flowering-
fruitful
maturation
on
external
prize
by
necrosis
10.07 30.05 10.07 14.08 17.09 17.09
1. Cotton by cotton 57,0 35,0 8,0 15,0 25,0 28,0
2. Wheat + cotton 56,5 28,0 6,8 7,9 9,5 11,0
3.
Wheat + solarization + cot-
ton
85,5 4,0 2,5 2,0 3,5 4,0
4.
Wheat + solarization +
mustard (green manure) +
cotton
86,5 2,0 0,5 0,75 1,5 2,5
In the last two variants of the experiment from
wilt, there is almost no loss in the number of plants per
hectare. A slight decrease in plant density in these var-
iants is possibly associated with other anthropogenic
factors.
Biological harvest of raw cotton. Table 4 presents
data on the biological yield of the Bukhara-10 variety.
The data in Table 4 show that in the monoculture of
cotton (control) at a plant density of 57.0 thousand
pcs/ha, the yield of raw cotton is 28.0 q/ha.
Similar results were obtained when cultivating
cotton after wheat in terms of plant density and yield.
When cultivating cotton after solarization at a
plant density of 85.5 thousand pcs/ha, the biological
yield was 47.4 centners/ha. The best results were
obtained with the plowing of mustard phytomass under
fallow grown after solarization, where the biological
yield was 66.8 c/ha at a plant density of 86.5 thousand
pcs/ha.
Table 4
Biological harvest of raw cotton
Bukhara region, Vobkent district, farm "Kulkhatib", Variety Bukhara-10
2016
№ Experience Options Quantity plants, thous./ha Raw cotton yield, c/ha NSR05
1. Cotton by cotton 57,0 28,0 1.3
2. Wheat + cotton 56,5 28,8 0,1
3. Wheat + solarization + cotton 85,5 47,4 1.4
4.
Wheat + solarization + mustard
(green manure) + cotton
86,5 66,8 1.6
Sciences of Europe # 116, (2023) 9
Conclusions
1. It has been established that during soil solariza-
tion, the wilt pathogen, the fungus Fusarium sp. is erad-
icated in the arable horizon, along with it, other soil mi-
croorganisms are also destroyed.
2. Sideration of the soil after solarization restores
the natural microbiological potential of the soil and in-
creases its antibiotic activity.
3. Soil manure after solarization reduces the inci-
dence of wilt in the early stage of their development,
preserves the number of plants and increases the yield
of cotton.
References
1. Mirziyoyev Sh. “A meeting was held on
measures to improve the plant protection system”, May
25, 2021
2. Baker K. -Annual Review of Physiology. -
1968. - N 6, pp. 263-294.
3. Mirpulatova N.S. Yunusov M. Methods for ac-
counting for the disease of cotton with verticillium wilt
in field experiments. // Methods of field and vegetation
1969. - S. 153-158.
4. Kireeva G.S. method for isolating the fungus
from the soil. // Sat. methodical works on cotton wilt.,
Tashkent 1972., - p. 38.
5. Ramazonova S.S., Gulyamova M. Depth of oc-
currence in the soil of the causative agent of verticil-
lium wilt of cotton Verticillium dahliae. // Materials of
the Jubilee Republican Conference on Microbiology,
Alcology and Mycology, dedicated to the 50th anniver-
sary of the Uzbek SSR and the Communist Party of Uz-
bekistan. - Tashkent: Fan, 1974. - P.177.
6. Marupov A. Justification and practical use of
agrotechnical and biological means of protecting cotton
from verticillium wilt. - //Avtoref.doc.diss. – Tashkent,
1993.- 50 p.
7. Marupov A. Environmentally friendly technol-
ogies for the protection of cotton from verticillium wilt
in Uzbekistan. - Tashkent, 2003. - 46p.
8. Mirpulatova N.S. Biological substantiation of
agrotechnical measures to combat verticillium wilt in
cotton. – Tashkent: Fan, 1973. – P. 271.
9. Kenneth N. and Katan J., 972. Production of
Healthy Plants by Therapeutic and Other Methods and
their Maintenance and Use.
10. Katan J. (1981). Solar heating (solarization) of
soil for control of soilborne pests. Annual Review of
Phytopathology, 19, 211-236.
11. Katan, J. and J.E. DeVay, 1991. Soil Solariza-
tion. CRC Press, Boca Raton, FL, 267 pp.
12 Gamliel A. and Katan J. (eds.). 2012. Soil So-
larization: Theory and Practice. A.P.S. Press. St. Paul,
pp. 1-266.
13. Marupov A. Recommendations for the cultiva-
tion of mustard in the fight against cotton wilt in the
conditions of Uzbekistan. - Tashkent 1988. - 10 p.
14. Lazarev S.F. "Methods of agrochemical, ag-
rophysical and microbiological research in irrigated
cotton areas". Microbiological studies of soils. - Tash-
kent, 1963.
10 Sciences of Europe # 116, (2023)
ОПИСАНИЕ И ХОЗЯЙСТВЕННЫЕ ПОКАЗАТЕЛИ ОЗИМОГО ЯЧМЕНЯ СОРТА СИС
Мкртчян А.Т.
Научный центр земледелия Мин. Экономики Республики Армения,
к.б.н., ведущий научный сотрудник
ORCID: http//orcid.org/0000-0002-6819-4759
Гукасян А.Г.
Научный центр земледелия Мин. Экономики Республики Армения,
к.э.н., директор
ORCID: http//orcid.org/0000-0002-4632-2190
Осипова Р.Г.
Научный центр земледелия Мин. Экономики Республики Армения,
к.б.н., ведущий научный сотрудник
ORCID: http//orcid.org/0000-0002-6423-7432
Хачатрян Н.Г.
Научный центр земледелия Мин. Экономики Республики Армения,
научный сотрудник
ORCID: https://orcid.org/0009-0008-0951-9884
DESCRIPTION AND ECONOMIC INDICATORS OF WINTER BARLEY VARIETY SIS
Mkrtchyan A.,
The Scientific center of agriculture of RА
PhD in Biology, senior researcher
ORCID: http//orcid.org/0000-0002-6819-4759
Gukasyan A.,
The Scientific center of agriculture of RA
PhD in Economics, Director
ORCID: http//orcid.org/0000-0002-4632-2190
Osipova R.,
The Scientific center of agriculture of RА
PhD in Biology, senior researcher
ORCID: http//orcid.org/0000-0002-6423-7432
Khachatryan N.
The Scientific center of agriculture of RА
researcher
ORCID: http//orcid.org/0009-0008-0951-9884
DOI: 10.5281/zenodo.7907247
АННОТАЦИЯ
В статье подробно описан новый сорт озимого ячменя Сис, полученный на основе сорта Муш методом
индивидуального отбора. Приведены показатели энергии прорастания и всхожести семян, динамики роста
10-дневных проростков, колеоптиля и корней в лабораторных условиях. Рассчитаны показатели урожай-
ности и структурных элементов урожая сорта, а также экономическая эффективность его возделывания.
Сорт скороспелый. Урожайность сорта Сис выше урожайности контрлольного сорта Муш на 12.8-15.5%,
а уровень рентабельности возделывания на 20%. Сорт рекомендуется возделывать в Араратской долине,
предгорной зоне Араратской котловины, Вайоцдзорской и Зангезурской зонах.
ABSTRACT
The article describes in detail a new variety of winter barley Sis, obtained on the basis of the variety Mush by
the method of individual selection. The indicators of germination energy and seed germination, growth dynamics
of 10-day-old seedlings, coleoptile and roots in laboratory conditions are given. The indicators of productivity and
structural elements of the crop of the variety, as well as the economic efficiency of its cultivation, are calculated.
The variety is early maturing. The yield of the Sis variety is higher than that of the control variety Mush by 12.8-
15.5%, and the level of cultivation profitability by 20%. The variety is recommended to be cultivated in the Ararat
valley, the foothill zone of the Ararat basin, Vayots Dzor and Zangezur zones.
Ключевые слова: озимый ячмень, селекция, сорт, урожайность, скороспелость, экономическая эф-
фективность.
Keywords: winter barley, selection, variety, productivity, early maturity, economic efficiency.
Sciences of Europe # 116, (2023) 11
Введение
Согласно статистическим данным, установ-
лено, что на ноябрь 2022 г. на земном шаре прожи-
вает 8 миллиардов человек. В условиях постоян-
ного роста населения необходимо решать проблему
обеспечения их продуктами питания. Одним из
важнейших условий обеспечения продовольствием
является повышение продуктивности сельскохо-
зяйственных культур проведением селекции. Су-
щественное место в обеспечении продовольствием
занимает селекция культуры ячменя (Hordeum
vulgare L.).
Возделывание данной культуры решает продо-
вольственную проблему, обеспечивает производ-
ство кормового зерна и пива. Принимая во внима-
ние ограниченные земельные ресурсы Республики
Армения и в последнее время опустынивание зе-
мель и дефицит водных ресурсов в результате ан-
тропогенного воздействия на климат [12], все более
ощутимыми становятся требования к селекции ози-
мого ячменя.
Основной задачей селекции озимого ячменя
является получение новых сортов, соответствую-
щих современным требованиям, т.е. более высоко-
урожайных, зимостойких, устойчивых к болезням и
вредителям, к полеганию, скороспелых и засухо-
устойчивых. Создание и внедрение высокоурожай-
ных сортов озимого ячменя позволит увеличить ко-
личество урожая, получаемого с единицы площади,
и тем самым повысить уровень обеспеченности зер-
ном ячменя в Республике Армения [4, 13].
В результате глобального потепления количе-
ство осадков, по мере потепления климата в реги-
оне [11], уменьшается, что в свою очередь нега-
тивно сказывается на росте, развитии и урожайно-
сти сельскохозяйственных культур, в т.ч. и озимого
ячменя. В годы проведения опыта посев проводили
в третьей декаде октября. По данным ближайшей
агрометеорологической станции (860 м над у. м.), в
2019-2020 гг. средняя температура в октябре в ре-
гионе была на 2,7°С выше средней нормы (рис. 1),
а количество осадков при этом было меньше на 22,1
мм (рис. 2).
Рис. 1. Среднемесячная температура воздуха, ºC
Рис. 2. Среднемесячное количество осадков, мм
-10
-5
0
5
10
15
20
25
30
Октябрь Ноябрь Декабрь Январь Февраль Март Апрель Май Июнь
2019-2020
2020-2021
2021-2022
среднемноголетняя
0
20
40
60
80
100
120
Октябрь Ноябрь Декабрь Январь Февраль Март Апрель Май Июнь
2019-2020 2020-2021 2021-2022 среднемноголетнее
12 Sciences of Europe # 116, (2023)
Целью работы является изучение сорта Сис
озимого ячменя – течение вегетации (от всходов до
созревания), расчет экономической эффективности
его возделывания и предложение внедрения в про-
изводство.
Материал и методы
Исследования проводились на озимом ячмене
сорта Сис. В качестве контроля выбран сорт Муш,
использующийся в основном в селекционных рабо-
тах. Опыты проводились на опытно-производ-
ственном участке Научного центра Земледелия (г.
Эчмиадзин). Участок расположен в центральной
части Араратской долины, на высоте 853 м над у. м.
Почвы орошаемые луговые, бурые, бескарбонат-
ные, суглинистые, слабообеспеченные азотом и
фосфором (N - 4,2 мг/100 г, P - 2,1 мг/100 г почвы),
среднеобеспеченные калием (K - 34,5 мг/100 г
почвы), с мощностью пахотного слоя 40 см, содер-
жанием гумуса в этом слое 2,4 % и рН в водной вы-
тяжке – 7,62 [1].
Посев производили в селекционном питом-
нике на площади 25 м2
, с 4-кратной повторностью,
вручную, в третьей декаде октября, по стандартной
методике [9]. Перед посевом в почву опытного
участка вносили фосфорные (Р90) и калийные (К60)
удобрения, а азотное (N90) удобрение вносили вес-
ной, в фазе кущения, для подкормки.
Поле пропалывалось механически – вручную.
В течение вегетации проводили четыре полива
(первый полив осуществляли сразу после посева).
На ячменных полях в качестве предшественника
возделывались зернобобовые культуры (чечевица,
горох).
Полученные данные были подвергнуты мате-
матической обработке методом дисперсионного
анализа [9].
Результаты исследования и обсуждение
Исследуемый сорт получен на основе сорта
Муш методом индивидуального отбора в Научном
центре Земледелия.
Сорт Муш (рис. 3 а, б). Получен на основе
сорта Калер путем скрещивания двух мутантных
линий (Мутант 160, параллелум и Мутант 7, палли-
дум) [3]. Относится к разновидности паллидум
(pallidum). Тип развития – настоящий озимый. Ве-
гетационный период колеблется от 235 до 245 дней.
Зимостойкость средняя. Высота растений колеб-
лется в пределах 90-100 см. Колос шестирядный,
цилиндрической формы, средней плотности (16-18
члеников на 4 см длины колосового стержня), дли-
ной 8-9 см. Ости грубые, с зазубренностью. При со-
зревании колос по отношению к оси уклоняется на
45º. Количество зерновок в колосе 45-55 штук.
Масса 1000 зерен составляет 40-42 г, натура зерна –
672 г/л. Содержание белка 11-12 %. Заражаемость
грибковыми заболеваниями ниже среднего (за по-
следние пять лет грибковых заболеваний на селек-
ционном поле не наблюдалось). Устойчивость к по-
леганию 4-4,5 балла. Урожайность колеблется в
пределах 50-60 т/га.
Сорт Сис (рис. 4 а, б). Сорт озимый. Получен
на основе сорта Муш методом индивидуального от-
бора в Научном центре Земледелия [14]. Ботаниче-
ская разновидность – параллелум (paralellum). Вы-
сота растения 75-80 см. Колос шестирядный, ко-
ричневый, с длинной остью, прямосидящий на оси.
Ости со слабовыраженной зазубренностью. Длина
колоса составляет 5-6 см. Количество зерновок в
колосе колеблется от 65 до 70 шт. Колос плотный
(20-22 членика на 4 см длины колосового стержня).
Срез колоса – правильный шестиугольник. Масса
1000 зерен 44-46 г, натура зерна 690 г/л. Вегетаци-
онный период колеблется от 230 до 235 дней. Зимо-
стойкость выше средней. Содержание белка 11,5-
11,8 %.
В естественных фоновых условиях грибковые
заболевания не наблюдались. Сорт устойчив к по-
леганию (5 баллов). Урожайность составляет 60-70
т/га и выше.
a) б)
Рис. 3. Сорт Муш – колос (а), зерна (б)
Sciences of Europe # 116, (2023) 13
а) б)
Рис. 4. Сорт Сис – колос (а), зерна (б)
Энергию прорастания и всхожесть семян определяли в лабораторных условиях [8]. Энергия прорас-
тания семян высока у сорта Муш (92,5 %), тогда как у сорта Сис она составляет 87,5 %. А по всхожести
сорт Сис (100 %) превосходил сорт Муш (95 %), (рис. 5).
На десятый день прорастания измеряли длину ростков, колеоптиля и корней (рис. 6).
Рис. 5. Энергия прорастания и всхожесть семян сорта Сис в лабораторных условиях
0
20
40
60
80
100
120
штук % штук %
Энергия проростания Лабораторная всхожесть
Муш , контроль
Сис
14 Sciences of Europe # 116, (2023)
Рис. 6. Показатели исходного роста сорта Сис в лабораторных условиях
Результаты наших исследований подтвер-
ждают наличие положительной корреляции между
высотой растения и длиной колеоптиля в фазе со-
зревания, что следует учитывать в селекционной
работе [2].
В течение всего вегетационного периода (от
прорастания до созревания) проводились феноло-
гические наблюдения. В лаборатории определяли
показатели элементов структуры урожая.
Из данных таблицы 1 видно, что сорт Сис за-
кончил вегетацию на 7 дней раньше. Он по показа-
телям элементов структуры урожая значительно
превосходит контроль.
Сорт Сис по высоте растений по сравнению с
контролем короче (16 %), но превосходит контроль
по количеству зерновок в колосе, массе зерна и
массе 1000 зерен (табл. 1).
Таблица 1
Показатели элементов структуры урожая сорта Сис
Сорт
Высота
растений,
см
Кущение
Длина
колоса,
см
Кол-во
частиц,
шт.
Кол-во
зерновок
в
колосе,
шт.
Масса
зерна,
г
Масса
1000
зерен,
г
Длительность
вегетации,
дни
общее продуктивное
Муш –
контроль
90 2,7 1,3 7,4 19,5 51 1,9 40,5 239
Сис 76 3,2 2,1 5,8 22,6 65 2,5 44,5 232
Урожайность рассчитывали исходя из фактически собранного урожая. Во всех случаях урожайность
сорта выше контроля (12,8-15,5 %) (табл. 2). Не секрет, что урожайность сорта, помимо ряда факторов
(генотип, агротехника возделывания и др.), во многом зависит еще и от климатических условий [5, 6, 7,
10].
Таблица 2
Урожайность сорта Сис (2020-2022 гг.)
Годы Сорт
Урожайность,
ц/га
Прибавка урожая по сравнению с контролем
ц/га %
2020
Муш – контроль 54,0 - -
Сис 61,0 7 12,8
НСР05ц 3,5 - -
2021
Муш – контроль 52,0 - -
Сис 59,0 7 13,4
НСР05ц 3,15 - -
2022
Муш – контроль 58,0 - -
Сис 67,0 9 15,5
НСР05ц 2,25 - -
0
2
4
6
8
10
12
14
16
18
Длина ростка,см Длина колеоптиля,см Длина корешка,см
Муш , контроль
Сис
Sciences of Europe # 116, (2023) 15
Экономические показатели возделывания
сорта Сис рассчитаны на основе средней урожайно-
сти за 3 года (2020-2022 гг.) (табл. 3).
Приведенные в таблице 3 данные утверждают,
что возделывание озимого ячменя сорта Сис более
эффективно, чем сорта Муш. Так, уровень рента-
бельности от возделывания сорта Сис составляет
67,1 %, в то время как у сорта Муш – 46,8 %. Доход
от затраченногого 1 драма составляет 1,67 драм, что
больше контроля на 14,4 %.
Таблица 3
Экономическая эффективность возделывания сорта Сис
Сорт
Экономическая
эффективность
Себестоимость,
драм
Прибыль,
драм
Уровень
рентабельности,
%
Чистый доход от
реализации в случае
130 др., драм
Доход от
1 затра-
чен.
драма,
драм
Драм* %
Муш –
контроль
- - 8850 228200 46,8 228200 1,46
Сис 98800 13,8 7776 327000 67,1 327000 1,67
*1 евро = 420,59 драм РА
Обобщая результаты исследований, можем за-
ключить, что сорт Сис озимого ячменя превосходит
контрольный сорт Муш по урожайности, показате-
лям элементов структуры урожая, уровню рента-
бельности, доходу от затраченного 1 драма.
Таким образом, сорт Сис можно рекомендо-
вать для возделывания в Араратской долине, пред-
горной зоне Араратской котловины, Вайоцдзор-
ской и Зангезурской зонах Республики Армения.
Литература
1. Айрапетян Э.М. Почвоведение. - Ереван:
Астхик, 2000.- 450 с. (на арм. яз.)
2. Бабаян Р.С., Барсегян А.Г., Мкртчян А.Т. О
корреляционной связи показателей роста и продук-
тивности у озимого ячменя / «Вопросы интенсифи-
кации сельскохозяйственного производства»: Те-
зисы докладов научной конференции (16-17 ок-
тября, 1986 г.). - С. 19-20.
3. Бабаян Р.С., Барсегян А.Г., Мкртчян А.Т.,
Гаспарян А., Шалджян М., Тертерян Г. Озимый яч-
мень, сорт Муш, рег. № 8700052, 24 дек. 1997 г.
4. Барсегян А.Г., Мкртчян А.Т. Новые селек-
ционные сорта озимого ячменя // Мат. международ-
ной Кавказской конференции по зерновым и зерно-
бобовым культурам. - Тбилиси, 2004.- С. 129-130.
5. Батакова О.Б., Корелина В.А. Влияние эле-
ментов структуры урожая на продуктивность яч-
меня ярового (Hordeum vulgare L.) в условиях Край-
него Севера РФ.// Труды по прикладной ботанике,
генетике и селекции.- Санкт-Петербург, 2017.- Т.
178, вып. 3.- С. 50-58.
6. Бершанский Р.Г., Ерешко А.С., Хронюк
В.Б. Озимый ячмень: технология и урожай: моно-
графия. - Зерноград: ФГОУ ВПО АЧГАА, 2011.-
108 с.
7. Горянина Т.А., Медведева А.М. Влияние
климата на урожайность и качество зерна сортов
тритикале в Заволжье.// Аграрный научный
журнал.- 2019, № 12.- С. 9-14.
8. ГОСТ 12038-84(1996) Семена сельскохо-
зяйственных культур. Методы определения всхо-
жести. Межгосударственный стандарт. Введен
01.07.1986.- М.: Изд-во стандартов.
9. Доспехов Б.А. Методика полевого опыта. -
М.: Агропромиздат, 1985.- 351 с.
10. Максимов В.А., Замятин С.А., Апаева Н.Н.
Роль климатических условий в формировании уро-
жайности ярового ячменя в Республике Марий Эл.//
Аграрная наука. - 2014, № 6.- С. 16-18.
11. Маргарян В.Г. Тренды изменения экспери-
ментальных температур приземного слоя воздуха в
пределах Араратской равнины и ее предгорной
зоны.// Вестник Московского университета, Серия
5. География.- 2019, № 2.- С. 103-107.
12. Мкртчян Р.С., Меликян Д.О., Бадалян В.А.
Агроклиматические ресурсы Армении. Служба по
гидрометеорологии и мониторингу МЧС Респуб-
лики Армения.- Ереван: Лусабац, 2011.- С. 41-49,
155 с. (на арм. яз.).
13. Мкртчян А.Т., Гукасян А.Г., Осипова Р.Г.
Сравнительное исследование новых сортов ози-
мого ячменя в условиях Армении.// Евразийский
Союз Ученых, Серия, междисциплинарный.- 2022,
№ 8(101).- С. 4-8 (на арм. яз.) Д01:10.31618/ESU.
2413-9335.2022. 7.101.1706
14. Мкртчян А.Т., Гукасян А.Г. Озимой яч-
мень, сорт Сис, рег. № 2010557.- 2022 г.
16 Sciences of Europe # 116, (2023)
EARTH SCIENCES
К ВОПРОСУ РЕГУЛИРОВАНИЯ РЕЖИМОВ РАБОТЫ ЭКСПЛУАТАЦИОННОГО ФОНДА
СКВАЖИН С УЧЕТОМ ВЗАИМОДЕЙСТВИЯ
Мамедов А.В.
Доцент, Азербайджанский Государственный
Университет Нефти и Промышленности, Баку, Азербайджан
Мамедов Р.М.
Младший научный сотрудник,
НИИ «Геотехнологические Проблемы Нефти, Газа и Химия»,
Баку, Азербайджан
Султанова А.В.
Младший научный сотрудник,
НИИ «Геотехнологические Проблемы Нефти, Газа и Химия»,
Баку, Азербайджан
Гурбанов П.Э.
Азербайджанский Государственный
Университет Нефти и Промышленности, Баку, Азербайджан
TO THE QUESTION OF REGULATION OF THE OPERATING MODES OF THE OPERATING
FUND OF WELLS TAKING INTO ACCOUNT THE INTERACTION
Mammadov A.,
Assistant professor,
Azerbaijan State Oil and Industry University, Baku, Azerbaijan
Mammadov R.,
Junior Research Engineer,
Scientific Research Institute “Geotechnological Problems of Oil,
Gas and Chemistry”, Baku, Azerbaijan
Sultanova A.,
Junior Research Engineer, Scientific Research Institute
“Geotechnological Problems of Oil, Gas and Chemistry”, Baku, Azerbaijan
Gurbanov P.
Azerbaijan State Oil and Industry University, Baku, Azerbaijan
DOI: 10.5281/zenodo.7907249
АННОТАЦИЯ
Широкое внедрение газлифтного способа извлечения углеводородов сопряжено с выбором оптималь-
ного режима работы скважин, целью которого является экономия рабочего агента, улучшение работы
подъемника посредством реализации различных технологических мероприятий, что делает вопрос все бо-
лее актуальным. Кроме того, эффективность разработки месторождений требует учета степени и характера
взаимодействия между скважинами. Важным является локальный характер исследуемых технологических
режимов отдельных скважин, что не отражает интегральное состояние системы «пласт-скважина» в целом
и, как следствие, приводит к неустойчивости технологических режимов[1].
ABSTRACT
The widespread introduction of the gas-lift method of extracting hydrocarbons is associated with the choice
of the optimal well operation mode, the purpose of which is to save the working agent, improve the operation of
the lift through the implementation of various technological measures, which makes the issue more and more
relevant. In addition, the efficiency of field development requires taking into account the degree and nature of the
interaction between wells. Important is the local nature of the studied technological modes of individual wells,
which does not reflect the integral state of the "reservoir-well" system as a whole and, as a result, leads to instability
of technological modes [1].
Ключевые слова: Взаимодействие скважин, режимы работы газлифтных скважин, самоорганизация
скважин, фрактальность.
Keywords: Well interaction, gas-lift well operation modes, well self-organization, fractality.
Введение
Обычно взаимодействие между скважинами
рассматривается на основе линейных соотношений
между депрессиями и дебитами скважин с исполь-
зованием коэффициентов взаимовлияния. Однако
на практике в большинстве случаев такой подход
не находит применения в связи с нелинейностью
характеристики скважин (подъемников).
Нелинейность характеристики скважины мо-
жет определяться как способом эксплуатации, так и
Sciences of Europe # 116, (2023) 17
условиями подъема жидкости в насосно-компрес-
сорных трубах. Так, например, при газлифтном
способе добычи нефти имеет место нелинейная
связь между расходом и давлением, в результате
чего зависимость перепада давления от дебита
имеет более одной экстремальной точки [1]. Изме-
нение способа эксплуатации или технологических
параметров работы скважин приводит к изменению
характера взаимодействия между ними, который
наиболее сильно проявляется по причине нелиней-
ности взаимодействия между скважинами [2].
Методы исследования
Для анализа характера взаимодействия между
скважинами рассмотрим характеристику газ-
лифтной скважины в простейших условиях идеаль-
ного подъемника более подробно. Такое допуще-
ние, с одной стороны, качественно отвечает постав-
ленной задаче, с другой — позволяет качественно
оценить влияние технологических параметров на
характер взаимодействия между скважинами.
Определим зависимость забойного давления
3
р в газлифтной скважине от дебита жидкости.
Для упрощения задачи принимаются следующие
допущения, которые справедливы для идеального
подъемника:
а) процесс подъема жидкости считается изо-
термическим, т. е.
0 0
Г Г
pV p V
= (1),
где индекс 0 соответствует нормальным усло-
виям; р и V — давление и объем газа;
б) проскальзыванием газа относительно жид-
кости и малой величиной удельного веса газа по
сравнению с удельным весом жидкости пренебре-
гаем, т. е. предполагается, что удельный вес га-
зожидкостной смеси, поступающей в скважину че-
рез рабочий клапан
( )
1
см ж
  
= − (2)
Здесь ж
 - удельный вес жидкости;
 - объемное газосодержание в данном сече-
нии;
в) кроме того, пренебрегаем выделяющимся из
нефти газом по сравнению с расходом рабочего
агента;
г) гидравлические сопротивления по сравне-
нию с давлением столба газированной смеси в сква-
жине также не учитываются. Для каждой точки по
стволу скважины давление меняется с изменением
величины столба смеси следующим образом:
см
dp dh

= (3)
Учитывая принятые допущения, получим
0
1
ж ж
ж
Г ж
Q dh
dp dh
p
V Q q
p


= =
+ +
, (4)
Г
ж
V
q
Q
= - удельный расход закачиваемого ра-
бочего агента.
После разделения переменных, интегрирова-
ния в пределах от устья до точки ввода газа H
0 ln н
н у ж
у
p
p p qp h
p

− + =  (5)
где h
 - высота столба от точки ввода газа до
устья скважины.
Учитывая, что з у н ж
p p p h

− + + , где жh

- постоянная величина веса столба жидкости высо-
той от забоя до точки ввода газа; у
p - заданное
устьевое давление, изменение забойного давления
определяется только поведением решения н
p
уравнения (5). Имея ввиду, что н
p неявно зависит
от ж
Q , определяется характер этой зависимости.
Продифференцируем (5) по ж
Q
0
0 ln 0
н н н
ж y ж у ж
dp p dp p dq
q p
dQ p dQ p dQ
+ + = (6)
или
0
0
1
н н
ж н у ж
dp p p dq
q p
dQ p p dQ
 
+ = −
 
 
(7)
Левая часть (7) — величина положительная,
0 ln н
у
p
p
p
- также больше нуля, следовательно, из-
менение з
р с изменением ж
Q определяется пове-
дением
ж
dq
dQ
. Ввиду того, что на графике зависи-
мости q от ж
Q на левой, падающей ветви
0
ж
dp
dQ
 , а на правой, возрастающей - 0
ж
dp
dQ

, с учетом знака зависимость з
р от ж
Q можно ка-
чественно представить в виде кривой с экстрему-
мом, которая аппроксимируется квадратным трех-
членом. Максимум зависимости ( )
з ж
p Q соответ-
ствует в принятой модели минимуму зависимости
( )
ж
q Q .
Примем систему двух взаимодействующих до-
бывающих скважин
1 11 1 12 2
2 21 1 22 2
p a Q a Q
p a Q a Q
 = +


 = +

(8)
Для упрощения рассматривается взаимодей-
ствие газлифтной скважины со скважиной, эксплу-
атируемой механическим способом. Таким обра-
зом, для газлифтной скважины можно записать
2
1 1 1 1 1
p a bQ c Q
 = + − ,где 1 1 1
, , 0
a b c  (9)
После подстановки (9) в (8) получим
2
1 1 1 1 1 11 1 12 2
2 21 1 22 2
a bQ c Q a Q a Q
p a Q a Q
 + − = +

 = +

(10)
18 Sciences of Europe # 116, (2023)
Исключая из первого уравнения системы (10)
2 21 1
1 2
22
,
p a Q
Q Q
a
 −
= , получим квадратное урав-
нение относительно 1
Q :
2 12 21 12 2
1 1 11 1 1 1
22 22
0
a a a p
c Q a b Q a
a a
  
+ − − + − =
 
 
(11)
В случае, когда уравнение (11) не имеет дей-
ствительных решений, т. е. работа системы рас-
смотренных скважин носит нестационарный харак-
тер.
2
12 21 12 2
2 11 1 1
22 22
4
a a a p
b a c a
a a
   

− + −  −
   
   
(12)
В этих условиях, например, если соседняя вза-
имодействующая с исследуемой газлифтной сква-
жиной скважина имеет неустойчиво-колебатель-
ный режим, то это снижает надежность установки
и уменьшает межремонтный период. Исходя из ска-
занного, можно проводить анализ различных тех-
нологических условий. Так, например, неравенство
(12) выполняется при достаточно больших значе-
ниях параметра 1
c . Увеличение параметра 1
c , со-
ответствует снижению удельного расхода газа.
На рис.1 приведены временные ряды замеров
дебита, характерные для большинства газлифтных
скважин морских нефтяных месторождений [5].
Как правило, графики таких временных рядов ока-
зываются фрактальными [3, 4]. В количественном
выражении такие кривые можно охарактеризовать
размерностью Хаусдорфа D, показателем Херста,
корреляционной размерностью и другими фрак-
тальными характеристиками. При этом во всех рас-
смотренных случаях неэффективная ветвь характе-
ризуется уменьшением показателя H . Интервал
изменения показателя Херста для эффективной
ветви 0.7 0.8
H
  характерен для природных
процессов, подверженных самоорганизации. Таким
образом, показатель Херста может быть использо-
ван при диагностировании изменения режима ра-
боты газлифтной скважины по текущим данным
нормальной эксплуатации и при учете динамиче-
ского развития системы «скважина-пласт» [6].
0
20
40
60
80
0 10 20 30 40 50
t, ч
Qж.
м
3
/сут
эффективная ветвь регулировочной кривой
неэффективная (нисходящая) ветвь
Рис. 1. Динамика производительности работы скважин, характерная для морских месторождений
Выводы
1. Путем снижения удельного газосодержания
различными методами, такими как применение
ПАВ, диспергаторов и т. п. (что в (12) соответ-
ствует возрастанию 1
c ), т. е., улучшая характери-
стики газлифтной скважины, можно нарушить
устойчивую работу системы скважин даже в том
случае, когда изменение режима работы газ-
лифтной скважины происходит в группе взаимо-
действующих с ней и между собой скважин с устой-
чивыми линейными характеристиками.
2. При анализе работы газлифтной скважины
предлагается учитывать динамическое развитие си-
стемы «скважина-пласт», т.е. возможности НКТ и
термобарическое состояние призабойной зоны пла-
ста.
3. Процессы взаимодействия и самоорганиза-
ции скважин приводят к необходимости систем-
ного подхода к выбору и регулированию техноло-
гических режимов и введению обобщенных оценок
работы группы взаимодействующих скважин.
4. Анализ экспериментальных и промысловых
исследований показывает, что временные ряды за-
меров дебита жидкости газлифтных скважин ( )
Q t
, снятые при работе на неэффективной (нисходя-
щей) ветви регулировочной кривой ( )
Q Q V
= , об-
ладают фрактальными характеристиками, которые
существенно отличаются от фрактальных характе-
ристик временных рядов замеров, снятых на эффек-
тивной (восходящей) ветви. Это может быть свя-
зано с потерей устойчивости стационарного ре-
жима работы скважин при излишнем увеличении
расхода рабочего агента и, как следствие, измене-
нием состояния системы «скважина-пласт».
Sciences of Europe # 116, (2023) 19
Литература
1. Мирзаджанзаде А.Х., Филиппов В.П., Аме-
тов И.М. Системные методы в нефтедобыче. M,
Техника, 2002, -163 стр.
2. Мирзаджанзаде А.Х., Хасанов М.Н., Бахти-
зин Р.Н. Моделирование процессов нефтегазадоб-
ычи, Москва, Ижевск, 2004г, -318стр.
3. Шрёдер М. Фракталы, хаос, степенные за-
коны, Москва, 2001г. -528стр
4. Федер Е. «Фракталы», Москва, Мир, 1991 г.
- 258стр.
5. Мирзаджанзаде А.Х. и др. Фрагменты разра-
ботки морских нефтегазовых месторождений. Баку,
МВНА, 1997 г, - 408 стр.
6. Мамедов А.В., Нагиев А.М. Оценка потен-
циальных возможностей энергетической системы
«пласт-скважина». Транспорт и Хранение Нефте-
продуктов и Углеводородного Сырья. ISSN 0131-
4270. Москва, №1, 2015, С.37-42
20 Sciences of Europe # 116, (2023)
ECONOMIC SCIENCES
THEORETICAL ASPECTS OF STATE TAX POLICY
Vinnytska O.
Pavlo Tychyna Uman State Pedagogical University, Uman, Ukraine,
Associate Professor
DOI: 10.5281/zenodo.7907256
ABSTRACT
Theoretical aspects of the state tax policy are considered. It is noted that tax policy is the most important
component of not only the financial, but also the social system of the state. Taxes and tax policy are of paramount
importance in ensuring economic growth, as well as in regulating the investment and innovation activity of busi-
nesses. The substantiation of the relevance of consideration of tax policy in the context of transformational changes
is carried out.
Keywords: tax, tax policy, taxation, tax system; transformation of the economy.
Introduction. Today in Ukraine, the issues of tax
policy are among the most acute both in the economic
and social, and in the political context. Taxes are an in-
stitutionalized regulator of socio-economic develop-
ment, and the effectiveness of the functioning of the tax
system is a direct indicator of the level of development
of society. Tax policy is one of the key areas of state
regulation of the economy. The states, which are char-
acterized by a protracted period of the formation of
market relations and transformational transitions, face
a number of problems in the field of tax regulation. The
effectiveness of the tax policy ensures overcoming the
consequences of the financial crisis, the implementa-
tion of programs for the long-term development of the
country, the growth of the welfare of the population,
and the improvement of the activities of economic en-
tities.
Analysis of studies and publications. In the do-
mestic financial opinion, the problems of taxation are
reflected in the works of Ukrainian scientists:
Horobinska I. V. [6], Hutsaliuk O. I. [7], Prochan A. O.
[9], Skorynin A. P. [8], Skrypnychenko V. A. [4],
Yasenova I. B. [5] and others.
Despite significant scientific research and theoret-
ical achievements in the tax field, its issue is acutely
relevant at the current stage, and therefore requires the
determination of strategic directions and tasks of tax
policy regarding the stabilization and development of
the state, as well as methods of achieving a high level
of effectiveness of such policy and its impact on sub of
economic entities.
Рurpose of the article. The purpose of the article is
to study the theoretical aspects of state tax policy and
its effectiveness in modern economic conditions.
Presentation of the main material. At the present
stage, the role of the state in regulating the economy is
manifested in a shift in emphasis regarding the objec-
tivity of state policy - from capitalist relations to inter-
action between the state and the citizen, which ensures
its political legitimacy and the continuous reproduction
of state institutions and state sovereignty [1]. The active
influences of globalization and the development of the
ideas of classical liberalism (the weight of human free-
doms) ensured the spread of the ideology of the neolib-
eral orthodoxy of the free market [2]. The role of the
state in regulating the economy at the present stage is
strengthened by the processes of globalization, forcing
the diversification of priority spheres of influence de-
pending on the country's importance in the global fi-
nancial and economic arena. The COVID-2019 pan-
demic has confirmed the need for increased state sup-
port for business with the use of tax holidays and
incentives that have more effectively implemented de-
veloped countries with powerful financial reserves. Tax
innovations deserve special attention (instead of VAT
and income tax, the rate of 2% of turnover and simpli-
fied accounting, reduction of value added tax on fuel
from 20% to 7%, maximum deregulation of business,
etc.) to support the Ukrainian economy for the period
martial law [3].
State policy as a whole covers all spheres of public
life, although the priority of the model determines the
measure, the main instruments and areas of state inter-
vention. In turn, the state policy in the economic sphere
determines the content of state regulation. From its var-
ious directions, tax policy is singled out, which is
formed at the country level based on the model of state
policy and taking into account approaches to higher
levels of taxation, depending on the degree of integra-
tion and openness of the economy. Tax policy needs not
only vertical, but also horizontal integration, especially
in relation to the economic block of power. Tax policy
ensures the achievement of the goals of economic pol-
icy in terms of stimulating the business environment
(regulatory policy) and improving the welfare of the
population (taxation of income).
The main task of tax policy is to promote dynamic
economic development of the country through the ra-
tional management of public revenues, including the
optimization of tax collection, as well as public spend-
ing. In order to improve the efficiency of tax policy, the
tax system of Ukraine should be built taking into ac-
count principles of stability, economic justification, re-
liability, social justice (impartial distribution of social
wealth between citizens and territorial communities),
balance, financial unity, administrative independence,
equivalence of costs, completeness, transparency.
Depending on the economic situation, tax policy
can take the form of: weighted taxes (up or down
stage); maximum taxes (peak stage); economic devel-
opment (bottom of recession) fig.1.
Sciences of Europe # 116, (2023) 21
Fig. 1. Forms of tax policy*
*Source:[4, с. 14].
Tax policy can also be divided into the types of
maximum taxes (fiscal, fiscal-distributive type), mini-
mum taxes (regulatory, fiscal-control type) and bal-
anced taxes (fiscal-regulatory type) [5, p. 221].
Ideally, a set of measures related to the state tax
policy should meet the needs of reproduction and
growth of national wealth. In the course of implement-
ing tax policy, the starting point should be not only
maintaining the legal order for collecting tax payments
from taxpayers, but also conducting a comprehensive
analysis of economic relations that are formed under
the direct influence of the current taxation system. It
follows from this that tax policy should primarily be
understood as the improvement of tax legislation, and
not its automatic implementation.
Taxes and tax policy are of paramount importance
in ensuring economic growth, as well as in regulating
the investment and innovation activity of businesses.
The foundation of innovative development is advanced
investments: financial investments, a high level of edu-
cation and the development of science, professional
knowledge, experience, wide social informatization
and a powerful intellectual potential of society [6, p.
258–259]. Tax situational flexibility (targeted tax in-
centives for industries, organizational institutions such
as clusters, incubators, industrial parks, etc.) and the
stability of the tax system contribute to attracting exter-
nal and mobilizing domestic investment as a prerequi-
site for economic growth based on innovation.
Determination of the impact of taxes on business
is also carried out in the context of the financial security
of enterprises, in particular tax security, which is based
on the assessment of tax risks and tax burden through
the use of special methods and tools; the main tax risks
in this case are [7, p. 72]:
- the risk of non-payment of taxes, which leads
to negative consequences for the payer in the form of
fines and penalties;
- the risk of tax control, which leads to sanctions
and losses due to violation of the law by taxpayers;
- the risk of an increase in the tax burden, differ-
entiated by types of economic activity and taxes, and
by tax rates and benefits;
- the risk of criminal (criminal) tax prosecution,
leading to the occurrence of significant financial losses
of the taxpayer or the loss of his freedom for commit-
ting tax offenses provided for by law.
The impact of taxes on the population is studied in
relation to indicators of welfare, inequality and poverty.
Scientific discussions are conducted on the coordina-
tion of economic, tax and social policies in such a way
as to achieve in the future the isolation of economic ef-
ficiency and social justice without loss of social welfare
[8, p. 224]. To search for parity within the framework
of tax policy, a progressive approach to taxation is used
depending on the level of income, with an assessment
of inequality in their distribution. One of the popular
models here is the Lawrence curve, which shows what
share of the total income is received by different groups
of the population.
Tax policy occupies an important place in the sys-
tem of reforms aimed at modernizing the country's
economy. This is due to its main functionality in the
mobilization of demanded financial resources, which
can be redistributed through budgetary mechanisms in
accordance with public needs.
For a modern country, tax policy is relevant as a
flexible situational way of regulating socio-economic
processes, providing transformational changes focused
on:
- the constancy of the development of the national
economy - with a balancing of the interests of the envi-
ronment, society, the state and business in the use of
natural resources, as well as ensuring economic stabil-
ity in the face of unpredictable and cyclical crises;
- the leading weight of small and medium-sized
businesses - with the support of this segment of eco-
nomic activity as a budget-forming core and an envi-
ronment for using the intellectual and labor potential of
the population;
- de-shadowing the system of remuneration - with
the promotion of a transparent system of labor organi-
zation and proper payment of taxes;
- financial support for the development of regions
and communities - with support for inter-territorial co-
operation and competition;
- innovative development of the business environ-
ment - with the stimulation of an innovation-oriented
business model;
- innovative development of the economy with the
transition to the next technological order - with the
stimulation of the accumulation of knowledge and tech-
nology.
The impact of tax policy on the transformation of
the national economy should be systemic and justified.
Since this is a difficult task, it is important to involve a
set of tools of the institutional mechanism for the for-
mation and implementation of tax policy, designed to
22 Sciences of Europe # 116, (2023)
ensure the continuous development of tax relations be-
tween business, public and public sectors, on the one
hand, and government authorities at different levels, on
the other hand, ensuring the transformation of informal
business rules. and non-profit activities in a high tax
culture, as well as the smooth (sustainable) functioning
of the tax system. A proper tax culture and the con-
stancy of the taxation system will make it possible to
institutionalize regulated rules for paying taxes, which
will contribute to a more effective influence of the state
on transformational processes in the economy, in con-
trast to when there is widespread formalism and hidden
tax ability.
In the modern economy, theoretical justifications
at the intersection of knowledge of economics and pub-
lic administration, on the one hand, and psychology and
sociology, on the other, are becoming increasingly pop-
ular. The theory of behavioral economics proves that
when making decisions, a person is not guided by ab-
stract principles of maximizing satisfaction and mini-
mizing costs, but first encodes the possible conse-
quences of his actions in favor or harm, depending on
the chosen benchmark, using relative rather than abso-
lute values [9, p. 107]. It is important to study these as-
pects from the point of view of a person's decisions on
paying taxes, choosing a life (including labor) strategy
with an active / passive position of economic activity,
which is significantly influenced by the requirements of
income taxation.
Along with the indicated theoretical provisions,
developments in culture, responsibility and trust in the
tax sphere are deepening. Modern areas of scientific re-
search are being developed, namely, modeling the be-
havior of taxpayers, the psychology of tax evasion, the
problem of tax crime. An in-depth analysis of these as-
pects is one of the areas of study of the institutional
mechanism for the formation and implementation of
tax policy.
Conclusions and offers. Therefore, the theoretical
basis for the formation of tax policy in the context of
transformational changes should be considered in the
organizational (stages of formation of tax systems us-
ing certain tools of tax policy) and historical and value
(theories of taxes and tax policy) aspects. The scientific
section of the justifications for the features of the for-
mation of tax policy is determined by theories: state
regulation of the economy and measures of state inter-
vention in market processes; taxes and taxation on a
systematic approach and depending on the tax policy
model; economic development and growth; transfor-
mation and modernization of the economy; develop-
ment of the institutional environment; behavioral eco-
nomics, tax culture and responsibility. The effective-
ness of tax policy in the context of ensuring the
expected transformational changes in the economy pro-
vides a proper scientific substantiation of its model
(concept), goals, implementation tools. Taking into ac-
count the peculiarities of the dynamic socio-economic
development of modern economies in the context of
global competition for resources, the formation of tax
policy should take into account the latest research at the
intersection of psychological and sociological sciences
with the identification of priority opportunities for the
institutionalization of tax culture, responsibility and
discipline in all institutional and spatial planes.
References
1. Purcell М. The state, regulation, and global
restructuring: reasserting the political in political
economy. Review of International Political
Economy.2002. Volume 9, Issue 2. Р. 298-332
(https://doi.org/10.1080/09692290110126128).
2. Kus В. Regulatory governance and the
informal economy: crossnational comparisons. Socio-
Economic Review. 2020. Volume 8, Issue 3. P. 487-
510 (https://doi.org/10.1093/ser/mwq005)
3. Business during the war: what support the
government offered and how business survives. URL:
https://www.bbc.com/ukrainian/features-60757453
4. Skorynin A.P. Variability and typology of tax
policy as a tool for regulating the national economy.
State and regions. Series: Economy and
entrepreneurship. 2016. No. 2. P. 11-16.
5. Yasenova I. B. Structural modeling of tax reg-
ulation of innovative activity. Economic innovations:
Coll. of science Ave. Odesa: IPREED NAS of Ukraine,
2013. Issue 52. P. 217-223.
6. Horobinska I. V., Kryvosheeva T. O. The in-
fluence of taxation on investments and economic
growth in Ukraine. Project management, system analy-
sis and logistics. Technical series. 2010. Issue 7. P. 258-
261.
7. Gutsalyuk O. I., Levkovets N. P. The influ-
ence of taxes on the financial security of enterprises.
Project management, system analysis and logistics. Se-
ries "Economic Sciences". 2015. No. 15. Part 2. P. 70-
76.
8. Skrypnychenko V. A. Income redistribution
and progressiveness of the tax system. Scientific Bulle-
tin of the National University of Bioresources and Na-
ture Management of Ukraine. Series: Economics,
agricultural management, business. 2014. Issue 200(2).
P. 223-227.
9. Prochan A. O. Analysis of theories of behav-
ioral economics. State and regions. Series: Economy
and entrepreneurship. 2014. No. 5. P. 107-110.
10. Vinnytska O. A., Korniienko T. O., Chvertko
L. A. Local taxes as a source of local budget revenues.
International scientific journal "Internauka". Series:
"Economic Sciences". 2021. No. 11. URL:
https://www.inter-
nauka.com/uploads/public/1636987883209.pdf
Sciences of Europe # 116, (2023) 23
GEOLOGICAL AND MINERALOGICAL SCIENCES
GLOBAL WATER INITIATIVES OF TAJIKISTAN: AN APPRAISAL OF ROBUST INITIATIVES
Davlatov M.
4th
year Bachelor student of World Economy,
Faculty of Finance and Economics,
Tajik National University
DOI: 10.5281/zenodo.7907260
ABSTRACT
This article provides information on a global water initiative of Tajikistan and appraisal of robust initiatives
toward United Nations and other International authorities. Humanity has praised and glorified it as a sacred re-
source for thousands of years. Today, due to rapid population growth, economic development and other challenges
that impact the natural resources, the value of water has increased dramatically. As an essential resource for sus-
tainable development, water has been included in numerous documents and strategies for development at the re-
gional, national and global levels. As a result, various aspects of water issues were incorporated into the Sustain-
able Development Goals (SDGs).
Keywords: water, natural resources, water issues, Tajikistan, United Nations, Water Action Decade.
Introduction
Water sustains life, economic prosperity, ecologi-
cal security, and human civilization. Globally, the pres-
sure on water resources demands and climate change.
Sustainable some of that pressure, but actions towards
improving existing practices are lagging. Meeting the
water needs of a growing population is largely associ-
ated with the need for water to grow food, alongside
access to safe water supply and sanitation being in-
creasingly recognized as an essential element of human
capital contributing to public health, which became
even more evident in the wake of the COVID-19 crisis
[1-4].
The shortage of clean drinking water - a current
challenge for population across the globe, is not a pure
function of the physical scarcity of water, as a combi-
nation of factors, such as "business as usual" practices
in the use and management of water and water pollution
undermine the achievement of poverty eradication,
posing a threat to human well-being, economic growth
and national security. In this regard, taking into account
existing problems in the water sector of the country and
the need for a more efficient and sustainable water re-
sources management, the Government of the Republic
of Tajikistan decided to reform the water sector of Ta-
jikistan in order to introduce more effective and sus-
tainable institutional and legal mechanisms for water
resources management [1,3,5].
Pic. 1. Review of clean water action image
24 Sciences of Europe # 116, (2023)
The Poverty Reduction Strategy Paper (PRSP)
plans to increase the share of the population with access
to drinking water to 97 percent in the urban areas and
74 percent in the rural areas, accounting for additional
2 million residents due to the population growth. With
respect to sanitation access, it envisions an increase to
65 and 50 percent in urban and rural areas respectively,
including access to pit latrines and backyard toilets [8].
Table 1.
Access to improved water and sanitation sources in 2004-2005
Tajikistan Urban areas Rural areas
2004 2005 2004 2005 2004 2005
Safe access percent 60 61 92 93 47 49
Water supply. Thousand people 4020 4240 1543 1714 2021 2526
Safe access percent 14 15 43 44 3 5
Sanitation (sewage)
Thousand people
1047 1068 795 811 207 257.0
Today, per capita freshwater availability is dimin-
ishing. Over the past four decades, it dropped by one-
third. According to UN-Water' s World Water Devel-
opment Report (2018), by 2050, between 4.8 billion
and 5.7 billion people out of 9 billion will live in areas
that are water-scarce for at least one month each year,
up from 3.6 billion today while the number of people at
risk of floods will increase to 1.6 billion, up from 1.2
billion today. Depletion and degradation of freshwater
supplies, driven by population growth and mobility,
impacts of economic development, lifestyle changes
and unsustainable production and consumption patterns
can only be reversed by deliberate and comprehensive
interventions. Water is a powerful tool for cooperation
and dialogue in support of sustainable development and
safer and resilient societies. However, there is a need
for more effective, integrated and coordinated actions,
coupled with strong political will. All stakeholders, in-
cluding those in government, international organiza-
tions, civil society, the private sector and academia,
should be engaged, paying special attention to the live-
lihoods of poor and vulnerable people, leaving no one
behind [2,5].
Water Action Decade and the Dushanbe Water
Process (hereinafter Water Action Decade), which aims
at supporting sustainable development and integrated
management of water resources, while promoting co-
operation and On 22 March 2018, the United Nations
Secretary General' s Plan for the Water Action Decade
was released during a High-Level Launch Event, con-
vened by the President of the 73rd United Nations Gen-
eral Assembly. The plan outlines current activities and
capabilities of the UN system and international organi-
zations and the operational setup envisaged to support
Member States in the implementation of the Water Ac-
tion Decade [2,5,10].
In this connection, the Government of Tajikistan
is committed to continue providing a platform for pol-
icy dialogue, partnership and action at the global, re-
gional and national level. It is pertinent to highlight that
Tajikistan with the support of the United Nations and
other partners, is organizing high-level international
conferences throughout the Water Action Decade. This
series of events constitutes the so-called "Dushanbe
Water Process". As part of this process, the First High-
level International Conference on the International
Decade for Action, "Water for Sustainable Develop-
ment", 2018 - 2028 (First Dushanbe Water Action Dec-
ade Conference), was held in Dushanbe in June 2018.
The outcomes of the conference included recommenda-
tions to the UN High-level Political Forum on Sustain-
able Development that took place in 2018, for its in-
depth review of the implementation of SDG 6 (clean
water and sanitation). The Final Declaration of the First
Dushanbe Conference confirmed the focus of the next
conference to be on "Catalyzing water action and part-
nership at the local, national, regional and global lev-
els" to achieve the goals of the Water Action Decade
and other water-related SDGs and targets [3,7].
The Importance of Second Dushanbe Water Ac-
tion Decade Conference and Proactive Role of Tajiki-
stan:
The Second Dushanbe Water Action Decade Con-
ference is co-organized by the Government of Tajiki-
stan and the United Nations and planned to be held
from 6th to 9th June 2022. The Conference will be co-
chaired by the Prime Minister of the Republic of Tajik-
istan and the United Nations Under-Secretary-General
for Economic and Social Affairs. These activities and
conferences clearly manifest that Tajikistan is actively
pursuing SDG 6 (clean water and sanitation) and taking
significant steps for water conservation and manage-
ment.
The Republic of Tajikistan has made and contin-
ues to make a substantial contribution to this process.
From 2000 to 2016, at the initiative of Tajikistan, the
United Nations General Assembly adopted several res-
olutions on water:
I. International Year of Freshwater (2003)
II. International Decade for Action, "Water for
Life" (2005-2015)
III. International Year of Water Cooperation
(2013)
IV. International Decade for Action, "Water for
Sustainable
Development" (2018-2028), which deserve spe-
cial attention.
Throughout this period, Tajikistan has repeatedly
provided a platform for discussing global water issues.
The country moves towards this course by actively pro-
moting water issues identified in the 2030 Agenda. As
a member of the High-level Panel on Water, Tajikistan,
in cooperation with other panel members, has proposed
a number of initiatives and is advancing them by
Sciences of Europe # 116, (2023) 25
demonstrating political leadership and commitment
[7,8].
Furthermore, Tajikistan has also been an im-
portant player in solving water problems at the regional
level. About 60 per cent of the water resources of the
rivers in Central Asia (the Aral Sea basin) are formed
in Tajikistan. The visionary government under the lead-
ership of President Emomali Rahmon generously
shares this vital resource with its neighbors. Tajikistan
is a co-founder of the International Fund for Saving the
Aral Sea and its two commissions, the Interstate Com-
mission for Water Coordination (ICWC) and the Inter-
state Commission on Sustainable Development
(ICSD), which provide platforms for discussing urgent
transboundary water issues in the region. The country
is working on the aspects for effective water govern-
ance and management strategies, i.e., grand financing,
investment & modernization of existing infrastructure,
transition to green growth, active involvement of all
stakeholders, construction of new dams, rehabilitating
water reservoirs capacity, and resolving transboundary
water disputes [7,8,9].
Conclusion
In Tajikistan, where over 95 per cent of electricity
is generated by hydroelectric power stations, water and
energy are closely interrelated. The development of ag-
riculture sector is also primarily based on the use of wa-
ter resources since more than 80 per cent of agricultural
products are produced through irrigation. Thus, these
vital initiatives by the dynamic leadership of Tajikistan
would pave the way for achieving the water- related
goals and objectives of sustainable development.
2025 has been declared the International Year of
Glaciers’ Preservation in an initiative sponsored by Ta-
jikistan, demonstrating the country’s commitment to
mitigating the effects of climate change for the region’s
mountain societies. UN Secretary-General António Gu-
terres commented: “My thanks to President Rahmon
for Tajikistan’s leadership in putting the global focus
on preserving the world’s glaciers… They represent the
largest reservoir of fresh water on the planet – support-
ing our nutrition, health, economies and energy produc-
tion. And nearly two billion people – one out of every
four people on Earth – live in areas where glaciers and
seasonal snowmelt supply their water.”
References
1. Ministry of Irrigation and Water Management
of the Republic of Tajikistan. Water sector develop-
ment strategy of the Republic of Tajikistan. Dushanbe,
-2006. -83 p.
2. Aldaya, M.M., Hoekstra, A.Y. Water Foot-
print of Cotton, Wheat and Rice Production in Central
Asia. Ualue of Water Research Report 41. UNESCO-
IHE Institute for Water Education, Delft.2010.
3. Barbone, L., Reva, A., Zaidi, S. Tajikistan:
key priorities for climate change adaptation. Iri: World
Bank Policy Research Working Paper No.487 (Wash-
ington DC, USA). 2010.
4. Bernauer, T., Siegfried, T. Climate charige
and international water conflict in Central Asia. J.
Peace. 2012, 227-239.
5. Cao, X.C., Wu, M.Y., Guo, X.P., et at. As-
sessing water scarcity in agricultural production system
based on the generalized water resources arid water
footprint framework. Sci. Total Environ. 2017. 609,
587-597.
6. Chapagain, A.K., Hoekstra, A.Y. Water Foot-
prints of Nations. Value of Water Research Report Se-
ries No. 16. UNESCO-IHE Institute for Water Educa-
tion, Delft, 2004.
7. Christmann, S., Aw-Hassari, A.A. A partici-
patory method to enharice the colective ability to adapt
to rapid glacier loss: the case of mountain communities
in Tajikistan. Climatic Change. 2015. 133, 267-282.
8. Institute of Public Policy and Administration,
2016. National development strategy of the republic of
Tajikistan for the period up to 2030. Government report
(in Russian https://nafaka.tj/images/zakoni/new/strate-
giya 2030 en.pdf.
9. Hellegers, P., Ziberman, D., Steduto, P., et al.
Interactions between water, energy, food and environ-
ment: evolving perspectives and policy issues. 2008,
Water Pol. 10, 1-10.
10. Parry, M., Rosenzweig, C., Livermore, M. Cli-
mate charige, global food supply and risk of hunger.
Philos. 2005, Trans. R. Soc. B BioL Sci. 360, 2J 25-
2138.
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)
Sciences of Europe No 116 (2023)

Weitere ähnliche Inhalte

Ähnlich wie Sciences of Europe No 116 (2023)

The scientific heritage No 78 (78) (2021) Vol 3
The scientific heritage No 78 (78) (2021) Vol 3The scientific heritage No 78 (78) (2021) Vol 3
The scientific heritage No 78 (78) (2021) Vol 3The scientific heritage
 
The scientific heritage No 99 (99) (2022)
The scientific heritage No 99 (99) (2022)The scientific heritage No 99 (99) (2022)
The scientific heritage No 99 (99) (2022)The scientific heritage
 
The scientific heritage No 91 (91) (2022)
The scientific heritage No 91 (91) (2022)The scientific heritage No 91 (91) (2022)
The scientific heritage No 91 (91) (2022)The scientific heritage
 
The scientific heritage No 92 (92) (2022)
The scientific heritage No 92 (92) (2022)The scientific heritage No 92 (92) (2022)
The scientific heritage No 92 (92) (2022)The scientific heritage
 
Sciences of Europe No 94 (2022)
Sciences of Europe No 94 (2022)Sciences of Europe No 94 (2022)
Sciences of Europe No 94 (2022)Sciences of Europe
 
The scientific heritage № 70 (70) (2021) vol 2
The scientific heritage № 70 (70) (2021) vol 2The scientific heritage № 70 (70) (2021) vol 2
The scientific heritage № 70 (70) (2021) vol 2The scientific heritage
 
Sciences of Europe No 130 (2023)
Sciences of Europe No 130 (2023)Sciences of Europe No 130 (2023)
Sciences of Europe No 130 (2023)Sciences of Europe
 

Ähnlich wie Sciences of Europe No 116 (2023) (20)

Vol 3-no-21-21-2017
Vol 3-no-21-21-2017Vol 3-no-21-21-2017
Vol 3-no-21-21-2017
 
The scientific heritage No 78 (78) (2021) Vol 3
The scientific heritage No 78 (78) (2021) Vol 3The scientific heritage No 78 (78) (2021) Vol 3
The scientific heritage No 78 (78) (2021) Vol 3
 
Vol 2-no-50-2020
Vol 2-no-50-2020Vol 2-no-50-2020
Vol 2-no-50-2020
 
The scientific heritage No 99 (99) (2022)
The scientific heritage No 99 (99) (2022)The scientific heritage No 99 (99) (2022)
The scientific heritage No 99 (99) (2022)
 
Norwegian Journal of development of the International Science №21 part 2
Norwegian Journal of development of the International Science №21 part 2Norwegian Journal of development of the International Science №21 part 2
Norwegian Journal of development of the International Science №21 part 2
 
VOL 1, No 4 (4) (2016)
VOL 1, No 4 (4) (2016)VOL 1, No 4 (4) (2016)
VOL 1, No 4 (4) (2016)
 
Znanstvena misel journal №73 2022
Znanstvena misel journal №73 2022Znanstvena misel journal №73 2022
Znanstvena misel journal №73 2022
 
The scientific heritage No 91 (91) (2022)
The scientific heritage No 91 (91) (2022)The scientific heritage No 91 (91) (2022)
The scientific heritage No 91 (91) (2022)
 
VOL 3, No 55 (55) (2020)
VOL 3, No 55 (55) (2020)VOL 3, No 55 (55) (2020)
VOL 3, No 55 (55) (2020)
 
The scientific heritage No 92 (92) (2022)
The scientific heritage No 92 (92) (2022)The scientific heritage No 92 (92) (2022)
The scientific heritage No 92 (92) (2022)
 
Sciences of Europe No 94 (2022)
Sciences of Europe No 94 (2022)Sciences of Europe No 94 (2022)
Sciences of Europe No 94 (2022)
 
Vol 1-№-35-35-2019
Vol 1-№-35-35-2019Vol 1-№-35-35-2019
Vol 1-№-35-35-2019
 
VOL 2, No 53 (53) (2020)
VOL 2, No 53 (53) (2020)VOL 2, No 53 (53) (2020)
VOL 2, No 53 (53) (2020)
 
Vol 2-№-34-34-2019
Vol 2-№-34-34-2019Vol 2-№-34-34-2019
Vol 2-№-34-34-2019
 
The scientific heritage № 70 (70) (2021) vol 2
The scientific heritage № 70 (70) (2021) vol 2The scientific heritage № 70 (70) (2021) vol 2
The scientific heritage № 70 (70) (2021) vol 2
 
Znanstvena-misel-journal-№49-2020-Vol-1
Znanstvena-misel-journal-№49-2020-Vol-1Znanstvena-misel-journal-№49-2020-Vol-1
Znanstvena-misel-journal-№49-2020-Vol-1
 
Vol 1-№-41-41-2019
Vol 1-№-41-41-2019Vol 1-№-41-41-2019
Vol 1-№-41-41-2019
 
Sciences of Europe No 130 (2023)
Sciences of Europe No 130 (2023)Sciences of Europe No 130 (2023)
Sciences of Europe No 130 (2023)
 
Znanstvena misel journal №78 2023
Znanstvena misel journal №78 2023Znanstvena misel journal №78 2023
Znanstvena misel journal №78 2023
 
POLISH JOURNAL OF SCIENCE №50 (2022)
POLISH JOURNAL OF SCIENCE №50 (2022)POLISH JOURNAL OF SCIENCE №50 (2022)
POLISH JOURNAL OF SCIENCE №50 (2022)
 

Mehr von Sciences of Europe

Sciences of Europe journal No 139 (2024).pdf
Sciences of Europe journal No 139 (2024).pdfSciences of Europe journal No 139 (2024).pdf
Sciences of Europe journal No 139 (2024).pdfSciences of Europe
 
Sciences of Europe journal No 138 (2024)
Sciences of Europe journal No 138 (2024)Sciences of Europe journal No 138 (2024)
Sciences of Europe journal No 138 (2024)Sciences of Europe
 
Sciences of Europe journal No 137 (2024)
Sciences of Europe journal No 137 (2024)Sciences of Europe journal No 137 (2024)
Sciences of Europe journal No 137 (2024)Sciences of Europe
 
Sciences of Europe journal No 136 (2024)
Sciences of Europe journal No 136 (2024)Sciences of Europe journal No 136 (2024)
Sciences of Europe journal No 136 (2024)Sciences of Europe
 
"Sciences of Europe" journal No 135 (2024)
"Sciences of Europe" journal No 135 (2024)"Sciences of Europe" journal No 135 (2024)
"Sciences of Europe" journal No 135 (2024)Sciences of Europe
 
Sciences of Europe No 134 (2024)
Sciences of Europe No 134 (2024)Sciences of Europe No 134 (2024)
Sciences of Europe No 134 (2024)Sciences of Europe
 
Sciences of Europe No 133 (2024)
Sciences of Europe No 133 (2024)Sciences of Europe No 133 (2024)
Sciences of Europe No 133 (2024)Sciences of Europe
 
Sciences of Europe No 132 (2023)
Sciences of Europe No 132 (2023)Sciences of Europe No 132 (2023)
Sciences of Europe No 132 (2023)Sciences of Europe
 
Sciences of Europe No 131 (2023)
Sciences of Europe No 131 (2023)Sciences of Europe No 131 (2023)
Sciences of Europe No 131 (2023)Sciences of Europe
 
Sciences of Europe No 129 (2023)
Sciences of Europe No 129 (2023)Sciences of Europe No 129 (2023)
Sciences of Europe No 129 (2023)Sciences of Europe
 
Sciences of Europe No 128 (2023)
Sciences of Europe No 128 (2023)Sciences of Europe No 128 (2023)
Sciences of Europe No 128 (2023)Sciences of Europe
 
Sciences of Europe No 127 (2023)
Sciences of Europe No 127 (2023)Sciences of Europe No 127 (2023)
Sciences of Europe No 127 (2023)Sciences of Europe
 
Sciences of Europe No 126 (2023)
Sciences of Europe No 126 (2023)Sciences of Europe No 126 (2023)
Sciences of Europe No 126 (2023)Sciences of Europe
 
Sciences of Europe No 125 (2023)
Sciences of Europe No 125 (2023)Sciences of Europe No 125 (2023)
Sciences of Europe No 125 (2023)Sciences of Europe
 
Sciences of Europe No 124 (2023)
Sciences of Europe No 124 (2023)Sciences of Europe No 124 (2023)
Sciences of Europe No 124 (2023)Sciences of Europe
 
Sciences of Europe No 123 (2023)
Sciences of Europe No 123 (2023)Sciences of Europe No 123 (2023)
Sciences of Europe No 123 (2023)Sciences of Europe
 
Sciences of Europe No 122 (2023)
Sciences of Europe No 122 (2023)Sciences of Europe No 122 (2023)
Sciences of Europe No 122 (2023)Sciences of Europe
 
Sciences of Europe No 121 (2023)
Sciences of Europe No 121 (2023)Sciences of Europe No 121 (2023)
Sciences of Europe No 121 (2023)Sciences of Europe
 
Sciences of Europe No 120 (2023)
Sciences of Europe No 120 (2023)Sciences of Europe No 120 (2023)
Sciences of Europe No 120 (2023)Sciences of Europe
 
Sciences of Europe No 119 (2023)
Sciences of Europe No 119 (2023)Sciences of Europe No 119 (2023)
Sciences of Europe No 119 (2023)Sciences of Europe
 

Mehr von Sciences of Europe (20)

Sciences of Europe journal No 139 (2024).pdf
Sciences of Europe journal No 139 (2024).pdfSciences of Europe journal No 139 (2024).pdf
Sciences of Europe journal No 139 (2024).pdf
 
Sciences of Europe journal No 138 (2024)
Sciences of Europe journal No 138 (2024)Sciences of Europe journal No 138 (2024)
Sciences of Europe journal No 138 (2024)
 
Sciences of Europe journal No 137 (2024)
Sciences of Europe journal No 137 (2024)Sciences of Europe journal No 137 (2024)
Sciences of Europe journal No 137 (2024)
 
Sciences of Europe journal No 136 (2024)
Sciences of Europe journal No 136 (2024)Sciences of Europe journal No 136 (2024)
Sciences of Europe journal No 136 (2024)
 
"Sciences of Europe" journal No 135 (2024)
"Sciences of Europe" journal No 135 (2024)"Sciences of Europe" journal No 135 (2024)
"Sciences of Europe" journal No 135 (2024)
 
Sciences of Europe No 134 (2024)
Sciences of Europe No 134 (2024)Sciences of Europe No 134 (2024)
Sciences of Europe No 134 (2024)
 
Sciences of Europe No 133 (2024)
Sciences of Europe No 133 (2024)Sciences of Europe No 133 (2024)
Sciences of Europe No 133 (2024)
 
Sciences of Europe No 132 (2023)
Sciences of Europe No 132 (2023)Sciences of Europe No 132 (2023)
Sciences of Europe No 132 (2023)
 
Sciences of Europe No 131 (2023)
Sciences of Europe No 131 (2023)Sciences of Europe No 131 (2023)
Sciences of Europe No 131 (2023)
 
Sciences of Europe No 129 (2023)
Sciences of Europe No 129 (2023)Sciences of Europe No 129 (2023)
Sciences of Europe No 129 (2023)
 
Sciences of Europe No 128 (2023)
Sciences of Europe No 128 (2023)Sciences of Europe No 128 (2023)
Sciences of Europe No 128 (2023)
 
Sciences of Europe No 127 (2023)
Sciences of Europe No 127 (2023)Sciences of Europe No 127 (2023)
Sciences of Europe No 127 (2023)
 
Sciences of Europe No 126 (2023)
Sciences of Europe No 126 (2023)Sciences of Europe No 126 (2023)
Sciences of Europe No 126 (2023)
 
Sciences of Europe No 125 (2023)
Sciences of Europe No 125 (2023)Sciences of Europe No 125 (2023)
Sciences of Europe No 125 (2023)
 
Sciences of Europe No 124 (2023)
Sciences of Europe No 124 (2023)Sciences of Europe No 124 (2023)
Sciences of Europe No 124 (2023)
 
Sciences of Europe No 123 (2023)
Sciences of Europe No 123 (2023)Sciences of Europe No 123 (2023)
Sciences of Europe No 123 (2023)
 
Sciences of Europe No 122 (2023)
Sciences of Europe No 122 (2023)Sciences of Europe No 122 (2023)
Sciences of Europe No 122 (2023)
 
Sciences of Europe No 121 (2023)
Sciences of Europe No 121 (2023)Sciences of Europe No 121 (2023)
Sciences of Europe No 121 (2023)
 
Sciences of Europe No 120 (2023)
Sciences of Europe No 120 (2023)Sciences of Europe No 120 (2023)
Sciences of Europe No 120 (2023)
 
Sciences of Europe No 119 (2023)
Sciences of Europe No 119 (2023)Sciences of Europe No 119 (2023)
Sciences of Europe No 119 (2023)
 

Sciences of Europe No 116 (2023)

  • 1. No 116 (2023) Sciences of Europe (Praha, Czech Republic) ISSN 3162-2364 The journal is registered and published in Czech Republic. Articles in all spheres of sciences are published in the journal. Journal is published in Czech, English, Polish, Russian, Chinese, German and French, Ukrainian. Articles are accepted each month. Frequency: 24 issues per year. Format - A4 All articles are reviewed Free access to the electronic version of journal Edition of journal does not carry responsibility for the materials published in a journal. Sending the article to the editorial the author confirms it’s uniqueness and takes full responsibility for possible consequences for breaking copyright laws. Chief editor: Petr Bohacek Managing editor: Michal Hudecek • Jiří Pospíšil (Organic and Medicinal Chemistry) Zentiva • Jaroslav Fähnrich (Organic Chemistry) Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic • Smirnova Oksana K., Doctor of Pedagogical Sciences, Professor, Department of History (Moscow, Russia); • Rasa Boháček – Ph.D. člen Česká zemědělská univerzita v Praze • Naumov Jaroslav S., MD, Ph.D., assistant professor of history of medicine and the social sciences and humanities. (Kiev, Ukraine) • Viktor Pour – Ph.D. člen Univerzita Pardubice • Petrenko Svyatoslav, PhD in geography, lecturer in social and economic geography. (Kharkov, Ukraine) • Karel Schwaninger – Ph.D. člen Vysoká škola báňská – Technická univerzita Ostrava • Kozachenko Artem Leonidovich, Doctor of Pedagogical Sciences, Professor, Department of History (Moscow, Russia); • Václav Pittner -Ph.D. člen Technická univerzita v Liberci • Dudnik Oleg Arturovich, Doctor of Physical and Mathematical Sciences, Professor, De- partment of Physical and Mathematical management methods. (Chernivtsi, Ukraine) • Konovalov Artem Nikolaevich, Doctor of Psychology, Professor, Chair of General Psy- chology and Pedagogy. (Minsk, Belarus) «Sciences of Europe» - Editorial office: Křižíkova 384/101 Karlín, 186 00 Praha E-mail: info@european-science.org Web: www.european-science.org
  • 2. CONTENT AGRICULTURAL SCIENCES Marupov A., Turamuratova G., Marupov U. AGROBIOLIGIC METHOD Of CONTROL OF THE FUSARIUM WILT OF COTTON IN UZBEKISTAN............4 Mkrtchyan A., Gukasyan A., Osipova R., Khachatryan N. DESCRIPTION AND ECONOMIC INDICATORS OF WINTER BARLEY VARIETY SIS.................................. 10 EARTH SCIENCES Mammadov A., Mammadov R., Sultanova A., Gurbanov P. TO THE QUESTION OF REGULATION OF THE OPERATING MODES OF THE OPERATING FUND OF WELLS TAKING INTO ACCOUNT THE INTERACTION..16 ECONOMIC SCIENCES Vinnytska O. THEORETICAL ASPECTS OF STATE TAX POLICY .........20 GEOLOGICAL AND MINERALOGICAL SCIENCES Davlatov M. GLOBAL WATER INITIATIVES OF TAJIKISTAN: AN APPRAISAL OF ROBUST INITIATIVES.........................23 HISTORICAL SCIENCES Krasivskyi O. POLITICAL DISCOURSE OF UKRAINE REGARDING THE RUSSIAN-GEORGIAN WAR OF 2008.........................26 MEDICAL SCIENCES Bayramova N., Vahabova G., Hasanova Sh., Maharramova S. ANTITUMOR MARKERS ELIMINATION LEVELS IN THE DIFFERENTIAL DIAGNOSIS OF COLORECTAL CANCER AND ADENOMATOUS POLYPOSIS............................30 Bayramova N., Dashdamirova G., Rahimova R., Vahabova G. PREDICTIVE IMMUNOLOGICAL MARKERS IN COLORECTAL CANCER DETECTION.......................... 34 PEDAGOGICAL SCIENCES Breslavska H. THE MODEL OF FORMATION OF A CULTURE OF STUDENTS’ PERMISSION THROUGH PROJECTS IN OUT-OF-COURSE WORK..........................................36 Komar O. CHALLENGES IN IMPLEMENTING COMMUNICATIVE ENGLISH LANGUAGE TEACHING METHODOLOGIES. 43 PHARMACEUTICAL SCIENCES Abduraxmanov B., Umarova О., Tilovova G., Khalilov R. SELECTION OF OPTIMAL DRYING CONDITIONS FOR ABOVEGROUND PARTS OF HYPERICUM SCABRUM AND HYPERICUM PERFORATUM .............................47 PHILOLOGICAL SCIENCES Varichenko G., Prakonina V. LITERARY TEXT IN A FOREIGN AUDIENCE (LEARNING TO READ ON THE EXAMPLE OF VALENTIN RASPUTIN'S STORY "FRENCH LESSONS").....................................55 PHYSICS AND MATHEMATICS Ibrahimov F., Jabrayilova N., Ilyasov Kh. INTERPRETATION OF THE PROCESS OF MASTERING "THEORETICAL AND TECHNOLOGICAL BASES OF SOLVING THE SYSTEM OF LINEAR ALGEBRAIC EQUATIONS" IN THE TEACHING OF "ALGEBRA" .......60
  • 3. SOCIAL SCIENCES Artemenko S., Hrand O., Grishko K., Onishchuk I., Skvortsova D., Yanchenko V. INDIVIDUAL WORK OF STUDENTS OF SOCIOLOGICAL SPECIALTIES AS AN EFFECTIVE MEANS OF APPLYING INTERDISCIPLINARY CONNECTIONS IN LEARNING A FOREIGN LANGUAGE ..............................................67 TECHNICAL SCIENCES Aliyev M. SOCIAL MEDIA MARKETING STRATEGY FOR AZERBAIJAN TECHNICAL UNIVERSITY DEPARTMENTS ...............................................................................72 Huseynzade G. CYBER SECURITY MACRO TRENDS AND DEVELOPMENT DIRECTIONS OF THE CYBER SECURITY INDUSTRY...............................................................76 Vyshinsky V. THE LAW OF THE NATURE OF THE EXISTENCE OF MATTER IN THE FORM OF SUBSTANCE GENERATES FUNDAMENTAL SCIENCES ...................................... 80
  • 4. 4 Sciences of Europe # 116, (2023) AGRICULTURAL SCIENCES AGROBIOLIGIC METHOD Of CONTROL OF THE FUSARIUM WILT OF COTTON IN UZBEKISTAN Marupov A., Turamuratova G., Marupov U. Research institute of quarantine and plant protection, Tashkent, Uzbekistan DOI: 10.5281/zenodo.7907243 ABSTRACT It has been established that during soil solarization, the causative agent of the wilt fungus Fusarium sp. is eradicated in the arable horizon, along with it, other soil microorganisms are also destroyed. Soil greening after solarization restores the natural microbiological potential of the soil and increases its antibiotic activity, as well as reduces the incidence of wilt plants at an early stage of their development, preserves the number of plants and increases the cotton yield. Keywords: Fusarium wilt, pathogen, microorganisms, soil, solarization, mustard, cotton. Introduction. Global climate change affects not only higher plants, but also plant pests. Ensuring food security directly depends on the protection of cultivated crops from harmful organisms that cause great damage to the crop and its quality. In recent years, in Uzbekistan, there has been an increasing damage to zoned cotton varieties by Fusarium wilt, caused by a soil wilt pathogenic fungus from the genus Fusarium. A particularly new form of Fusarium wilt patho- gen caused by a fungus Fusarium verticillioides (Sacc.) Nirenberg causes significant damage to young cotton plants in the Bukhara and Navoi regions, as a result, the latter die and their density on the field is greatly re- duced. Plants affected by wilt lose their yield, the qual- ity of cotton fiber and the quality of seeds deteriorate. Failure to use anti-wilt measures on farms can cause repetition of wilt epiphytoties on cotton that arose in the 60s and 70s of the last century. President of Uzbekistan Sh. M. Mirziyoyev, at a selector meeting held on May 25, 2021, specifically pointed out “On measures to improve plant protection systems”, emphasized the improvement of research work in the field of combating cotton wilt disease in the Bukhara region. The wilt pathogen constantly accumulates in the soil, and not the use of scientifically based anti-wilt crop rotation on farms only contributes to the defeat of new cotton varieties, due to the high adaptive ability of pathogens to new zoned varieties. The increase in wilt damage to zoned cotton vari- eties is facilitated by non-compliance with the phyto- sanitary condition of the fields, as well as the spread of highly virulent and aggressive forms (races) of patho- gens that constantly accumulate in the soil during per- manent cultivation of the same cotton variety. A large number of dormant forms of the pathogen (microsclerotia or chlamydospores) are formed on in- fected plants or their residues, when they are embedded in the soil, as a result of the decomposition of plant res- idues, they fall back into the soil and cause an increase in infection. K. Baker (Baker, 1968) found that one cotton plant infected with verticillium can leave about 250 thousand microsclerotia in the soil. In cotton fields, the main number of V. dahliae is infected in the horizon up to 40 cm, and the number of fungi is low in the horizons below 40 cm (Mirpulatova, 1969; Kireeva, 1972; Ramazonova and Gulyamova, 1974; Marupov, 1993; 2003). The adaptation of the pathogen to a high level of residence in the soil and the exactingness of plants to the agroecological environment allow pathogens to re- main in the soil for a long time, which makes it difficult to fight them. According to N.S. Mirpulotova (1973), wilt path- ogens are mainly located at a depth of 5-25 cm in the arable soil layer. The favorable temperature for the vital activity of the wilting fungus is 24-260 C, at 280 C it stops developing and dies at temperatures above 300 C. Therefore, the eradication of the causative agent of wilt in the soil is a very productive way to fight. N. Kenneth and Y. Katan (1972); Y. Katan (1981); Y. Catan and J. De Vey (1991); A. Jamliel and Y. Katan (2012) used soil solarization against soil pathogens of cotton, vegetables and other crops as one of the radical methods of dealing with them. With this method, when the soil was covered with a film of 0.038-0.050 mm for 7-8 weeks, the soil tem- perature was 42-550 C at a depth of 5-10 cm and 32- 370 C at a depth of 45 cm, DeVay, 1991). This method is widely used in the USA, Israel, Australia, Spain and other countries against soil patho- gens. In the conditions of Uzbekistan, this method has not been previously used and is a new innovative ap- proach in the fight against soil pathogens, especially in the fight against cotton wilt. In Uzbekistan, the method of soil solarization in the fight against soil pathogens has not been studied before. Back in 1992, we planned a joint study with pro- fessors J. Katan (J. Katan, Hebrew Univ., Isr.) and J.E. De Vay (Davis Univ., CA, USA), but due to lack of funds were able to realize this idea.
  • 5. Sciences of Europe # 116, (2023) 5 Materials and methods of research Experiments on this problem were carried out in 2015-2016 on a naturally heavily contaminated field of the farm named after. "Kulkhatib" Vobkent district of the Bukhara region. Experience Options 1. Cotton by cotton 2. Wheat + cotton 3. Wheat + solarization + cotton 4. Wheat + solarization + mustard (green manure) + cotton The experience was laid according to the method- ology (Soyuz NIHI, 1981). After harvesting wheat for grain, the experimental plot was prepared for sowing according to the generally accepted method in the farm (July 11). Then, according to the variants of the experiment, the plots were covered with a film of 0.05 in size (July 17). After 48 days, i.e. On September 4, the film was removed from the exper- imental plots. According to the variants of the experi- ment, mustard was sown (September 5) according to the recommendation of A. Marupov (1988). Microbiological analyzes of the soil were carried out after harvesting wheat (July 11) and after solariza- tion of the soil (September 29) before sowing mustard according to the generally accepted method of limiting dilutions according to S.F. Lazarev (1963). Soil samples for analysis were taken from a hori- zon of 0-40 cm before sowing plants, during the bud- ding period and during flowering - the fruiting of cot- ton. The growth of bacteria was determined on meat peptone agar (MPA), actinomycetes - on ammonium starch medium (АSM) and fungi - on Czapek's medium with pH 4.5-5. Czapek's medium was acidified with 50% citric acid. Accounts of isolated colonies of micro- organisms were carried out on days 3-5-7. Growing mustard was fed with nitrogen at a rate of 50 kg/ha. Plants were watered 3 times during the growing season. When plants reached a height of 1.0 m, their Phyto mass was crushed and plowed into the soil to a depth of 40 cm (November 10). When plowing mustard Phyto mass, 70% of phosphorus and 50% of potassium were added from the annual rate of cotton fertilizer (Marupov, 1988). In 2016, Bukhara-10 cotton was sown at the optimal time for the farmer. RESULTS AND DISCUSSION. The data of the microbiological analysis of the soil (2015) after harvesting wheat and after solarization of the soil are given in Table 1. From the data in the table, it can be seen that after harvesting wheat (July 11), the total number of fungi is 9.0 thousand, bacteria 42.0 thousand. pcs and actinomycetes 10.0 million pcs in 1g. abs. dry soil. Table 1. The total number of microorganisms in 1 g abs. dry soil. Bukhara region, Vobkent district, farm "Kulkhatib", Variety Bukhara-10 2015 № Experience options Fungus, thous. Bacteria, thous. Actenomycytes, mln. After the wheat harvest (July 11) Wheat 9,0 42,0 10,0 After solarization of the soil (September 4) 1 Cotton by cotton 10,0 76,0 9,25 2 Wheat 11,7 116,0 9,27 3 Wheat + solarization 2,0 50,5 7,15 In the same variant (September 4), an increase in the total number of microorganisms is noted due to the enrichment of the loot layer of soil with root and stub- ble residues of wheat. The total number of fungi is 11.7 thousand pieces, bacteria 116.0 thousand pieces and ac- tinomycetes 9.27 million pieces in 1g abs. dry soil. Under cotton (owner's sowing), these indicators were respectively 10.0 for microorganisms; 76.0 and 9.25 mln. in 1 g abs. dry soil. In the variant where soil solarization was carried out, the total number of microorganisms declined sharply and their number was: fungi 2.0 thousand pieces, bacteria 50.5 thousand pieces and actinomy- cetes 7.15 million pieces in 1 g abs. dry soil. Isolation of fungi of the genus Fusarium from the soil was not observed. Thermophilic fungi from the genus Aspergil- lus dominated mainly (Fig. 1). Despite a significant de- crease in the number of bacteria from 116.0 to 50.5 thousand pieces in 1 g abs. dry soil, among them there were many colonies with antagonistic activity against the Fusarium fungus, which is of great theoretical and practical interest in further research (Fig. 2).
  • 6. 6 Sciences of Europe # 116, (2023) Fig. 1. Fungus under cotton, after wheat harvest and after solarization. Fig. 2. Bacterial antagonists after solarization and sideration. A decrease in the total number of actinomycetes was also observed. Its number of microorganisms de- clined sharply and their number was: fungi 2.0 thou- sand pieces, bacteria 50.5 thousand pieces and actino- mycetes 7.15 million pieces in 1 g abs. dry soil. Isola- tion of fungi of the genus Fusarium from the soil was not observed. Apparently, the high temperature and humidity of the soil created under the film inhibit the total number of microorganisms, especially fungi. This pattern indicates the need to replenish the ar- able horizon of the soil with the necessary organic ma- terials in order to restore the beneficial natural microbi- ological potential of the soil after solarization. In our experiments, mustard served as such a ma- terial. Harvest of green manure culture of mustard before ploughing. According to the variants of the experiment, after harvesting the film, we sowed mustard on Septem- ber 5th. During the vegetation period, the plants were irrigated twice. Once fed with nitrogen at a rate of 30 kg/ha. The density of standing plants before plowing was 310.0 thousand pieces. per hectare. The average height of the stems was 95.0 cm. In total, the green mass of mustard with roots was plowed under the fall - 532.0 kg / ha. In 2016, against a prepared background, in 2015, cotton planting of the Bukhara-10 variety was sown. Microbiological analyzes of the soil. Table 1 shows the data of microbiological analysis of the soil before sowing and during the period of cotton ripening. From the data of Table 1, it can be seen that with cotton monoculture, the total number of fungi before cotton sowing is 7.75 thousand pieces and, growing during the growing season of plants, it reaches 15.0 thousand pieces per 1 gram. abs. dry soil. In the wheat + cotton variant, almost the same pat- tern is noted. In the variant wheat + solarization + cot- ton, the number of mushrooms does not exceed 2.0 pieces per 1 gram. abs. dry soil. Apparently, solariza- tion had a detrimental effect on the development of fungi. In the variant wheat + solarization + mustard on green manure + cotton, rapid development of fungi is noted in the period before cotton sowing and decreases by almost 50.0% in the period of cotton ripening. This is due to the terms of decomposition of easily mobilizable organic material, which in our experience is the mustard Phyto mass. The development of bacteria and actinomycetes also proceeded intensively in the variant where a large amount of organic material was plowed in, where bac- teria amounted to 265.0 thousand pieces and actinomy- cetes 19.12 million pieces per 1 g. abs. dry soil. Among the bacteria, antagonistic forms predominated, which strongly inhibited the growth of the pathogen in pure culture. Table 2 presents data on the isolation of various types of fungi into pure culture. Tabular data show that with cotton monoculture, the total number of fungi is 7.75 thousand pieces in 1 g of abs. dry soil. Among isolated fungi were dominated by fungi such as Aspergillus, Penicillium and Fusarium. Isolation of Trichoderma is not observed. In the variant wheat + cotton with a total number of mush- rooms in 1g abs. dry soil 7.75 thousand pieces Asper- gillus was 3.0 thousand pieces, Penicillium 0.25 and Fusarium 0.75 thousand pieces in 1 year abs. dry soil. In the variant wheat + cotton + solarization, the depressing effect of solarization is noted for all fungi, except for fungi of the genus Aspergillus. In the variant wheat + solarization + mustard for green manure + cotton, before cotton sowing, there is a rapid development of fungi, especially from the genus Aspergillus 8.25 thousand pieces per 1 g abs. dry soil. Mushrooms from the genus Penicillium accounted for 1.75 thousand pieces in 1 g abs. dry soil. This variant had a detrimental effect on the development of fungi from the genus Fusarium. It was noted that the isolation of fungi from the genus Trichoderma in the amount of 0.25 thousand pieces per 1 g abs. dry soil. During the period of cotton ripening, a decrease in the total number of fungi is observed, however, the number of fungi from the genus Trichoderma increases sharply and reaches 3.0 thousand pieces per 1 g of abs. dry soil (Fig.3).
  • 7. Sciences of Europe # 116, (2023) 7 Fig. 3. Natural strains of the fungus of the genus Trichoderma sp. dedicated from the option wheat + solarization + green manure. As is known, among the fungi of the genus Trichoderma there are a lot of strains that are antagonists of soil pathogens, they may also have a detrimental effect on the development of fungi from the genus Fusarium simul- taneously with solarization and sideration with mustard Phyto mass. Table 2. The total number of microorganisms in 1 g abs. dry soil. Bukhara region, Vobkent district, farm "Kulkhatib", Variety Bukhara-10 April, August 2016 № Experience options Fungus, thous. Bacteria, thous. Actinomycetes, mln. before sowing in maturation before sowing in maturation before sowing in maturation 1. Cotton by cotton 7,75 15,0 65,0 30,0 14,3 8,4 2. Wheat + cotton 6,75 14,0 57,5 70,0 14,97 11,1 3. Wheat + solarization + cotton 2,0 2,0 60,0 20,0 10,85 7,0 4. Wheat + solarization + mustard (green manure) + cotton 13,25 7,0 265,0 260,0 19,12 9,6 Wilt development dynamics. Data on the dynam- ics of wilt development on cotton plants of the Bu- khara-10 variety are presented in Table 3. The table data show that in the cotton monoculture variant with 2-4 true leaves of plants, wilt-affected plants account for 35.0% (plant density 57.0 thousand units/ha). It should be noted that precise sowing was carried out at the rate of 90 thousand units/ha. Losses in the number of plants from wilt are almost 50.0%. During budding and maturation, the percentage of dis- eased plants is 8.0% and 15.0%, respectively. During the ripening period of cotton (September 17), diseased plants accounted for 25.0% of external symptoms and 28.0% of wood tissue necrosis. Dried plants from the disease were not noted. Almost similar results were obtained in the wheat + cotton variant during the cotton ripening period (the number of plants is 56.5 thousand pieces/ha), the per- centage of plants with wilt is reduced by more than 50.0% (Fig. 4).
  • 8. 8 Sciences of Europe # 116, (2023) Fig. 4. Growth of cotton after wheat on field heavily infected with wilt. Fig. 5. Cotton growth after wheat solarization+ mustard for green manure under the fall. In the variant wheat + solarization with the number of plants 85.5 thousand units/ha, diseased plants accounted for 3.5% - 4.0%. The best results were obtained in the variant wheat + solarization + mustard for green manure + cotton, at a plant density of 86.5 thousand pieces/ha, diseased plants ranged from 0.5% to 2.5% (Fig. 5). Table 3 Dynamics of wilt development in cotton. Bukhara region, Vobkent district, farm "Kulkhatib", Variety Bukhara - 10 2016 № Experience Options Quantity plants, thous./ha Plants affected by wilt, % 2-4 present leaves budding Flowering- fruitful maturation on external prize by necrosis 10.07 30.05 10.07 14.08 17.09 17.09 1. Cotton by cotton 57,0 35,0 8,0 15,0 25,0 28,0 2. Wheat + cotton 56,5 28,0 6,8 7,9 9,5 11,0 3. Wheat + solarization + cot- ton 85,5 4,0 2,5 2,0 3,5 4,0 4. Wheat + solarization + mustard (green manure) + cotton 86,5 2,0 0,5 0,75 1,5 2,5 In the last two variants of the experiment from wilt, there is almost no loss in the number of plants per hectare. A slight decrease in plant density in these var- iants is possibly associated with other anthropogenic factors. Biological harvest of raw cotton. Table 4 presents data on the biological yield of the Bukhara-10 variety. The data in Table 4 show that in the monoculture of cotton (control) at a plant density of 57.0 thousand pcs/ha, the yield of raw cotton is 28.0 q/ha. Similar results were obtained when cultivating cotton after wheat in terms of plant density and yield. When cultivating cotton after solarization at a plant density of 85.5 thousand pcs/ha, the biological yield was 47.4 centners/ha. The best results were obtained with the plowing of mustard phytomass under fallow grown after solarization, where the biological yield was 66.8 c/ha at a plant density of 86.5 thousand pcs/ha. Table 4 Biological harvest of raw cotton Bukhara region, Vobkent district, farm "Kulkhatib", Variety Bukhara-10 2016 № Experience Options Quantity plants, thous./ha Raw cotton yield, c/ha NSR05 1. Cotton by cotton 57,0 28,0 1.3 2. Wheat + cotton 56,5 28,8 0,1 3. Wheat + solarization + cotton 85,5 47,4 1.4 4. Wheat + solarization + mustard (green manure) + cotton 86,5 66,8 1.6
  • 9. Sciences of Europe # 116, (2023) 9 Conclusions 1. It has been established that during soil solariza- tion, the wilt pathogen, the fungus Fusarium sp. is erad- icated in the arable horizon, along with it, other soil mi- croorganisms are also destroyed. 2. Sideration of the soil after solarization restores the natural microbiological potential of the soil and in- creases its antibiotic activity. 3. Soil manure after solarization reduces the inci- dence of wilt in the early stage of their development, preserves the number of plants and increases the yield of cotton. References 1. Mirziyoyev Sh. “A meeting was held on measures to improve the plant protection system”, May 25, 2021 2. Baker K. -Annual Review of Physiology. - 1968. - N 6, pp. 263-294. 3. Mirpulatova N.S. Yunusov M. Methods for ac- counting for the disease of cotton with verticillium wilt in field experiments. // Methods of field and vegetation 1969. - S. 153-158. 4. Kireeva G.S. method for isolating the fungus from the soil. // Sat. methodical works on cotton wilt., Tashkent 1972., - p. 38. 5. Ramazonova S.S., Gulyamova M. Depth of oc- currence in the soil of the causative agent of verticil- lium wilt of cotton Verticillium dahliae. // Materials of the Jubilee Republican Conference on Microbiology, Alcology and Mycology, dedicated to the 50th anniver- sary of the Uzbek SSR and the Communist Party of Uz- bekistan. - Tashkent: Fan, 1974. - P.177. 6. Marupov A. Justification and practical use of agrotechnical and biological means of protecting cotton from verticillium wilt. - //Avtoref.doc.diss. – Tashkent, 1993.- 50 p. 7. Marupov A. Environmentally friendly technol- ogies for the protection of cotton from verticillium wilt in Uzbekistan. - Tashkent, 2003. - 46p. 8. Mirpulatova N.S. Biological substantiation of agrotechnical measures to combat verticillium wilt in cotton. – Tashkent: Fan, 1973. – P. 271. 9. Kenneth N. and Katan J., 972. Production of Healthy Plants by Therapeutic and Other Methods and their Maintenance and Use. 10. Katan J. (1981). Solar heating (solarization) of soil for control of soilborne pests. Annual Review of Phytopathology, 19, 211-236. 11. Katan, J. and J.E. DeVay, 1991. Soil Solariza- tion. CRC Press, Boca Raton, FL, 267 pp. 12 Gamliel A. and Katan J. (eds.). 2012. Soil So- larization: Theory and Practice. A.P.S. Press. St. Paul, pp. 1-266. 13. Marupov A. Recommendations for the cultiva- tion of mustard in the fight against cotton wilt in the conditions of Uzbekistan. - Tashkent 1988. - 10 p. 14. Lazarev S.F. "Methods of agrochemical, ag- rophysical and microbiological research in irrigated cotton areas". Microbiological studies of soils. - Tash- kent, 1963.
  • 10. 10 Sciences of Europe # 116, (2023) ОПИСАНИЕ И ХОЗЯЙСТВЕННЫЕ ПОКАЗАТЕЛИ ОЗИМОГО ЯЧМЕНЯ СОРТА СИС Мкртчян А.Т. Научный центр земледелия Мин. Экономики Республики Армения, к.б.н., ведущий научный сотрудник ORCID: http//orcid.org/0000-0002-6819-4759 Гукасян А.Г. Научный центр земледелия Мин. Экономики Республики Армения, к.э.н., директор ORCID: http//orcid.org/0000-0002-4632-2190 Осипова Р.Г. Научный центр земледелия Мин. Экономики Республики Армения, к.б.н., ведущий научный сотрудник ORCID: http//orcid.org/0000-0002-6423-7432 Хачатрян Н.Г. Научный центр земледелия Мин. Экономики Республики Армения, научный сотрудник ORCID: https://orcid.org/0009-0008-0951-9884 DESCRIPTION AND ECONOMIC INDICATORS OF WINTER BARLEY VARIETY SIS Mkrtchyan A., The Scientific center of agriculture of RА PhD in Biology, senior researcher ORCID: http//orcid.org/0000-0002-6819-4759 Gukasyan A., The Scientific center of agriculture of RA PhD in Economics, Director ORCID: http//orcid.org/0000-0002-4632-2190 Osipova R., The Scientific center of agriculture of RА PhD in Biology, senior researcher ORCID: http//orcid.org/0000-0002-6423-7432 Khachatryan N. The Scientific center of agriculture of RА researcher ORCID: http//orcid.org/0009-0008-0951-9884 DOI: 10.5281/zenodo.7907247 АННОТАЦИЯ В статье подробно описан новый сорт озимого ячменя Сис, полученный на основе сорта Муш методом индивидуального отбора. Приведены показатели энергии прорастания и всхожести семян, динамики роста 10-дневных проростков, колеоптиля и корней в лабораторных условиях. Рассчитаны показатели урожай- ности и структурных элементов урожая сорта, а также экономическая эффективность его возделывания. Сорт скороспелый. Урожайность сорта Сис выше урожайности контрлольного сорта Муш на 12.8-15.5%, а уровень рентабельности возделывания на 20%. Сорт рекомендуется возделывать в Араратской долине, предгорной зоне Араратской котловины, Вайоцдзорской и Зангезурской зонах. ABSTRACT The article describes in detail a new variety of winter barley Sis, obtained on the basis of the variety Mush by the method of individual selection. The indicators of germination energy and seed germination, growth dynamics of 10-day-old seedlings, coleoptile and roots in laboratory conditions are given. The indicators of productivity and structural elements of the crop of the variety, as well as the economic efficiency of its cultivation, are calculated. The variety is early maturing. The yield of the Sis variety is higher than that of the control variety Mush by 12.8- 15.5%, and the level of cultivation profitability by 20%. The variety is recommended to be cultivated in the Ararat valley, the foothill zone of the Ararat basin, Vayots Dzor and Zangezur zones. Ключевые слова: озимый ячмень, селекция, сорт, урожайность, скороспелость, экономическая эф- фективность. Keywords: winter barley, selection, variety, productivity, early maturity, economic efficiency.
  • 11. Sciences of Europe # 116, (2023) 11 Введение Согласно статистическим данным, установ- лено, что на ноябрь 2022 г. на земном шаре прожи- вает 8 миллиардов человек. В условиях постоян- ного роста населения необходимо решать проблему обеспечения их продуктами питания. Одним из важнейших условий обеспечения продовольствием является повышение продуктивности сельскохо- зяйственных культур проведением селекции. Су- щественное место в обеспечении продовольствием занимает селекция культуры ячменя (Hordeum vulgare L.). Возделывание данной культуры решает продо- вольственную проблему, обеспечивает производ- ство кормового зерна и пива. Принимая во внима- ние ограниченные земельные ресурсы Республики Армения и в последнее время опустынивание зе- мель и дефицит водных ресурсов в результате ан- тропогенного воздействия на климат [12], все более ощутимыми становятся требования к селекции ози- мого ячменя. Основной задачей селекции озимого ячменя является получение новых сортов, соответствую- щих современным требованиям, т.е. более высоко- урожайных, зимостойких, устойчивых к болезням и вредителям, к полеганию, скороспелых и засухо- устойчивых. Создание и внедрение высокоурожай- ных сортов озимого ячменя позволит увеличить ко- личество урожая, получаемого с единицы площади, и тем самым повысить уровень обеспеченности зер- ном ячменя в Республике Армения [4, 13]. В результате глобального потепления количе- ство осадков, по мере потепления климата в реги- оне [11], уменьшается, что в свою очередь нега- тивно сказывается на росте, развитии и урожайно- сти сельскохозяйственных культур, в т.ч. и озимого ячменя. В годы проведения опыта посев проводили в третьей декаде октября. По данным ближайшей агрометеорологической станции (860 м над у. м.), в 2019-2020 гг. средняя температура в октябре в ре- гионе была на 2,7°С выше средней нормы (рис. 1), а количество осадков при этом было меньше на 22,1 мм (рис. 2). Рис. 1. Среднемесячная температура воздуха, ºC Рис. 2. Среднемесячное количество осадков, мм -10 -5 0 5 10 15 20 25 30 Октябрь Ноябрь Декабрь Январь Февраль Март Апрель Май Июнь 2019-2020 2020-2021 2021-2022 среднемноголетняя 0 20 40 60 80 100 120 Октябрь Ноябрь Декабрь Январь Февраль Март Апрель Май Июнь 2019-2020 2020-2021 2021-2022 среднемноголетнее
  • 12. 12 Sciences of Europe # 116, (2023) Целью работы является изучение сорта Сис озимого ячменя – течение вегетации (от всходов до созревания), расчет экономической эффективности его возделывания и предложение внедрения в про- изводство. Материал и методы Исследования проводились на озимом ячмене сорта Сис. В качестве контроля выбран сорт Муш, использующийся в основном в селекционных рабо- тах. Опыты проводились на опытно-производ- ственном участке Научного центра Земледелия (г. Эчмиадзин). Участок расположен в центральной части Араратской долины, на высоте 853 м над у. м. Почвы орошаемые луговые, бурые, бескарбонат- ные, суглинистые, слабообеспеченные азотом и фосфором (N - 4,2 мг/100 г, P - 2,1 мг/100 г почвы), среднеобеспеченные калием (K - 34,5 мг/100 г почвы), с мощностью пахотного слоя 40 см, содер- жанием гумуса в этом слое 2,4 % и рН в водной вы- тяжке – 7,62 [1]. Посев производили в селекционном питом- нике на площади 25 м2 , с 4-кратной повторностью, вручную, в третьей декаде октября, по стандартной методике [9]. Перед посевом в почву опытного участка вносили фосфорные (Р90) и калийные (К60) удобрения, а азотное (N90) удобрение вносили вес- ной, в фазе кущения, для подкормки. Поле пропалывалось механически – вручную. В течение вегетации проводили четыре полива (первый полив осуществляли сразу после посева). На ячменных полях в качестве предшественника возделывались зернобобовые культуры (чечевица, горох). Полученные данные были подвергнуты мате- матической обработке методом дисперсионного анализа [9]. Результаты исследования и обсуждение Исследуемый сорт получен на основе сорта Муш методом индивидуального отбора в Научном центре Земледелия. Сорт Муш (рис. 3 а, б). Получен на основе сорта Калер путем скрещивания двух мутантных линий (Мутант 160, параллелум и Мутант 7, палли- дум) [3]. Относится к разновидности паллидум (pallidum). Тип развития – настоящий озимый. Ве- гетационный период колеблется от 235 до 245 дней. Зимостойкость средняя. Высота растений колеб- лется в пределах 90-100 см. Колос шестирядный, цилиндрической формы, средней плотности (16-18 члеников на 4 см длины колосового стержня), дли- ной 8-9 см. Ости грубые, с зазубренностью. При со- зревании колос по отношению к оси уклоняется на 45º. Количество зерновок в колосе 45-55 штук. Масса 1000 зерен составляет 40-42 г, натура зерна – 672 г/л. Содержание белка 11-12 %. Заражаемость грибковыми заболеваниями ниже среднего (за по- следние пять лет грибковых заболеваний на селек- ционном поле не наблюдалось). Устойчивость к по- леганию 4-4,5 балла. Урожайность колеблется в пределах 50-60 т/га. Сорт Сис (рис. 4 а, б). Сорт озимый. Получен на основе сорта Муш методом индивидуального от- бора в Научном центре Земледелия [14]. Ботаниче- ская разновидность – параллелум (paralellum). Вы- сота растения 75-80 см. Колос шестирядный, ко- ричневый, с длинной остью, прямосидящий на оси. Ости со слабовыраженной зазубренностью. Длина колоса составляет 5-6 см. Количество зерновок в колосе колеблется от 65 до 70 шт. Колос плотный (20-22 членика на 4 см длины колосового стержня). Срез колоса – правильный шестиугольник. Масса 1000 зерен 44-46 г, натура зерна 690 г/л. Вегетаци- онный период колеблется от 230 до 235 дней. Зимо- стойкость выше средней. Содержание белка 11,5- 11,8 %. В естественных фоновых условиях грибковые заболевания не наблюдались. Сорт устойчив к по- леганию (5 баллов). Урожайность составляет 60-70 т/га и выше. a) б) Рис. 3. Сорт Муш – колос (а), зерна (б)
  • 13. Sciences of Europe # 116, (2023) 13 а) б) Рис. 4. Сорт Сис – колос (а), зерна (б) Энергию прорастания и всхожесть семян определяли в лабораторных условиях [8]. Энергия прорас- тания семян высока у сорта Муш (92,5 %), тогда как у сорта Сис она составляет 87,5 %. А по всхожести сорт Сис (100 %) превосходил сорт Муш (95 %), (рис. 5). На десятый день прорастания измеряли длину ростков, колеоптиля и корней (рис. 6). Рис. 5. Энергия прорастания и всхожесть семян сорта Сис в лабораторных условиях 0 20 40 60 80 100 120 штук % штук % Энергия проростания Лабораторная всхожесть Муш , контроль Сис
  • 14. 14 Sciences of Europe # 116, (2023) Рис. 6. Показатели исходного роста сорта Сис в лабораторных условиях Результаты наших исследований подтвер- ждают наличие положительной корреляции между высотой растения и длиной колеоптиля в фазе со- зревания, что следует учитывать в селекционной работе [2]. В течение всего вегетационного периода (от прорастания до созревания) проводились феноло- гические наблюдения. В лаборатории определяли показатели элементов структуры урожая. Из данных таблицы 1 видно, что сорт Сис за- кончил вегетацию на 7 дней раньше. Он по показа- телям элементов структуры урожая значительно превосходит контроль. Сорт Сис по высоте растений по сравнению с контролем короче (16 %), но превосходит контроль по количеству зерновок в колосе, массе зерна и массе 1000 зерен (табл. 1). Таблица 1 Показатели элементов структуры урожая сорта Сис Сорт Высота растений, см Кущение Длина колоса, см Кол-во частиц, шт. Кол-во зерновок в колосе, шт. Масса зерна, г Масса 1000 зерен, г Длительность вегетации, дни общее продуктивное Муш – контроль 90 2,7 1,3 7,4 19,5 51 1,9 40,5 239 Сис 76 3,2 2,1 5,8 22,6 65 2,5 44,5 232 Урожайность рассчитывали исходя из фактически собранного урожая. Во всех случаях урожайность сорта выше контроля (12,8-15,5 %) (табл. 2). Не секрет, что урожайность сорта, помимо ряда факторов (генотип, агротехника возделывания и др.), во многом зависит еще и от климатических условий [5, 6, 7, 10]. Таблица 2 Урожайность сорта Сис (2020-2022 гг.) Годы Сорт Урожайность, ц/га Прибавка урожая по сравнению с контролем ц/га % 2020 Муш – контроль 54,0 - - Сис 61,0 7 12,8 НСР05ц 3,5 - - 2021 Муш – контроль 52,0 - - Сис 59,0 7 13,4 НСР05ц 3,15 - - 2022 Муш – контроль 58,0 - - Сис 67,0 9 15,5 НСР05ц 2,25 - - 0 2 4 6 8 10 12 14 16 18 Длина ростка,см Длина колеоптиля,см Длина корешка,см Муш , контроль Сис
  • 15. Sciences of Europe # 116, (2023) 15 Экономические показатели возделывания сорта Сис рассчитаны на основе средней урожайно- сти за 3 года (2020-2022 гг.) (табл. 3). Приведенные в таблице 3 данные утверждают, что возделывание озимого ячменя сорта Сис более эффективно, чем сорта Муш. Так, уровень рента- бельности от возделывания сорта Сис составляет 67,1 %, в то время как у сорта Муш – 46,8 %. Доход от затраченногого 1 драма составляет 1,67 драм, что больше контроля на 14,4 %. Таблица 3 Экономическая эффективность возделывания сорта Сис Сорт Экономическая эффективность Себестоимость, драм Прибыль, драм Уровень рентабельности, % Чистый доход от реализации в случае 130 др., драм Доход от 1 затра- чен. драма, драм Драм* % Муш – контроль - - 8850 228200 46,8 228200 1,46 Сис 98800 13,8 7776 327000 67,1 327000 1,67 *1 евро = 420,59 драм РА Обобщая результаты исследований, можем за- ключить, что сорт Сис озимого ячменя превосходит контрольный сорт Муш по урожайности, показате- лям элементов структуры урожая, уровню рента- бельности, доходу от затраченного 1 драма. Таким образом, сорт Сис можно рекомендо- вать для возделывания в Араратской долине, пред- горной зоне Араратской котловины, Вайоцдзор- ской и Зангезурской зонах Республики Армения. Литература 1. Айрапетян Э.М. Почвоведение. - Ереван: Астхик, 2000.- 450 с. (на арм. яз.) 2. Бабаян Р.С., Барсегян А.Г., Мкртчян А.Т. О корреляционной связи показателей роста и продук- тивности у озимого ячменя / «Вопросы интенсифи- кации сельскохозяйственного производства»: Те- зисы докладов научной конференции (16-17 ок- тября, 1986 г.). - С. 19-20. 3. Бабаян Р.С., Барсегян А.Г., Мкртчян А.Т., Гаспарян А., Шалджян М., Тертерян Г. Озимый яч- мень, сорт Муш, рег. № 8700052, 24 дек. 1997 г. 4. Барсегян А.Г., Мкртчян А.Т. Новые селек- ционные сорта озимого ячменя // Мат. международ- ной Кавказской конференции по зерновым и зерно- бобовым культурам. - Тбилиси, 2004.- С. 129-130. 5. Батакова О.Б., Корелина В.А. Влияние эле- ментов структуры урожая на продуктивность яч- меня ярового (Hordeum vulgare L.) в условиях Край- него Севера РФ.// Труды по прикладной ботанике, генетике и селекции.- Санкт-Петербург, 2017.- Т. 178, вып. 3.- С. 50-58. 6. Бершанский Р.Г., Ерешко А.С., Хронюк В.Б. Озимый ячмень: технология и урожай: моно- графия. - Зерноград: ФГОУ ВПО АЧГАА, 2011.- 108 с. 7. Горянина Т.А., Медведева А.М. Влияние климата на урожайность и качество зерна сортов тритикале в Заволжье.// Аграрный научный журнал.- 2019, № 12.- С. 9-14. 8. ГОСТ 12038-84(1996) Семена сельскохо- зяйственных культур. Методы определения всхо- жести. Межгосударственный стандарт. Введен 01.07.1986.- М.: Изд-во стандартов. 9. Доспехов Б.А. Методика полевого опыта. - М.: Агропромиздат, 1985.- 351 с. 10. Максимов В.А., Замятин С.А., Апаева Н.Н. Роль климатических условий в формировании уро- жайности ярового ячменя в Республике Марий Эл.// Аграрная наука. - 2014, № 6.- С. 16-18. 11. Маргарян В.Г. Тренды изменения экспери- ментальных температур приземного слоя воздуха в пределах Араратской равнины и ее предгорной зоны.// Вестник Московского университета, Серия 5. География.- 2019, № 2.- С. 103-107. 12. Мкртчян Р.С., Меликян Д.О., Бадалян В.А. Агроклиматические ресурсы Армении. Служба по гидрометеорологии и мониторингу МЧС Респуб- лики Армения.- Ереван: Лусабац, 2011.- С. 41-49, 155 с. (на арм. яз.). 13. Мкртчян А.Т., Гукасян А.Г., Осипова Р.Г. Сравнительное исследование новых сортов ози- мого ячменя в условиях Армении.// Евразийский Союз Ученых, Серия, междисциплинарный.- 2022, № 8(101).- С. 4-8 (на арм. яз.) Д01:10.31618/ESU. 2413-9335.2022. 7.101.1706 14. Мкртчян А.Т., Гукасян А.Г. Озимой яч- мень, сорт Сис, рег. № 2010557.- 2022 г.
  • 16. 16 Sciences of Europe # 116, (2023) EARTH SCIENCES К ВОПРОСУ РЕГУЛИРОВАНИЯ РЕЖИМОВ РАБОТЫ ЭКСПЛУАТАЦИОННОГО ФОНДА СКВАЖИН С УЧЕТОМ ВЗАИМОДЕЙСТВИЯ Мамедов А.В. Доцент, Азербайджанский Государственный Университет Нефти и Промышленности, Баку, Азербайджан Мамедов Р.М. Младший научный сотрудник, НИИ «Геотехнологические Проблемы Нефти, Газа и Химия», Баку, Азербайджан Султанова А.В. Младший научный сотрудник, НИИ «Геотехнологические Проблемы Нефти, Газа и Химия», Баку, Азербайджан Гурбанов П.Э. Азербайджанский Государственный Университет Нефти и Промышленности, Баку, Азербайджан TO THE QUESTION OF REGULATION OF THE OPERATING MODES OF THE OPERATING FUND OF WELLS TAKING INTO ACCOUNT THE INTERACTION Mammadov A., Assistant professor, Azerbaijan State Oil and Industry University, Baku, Azerbaijan Mammadov R., Junior Research Engineer, Scientific Research Institute “Geotechnological Problems of Oil, Gas and Chemistry”, Baku, Azerbaijan Sultanova A., Junior Research Engineer, Scientific Research Institute “Geotechnological Problems of Oil, Gas and Chemistry”, Baku, Azerbaijan Gurbanov P. Azerbaijan State Oil and Industry University, Baku, Azerbaijan DOI: 10.5281/zenodo.7907249 АННОТАЦИЯ Широкое внедрение газлифтного способа извлечения углеводородов сопряжено с выбором оптималь- ного режима работы скважин, целью которого является экономия рабочего агента, улучшение работы подъемника посредством реализации различных технологических мероприятий, что делает вопрос все бо- лее актуальным. Кроме того, эффективность разработки месторождений требует учета степени и характера взаимодействия между скважинами. Важным является локальный характер исследуемых технологических режимов отдельных скважин, что не отражает интегральное состояние системы «пласт-скважина» в целом и, как следствие, приводит к неустойчивости технологических режимов[1]. ABSTRACT The widespread introduction of the gas-lift method of extracting hydrocarbons is associated with the choice of the optimal well operation mode, the purpose of which is to save the working agent, improve the operation of the lift through the implementation of various technological measures, which makes the issue more and more relevant. In addition, the efficiency of field development requires taking into account the degree and nature of the interaction between wells. Important is the local nature of the studied technological modes of individual wells, which does not reflect the integral state of the "reservoir-well" system as a whole and, as a result, leads to instability of technological modes [1]. Ключевые слова: Взаимодействие скважин, режимы работы газлифтных скважин, самоорганизация скважин, фрактальность. Keywords: Well interaction, gas-lift well operation modes, well self-organization, fractality. Введение Обычно взаимодействие между скважинами рассматривается на основе линейных соотношений между депрессиями и дебитами скважин с исполь- зованием коэффициентов взаимовлияния. Однако на практике в большинстве случаев такой подход не находит применения в связи с нелинейностью характеристики скважин (подъемников). Нелинейность характеристики скважины мо- жет определяться как способом эксплуатации, так и
  • 17. Sciences of Europe # 116, (2023) 17 условиями подъема жидкости в насосно-компрес- сорных трубах. Так, например, при газлифтном способе добычи нефти имеет место нелинейная связь между расходом и давлением, в результате чего зависимость перепада давления от дебита имеет более одной экстремальной точки [1]. Изме- нение способа эксплуатации или технологических параметров работы скважин приводит к изменению характера взаимодействия между ними, который наиболее сильно проявляется по причине нелиней- ности взаимодействия между скважинами [2]. Методы исследования Для анализа характера взаимодействия между скважинами рассмотрим характеристику газ- лифтной скважины в простейших условиях идеаль- ного подъемника более подробно. Такое допуще- ние, с одной стороны, качественно отвечает постав- ленной задаче, с другой — позволяет качественно оценить влияние технологических параметров на характер взаимодействия между скважинами. Определим зависимость забойного давления 3 р в газлифтной скважине от дебита жидкости. Для упрощения задачи принимаются следующие допущения, которые справедливы для идеального подъемника: а) процесс подъема жидкости считается изо- термическим, т. е. 0 0 Г Г pV p V = (1), где индекс 0 соответствует нормальным усло- виям; р и V — давление и объем газа; б) проскальзыванием газа относительно жид- кости и малой величиной удельного веса газа по сравнению с удельным весом жидкости пренебре- гаем, т. е. предполагается, что удельный вес га- зожидкостной смеси, поступающей в скважину че- рез рабочий клапан ( ) 1 см ж    = − (2) Здесь ж  - удельный вес жидкости;  - объемное газосодержание в данном сече- нии; в) кроме того, пренебрегаем выделяющимся из нефти газом по сравнению с расходом рабочего агента; г) гидравлические сопротивления по сравне- нию с давлением столба газированной смеси в сква- жине также не учитываются. Для каждой точки по стволу скважины давление меняется с изменением величины столба смеси следующим образом: см dp dh  = (3) Учитывая принятые допущения, получим 0 1 ж ж ж Г ж Q dh dp dh p V Q q p   = = + + , (4) Г ж V q Q = - удельный расход закачиваемого ра- бочего агента. После разделения переменных, интегрирова- ния в пределах от устья до точки ввода газа H 0 ln н н у ж у p p p qp h p  − + =  (5) где h  - высота столба от точки ввода газа до устья скважины. Учитывая, что з у н ж p p p h  − + + , где жh  - постоянная величина веса столба жидкости высо- той от забоя до точки ввода газа; у p - заданное устьевое давление, изменение забойного давления определяется только поведением решения н p уравнения (5). Имея ввиду, что н p неявно зависит от ж Q , определяется характер этой зависимости. Продифференцируем (5) по ж Q 0 0 ln 0 н н н ж y ж у ж dp p dp p dq q p dQ p dQ p dQ + + = (6) или 0 0 1 н н ж н у ж dp p p dq q p dQ p p dQ   + = −     (7) Левая часть (7) — величина положительная, 0 ln н у p p p - также больше нуля, следовательно, из- менение з р с изменением ж Q определяется пове- дением ж dq dQ . Ввиду того, что на графике зависи- мости q от ж Q на левой, падающей ветви 0 ж dp dQ  , а на правой, возрастающей - 0 ж dp dQ  , с учетом знака зависимость з р от ж Q можно ка- чественно представить в виде кривой с экстрему- мом, которая аппроксимируется квадратным трех- членом. Максимум зависимости ( ) з ж p Q соответ- ствует в принятой модели минимуму зависимости ( ) ж q Q . Примем систему двух взаимодействующих до- бывающих скважин 1 11 1 12 2 2 21 1 22 2 p a Q a Q p a Q a Q  = +    = +  (8) Для упрощения рассматривается взаимодей- ствие газлифтной скважины со скважиной, эксплу- атируемой механическим способом. Таким обра- зом, для газлифтной скважины можно записать 2 1 1 1 1 1 p a bQ c Q  = + − ,где 1 1 1 , , 0 a b c  (9) После подстановки (9) в (8) получим 2 1 1 1 1 1 11 1 12 2 2 21 1 22 2 a bQ c Q a Q a Q p a Q a Q  + − = +   = +  (10)
  • 18. 18 Sciences of Europe # 116, (2023) Исключая из первого уравнения системы (10) 2 21 1 1 2 22 , p a Q Q Q a  − = , получим квадратное урав- нение относительно 1 Q : 2 12 21 12 2 1 1 11 1 1 1 22 22 0 a a a p c Q a b Q a a a    + − − + − =     (11) В случае, когда уравнение (11) не имеет дей- ствительных решений, т. е. работа системы рас- смотренных скважин носит нестационарный харак- тер. 2 12 21 12 2 2 11 1 1 22 22 4 a a a p b a c a a a      − + −  −         (12) В этих условиях, например, если соседняя вза- имодействующая с исследуемой газлифтной сква- жиной скважина имеет неустойчиво-колебатель- ный режим, то это снижает надежность установки и уменьшает межремонтный период. Исходя из ска- занного, можно проводить анализ различных тех- нологических условий. Так, например, неравенство (12) выполняется при достаточно больших значе- ниях параметра 1 c . Увеличение параметра 1 c , со- ответствует снижению удельного расхода газа. На рис.1 приведены временные ряды замеров дебита, характерные для большинства газлифтных скважин морских нефтяных месторождений [5]. Как правило, графики таких временных рядов ока- зываются фрактальными [3, 4]. В количественном выражении такие кривые можно охарактеризовать размерностью Хаусдорфа D, показателем Херста, корреляционной размерностью и другими фрак- тальными характеристиками. При этом во всех рас- смотренных случаях неэффективная ветвь характе- ризуется уменьшением показателя H . Интервал изменения показателя Херста для эффективной ветви 0.7 0.8 H   характерен для природных процессов, подверженных самоорганизации. Таким образом, показатель Херста может быть использо- ван при диагностировании изменения режима ра- боты газлифтной скважины по текущим данным нормальной эксплуатации и при учете динамиче- ского развития системы «скважина-пласт» [6]. 0 20 40 60 80 0 10 20 30 40 50 t, ч Qж. м 3 /сут эффективная ветвь регулировочной кривой неэффективная (нисходящая) ветвь Рис. 1. Динамика производительности работы скважин, характерная для морских месторождений Выводы 1. Путем снижения удельного газосодержания различными методами, такими как применение ПАВ, диспергаторов и т. п. (что в (12) соответ- ствует возрастанию 1 c ), т. е., улучшая характери- стики газлифтной скважины, можно нарушить устойчивую работу системы скважин даже в том случае, когда изменение режима работы газ- лифтной скважины происходит в группе взаимо- действующих с ней и между собой скважин с устой- чивыми линейными характеристиками. 2. При анализе работы газлифтной скважины предлагается учитывать динамическое развитие си- стемы «скважина-пласт», т.е. возможности НКТ и термобарическое состояние призабойной зоны пла- ста. 3. Процессы взаимодействия и самоорганиза- ции скважин приводят к необходимости систем- ного подхода к выбору и регулированию техноло- гических режимов и введению обобщенных оценок работы группы взаимодействующих скважин. 4. Анализ экспериментальных и промысловых исследований показывает, что временные ряды за- меров дебита жидкости газлифтных скважин ( ) Q t , снятые при работе на неэффективной (нисходя- щей) ветви регулировочной кривой ( ) Q Q V = , об- ладают фрактальными характеристиками, которые существенно отличаются от фрактальных характе- ристик временных рядов замеров, снятых на эффек- тивной (восходящей) ветви. Это может быть свя- зано с потерей устойчивости стационарного ре- жима работы скважин при излишнем увеличении расхода рабочего агента и, как следствие, измене- нием состояния системы «скважина-пласт».
  • 19. Sciences of Europe # 116, (2023) 19 Литература 1. Мирзаджанзаде А.Х., Филиппов В.П., Аме- тов И.М. Системные методы в нефтедобыче. M, Техника, 2002, -163 стр. 2. Мирзаджанзаде А.Х., Хасанов М.Н., Бахти- зин Р.Н. Моделирование процессов нефтегазадоб- ычи, Москва, Ижевск, 2004г, -318стр. 3. Шрёдер М. Фракталы, хаос, степенные за- коны, Москва, 2001г. -528стр 4. Федер Е. «Фракталы», Москва, Мир, 1991 г. - 258стр. 5. Мирзаджанзаде А.Х. и др. Фрагменты разра- ботки морских нефтегазовых месторождений. Баку, МВНА, 1997 г, - 408 стр. 6. Мамедов А.В., Нагиев А.М. Оценка потен- циальных возможностей энергетической системы «пласт-скважина». Транспорт и Хранение Нефте- продуктов и Углеводородного Сырья. ISSN 0131- 4270. Москва, №1, 2015, С.37-42
  • 20. 20 Sciences of Europe # 116, (2023) ECONOMIC SCIENCES THEORETICAL ASPECTS OF STATE TAX POLICY Vinnytska O. Pavlo Tychyna Uman State Pedagogical University, Uman, Ukraine, Associate Professor DOI: 10.5281/zenodo.7907256 ABSTRACT Theoretical aspects of the state tax policy are considered. It is noted that tax policy is the most important component of not only the financial, but also the social system of the state. Taxes and tax policy are of paramount importance in ensuring economic growth, as well as in regulating the investment and innovation activity of busi- nesses. The substantiation of the relevance of consideration of tax policy in the context of transformational changes is carried out. Keywords: tax, tax policy, taxation, tax system; transformation of the economy. Introduction. Today in Ukraine, the issues of tax policy are among the most acute both in the economic and social, and in the political context. Taxes are an in- stitutionalized regulator of socio-economic develop- ment, and the effectiveness of the functioning of the tax system is a direct indicator of the level of development of society. Tax policy is one of the key areas of state regulation of the economy. The states, which are char- acterized by a protracted period of the formation of market relations and transformational transitions, face a number of problems in the field of tax regulation. The effectiveness of the tax policy ensures overcoming the consequences of the financial crisis, the implementa- tion of programs for the long-term development of the country, the growth of the welfare of the population, and the improvement of the activities of economic en- tities. Analysis of studies and publications. In the do- mestic financial opinion, the problems of taxation are reflected in the works of Ukrainian scientists: Horobinska I. V. [6], Hutsaliuk O. I. [7], Prochan A. O. [9], Skorynin A. P. [8], Skrypnychenko V. A. [4], Yasenova I. B. [5] and others. Despite significant scientific research and theoret- ical achievements in the tax field, its issue is acutely relevant at the current stage, and therefore requires the determination of strategic directions and tasks of tax policy regarding the stabilization and development of the state, as well as methods of achieving a high level of effectiveness of such policy and its impact on sub of economic entities. Рurpose of the article. The purpose of the article is to study the theoretical aspects of state tax policy and its effectiveness in modern economic conditions. Presentation of the main material. At the present stage, the role of the state in regulating the economy is manifested in a shift in emphasis regarding the objec- tivity of state policy - from capitalist relations to inter- action between the state and the citizen, which ensures its political legitimacy and the continuous reproduction of state institutions and state sovereignty [1]. The active influences of globalization and the development of the ideas of classical liberalism (the weight of human free- doms) ensured the spread of the ideology of the neolib- eral orthodoxy of the free market [2]. The role of the state in regulating the economy at the present stage is strengthened by the processes of globalization, forcing the diversification of priority spheres of influence de- pending on the country's importance in the global fi- nancial and economic arena. The COVID-2019 pan- demic has confirmed the need for increased state sup- port for business with the use of tax holidays and incentives that have more effectively implemented de- veloped countries with powerful financial reserves. Tax innovations deserve special attention (instead of VAT and income tax, the rate of 2% of turnover and simpli- fied accounting, reduction of value added tax on fuel from 20% to 7%, maximum deregulation of business, etc.) to support the Ukrainian economy for the period martial law [3]. State policy as a whole covers all spheres of public life, although the priority of the model determines the measure, the main instruments and areas of state inter- vention. In turn, the state policy in the economic sphere determines the content of state regulation. From its var- ious directions, tax policy is singled out, which is formed at the country level based on the model of state policy and taking into account approaches to higher levels of taxation, depending on the degree of integra- tion and openness of the economy. Tax policy needs not only vertical, but also horizontal integration, especially in relation to the economic block of power. Tax policy ensures the achievement of the goals of economic pol- icy in terms of stimulating the business environment (regulatory policy) and improving the welfare of the population (taxation of income). The main task of tax policy is to promote dynamic economic development of the country through the ra- tional management of public revenues, including the optimization of tax collection, as well as public spend- ing. In order to improve the efficiency of tax policy, the tax system of Ukraine should be built taking into ac- count principles of stability, economic justification, re- liability, social justice (impartial distribution of social wealth between citizens and territorial communities), balance, financial unity, administrative independence, equivalence of costs, completeness, transparency. Depending on the economic situation, tax policy can take the form of: weighted taxes (up or down stage); maximum taxes (peak stage); economic devel- opment (bottom of recession) fig.1.
  • 21. Sciences of Europe # 116, (2023) 21 Fig. 1. Forms of tax policy* *Source:[4, с. 14]. Tax policy can also be divided into the types of maximum taxes (fiscal, fiscal-distributive type), mini- mum taxes (regulatory, fiscal-control type) and bal- anced taxes (fiscal-regulatory type) [5, p. 221]. Ideally, a set of measures related to the state tax policy should meet the needs of reproduction and growth of national wealth. In the course of implement- ing tax policy, the starting point should be not only maintaining the legal order for collecting tax payments from taxpayers, but also conducting a comprehensive analysis of economic relations that are formed under the direct influence of the current taxation system. It follows from this that tax policy should primarily be understood as the improvement of tax legislation, and not its automatic implementation. Taxes and tax policy are of paramount importance in ensuring economic growth, as well as in regulating the investment and innovation activity of businesses. The foundation of innovative development is advanced investments: financial investments, a high level of edu- cation and the development of science, professional knowledge, experience, wide social informatization and a powerful intellectual potential of society [6, p. 258–259]. Tax situational flexibility (targeted tax in- centives for industries, organizational institutions such as clusters, incubators, industrial parks, etc.) and the stability of the tax system contribute to attracting exter- nal and mobilizing domestic investment as a prerequi- site for economic growth based on innovation. Determination of the impact of taxes on business is also carried out in the context of the financial security of enterprises, in particular tax security, which is based on the assessment of tax risks and tax burden through the use of special methods and tools; the main tax risks in this case are [7, p. 72]: - the risk of non-payment of taxes, which leads to negative consequences for the payer in the form of fines and penalties; - the risk of tax control, which leads to sanctions and losses due to violation of the law by taxpayers; - the risk of an increase in the tax burden, differ- entiated by types of economic activity and taxes, and by tax rates and benefits; - the risk of criminal (criminal) tax prosecution, leading to the occurrence of significant financial losses of the taxpayer or the loss of his freedom for commit- ting tax offenses provided for by law. The impact of taxes on the population is studied in relation to indicators of welfare, inequality and poverty. Scientific discussions are conducted on the coordina- tion of economic, tax and social policies in such a way as to achieve in the future the isolation of economic ef- ficiency and social justice without loss of social welfare [8, p. 224]. To search for parity within the framework of tax policy, a progressive approach to taxation is used depending on the level of income, with an assessment of inequality in their distribution. One of the popular models here is the Lawrence curve, which shows what share of the total income is received by different groups of the population. Tax policy occupies an important place in the sys- tem of reforms aimed at modernizing the country's economy. This is due to its main functionality in the mobilization of demanded financial resources, which can be redistributed through budgetary mechanisms in accordance with public needs. For a modern country, tax policy is relevant as a flexible situational way of regulating socio-economic processes, providing transformational changes focused on: - the constancy of the development of the national economy - with a balancing of the interests of the envi- ronment, society, the state and business in the use of natural resources, as well as ensuring economic stabil- ity in the face of unpredictable and cyclical crises; - the leading weight of small and medium-sized businesses - with the support of this segment of eco- nomic activity as a budget-forming core and an envi- ronment for using the intellectual and labor potential of the population; - de-shadowing the system of remuneration - with the promotion of a transparent system of labor organi- zation and proper payment of taxes; - financial support for the development of regions and communities - with support for inter-territorial co- operation and competition; - innovative development of the business environ- ment - with the stimulation of an innovation-oriented business model; - innovative development of the economy with the transition to the next technological order - with the stimulation of the accumulation of knowledge and tech- nology. The impact of tax policy on the transformation of the national economy should be systemic and justified. Since this is a difficult task, it is important to involve a set of tools of the institutional mechanism for the for- mation and implementation of tax policy, designed to
  • 22. 22 Sciences of Europe # 116, (2023) ensure the continuous development of tax relations be- tween business, public and public sectors, on the one hand, and government authorities at different levels, on the other hand, ensuring the transformation of informal business rules. and non-profit activities in a high tax culture, as well as the smooth (sustainable) functioning of the tax system. A proper tax culture and the con- stancy of the taxation system will make it possible to institutionalize regulated rules for paying taxes, which will contribute to a more effective influence of the state on transformational processes in the economy, in con- trast to when there is widespread formalism and hidden tax ability. In the modern economy, theoretical justifications at the intersection of knowledge of economics and pub- lic administration, on the one hand, and psychology and sociology, on the other, are becoming increasingly pop- ular. The theory of behavioral economics proves that when making decisions, a person is not guided by ab- stract principles of maximizing satisfaction and mini- mizing costs, but first encodes the possible conse- quences of his actions in favor or harm, depending on the chosen benchmark, using relative rather than abso- lute values [9, p. 107]. It is important to study these as- pects from the point of view of a person's decisions on paying taxes, choosing a life (including labor) strategy with an active / passive position of economic activity, which is significantly influenced by the requirements of income taxation. Along with the indicated theoretical provisions, developments in culture, responsibility and trust in the tax sphere are deepening. Modern areas of scientific re- search are being developed, namely, modeling the be- havior of taxpayers, the psychology of tax evasion, the problem of tax crime. An in-depth analysis of these as- pects is one of the areas of study of the institutional mechanism for the formation and implementation of tax policy. Conclusions and offers. Therefore, the theoretical basis for the formation of tax policy in the context of transformational changes should be considered in the organizational (stages of formation of tax systems us- ing certain tools of tax policy) and historical and value (theories of taxes and tax policy) aspects. The scientific section of the justifications for the features of the for- mation of tax policy is determined by theories: state regulation of the economy and measures of state inter- vention in market processes; taxes and taxation on a systematic approach and depending on the tax policy model; economic development and growth; transfor- mation and modernization of the economy; develop- ment of the institutional environment; behavioral eco- nomics, tax culture and responsibility. The effective- ness of tax policy in the context of ensuring the expected transformational changes in the economy pro- vides a proper scientific substantiation of its model (concept), goals, implementation tools. Taking into ac- count the peculiarities of the dynamic socio-economic development of modern economies in the context of global competition for resources, the formation of tax policy should take into account the latest research at the intersection of psychological and sociological sciences with the identification of priority opportunities for the institutionalization of tax culture, responsibility and discipline in all institutional and spatial planes. References 1. Purcell М. The state, regulation, and global restructuring: reasserting the political in political economy. Review of International Political Economy.2002. Volume 9, Issue 2. Р. 298-332 (https://doi.org/10.1080/09692290110126128). 2. Kus В. Regulatory governance and the informal economy: crossnational comparisons. Socio- Economic Review. 2020. Volume 8, Issue 3. P. 487- 510 (https://doi.org/10.1093/ser/mwq005) 3. Business during the war: what support the government offered and how business survives. URL: https://www.bbc.com/ukrainian/features-60757453 4. Skorynin A.P. Variability and typology of tax policy as a tool for regulating the national economy. State and regions. Series: Economy and entrepreneurship. 2016. No. 2. P. 11-16. 5. Yasenova I. B. Structural modeling of tax reg- ulation of innovative activity. Economic innovations: Coll. of science Ave. Odesa: IPREED NAS of Ukraine, 2013. Issue 52. P. 217-223. 6. Horobinska I. V., Kryvosheeva T. O. The in- fluence of taxation on investments and economic growth in Ukraine. Project management, system analy- sis and logistics. Technical series. 2010. Issue 7. P. 258- 261. 7. Gutsalyuk O. I., Levkovets N. P. The influ- ence of taxes on the financial security of enterprises. Project management, system analysis and logistics. Se- ries "Economic Sciences". 2015. No. 15. Part 2. P. 70- 76. 8. Skrypnychenko V. A. Income redistribution and progressiveness of the tax system. Scientific Bulle- tin of the National University of Bioresources and Na- ture Management of Ukraine. Series: Economics, agricultural management, business. 2014. Issue 200(2). P. 223-227. 9. Prochan A. O. Analysis of theories of behav- ioral economics. State and regions. Series: Economy and entrepreneurship. 2014. No. 5. P. 107-110. 10. Vinnytska O. A., Korniienko T. O., Chvertko L. A. Local taxes as a source of local budget revenues. International scientific journal "Internauka". Series: "Economic Sciences". 2021. No. 11. URL: https://www.inter- nauka.com/uploads/public/1636987883209.pdf
  • 23. Sciences of Europe # 116, (2023) 23 GEOLOGICAL AND MINERALOGICAL SCIENCES GLOBAL WATER INITIATIVES OF TAJIKISTAN: AN APPRAISAL OF ROBUST INITIATIVES Davlatov M. 4th year Bachelor student of World Economy, Faculty of Finance and Economics, Tajik National University DOI: 10.5281/zenodo.7907260 ABSTRACT This article provides information on a global water initiative of Tajikistan and appraisal of robust initiatives toward United Nations and other International authorities. Humanity has praised and glorified it as a sacred re- source for thousands of years. Today, due to rapid population growth, economic development and other challenges that impact the natural resources, the value of water has increased dramatically. As an essential resource for sus- tainable development, water has been included in numerous documents and strategies for development at the re- gional, national and global levels. As a result, various aspects of water issues were incorporated into the Sustain- able Development Goals (SDGs). Keywords: water, natural resources, water issues, Tajikistan, United Nations, Water Action Decade. Introduction Water sustains life, economic prosperity, ecologi- cal security, and human civilization. Globally, the pres- sure on water resources demands and climate change. Sustainable some of that pressure, but actions towards improving existing practices are lagging. Meeting the water needs of a growing population is largely associ- ated with the need for water to grow food, alongside access to safe water supply and sanitation being in- creasingly recognized as an essential element of human capital contributing to public health, which became even more evident in the wake of the COVID-19 crisis [1-4]. The shortage of clean drinking water - a current challenge for population across the globe, is not a pure function of the physical scarcity of water, as a combi- nation of factors, such as "business as usual" practices in the use and management of water and water pollution undermine the achievement of poverty eradication, posing a threat to human well-being, economic growth and national security. In this regard, taking into account existing problems in the water sector of the country and the need for a more efficient and sustainable water re- sources management, the Government of the Republic of Tajikistan decided to reform the water sector of Ta- jikistan in order to introduce more effective and sus- tainable institutional and legal mechanisms for water resources management [1,3,5]. Pic. 1. Review of clean water action image
  • 24. 24 Sciences of Europe # 116, (2023) The Poverty Reduction Strategy Paper (PRSP) plans to increase the share of the population with access to drinking water to 97 percent in the urban areas and 74 percent in the rural areas, accounting for additional 2 million residents due to the population growth. With respect to sanitation access, it envisions an increase to 65 and 50 percent in urban and rural areas respectively, including access to pit latrines and backyard toilets [8]. Table 1. Access to improved water and sanitation sources in 2004-2005 Tajikistan Urban areas Rural areas 2004 2005 2004 2005 2004 2005 Safe access percent 60 61 92 93 47 49 Water supply. Thousand people 4020 4240 1543 1714 2021 2526 Safe access percent 14 15 43 44 3 5 Sanitation (sewage) Thousand people 1047 1068 795 811 207 257.0 Today, per capita freshwater availability is dimin- ishing. Over the past four decades, it dropped by one- third. According to UN-Water' s World Water Devel- opment Report (2018), by 2050, between 4.8 billion and 5.7 billion people out of 9 billion will live in areas that are water-scarce for at least one month each year, up from 3.6 billion today while the number of people at risk of floods will increase to 1.6 billion, up from 1.2 billion today. Depletion and degradation of freshwater supplies, driven by population growth and mobility, impacts of economic development, lifestyle changes and unsustainable production and consumption patterns can only be reversed by deliberate and comprehensive interventions. Water is a powerful tool for cooperation and dialogue in support of sustainable development and safer and resilient societies. However, there is a need for more effective, integrated and coordinated actions, coupled with strong political will. All stakeholders, in- cluding those in government, international organiza- tions, civil society, the private sector and academia, should be engaged, paying special attention to the live- lihoods of poor and vulnerable people, leaving no one behind [2,5]. Water Action Decade and the Dushanbe Water Process (hereinafter Water Action Decade), which aims at supporting sustainable development and integrated management of water resources, while promoting co- operation and On 22 March 2018, the United Nations Secretary General' s Plan for the Water Action Decade was released during a High-Level Launch Event, con- vened by the President of the 73rd United Nations Gen- eral Assembly. The plan outlines current activities and capabilities of the UN system and international organi- zations and the operational setup envisaged to support Member States in the implementation of the Water Ac- tion Decade [2,5,10]. In this connection, the Government of Tajikistan is committed to continue providing a platform for pol- icy dialogue, partnership and action at the global, re- gional and national level. It is pertinent to highlight that Tajikistan with the support of the United Nations and other partners, is organizing high-level international conferences throughout the Water Action Decade. This series of events constitutes the so-called "Dushanbe Water Process". As part of this process, the First High- level International Conference on the International Decade for Action, "Water for Sustainable Develop- ment", 2018 - 2028 (First Dushanbe Water Action Dec- ade Conference), was held in Dushanbe in June 2018. The outcomes of the conference included recommenda- tions to the UN High-level Political Forum on Sustain- able Development that took place in 2018, for its in- depth review of the implementation of SDG 6 (clean water and sanitation). The Final Declaration of the First Dushanbe Conference confirmed the focus of the next conference to be on "Catalyzing water action and part- nership at the local, national, regional and global lev- els" to achieve the goals of the Water Action Decade and other water-related SDGs and targets [3,7]. The Importance of Second Dushanbe Water Ac- tion Decade Conference and Proactive Role of Tajiki- stan: The Second Dushanbe Water Action Decade Con- ference is co-organized by the Government of Tajiki- stan and the United Nations and planned to be held from 6th to 9th June 2022. The Conference will be co- chaired by the Prime Minister of the Republic of Tajik- istan and the United Nations Under-Secretary-General for Economic and Social Affairs. These activities and conferences clearly manifest that Tajikistan is actively pursuing SDG 6 (clean water and sanitation) and taking significant steps for water conservation and manage- ment. The Republic of Tajikistan has made and contin- ues to make a substantial contribution to this process. From 2000 to 2016, at the initiative of Tajikistan, the United Nations General Assembly adopted several res- olutions on water: I. International Year of Freshwater (2003) II. International Decade for Action, "Water for Life" (2005-2015) III. International Year of Water Cooperation (2013) IV. International Decade for Action, "Water for Sustainable Development" (2018-2028), which deserve spe- cial attention. Throughout this period, Tajikistan has repeatedly provided a platform for discussing global water issues. The country moves towards this course by actively pro- moting water issues identified in the 2030 Agenda. As a member of the High-level Panel on Water, Tajikistan, in cooperation with other panel members, has proposed a number of initiatives and is advancing them by
  • 25. Sciences of Europe # 116, (2023) 25 demonstrating political leadership and commitment [7,8]. Furthermore, Tajikistan has also been an im- portant player in solving water problems at the regional level. About 60 per cent of the water resources of the rivers in Central Asia (the Aral Sea basin) are formed in Tajikistan. The visionary government under the lead- ership of President Emomali Rahmon generously shares this vital resource with its neighbors. Tajikistan is a co-founder of the International Fund for Saving the Aral Sea and its two commissions, the Interstate Com- mission for Water Coordination (ICWC) and the Inter- state Commission on Sustainable Development (ICSD), which provide platforms for discussing urgent transboundary water issues in the region. The country is working on the aspects for effective water govern- ance and management strategies, i.e., grand financing, investment & modernization of existing infrastructure, transition to green growth, active involvement of all stakeholders, construction of new dams, rehabilitating water reservoirs capacity, and resolving transboundary water disputes [7,8,9]. Conclusion In Tajikistan, where over 95 per cent of electricity is generated by hydroelectric power stations, water and energy are closely interrelated. The development of ag- riculture sector is also primarily based on the use of wa- ter resources since more than 80 per cent of agricultural products are produced through irrigation. Thus, these vital initiatives by the dynamic leadership of Tajikistan would pave the way for achieving the water- related goals and objectives of sustainable development. 2025 has been declared the International Year of Glaciers’ Preservation in an initiative sponsored by Ta- jikistan, demonstrating the country’s commitment to mitigating the effects of climate change for the region’s mountain societies. UN Secretary-General António Gu- terres commented: “My thanks to President Rahmon for Tajikistan’s leadership in putting the global focus on preserving the world’s glaciers… They represent the largest reservoir of fresh water on the planet – support- ing our nutrition, health, economies and energy produc- tion. And nearly two billion people – one out of every four people on Earth – live in areas where glaciers and seasonal snowmelt supply their water.” References 1. Ministry of Irrigation and Water Management of the Republic of Tajikistan. Water sector develop- ment strategy of the Republic of Tajikistan. Dushanbe, -2006. -83 p. 2. Aldaya, M.M., Hoekstra, A.Y. Water Foot- print of Cotton, Wheat and Rice Production in Central Asia. Ualue of Water Research Report 41. UNESCO- IHE Institute for Water Education, Delft.2010. 3. Barbone, L., Reva, A., Zaidi, S. Tajikistan: key priorities for climate change adaptation. Iri: World Bank Policy Research Working Paper No.487 (Wash- ington DC, USA). 2010. 4. Bernauer, T., Siegfried, T. Climate charige and international water conflict in Central Asia. J. Peace. 2012, 227-239. 5. Cao, X.C., Wu, M.Y., Guo, X.P., et at. As- sessing water scarcity in agricultural production system based on the generalized water resources arid water footprint framework. Sci. Total Environ. 2017. 609, 587-597. 6. Chapagain, A.K., Hoekstra, A.Y. Water Foot- prints of Nations. Value of Water Research Report Se- ries No. 16. UNESCO-IHE Institute for Water Educa- tion, Delft, 2004. 7. Christmann, S., Aw-Hassari, A.A. A partici- patory method to enharice the colective ability to adapt to rapid glacier loss: the case of mountain communities in Tajikistan. Climatic Change. 2015. 133, 267-282. 8. Institute of Public Policy and Administration, 2016. National development strategy of the republic of Tajikistan for the period up to 2030. Government report (in Russian https://nafaka.tj/images/zakoni/new/strate- giya 2030 en.pdf. 9. Hellegers, P., Ziberman, D., Steduto, P., et al. Interactions between water, energy, food and environ- ment: evolving perspectives and policy issues. 2008, Water Pol. 10, 1-10. 10. Parry, M., Rosenzweig, C., Livermore, M. Cli- mate charige, global food supply and risk of hunger. Philos. 2005, Trans. R. Soc. B BioL Sci. 360, 2J 25- 2138.