SlideShare ist ein Scribd-Unternehmen logo
1 von 74
Functions of
severable
variables
A function of several variables is a function where the domain is a
subset of 𝑅 𝑛 and range is 𝑅.
A real valued function of 𝑛–variables is a function
𝑓 ∶ 𝐷 → R, where the domain D is a subset of 𝑅 𝑛.
So: for each (𝑥1, 𝑥2, . . . , 𝑥 𝑛) in D, the value of f is a real number
𝑓(𝑥1, 𝑥2, . . . , 𝑥 𝑛 ).
For example,
1.𝑓(𝑥, 𝑦) = 𝑥 − 𝑦
(a function of 2 variables defined for all (𝑥, 𝑦) ∈ 𝑅2)
2. If 𝑓 is a function defined by
𝑓(𝑥, 𝑦) = 9 − cos(𝑥) + sin(𝑥2 + 𝑦2),
(a function of 2 variables defined for all (𝑥, 𝑦) ∈ 𝑅2
)
2. 𝑓 𝑥, 𝑦, 𝑧 =
1
𝑥2+𝑦2+𝑧2
Then f is a function of 3 variables, defined whenever 𝑥2 + 𝑦2 + 𝑧2 ≠
0
This is all (𝑥, 𝑦, 𝑧) ∈ 𝑅3 except for (𝑥, 𝑦, 𝑧) = (0, 0, 0).
Partial Derivative
If 𝑓(𝑥, 𝑦) is a function of two variables 𝑥 and 𝑦,
the partial derivative of 𝑓 with respect to 𝑥, is given by 𝑓𝑥 𝑥, 𝑦 =
lim
ℎ→0
𝑓 𝑥+ℎ,𝑦 −𝑓 𝑥,𝑦
ℎ
The partial derivative of 𝑓 with respect to 𝑦, is given by 𝑓𝑦 𝑥, 𝑦 =
lim
ℎ→0
𝑓 𝑥,𝑦+ℎ −𝑓 𝑥,𝑦
ℎ
Note
• If 𝑓(𝑥, 𝑦) is a function of two variables 𝑥 and 𝑦, then
Partial derivative of 𝑓(𝑥, 𝑦) with respect to 𝑥 is
𝜕𝑓
𝜕𝑥
, it is
denoted by 𝑓𝑥
• Partial derivative of 𝑓(𝑥, 𝑦) with respect to 𝑦 is
𝜕𝑓
𝜕𝑦
, it is denoted by
𝑓𝑦
• Partial second derivative of 𝑓(𝑥, 𝑦) with respect to 𝑥 is
𝜕2 𝑓
𝜕𝑥2 , it is
denoted by 𝑓𝑥𝑥
• Partial second derivative of 𝑓(𝑥, 𝑦) with respect to 𝑦 is
𝜕2 𝑓
𝜕𝑦2 , it is
denoted by 𝑓𝑦𝑦
• Partial derivative of
𝜕𝑓
𝜕𝑥
with respect to 𝑦 is
𝜕2 𝑓
𝜕𝑦𝜕𝑥
, it is denoted by 𝑓𝑥𝑦
and so on
Problem 1:
If 𝒇 𝒙, 𝒚 = 𝟑𝒙𝒚 𝟐 − 𝟐𝒙 𝟐 𝒚,then find
𝒇 𝒙, 𝒇 𝒚, 𝒇 𝒙𝒙, 𝒇 𝒚𝒚, 𝒇 𝒙𝒚
Solution:
Given 𝑓 𝑥, 𝑦 = 3𝑥𝑦2 − 2𝑥2 𝑦 ---(1)
Diff. (1) partially w.r.to x,
𝑓𝑥 = 3 1 𝑦2 − 2 2𝑥 𝑦
𝑓𝑥 = 3𝑦2
− 4𝑥𝑦 --------- (2)
Diff. (1) partially w.r.to y,
𝑓𝑦 = 3𝑥 (2𝑦) − 2𝑥2
(1)
𝑓𝑦 = 6𝑥𝑦 − 2𝑥2
-----------(3)
Diff. (2) p.w.r.to x,
𝑓𝑥𝑥 = 0 − 4 1 𝑦
𝑓𝑥𝑥 = −4𝑦
Diff. (3) p.w.r.to y,
𝑓𝑦𝑦 = 6𝑥 1 − 0
𝑓𝑦𝑦 = 6𝑥
Diff. (2) p.w.r.to y,
𝑓𝑥𝑦 = 3 2𝑦 − 4𝑥(1)
𝑓𝑥𝑦 = 6𝑦 − 4𝑥
Note :
Diff.(3) p.w.r.to x,
𝑓𝑦𝑥 = 6 1 𝑦 − 2 2𝑥 = 6𝑦 − 4𝑥
𝑓𝑥𝑦 = 𝑓𝑦𝑥
Problem 2:
Find
𝝏𝒖
𝝏𝒙
,
𝝏𝒖
𝝏𝒚
, if 𝒖 = 𝒙𝒆 𝒚
+ 𝒚 𝒆 𝒙
Solution:
Given 𝑢 = 𝑥𝑒 𝑦 + 𝑦 𝑒 𝑥 -------(1)
Diff. (1) p.w.r.to x,
𝜕𝑢
𝜕𝑥
= 1 𝑒 𝑦
+ 𝑦 𝑒 𝑥
= 𝑒 𝑦
+ 𝑦 𝑒 𝑥
Diff.(1) p.w.r.to y,
𝜕𝑢
𝜕𝑦
= 𝑥 𝑒 𝑦
+ 1 𝑒 𝑥
= 𝑥𝑒 𝑦
+ 𝑒 𝑥
Problem 3:
If 𝒖 = 𝒙 𝟐
+ 𝒚 𝟐
+ 𝒛 𝟐 − 𝟏
𝟐
then find the value of
𝝏 𝟐 𝒖
𝝏𝒙 𝟐 +
𝝏 𝟐 𝒖
𝝏𝒚 𝟐 +
𝝏 𝟐 𝒖
𝝏𝒛 𝟐
Solution:
Given 𝑢 = 𝑥2
+ 𝑦2
+ 𝑧2 −1
2 ------(1)
Diff. (1) p. w.r.to x,
𝜕𝑢
𝜕𝑥
= −
1
2
𝑥2 + 𝑦2 + 𝑧2 −
1
2
−1
2𝑥 + 0 + 0
= −
1
2
𝑥2
+ 𝑦2
+ 𝑧2 −
3
2(2𝑥)
𝜕𝑢
𝜕𝑥
= −𝑥 𝑥2 + 𝑦2 + 𝑧2 −
3
2 ------- (2)
Diff. (2) p. w.r.to x,
𝜕2 𝑢
𝜕𝑥2 = −𝑥 −
3
2
𝑥2 + 𝑦2 + 𝑧2 −
3
2
−1
(2𝑥) + 𝑥2 + 𝑦2 + 𝑧2 −
3
2(−1)
= 3𝑥2 𝑥2 + 𝑦2 + 𝑧2 −
3
2
−1
− 𝑥2 + 𝑦2 + 𝑧2 −
3
2
= 𝑥2
+ 𝑦2
+ 𝑧2 −
3
2 3𝑥2
𝑥2
+ 𝑦2
+ 𝑧2 −1
− 1
= 𝑥2
+ 𝑦2
+ 𝑧2 −
3
2
3𝑥2
𝑥2+𝑦2+𝑧2 1 − 1
=
𝑥2+𝑦2+𝑧2 −
3
2 3𝑥2− 𝑥2+𝑦2+𝑧2
𝑥2+𝑦2+𝑧2
= 𝑥2
+ 𝑦2
+ 𝑧2 −
3
2 𝑥2
+ 𝑦2
+ 𝑧2 −1
3𝑥2
− 𝑥2
− 𝑦2
− 𝑧2
= 𝑥2 + 𝑦2 + 𝑧2 −
3
2
−1
2𝑥2 − 𝑦2 − 𝑧2
𝜕2 𝑢
𝜕𝑥2 = 𝑥2 + 𝑦2 + 𝑧2 −
5
2 2𝑥2 − 𝑦2 − 𝑧2 ------ (3)
Similarly,
𝜕2 𝑢
𝜕𝑦2 = 𝑥2
+ 𝑦2
+ 𝑧2 −
5
2 2𝑦2
− 𝑧2
− 𝑥2
------- (4)
𝜕2 𝑢
𝜕𝑧2 = 𝑥2
+ 𝑦2
+ 𝑧2 −
5
2 2𝑧2
− 𝑥2
− 𝑦2
------ (5)
(3)+(4)+(5) ⇒
𝜕2 𝑢
𝜕𝑥2+
𝜕2 𝑢
𝜕𝑦2+
𝜕2 𝑢
𝜕𝑧2 = 𝑥2
+ 𝑦2
+ 𝑧2 −
5
2(2𝑥2
− 𝑦2
− 𝑧2
+2𝑦2
− 𝑧2
− 𝑥2
+2𝑧2
− 𝑥2
− 𝑦2
)
= 𝑥2
+ 𝑦2
+ 𝑧2 −
5
2 2𝑥2
+ 2𝑦2
+ 2𝑧2
− 2𝑥2
− 2𝑦2
− 2𝑧2
= 0
Problem 4
If 𝒖 = 𝒍𝒐𝒈 𝒕𝒂𝒏𝒙 + 𝒕𝒂𝒏𝒚 + 𝒕𝒂𝒏𝒛 𝒇𝒊𝒏𝒅 𝒔𝒊𝒏𝟐𝒙.
𝝏𝒖
𝝏𝒙
.
Solution:
Given 𝑢 = log 𝑡𝑎𝑛𝑥 + 𝑡𝑎𝑛𝑦 + 𝑡𝑎𝑛𝑧 ------- (1)
Diff. (1) p.w.r.to x,
𝜕𝑢
𝜕𝑥
=
1
𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧
(sec2 𝑥)
=
1
cos2 𝑥(𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧)
, (∵ sec2
𝑥 =
1
cos2 𝑥
)
Now 𝑠𝑖𝑛2𝑥.
𝜕𝑢
𝜕𝑥
= 𝑠𝑖𝑛2𝑥
1
cos2 𝑥(𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧)
=
2𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑥
cos2 𝑥(𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧)
, (∵ 𝑠𝑖𝑛2𝑥 = 2𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑥)
=
2𝑠𝑖𝑛𝑥
cos 𝑥(𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧)
= 2
𝑠𝑖𝑛𝑥
𝑐𝑜𝑠𝑥
(
1
𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧
)
∴ 𝑠𝑖𝑛2𝑥.
𝜕𝑢
𝜕𝑥
= 2𝑡𝑎𝑛𝑥 (
1
𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧
)----(2)
Similarly,
𝑠𝑖𝑛2𝑦.
𝜕𝑢
𝜕𝑦
= 2𝑡𝑎𝑛𝑦 (
1
𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧
)----- (3)
𝑠𝑖𝑛2𝑧.
𝜕𝑢
𝜕𝑧
= 2𝑡𝑎𝑛𝑧 (
1
𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧
)------ (4)
(3)+(4)+(5)⟹
𝑠𝑖𝑛2𝑥.
𝜕𝑢
𝜕𝑥
+𝑠𝑖𝑛2𝑦.
𝜕𝑢
𝜕𝑦
+𝑠𝑖𝑛2𝑧.
𝜕𝑢
𝜕𝑧
=2𝑡𝑎𝑛𝑥
1
𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧
+ 2𝑡𝑎𝑛𝑦
1
𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧
+2𝑡𝑎𝑛𝑧
1
𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧
=2
1
𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧
𝑡𝑎𝑛𝑥 + 𝑡𝑎𝑛𝑦 + 𝑡𝑎𝑛𝑧 = 2
Homogeneous Function:
A function 𝑓(𝑥, 𝑦) is called a homogeneous function of the degree ′𝑛′ if
the following relationship is valid for all 𝑡 > 0: 𝑓 𝑡𝑥, 𝑡𝑦 = 𝑡 𝑛
𝑓 𝑥, 𝑦 .
Example:
Consider 𝑓 𝑥, 𝑦 =
𝑥2+𝑦2
𝑥𝑦
𝑓 𝑡𝑥, 𝑡𝑦 =
𝑡𝑥 2+ 𝑡𝑦 2
𝑡𝑥 𝑡𝑦
=
𝑡2 𝑥2+𝑡2 𝑦2
𝑡2 𝑥𝑦
=
𝑡2 𝑥2+𝑦2
𝑡2 𝑥𝑦
=
𝑥2+𝑦2
𝑥𝑦
= 𝑡0 𝑓(𝑥, 𝑦)
Hence f(x, y ) is homogeneous of order zero
Euler’s Theorem:
If 𝑢 = 𝑓 𝑥, 𝑦 is a homogeneous function of degree ‘n’, then 𝑥
𝜕𝑢
𝜕𝑥
+ 𝑦
𝜕𝑢
𝜕𝑦
= 𝑛𝑢
(OR) 𝑥
𝜕𝑓
𝜕𝑥
+ 𝑦
𝜕𝑓
𝜕𝑦
= 𝑛𝑓
Problem 1:
If 𝒖 = 𝒇
𝒙
𝒚
, prove that 𝒙
𝝏𝒖
𝝏𝒙
+ 𝒚
𝝏𝒖
𝝏𝒚
= 𝟎
Solution:
Given 𝑢 𝑥, 𝑦 = 𝑓
𝑥
𝑦
For any 𝑡 > 0,
𝑢 𝑡𝑥, 𝑡𝑦 = 𝑓
𝑡𝑥
𝑡𝑦
= 𝑓
𝑥
𝑦
= 𝑡0
𝑓
𝑥
𝑦
= 𝑡0
𝑢(𝑥, 𝑦)
Hence 𝑢 = 𝑓
𝑥
𝑦
is a homogeneous function of order zero
𝑖. 𝑒 𝑛 = 0
By Euler’s Theorem , 𝑥
𝜕𝑢
𝜕𝑥
+ 𝑦
𝜕𝑢
𝜕𝑦
= 𝑛𝑢
⟹ 𝑥
𝜕𝑢
𝜕𝑥
+ 𝑦
𝜕𝑢
𝜕𝑦
= 0 u = 0
Hence proved.
.
Problem 2:
If 𝒖 = 𝐬𝐢𝐧−𝟏 𝒙
𝒚
+ 𝐭𝐚𝐧−𝟏 𝒚
𝒙
, prove that 𝒙
𝝏𝒖
𝝏𝒙
+ 𝒚
𝝏𝒖
𝝏𝒚
= 𝟎.
Solution:
Given 𝑢(𝑥, 𝑦) = sin−1 𝑥
𝑦
+ tan−1 𝑦
𝑥
For any 𝑡 > 0,
𝑢(𝑡𝑥, 𝑡𝑦) = sin−1 𝑡𝑥
𝑡𝑦
+ tan−1 𝑡𝑦
𝑡𝑥
= sin−1 𝑥
𝑦
+ tan−1 𝑦
𝑥
= 𝑡0
( sin−1 𝑥
𝑦
+ tan−1 𝑦
𝑥
)
Hence 𝑢(𝑥, 𝑦) is a homogeneous function of order zero
𝑖. 𝑒 𝑛 = 0
By Euler’s Theorem,
𝑥
𝜕𝑢
𝜕𝑥
+ 𝑦
𝜕𝑢
𝜕𝑦
= 𝑛𝑢 = 0 𝑢 = 0
Total differential coefficient
If 𝑢 = 𝑓 𝑥, 𝑦 , the total differential of 𝑢 is given by
𝑑𝑢 = 𝑢 𝑥 𝑑𝑥 + 𝑢 𝑦 𝑑𝑦 (OR) 𝑑𝑓 = 𝑓𝑥 𝑑𝑥 + 𝑓𝑦 𝑑𝑦
If 𝑢 = 𝑓 𝑥, 𝑦 , and x = g(t) , y = h(t) , the total differential of 𝑢 is given
by
𝑑𝑢
𝑑𝑡
=
𝜕𝑢
𝜕𝑥
𝑑𝑥
𝑑𝑡
+
𝜕𝑢
𝜕𝑦
𝑑𝑦
𝑑𝑡
= 𝑢 𝑥
𝑑𝑥
𝑑𝑡
+ 𝑢 𝑦
𝑑𝑦
𝑑𝑡
(OR)
𝑑𝑓
𝑑𝑡
=
𝜕𝑓
𝜕𝑥
𝑑𝑥
𝑑𝑡
+
𝜕𝑓
𝜕𝑦
𝑑𝑦
𝑑𝑡
= 𝑓𝑥
𝑑𝑥
𝑑𝑡
+ 𝑓𝑦
𝑑𝑦
𝑑𝑡
Note : If 𝑢 = 𝑓 𝑝, 𝑞, 𝑟 and p = 𝑔 𝑥, 𝑦, 𝑧 , 𝑞 = ℎ(𝑥, 𝑦, 𝑧)
𝑟 = 𝑘(𝑥, 𝑦, 𝑧)
Total differential
𝑑𝑢
𝑑𝑥
= 𝑢 𝑝
𝑑𝑝
𝑑𝑥
+ 𝑢 𝑞
𝑑𝑞
𝑑𝑥
+ 𝑢 𝑟
𝑑𝑟
𝑑𝑥
𝑑𝑢
𝑑𝑦
= 𝑢 𝑝
𝑑𝑝
𝑑𝑦
+ 𝑢 𝑞
𝑑𝑞
𝑑𝑦
+ 𝑢 𝑟
𝑑𝑟
𝑑𝑦
𝑑𝑢
𝑑𝑧
= 𝑢 𝑝
𝑑𝑝
𝑑𝑧
+ 𝑢 𝑞
𝑑𝑞
𝑑𝑧
+ 𝑢 𝑟
𝑑𝑟
𝑑𝑧
Partial derivative:
If 𝑧 = 𝑓 𝑢, 𝑣 and 𝑢 = 𝑔 𝑥, 𝑦 , 𝑣 = ℎ(𝑥, 𝑦) then
𝜕𝑧
𝜕𝑥
=
𝜕𝑧
𝜕𝑢
𝜕𝑢
𝜕𝑥
+
𝜕𝑧
𝜕𝑣
𝜕𝑣
𝜕𝑥
= 𝑧 𝑢 𝑢 𝑥 + 𝑧 𝑣 𝑣 𝑥
𝜕𝑧
𝜕𝑦
=
𝜕𝑧
𝜕𝑢
𝜕𝑢
𝜕𝑦
+
𝜕𝑧
𝜕𝑣
𝜕𝑣
𝜕𝑦
= 𝑧 𝑢 𝑢 𝑦 + 𝑧 𝑣 𝑣 𝑦
Note : If 𝑢 = 𝑓 𝑝, 𝑞, 𝑟 and p = 𝑔 𝑥, 𝑦, 𝑧 , 𝑞 = ℎ(𝑥, 𝑦, 𝑧)
𝑟 = 𝑘(𝑥, 𝑦, 𝑧)
Partial differential
𝜕𝑢
𝜕𝑥
= 𝑢 𝑝 𝑝 𝑥 + 𝑢 𝑞 𝑞 𝑥 + 𝑢 𝑟 𝑟𝑥
𝜕𝑢
𝜕𝑦
= 𝑢 𝑝 𝑝 𝑦 + 𝑢 𝑞 𝑞 𝑦 + 𝑢 𝑟 𝑟𝑦
𝜕𝑢
𝜕𝑧
= 𝑢 𝑝 𝑝 𝑧 + 𝑢 𝑞 𝑞 𝑧 + 𝑢 𝑟 𝑟𝑧
Problem 1:
If 𝒘 = 𝒇(𝒚 − 𝒛, 𝒛 − 𝒙, 𝒙 − 𝒚) then show that
𝝏𝒘
𝝏𝒙
+
𝝏𝒘
𝝏𝒚
+
𝝏𝒘
𝝏𝒛
= 𝟎
Solution:
Given 𝑤 = 𝑓(𝑦 − 𝑧, 𝑧 − 𝑥, 𝑥 − 𝑦)
Take p = 𝑦 − 𝑧, 𝑞 = 𝑧 − 𝑥, 𝑟 = 𝑥 − 𝑦
⇒ 𝑤 = 𝑓(𝑝, 𝑞, 𝑟) and 𝑝 𝑦, 𝑧 , 𝑞 𝑧, 𝑥 , 𝑟(𝑥, 𝑦)
p = 𝑦 − 𝑧, 𝑞 = 𝑧 − 𝑥, 𝑟 = 𝑥 − 𝑦
𝑝 𝑥 = 0 𝑞 𝑥 = −1 𝑟𝑥 = 1
𝑝 𝑦 = 1 𝑞 𝑦 = 0 𝑟𝑦 = −1
𝑝 𝑧 = −1 𝑞 𝑧 = 1 𝑟𝑧 = 0
𝜕𝑤
𝜕𝑥
= 𝑤 𝑝 𝑝 𝑥 + 𝑤 𝑞 𝑞 𝑥 + 𝑤𝑟 𝑟𝑥 = 𝑤 𝑝 0 + 𝑤 𝑞 −1 + 𝑤𝑟 1
𝜕𝑤
𝜕𝑥
= −𝑤 𝑞 + 𝑤𝑟 ------ (1)
𝜕𝑤
𝜕𝑦
= 𝑤 𝑝 𝑝 𝑦 + 𝑤 𝑞 𝑞 𝑦 + 𝑤𝑟 𝑟𝑦 = 𝑤 𝑝 1 + 𝑤 𝑞 0 + 𝑤𝑟 −1
𝜕𝑤
𝜕𝑦
= 𝑤 𝑝 − 𝑤𝑟 ------ (2)
𝜕𝑤
𝜕𝑧
= 𝑤 𝑝 𝑝 𝑧 + 𝑤 𝑞 𝑞 𝑧 + 𝑤𝑟 𝑟𝑧 = 𝑤 𝑝 −1 + 𝑤 𝑞 1 + 𝑤𝑟 0
𝜕𝑤
𝜕𝑧
= −𝑤 𝑝 + 𝑤 𝑞 ------ (3)
(1)+(2)+(3) ⇒
𝜕𝑤
𝜕𝑥
+
𝜕𝑤
𝜕𝑦
+
𝜕𝑤
𝜕𝑧
= −𝑤 𝑞 + 𝑤𝑟+𝑤 𝑝 − 𝑤𝑟 −𝑤 𝑝 +𝑤 𝑞 = 0
Problem2:
If 𝒖 = 𝒇(𝟐𝒙 − 𝟑𝒚, 𝟑𝒚 − 𝟒𝒛, 𝟒𝒛 − 𝟐𝒙) then find
𝟏
𝟐
𝝏𝒖
𝝏𝒙
+
𝟏
𝟑
𝝏𝒖
𝝏𝒚
+
𝟏
𝟒
𝝏𝒖
𝝏𝒛
Solution:
Given 𝑢 = 𝑓(2𝑥 − 3𝑦, 3𝑦 − 4𝑧, 4𝑧 − 2𝑥)
Take p = 2𝑥 − 3𝑦, 𝑞 = 3𝑦 − 4𝑧, 𝑟 = 4𝑧 − 2𝑥
⇒ 𝑢 = 𝑓(𝑝, 𝑞, 𝑟) and 𝑝 𝑥, 𝑦 , 𝑞 𝑦, 𝑧 , 𝑟(𝑧, 𝑥)
p = 2𝑥 − 3𝑦, 𝑞 = 3𝑦 − 4𝑧, 𝑟 = 4𝑧 − 2𝑥
𝑝 𝑥 = 2 𝑞 𝑥 = 0 𝑟𝑥 = −2
𝑝 𝑦 = −3 𝑞 𝑦 = 3 𝑟𝑦 = 0
𝑝 𝑧 = 0 𝑞 𝑧 = −4 𝑟𝑧 = 4
𝜕𝑢
𝜕𝑥
= 𝑢 𝑝 𝑝 𝑥 + 𝑢 𝑞 𝑞 𝑥 + 𝑢 𝑟 𝑟𝑥 = 𝑢 𝑝 2 + 𝑢 𝑞 0 + 𝑢 𝑟 −2
1
2
𝜕𝑢
𝜕𝑥
=
1
2
2𝑢 𝑝 − 2𝑢 𝑟 =
1
2
(2 𝑢 𝑝 − 𝑢 𝑟 ) = 𝑢 𝑝 − 𝑢 𝑟 --------- (1)
𝜕𝑢
𝜕𝑦
= 𝑢 𝑝 𝑝 𝑦 + 𝑢 𝑞 𝑞 𝑦 + 𝑢 𝑟 𝑟𝑦 = 𝑢 𝑝 −3 + 𝑢 𝑞 3 + 𝑢 𝑟 0
1
3
𝜕𝑢
𝜕𝑦
=
1
3
(−3𝑢 𝑝+3𝑢 𝑞) =
1
3
3 −up + uq = −𝑢 𝑝 + 𝑢 𝑞 ---------(2)
𝜕𝑢
𝜕𝑧
= 𝑢 𝑝 𝑝 𝑧 + 𝑢 𝑞 𝑞 𝑧 + 𝑢 𝑟 𝑟𝑧 = 𝑢 𝑝 0 + 𝑢 𝑞 −4 + 𝑢 𝑟 4
1
4
𝜕𝑢
𝜕𝑧
=
1
4
−4𝑢 𝑞 + 4𝑢 𝑟 =
1
4
4 −𝑢 𝑞 ∓ 𝑢 𝑟 = −𝑢 𝑞 + 𝑢 𝑟 ------- (3)
(1)+(2)+(3) ⇒
1
2
𝜕𝑢
𝜕𝑥
+
1
3
𝜕𝑢
𝜕𝑦
+
1
4
𝜕𝑢
𝜕𝑧
= 𝑢 𝑝 − 𝑢 𝑟 − 𝑢 𝑝 + 𝑢 𝑞 − 𝑢 𝑞 + 𝑢 𝑟 = 0
Problem3:
If 𝒖 = 𝒇(
𝒚−𝒙
𝒙𝒚
,
𝒛−𝒙
𝒙𝒛
) then find 𝒙 𝟐 𝝏𝒖
𝝏𝒙
+ 𝒚 𝟐 𝝏𝒖
𝝏𝒚
+ 𝒛 𝟐 𝝏𝒖
𝝏𝒛
Solution:
Given𝒖 = 𝒇(
𝒚−𝒙
𝒙𝒚
,
𝒛−𝒙
𝒙𝒛
)
Take p =
𝒚−𝒙
𝒙𝒚
, 𝑞 =
𝒛−𝒙
𝒙𝒛
⇒ 𝑢 = 𝑓(𝑝, 𝑞) and 𝑝 𝑥, 𝑦 , 𝑞 𝑥, 𝑧
𝐩 =
𝐲 − 𝐱
𝐱𝐲
𝐪 =
𝐳 − 𝐱
𝐱𝐳
𝐩 𝐱 =
𝐱𝐲 −𝟏 − 𝐲−𝐱 𝐲
𝐱𝐲 𝟐
=
−𝐱𝐲−𝐲 𝟐+𝐱𝐲
𝐱 𝟐 𝐲 𝟐 = −
𝐲 𝟐
𝐱 𝟐 𝐲 𝟐 = −
𝟏
𝐱 𝟐
𝐪 𝐱 =
𝐱𝐳 −𝟏 − 𝐳−𝐱 𝐳
𝐱𝐳 𝟐
=
−𝐱𝐳−𝐳 𝟐+𝐱𝐳
𝐱 𝟐 𝐳 𝟐 = −
𝐳 𝟐
𝐱 𝟐 𝐳 𝟐 = −
𝟏
𝐱 𝟐
𝐩 𝐲 =
𝐱𝐲 𝟏 − 𝐲−𝐱 𝐱
𝐱𝐲 𝟐
=
𝐱𝐲−𝐱𝐲+𝐱 𝟐
𝐱 𝟐 𝐲 𝟐 =
𝐱 𝟐
𝐱 𝟐 𝐲 𝟐 =
𝟏
𝐲 𝟐
𝐪 𝐲 = 𝟎
𝐩 𝐳 = 𝟎
𝐪 𝐳 =
𝐱𝐳 𝟏 − 𝐳−𝐱 𝐱
𝐱𝐳 𝟐
=
𝐱𝐳−𝐳𝐱+𝐱 𝟐
𝐱 𝟐 𝐳 𝟐 =
𝐱 𝟐
𝐱 𝟐 𝐳 𝟐 =
𝟏
𝐳 𝟐
𝜕𝑢
𝜕𝑥
= 𝑢 𝑝 𝑝 𝑥 + 𝑢 𝑞 𝑞 𝑥 = 𝑢 𝑝 −
1
𝑥2 + 𝑢 𝑞 −
1
𝑥2 = −
1
𝑥2 (𝑢 𝑝 + 𝑢 𝑞)
𝑥2 𝜕𝑢
𝜕𝑥
= 𝑥2
−
1
𝑥2 𝑢 𝑝 + 𝑢 𝑞 = −𝑢 𝑝 − 𝑢 𝑞 --------- (1)
𝜕𝑢
𝜕𝑦
= 𝑢 𝑝 𝑝 𝑦 + 𝑢 𝑞 𝑞 𝑦 = 𝑢 𝑝
1
𝑦2 + 𝑢 𝑞 0
𝑦2 𝜕𝑢
𝜕𝑦
= 𝑦2
(
1
𝑦2 𝑢 𝑝) = 𝑢 𝑝 ---------(2)
𝜕𝑢
𝜕𝑧
= 𝑢 𝑝 𝑝 𝑧 + 𝑢 𝑞 𝑞 𝑧 = 𝑢 𝑝 0 + 𝑢 𝑞
1
𝑧2
𝑧2 𝜕𝑢
𝜕𝑧
= 𝑧2 1
𝑧2 (𝑢 𝑞) = 𝑢 𝑞 ------- (3)
(1)+(2)+(3) ⇒ 𝑥2 𝜕𝑢
𝜕𝑥
+ 𝑦2 𝜕𝑢
𝜕𝑦
+ 𝑧2 𝜕𝑢
𝜕𝑧
= −𝑢 𝑝 − 𝑢 𝑞 + 𝑢 𝑝 + 𝑢 𝑞 = 0
• If 𝑓(𝑥, 𝑦) is a function of two variables x and y, then Taylor’s expansion of 𝑓(𝑥, 𝑦)
about the point (𝑎, 𝑏) is given by
𝑓 𝑥, 𝑦 = 𝑓 𝑎, 𝑏 + 𝑥 − 𝑎 𝑓𝑥 𝑎, 𝑏 + 𝑦 − 𝑏 𝑓𝑦 𝑎, 𝑏 +
1
2!
𝑥 − 𝑎 2 𝑓𝑥𝑥 𝑎, 𝑏 + 2 𝑥 − 𝑎 𝑦 − 𝑏 𝑓𝑥𝑦 𝑎, 𝑏 + 𝑦 − 𝑏 2 𝑓𝑦𝑦 𝑎, 𝑏 +
1
3!
𝑥 − 𝑎 3 𝑓𝑥𝑥𝑥 𝑎, 𝑏 + 3 𝑥 − 𝑎 2 𝑦 − 𝑏 𝑓𝑥𝑥𝑦 + 3 𝑥 − 𝑎 𝑦 − 𝑏 2 𝑓𝑥𝑦𝑦
+ 𝑦 − 𝑏 3 𝑓𝑦𝑦𝑦 𝑎, 𝑏
+ ⋯
• Taylor’s expansion of 𝑓(𝑥, 𝑦) about the origin or (0,0) is given by
𝑓 𝑥, 𝑦 = 𝑓 0,0 + 𝑥𝑓𝑥 0,0 + 𝑦𝑓𝑦 0,0
+
1
2!
𝑥2 𝑓𝑥𝑥 0,0 + 2𝑥𝑦𝑓𝑥𝑦 0,0 + 𝑦2 𝑓𝑦𝑦 0,0 + ⋯
Taylor’s Theorem for functions of two variables
Problem 1:
Obtain the Taylor series of 𝒙 𝟑 + 𝒚 𝟑 + 𝒙𝒚 𝟐 in powers of 𝒙 − 𝟏 𝒂𝒏𝒅 𝒚 − 𝟐.
Solution:
W.kt, Taylor’s expansion of 𝑓(𝑥, 𝑦) about the point (𝑎, 𝑏) is given by
𝑓 𝑥, 𝑦 = 𝑓 𝑎, 𝑏 + 𝑥 − 𝑎 𝑓𝑥 𝑎, 𝑏 + 𝑦 − 𝑏 𝑓𝑦 𝑎, 𝑏 +
1
2!
𝑥 − 𝑎 2 𝑓𝑥𝑥 𝑎, 𝑏 + 2 𝑥 − 𝑎 𝑦 − 𝑏 𝑓𝑥𝑦 𝑎, 𝑏 + 𝑦 − 𝑏 2 𝑓𝑦𝑦 𝑎, 𝑏 +
1
3!
𝑥 − 𝑎 3 𝑓𝑥𝑥𝑥 𝑎, 𝑏 + 3 𝑥 − 𝑎 2 𝑦 − 𝑏 𝑓𝑥𝑥𝑦(𝑎, 𝑏) + 3 𝑥 − 𝑎 𝑦 − 𝑏 2 𝑓𝑥𝑦𝑦(𝑎, 𝑏)
+ 𝑦 − 𝑏 3 𝑓𝑦𝑦𝑦 𝑎, 𝑏
+ ⋯
Here 𝑓 𝑥, 𝑦 = 𝑥3
+ 𝑦3
+ 𝑥𝑦2
,
the points are 𝑎 = 1, 𝑏 = 2 , (∵ 𝑥 − 1 = 0 & 𝑦 − 2 = 0 ⇒ 𝑥 = 1, 𝑦 = 2 )
𝑓 𝑥, 𝑦 = 𝑥3
+ 𝑦3
+ 𝑥𝑦2
𝑓 1,2 = 13
+ 23
+ 1 22
= 1 + 8 + 4 = 13
𝑓𝑥 = 3𝑥2
+ 𝑦2
𝑓𝑥 1,2 = 3 1 2
+ 22
= 3 + 4 = 7
𝑓𝑦 = 3𝑦2
+ 𝑥 2𝑦 = 3𝑦2
+ 2𝑥𝑦 𝑓𝑦 1,2 = 3 2 2
+ 2 1 2 = 12 + 4 = 16
𝑓𝑥𝑥 = 6𝑥 + 0 = 6𝑥 𝑓𝑥𝑥 1,2 = 6 1 = 6
𝑓𝑥𝑦 = 0 + 2𝑦 = 2𝑦 𝑓𝑥𝑦 1,2 = 2 2 = 4
𝑓𝑦𝑦 = 3 2𝑦 + 2𝑥 1 = 6𝑦 + 2𝑥 𝑓𝑦𝑦 1,2 = 6 2 + 2 1 = 12 + 2 = 14
𝑓𝑥𝑥𝑥 = 6 1 = 6 𝑓𝑥𝑥𝑥 1,2 = 6
𝑓𝑥𝑥𝑦 =0 𝑓𝑥𝑥𝑦(1,2) = 0
𝑓𝑥𝑦𝑦 = 2 1 = 2 𝑓𝑥𝑦𝑦(1,2) = 2
𝑓𝑦𝑦𝑦 = 6 1 + 0 = 6 𝑓𝑦𝑦𝑦(1,2) = 6
Taylor’s expansion of 𝑓(𝑥, 𝑦) about the point (1,2) is given by
𝑓 𝑥, 𝑦 = 𝑓 1,2 + 𝑥 − 1 𝑓𝑥 1,2 + 𝑦 − 2 𝑓𝑦 1,2 +
1
2!
𝑥 − 1 2 𝑓𝑥𝑥 1,2 + 2 𝑥 − 1 𝑦 − 2 𝑓𝑥𝑦 1,2 + 𝑦 − 2 2 𝑓𝑦𝑦 1,2 +
1
3!
𝑥 − 1 3
𝑓𝑥𝑥𝑥 1,2 + 3 𝑥 − 1 2
𝑦 − 2 𝑓𝑥𝑥𝑦(1,2) + 3 𝑥 − 1 𝑦 − 2 2
𝑓𝑥𝑦𝑦 (1,2)
+ 𝑦 − 2 3 𝑓𝑦𝑦𝑦 1,2
+ ⋯
𝑓 𝑥, 𝑦 = 13 + 7 𝑥 − 1 + 16 𝑦 − 2
+
1
2!
[6 𝑥 − 1 2
+ 2 4 𝑥 − 1 𝑦 − 2 + 14 𝑦 − 2 2
]
+
1
3!
6 𝑥 − 1 3 + 3 0 𝑥 − 1 2 𝑦 − 2 + 3 2 𝑥 − 1 𝑦 − 2 2 + 6 𝑦 − 2 3
+ ⋯
= 13 + 7 𝑥 − 1 + 16 𝑦 − 2
+
1
2!
[6 𝑥 − 1 2
+ 8 𝑥 − 1 𝑦 − 2 + 14 𝑦 − 2 2
]
+
1
3!
6 𝑥 − 1 3 + 0 + 6 𝑥 − 1 𝑦 − 2 2 + 6 𝑦 − 2 3 + ⋯
= 13 + 7 𝑥 − 1 + 16 𝑦 − 2 +
6
2
𝑥 − 1 2
+
8
2
𝑥 − 1 𝑦 − 2 +
14
2
𝑦 − 2 2
+
6
6
𝑥 − 1 3
+
6
6
𝑥 − 1 𝑦 − 2 2
+
6
6
𝑦 − 2 3
+… , (2! = 1.2 = 2, 3! = 1.2.3 = 6)
= 13 + 7 𝑥 − 1 + 16 𝑦 − 2 +
6
2
𝑥 − 1 2
+
8
2
𝑥 − 1 𝑦 − 2 +
14
2
𝑦 − 2 2
+ 𝑥 − 1 3 + 𝑥 − 1 𝑦 − 2 2 + 𝑦 − 2 3 + ⋯
Problem 2
Expand 𝒆 𝒙
𝒄𝒐𝒔𝒚 at 𝟎,
𝝅
𝟐
upto the third term by using Taylor’s series.
Solution
W.kt, Taylor’s expansion of 𝑓(𝑥, 𝑦) about the point (𝑎, 𝑏) is given by
𝑓 𝑥, 𝑦 = 𝑓 𝑎, 𝑏 + 𝑥 − 𝑎 𝑓𝑥 𝑎, 𝑏 + 𝑦 − 𝑏 𝑓𝑦 𝑎, 𝑏 +
1
2!
𝑥 − 𝑎 2 𝑓𝑥𝑥 𝑎, 𝑏 + 2 𝑥 − 𝑎 𝑦 − 𝑏 𝑓𝑥𝑦 𝑎, 𝑏 + 𝑦 − 𝑏 2 𝑓𝑦𝑦 𝑎, 𝑏 +
1
3!
𝑥 − 𝑎 3
𝑓𝑥𝑥𝑥 𝑎, 𝑏 + 3 𝑥 − 𝑎 2
𝑦 − 𝑏 𝑓𝑥𝑥𝑦(𝑎, 𝑏) + 3 𝑥 − 𝑎 𝑦 − 𝑏 2
𝑓𝑥𝑦𝑦(𝑎, 𝑏)
+ 𝑦 − 𝑏 3
𝑓𝑦𝑦𝑦 𝑎, 𝑏
+ ⋯
Here 𝑓 𝑥, 𝑦 = 𝑒 𝑥
𝑐𝑜𝑠𝑦
the points are 𝑎 = 0, 𝑏 =
𝜋
2
,
𝑓 𝑥, 𝑦 = 𝑒 𝑥
𝑐𝑜𝑠𝑦 𝑓 0,
𝜋
2
= 𝑒0
cos
𝜋
2
= 1.0 = 0, (∵ 𝑒0
= 1, cos
𝜋
2
= 0
)
𝑓𝑥 = 𝑒 𝑥
𝑐𝑜𝑠𝑦 𝑓𝑥 0,
𝜋
2
= 𝑒0
cos
𝜋
2
= 0
𝑓𝑦 = 𝑒 𝑥
−𝑠𝑖𝑛𝑦 = −𝑒 𝑥
𝑠𝑖𝑛𝑦 𝑓𝑦 0,
𝜋
2
= −𝑒0
sin
𝜋
2
= −1.1 = −1 (∵ 𝑒0
=
1, sin
𝜋
2
= 1)
𝑓𝑥𝑥 = 𝑒 𝑥
𝑐𝑜𝑠𝑦 𝑓𝑥𝑥 0,
𝜋
2
= 𝑒0
cos
𝜋
2
= 0
𝑓𝑥𝑦 = −𝑒 𝑥
𝑠𝑖𝑛𝑦 𝑓𝑥𝑦 0,
𝜋
2
= −1
𝑓𝑦𝑦 = −𝑒 𝑥
(𝑐𝑜𝑠𝑦) 𝑓𝑦𝑦 0,
𝜋
2
= −𝑒0
cos
𝜋
2
= 0
𝑓𝑥𝑥𝑥 = 𝑒 𝑥
𝑐𝑜𝑠𝑦 𝑓𝑥𝑥𝑥 0,
𝜋
2
= 0
𝑓𝑥𝑥𝑦 = −𝑒 𝑥
𝑠𝑖𝑛𝑦 𝑓𝑥𝑥𝑦 0,
𝜋
2
= −1
𝑓𝑥𝑦𝑦 = −𝑒 𝑥
𝑐𝑜𝑠𝑦 𝑓𝑥𝑦𝑦(0,
𝜋
2
) = 0
𝑓𝑦𝑦𝑦 = −𝑒 𝑥
−𝑠𝑖𝑛𝑦 = 𝑒 𝑥
𝑠𝑖𝑛𝑦 𝑓𝑦𝑦𝑦 0,
𝜋
2
= 1.1 = 1
Taylor’s expansion of 𝑓(𝑥, 𝑦) about the point (0,
𝜋
2
) is given by
𝑓 𝑥, 𝑦 = 𝑓 0,
𝜋
2
+ 𝑥 − 0 𝑓𝑥 0,
𝜋
2
+ 𝑦 −
𝜋
2
𝑓𝑦 0,
𝜋
2
+
1
2!
𝑥 − 0 2 𝑓𝑥𝑥 0,
𝜋
2
+ 2 𝑥 − 0 𝑦 −
𝜋
2
𝑓𝑥𝑦 0,
𝜋
2
+ 𝑦 −
𝜋
2
2
𝑓𝑦𝑦 0,
𝜋
2
+
1
3!
𝑥 − 0 3 𝑓𝑥𝑥𝑥 0,
𝜋
2
+ 3 𝑥 − 0 2 𝑦 −
𝜋
2
𝑓𝑥𝑥𝑦(0,
𝜋
2
) + 3 𝑥 − 0 𝑦 −
𝜋
2
2
𝑓𝑥𝑦𝑦(0,
𝜋
2
)
+ 𝑦 −
𝜋
2
3
𝑓𝑦𝑦𝑦 0,
𝜋
2
+ ⋯
= 0 + 𝑥 0 + 𝑦 −
𝜋
2
−1 +
1
2!
𝑥 2 0 + 2 𝑥 𝑦 −
𝜋
2
−1 + 𝑦 −
𝜋
2
2
0 +
1
3!
𝑥 3
0 + 3 𝑥 2
𝑦 −
𝜋
2
−1 + 3 𝑥 𝑦 −
𝜋
2
2
(0)
+ 𝑦 −
𝜋
2
3
(1)
+ ⋯
= − 𝑦 −
𝜋
2
+ −
2
2
𝑥 𝑦 −
𝜋
2
+ −
3
6
𝑥 2
𝑦 −
𝜋
2
+
1
6
𝑦 −
𝜋
2
3
+ ⋯
(∵ 2! = 1.2 = 2, 3! = 1.2.3 = 6)
= − 𝑦 −
𝜋
2
− 𝑥 𝑦 −
𝜋
2
−
1
2
𝑥 2 𝑦 −
𝜋
2
+
1
6
𝑦 −
𝜋
2
3
+ ⋯
Problem 3
Find the Taylor’s series expansion of 𝟏 + 𝒙 + 𝒚 𝟐 in powers of 𝒙 − 𝟏 and 𝒚 upto
second degree term.
Solution:
W.kt, Taylor’s expansion (upto second degree) of 𝑓(𝑥, 𝑦) about the point (𝑎, 𝑏)
is given by
𝑓 𝑥, 𝑦 = 𝑓 𝑎, 𝑏 + 𝑥 − 𝑎 𝑓𝑥 𝑎, 𝑏 + 𝑦 − 𝑏 𝑓𝑦 𝑎, 𝑏 +
1
2!
𝑥 − 𝑎 2
𝑓𝑥𝑥 𝑎, 𝑏 + 2 𝑥 − 𝑎 𝑦 − 𝑏 𝑓𝑥𝑦 𝑎, 𝑏 + 𝑦 − 𝑏 2
𝑓𝑦𝑦 𝑎, 𝑏 + ⋯
Here 𝑓 𝑥, 𝑦 = 1 + 𝑥 + 𝑦2
the points are 𝑎 = 1, 𝑏 = 0,
𝑓 𝑥, 𝑦 = 1 + 𝑥 + 𝑦2 = 1 + 𝑥 + 𝑦2
1
2 𝑓 1,0 = 1 + 1 + 0 = 2
1
2
𝑓𝑥 =
1
2
1 + 𝑥 + 𝑦2
1
2
−1
1 =
1
2
(1 + 𝑥 + 𝑓𝑥 1,0 =
1
2
1 + 1 + 0 −
1
2 =
1
2
2 −
1
2 =
2−
1
2
−1
= 2−
3
2
𝑓𝑦 =
1
2
1 + 𝑥 + 𝑦2
1
2
−1
2𝑦 =
𝑦 1 + 𝑥 + 𝑦2 −
1
2
𝑓𝑦 1,0 = 0
𝑓𝑥𝑥 =
1
2
−
1
2
1 + 𝑥 + 𝑦2 −
1
2
−1
1 =
−1
4
1 + 𝑥 + 𝑦2 −
3
2
𝑓𝑥𝑥 1,0 = −
1
4
1 + 1 + 0 −
3
2 =
1
4
2 −
3
2 =
−
1
22 2 −
3
2 = −2−
3
2
−2
= −2−
7
2
𝑓𝑥𝑦 =
1
2
−
1
2
1 + 𝑥 + 𝑦2 −
1
2
−1
2𝑦
=
−𝑦
2
1 + 𝑥 + 𝑦2 −
3
2
𝑓𝑥𝑦 1,0 = 0
𝑓𝑦𝑦 = 𝑦 −
1
2
1 + 𝑥 + 𝑦2 −
1
2
−1
2𝑦
+ 1 + 𝑥 + 𝑦2 −
1
2 1
= −𝑦 1 + 𝑥 + 𝑦2 −
3
2 +(1 + 𝑥 +
𝑓𝑦𝑦 1,0 = 0 + 1 + 1 + 0 −
1
2 = 2−
1
2
Taylor’s expansion of 𝑓(𝑥, 𝑦) about the point (1,0) is given by
𝑓 𝑥, 𝑦 = 𝑓 1,0 + 𝑥 − 1 𝑓𝑥 1,0 + 𝑦 𝑓𝑦 1,0 +
1
2!
𝑥 − 1 2 𝑓𝑥𝑥 1,0 + 2 𝑥 − 1 𝑦 𝑓𝑥𝑦 1,0 + 𝑦 2 𝑓𝑦𝑦 1,0 + ⋯
= 2
1
2 + 𝑥 − 1 2−
3
2 + 𝑦 0 +
1
2
𝑥 − 1 2 −2 −
7
2 +
2
2
𝑥 − 1 𝑦 0 + 𝑦22−
1
2
= 2
1
2 + 2−
3
2 𝑥 − 1 − −2 −
7
2
−1
𝑥 − 1 2
+ 2−
1
2 𝑦2
= 2
1
2 + 2−
3
2 𝑥 − 1 − −2 −
9
2 𝑥 − 1 2
+ 2−
1
2 𝑦2
Maximum and Minimum
(Extreme Values)
of two variable function
Necessary Conditions
The necessary conditions for 𝑓(𝑥, 𝑦) to have a maximum or minimum at a point
(𝑎, 𝑏) are that 𝑓𝑥 𝑎, 𝑏 = 0 𝑎𝑛𝑑 𝑓𝑦(𝑎, 𝑏) = 0 𝑎𝑡 (𝑎, 𝑏)
Sufficient Conditions
The sufficient conditions for 𝑓(𝑥, 𝑦) to have a maximum or minimum at a point
(𝑎, 𝑏) are as follows
Let 𝑟 = 𝑓𝑥𝑥 𝑎, 𝑏 , 𝑠 = 𝑓𝑥𝑦 𝑎, 𝑏 𝑎𝑛𝑑 𝑡 = 𝑓𝑦𝑦 𝑎, 𝑏
The function 𝑓(𝑥, 𝑦) has maximum or minimum (extreme values) at ( a, b) if
1. 𝑓𝑥 𝑎, 𝑏 = 0 𝑎𝑛𝑑 𝑓𝑦(𝑎, 𝑏) = 0
2. 𝑟𝑡 − 𝑠2
> 0
3. 𝑓(𝑥, 𝑦) has maximum or minimum at (𝑎, 𝑏) according as 𝑟 < 0 or 𝑟 > 0
Procedure to find maximum or minimum (extreme values):
Step 1. Find 𝑓𝑥 𝑎𝑛𝑑 𝑓𝑦
Step 2. Put 𝑓𝑥 = 0 𝑎𝑛𝑑 𝑓𝑦 = 0
Step 3. Solve the simultaneous equations in a and y, find the values of x and y
Say (𝑎, 𝑏), (𝑐, 𝑑) … . ( these points are called stationary / critical points)
Step 4.Find 𝑟 = 𝑓𝑥𝑥 , 𝑡 = 𝑓𝑦𝑦 𝑎𝑛𝑑 𝑠 = 𝑓𝑥𝑦 (at each pair (𝑎, 𝑏) , (𝑐, 𝑑) … . )
Step 5. Find 𝑟𝑡 − 𝑠2 (at each pair (𝑎, 𝑏) , (𝑐, 𝑑) … . )
Step 6.
(i) If r𝑡 − 𝑠2
> 0 𝑎𝑛𝑑 𝑟 < 0 𝑎𝑡 (𝑎, 𝑏) , then 𝑓(𝑥, 𝑦) has maximum at (𝑎, 𝑏)
And the maximum value is 𝑓(𝑎, 𝑏)
(ii) If r𝑡 − 𝑠2 > 0 𝑎𝑛𝑑 𝑟 > 0 𝑎𝑡 (𝑎, 𝑏) , then 𝑓(𝑥, 𝑦) has minimum at (𝑎, 𝑏)
And the minimum value is 𝑓(𝑎, 𝑏)
(iii) If r𝑡 − 𝑠2 < 0 𝑎𝑡 (𝑎, 𝑏) , then 𝑓(𝑥, 𝑦) has neither maximum nor minimum at
(𝑎, 𝑏) (no extreme values at (𝑎, 𝑏)) and the point (𝑎, 𝑏) is called saddle point.
(iv) If 𝑟𝑡 − 𝑠2
= 0 𝑎𝑡 (𝑎, 𝑏), the case is doubtful and need further investigation.
Step 7. Step 6 to be repeated for other pair of values (c, d) … to examine extreme values
Problem 1:
Discuss the maxima and minima of the function 𝒇 𝒙, 𝒚 = 𝒙 𝟒 + 𝒚 𝟒 − 𝟐𝒙 𝟐 + 𝟒𝒙𝒚 − 𝟐𝒚 𝟐
Solution:
Given 𝑓 𝑥, 𝑦 = 𝑥4
+ 𝑦4
− 2𝑥2
+ 4𝑥𝑦 − 2𝑦2
--------- (1)
To find the stationary point:
Put
𝝏𝒇
𝝏𝒙
= 𝑓𝑥 = 0 &
𝝏𝒇
𝝏𝒚
= 𝒇 𝒚 = 0
𝝏𝒇
𝝏𝒙
= 0 ⟹ 4𝑥3 − 4𝑥 + 4𝑦 = 0 ⟹ 4(𝑥3 − 𝑥 + 𝑦) = 0
⟹ 𝑥3 − 𝑥 + 𝑦 = 0 ---------(2)
𝝏𝒇
𝝏𝒚
= 0 ⟹ 4𝑦3 + 4𝑥 − 4𝑦 = 0 ⟹ 4 𝑦3 + 𝑥 − 𝑦 = 0
⟹ 𝑦3 + 𝑥 − 𝑦 = 0 ------(3)
𝐩 =
𝛛𝐟
𝛛𝐱
= 𝒇 𝒙
= 𝟒𝐱 𝟑
− 𝟒𝐱 + 𝟒𝐲
𝐫 =
𝛛 𝟐
𝐟
𝛛𝐱 𝟐
= 𝐟 𝐱𝐱 =
= 𝟏𝟐𝐱 𝟐
− 𝟒
𝐬 =
𝛛 𝟐
𝐟
𝛛𝐱𝛛𝐲
= 𝒇 𝒙𝒚 = 𝟒
𝐪 =
𝛛𝐟
𝛛𝐲
= 𝐟 𝐲
= 𝟒𝐲 𝟑
+ 𝟒𝐱 − 𝟒𝐲
𝐭 =
𝛛 𝟐𝐟
𝛛𝐲 𝟐
= 𝐟 𝐲𝐲
= 𝟏𝟐𝐲 𝟐
− 𝟒
2 ⟹ 𝑥3
− 𝑥 + 𝑦 = 0
3 ⟹ 𝑦3
+ 𝑥 − 𝑦 = 0
Add ------------------------
𝑥3 + 𝑦3 = 0
⟹ 𝑥 + 𝑦 𝑥2
− 𝑥𝑦 + 𝑦2
= 0 , (∵ 𝑎3
+ 𝑏3
= (𝑎 + 𝑏)(𝑎2
− 𝑎𝑏 + 𝑏2
)
⟹ 𝑥 + 𝑦 = 0 𝑜𝑟 (𝑥2 − 𝑥𝑦 + 𝑦2) = 0
⟹ 𝑥 = −𝑦 𝑜𝑟 𝑥2
− 𝑥𝑦 + 𝑦2
= 0
Put 𝑥 = −𝑦 in (2)
⟹ −𝑦 3
− −𝑦 + 𝑦 = 0
⟹ −𝑦3
+ 𝑦 + 𝑦 = 0
⟹ −𝑦3
+ 2𝑦 = 0 ⟹ 𝑦(−𝑦2
+ 2) = 0
⟹ 𝑦 = 0 𝑜𝑟 − 𝑦2
+ 2 = 0
⟹ 𝑦 = 0 𝑜𝑟 𝑦2
= 2
⟹ 𝑦 = 0 𝑜𝑟 𝑦 = ± 2
When 𝑦 = 0 , from (3) 0 + 𝑥 − 0 = 0 ⟹ 𝑥 = 0
The point is ( 𝑥, 𝑦) = (0,0)
When 𝑦 = 2 , from (3) 2
3
+ 𝑥 − 2 = 0
⟹ 𝑥 = − 2
3
+ 2 ⟹ 𝑥 = 2 (− 2
2
+ 1)
⟹ 𝑥 = 2 −2 + 1 = 2 −1 = − 2
The point is ( 𝑥, 𝑦) = (− 2, 2)
When 𝑦 = − 2 , from (3), − 2
3
+ 𝑥 − (− 2) = 0
⟹ − 2
3
+ 𝑥 + 2 = 0
⟹ 𝑥 = 2
3
− 2 = 2 2
2
− 1 = 2 2 − 1 = 2 1 = 2
The point is ( 𝑥, 𝑦) = ( 2, − 2)
The stationary / critical points are (0,0), − 2, 2 , ( 2, − 2)
To find the point at which 𝒇(𝒙, 𝒚) has maximum/minimum:
𝑟𝑡 − 𝑠2 = 12𝑥2 − 4 12𝑦2 − 4 − 4 2
= 12𝑥2 − 4 12𝑦2 − 4 − 16
At the Point (0,0):
𝑟𝑡 − 𝑠2
𝑎𝑡 0,0 = 12 0 2
− 4 12 0 2
− 4 − 16
= −4 −4 − 16 = 16 − 16 = 𝟎
Hence there is no maximum / minimum for 𝑓(𝑥, 𝑦) at (0,0) (we can’t judge)
At the Point − 𝟐, 𝟐 :
𝑟𝑡 − 𝑠2
𝑎𝑡 − 2, 2 = 12 − 2
2
− 4 12 2
2
− 4 − 16
= 12 2 − 4 12 2 − 4 − 16 = 24 − 4 24 − 4 − 16
= 20 20 − 16 = 400 − 16 = 394 > 𝟎
𝑟 𝑎𝑡 − 2, 2 = 12 − 2
2
− 4 = 12 2 − 4 = 24 − 4 = 20 > 𝟎
Hence 𝑓(𝑥, 𝑦) has minimum at − 2, 2
To find the minimum value :
Put x, y = − 2, 2 in (1)
The minimum value is 𝑓(− 2, 2)
= − 2
4
+ 2
4
− 2 − 2
2
+ 4 − 2 2 − 2 2
2
= 4 + 4 − 4 − 8 − 4 = −8
Hence the minimum value is −8
At the Point 𝟐, − 𝟐 :
𝑟𝑡 − 𝑠2
𝑎𝑡 2,− 2 = 12 2
2
− 4 12 − 2
2
− 4 − 16
= 12 2 − 4 12 2 − 4 − 16 = 24 − 4 24 − 4 − 16
= 20 20 − 16 = 400 − 16 = 394 > 𝟎
𝑟 𝑎𝑡 − 2, 2 = 12 − 2
2
− 4 = 12 2 − 4 = 24 − 4 = 20 > 𝟎
Again 𝑓(𝑥, 𝑦) has minimum at 2, − 2
Problem 2:
Find the maximum or minimum values of 𝒇 𝒙, 𝒚 = 𝟑𝒙 𝟐
− 𝒚 𝟐
+ 𝒙 𝟑
Solution:
Given 𝑓 𝑥, 𝑦 = 3𝑥2 − 𝑦2 + 𝑥3 ------- (1)
To find the stationary point:
Put
𝜕𝑓
𝜕𝑥
= 𝑓𝑥 = 0 &
𝜕𝑓
𝜕𝑦
= 𝑓𝑦 = 0
𝜕𝑓
𝜕𝑥
= 0 ⇒ 6𝑥 + 3𝑥2 = 0 ⟹ 3𝑥 2 + 𝑥 = 0
⟹ 𝑥 = 0, 𝑥 + 2 = 0 ⟹ 𝑥 = 0, 𝑥 = −2
𝜕𝑓
𝜕𝑦
= 0 ⟹ −2𝑦 = 0 ⟹ 𝑦 = 0
The stationary points are 0,0 , (−2,0)
𝑝 = 𝐟 𝐱 =
𝜕𝑓
𝜕𝑥
= 6𝑥 + 3𝑥2
𝑟 = 𝐟 𝐱𝐱 =
𝜕2
𝑓
𝜕𝑥2
= 6 + 6𝑥
𝑠 = 𝐟 𝐱𝐲 =
𝜕2
𝑓
𝜕𝑥𝜕𝑦
= 0
𝑞 = 𝐟 𝐲 =
𝜕𝑓
𝜕𝑦
= −2𝑦 𝑡 = 𝑓𝑦𝑦 =
𝜕2𝑓
𝜕𝑦2
= −2
To find the point at which 𝒇(𝒙, 𝒚) has maximum/minimum:
𝑟𝑡 − 𝑠2 = 6 + 6𝑥 −2 − 0 = −12 − 12𝑥
At the Point (0,0):
𝑟𝑡 − 𝑠2
𝑎𝑡 0,0 = −12 − 12 0 = −12 < 𝟎
Hence the point (0,0) is the saddle point of 𝑓(𝑥, 𝑦)
At the Point (-2,0):
𝑟𝑡 − 𝑠2
𝑎𝑡 −2,0 = −12 − 12 −2 = −12 + 24 = 12 > 𝟎
𝑟at −2,0 = 6 + 6 −2 = 6 − 12 = −6 < 𝟎
Hence at the point −2,0 the function 𝑓 𝑥, 𝑦 has maximum.
To find the maximum value:
Put 𝑥, 𝑦 = (−2,0) in (1), 𝑓 −2,0 = 3(−2)2 − 0 2 + −2 3 = 12 − 8 = 4
Constrained Maxima and Minima – Lagrangian Multiplier
If 𝑓(𝑥, 𝑦, 𝑧) is a function of three variables 𝑥, 𝑦, 𝑧 , we will find the extreme values
(maximum or minimum) of 𝑓(𝑥, 𝑦, 𝑧) with respect to a constraint ∅ 𝑥, 𝑦, 𝑧 = 0
Procedure
Step 1. Identify the constraint equation ∅ 𝑥, 𝑦, 𝑧 = 0
Step 2. Identify the main function for which we have to find the extreme value, let it be
𝑓(𝑥, 𝑦, 𝑧)
Step 3. Form the equation 𝐹 = 𝑓 + 𝜆∅
Step 4. Find 𝐹𝑥 , 𝐹𝑦, 𝐹𝑧
Step 5. Put 𝐹𝑥 = 0 , 𝐹𝑦 = 0, 𝐹𝑧 = 0 and solve all the equations including ∅ 𝑥, 𝑦, 𝑧 = 0
Step 6. Find the values of 𝑥, 𝑦, 𝑧 and 𝜆
Step 7. The values of 𝑥, 𝑦, 𝑧 gives the extreme values of 𝑓(𝑥, 𝑦, 𝑧)
Note :
Distance of a point 𝑥1, 𝑦1, 𝑧1 𝑓𝑟𝑜𝑚 𝑥, 𝑦, 𝑧 is given by
𝑑 = 𝑥 − 𝑥1
2 + 𝑦 − 𝑦1
2 + 𝑧 − 𝑧1
2
Square of the distance is 𝑑2
= 𝑥 − 𝑥1
2
+ 𝑦 − 𝑦1
2
+ 𝑧 − 𝑧1
2
Problem 1:
Find the length of the shortest line form the point (𝟎, 𝟎,
𝟐𝟓
𝟗
) to the surface
𝒛 = 𝒙𝒚
Solution:
The square of the distance from the point (0,0,
25
9
) to (𝑥, 𝑦, 𝑧) is (𝑑2)
𝑓 𝑥, 𝑦, 𝑧 = 𝑥 − 0 2 + 𝑦 − 0 2 + 𝑧 −
25
9
2
𝑓 𝑥, 𝑦, 𝑧 = 𝑥2 + 𝑦2 + 𝑧 −
25
9
2
------- (1)
Subject to ( to the surface) ∅ 𝑥, 𝑦𝑧 = 𝑧 − 𝑥𝑦 = 0 ------------(2)
(∵ 𝑧 = 𝑥𝑦 ⟹ 𝑧 − 𝑥𝑦 = 0)
Consider the Lagrangian function F = 𝑓 𝑥, 𝑦, 𝑧 + 𝜆𝜙 𝑥, 𝑦, 𝑧
𝐹 = 𝑥2
+ 𝑦2
+ 𝑧 −
25
9
2
+ 𝜆(𝑧 − 𝑥𝑦)
𝜕F
𝜕𝐱
= 2x − λy
𝜕F
𝜕y
= 2y − λx
𝜕F
𝜕z
= 2 z −
25
9
+ λ
To find the stationary points:
Put
𝜕F
𝜕𝑥
= 0,
𝜕F
𝜕𝑦
= 0 &
𝜕F
𝜕𝑧
= 0
𝜕𝐹
𝜕𝑥
= 0 ⟹ 2𝑥 − 𝜆𝑦 = 0 ⟹ 𝜆𝑦 = 2𝑥 ⟹ 𝜆 =
2𝑥
𝑦
------- (3)
𝜕F
𝜕𝑦
= 0 ⟹ 2𝑦 − 𝜆x = 0 ⟹ 𝜆𝑥 = 2𝑦 ⟹ 𝜆 =
2𝑦
𝑥
------ (4)
𝜕F
𝜕𝑧
= 0 ⟹ 2 z −
25
9
+ λ = 0 ⟹ λ = −2 z −
25
9
----- (5)
From (3), (4), (5),
2𝑥
𝑦
=
2𝑦
𝑥
= −2 z −
25
9
⟹
𝑥
𝑦
=
𝑦
𝑥
= −z +
25
9
Consider
𝑥
𝑦
=
𝑦
𝑥
⟹ 𝑥2
= 𝑦2
⟹ 𝑥 = ±𝑦
Consider
𝑦
𝑥
= −z +
25
9
,
If 𝑥 = 𝑦
−𝑧 +
25
9
=
𝑦
𝑦
= 1 ⟹ 𝑧 =
25
9
− 1 =
25−9
9
=
16
9
Given 𝑧 = 𝑥𝑦 = 𝑦. 𝑦 = 𝑦2
(∵ 𝑥 = 𝑦)
⟹ 𝑦2
=
16
9
∵ 𝑧 =
16
9
⟹ 𝑦 = ±
16
9
= ±
4
3
If 𝑥 = −𝑦
−𝑧 +
25
9
=
𝑦
−𝑦
= −1 ⟹ 𝑧 =
25
9
+ 1 =
25+9
9
=
34
9
Given 𝑧 = 𝑥𝑦 = −𝑦. 𝑦 = −𝑦2 (∵ 𝑥 = −𝑦)
⟹ −𝑦2
=
34
9
⟹ 𝑦2
= −
34
9
∵ 𝑧 =
34
9
⟹ 𝑦 = ±
−34
9
(Imaginary , this is not possible)
Hence 𝑥 = −𝑦 is ruled out.
Hence 𝑥 = 𝑦 = ±
4
3
& 𝑧 = 𝑥𝑦 = 𝑦2 =
4
3
2
=
16
9
From (1) square distance is 𝑑2 = 𝑥2 + 𝑦2 + 𝑧 −
25
9
2
=
4
3
2
+
4
3
2
+
16
9
−
25
9
2
=
16
9
+
16
9
+ −
9
9
2
= 2
16
9
+ −1 2
=
32
9
+ 1 =
32+9
9
=
41
9
The required minimum distance is (d) =
41
9
=
41
3
units
Problem 2:
A rectangular box open at the top is to have a volume of 32 cc .Find the dimensions of the
box that requires the least material for its construction
Solution:
Given a rectangular open box with volume 32cc
Let us take the length, width and height of the box be x, y and z respectively.
Hence the volume of the box is 𝑥𝑦𝑧 = 32 , which is the given constrain
(condition).
Let ∅ 𝑥, 𝑦, 𝑧 = 𝑥𝑦𝑧 − 32 ------ (1)
Requirement of least material to construct the open top box is the total least surface
area of the box.
Total surface area of the open rectangular box is 𝑥𝑦 + 2𝑥𝑧 + 2𝑦𝑧
Let 𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦 + 2𝑥𝑧 + 2𝑦𝑧 ------ (2)
Note:
Hence the total surface area of a open rectangular box is 𝒙𝒚 + 𝟐𝒙𝒛 + 𝟐𝒚𝒛
Consider the Lagrangian function 𝐹 = 𝑓 + 𝜆𝜙
𝐹 = 𝑥𝑦 + 2𝑥𝑧 + 2𝑦𝑧 + 𝜆 𝑥𝑦𝑧 − 32 ( by using (1) & (2))
To find the stationary points:
Put
𝜕F
𝜕𝑥
= 0,
𝜕F
𝜕𝑦
= 0 &
𝜕F
𝜕𝑧
= 0
𝜕𝐹
𝜕𝑥
= 0 ⟹ y + 2z + 𝜆𝑦𝑧 = 0 ⟹ 𝜆𝑦𝑧 = − 𝑦 + 2𝑧 ⟹ 𝜆 =
−(𝑦+2𝑧)
𝑦𝑧
------ (3)
𝜕F
𝜕𝑦
= 0 ⟹ 𝑥 + 2𝑧 + 𝜆xz = 0 ⟹ 𝜆𝑥𝑧 = −(𝑥 + 2𝑧) ⟹ 𝜆 =
−(𝑥+2𝑧)
𝑥𝑧
------ (4)
𝜕F
𝜕𝑧
= 0 ⟹ 2x + 2y + λxy = 0 ⟹ λxy = −2x − 2y = −2 x + y
𝜆 =
−2 𝑥+𝑦
𝑥𝑦
----- (5)
𝜕𝐹
𝜕𝑥
= 𝑦 + 2𝑧 + 𝜆𝑦𝑧
𝜕𝐹
𝜕𝑦
= 𝑥 + 2𝑧 + 𝜆𝑥𝑧
𝜕𝐹
𝜕𝑧
= 2𝑥 + 2𝑦 + 𝜆𝑥𝑦
From (3), (4), (5),
−(𝑦+2𝑧)
𝑦𝑧
=
−(𝑥+2𝑧)
𝑥𝑧
=
−2 𝑥+𝑦
𝑥𝑦
Consider
−(𝑦+2𝑧)
𝑦𝑧
=
−(𝑥+2𝑧)
𝑥𝑧
⇒
−𝑥(𝑦+2𝑧)
𝑥𝑦𝑧
=
−𝑦(𝑥+2𝑧)
𝑦𝑥𝑧
⇒ 𝑥𝑦 + 2𝑧𝑥 = (𝑦𝑥 + 2𝑧𝑦)
⇒ 2𝑧𝑥 = 2𝑧𝑦
⇒ 𝑥 = 𝑦 ------ (6)
Consider
−(𝑥+2𝑧)
𝑥𝑧
=
−2 𝑥+𝑦
𝑥𝑦
⇒
𝑥+2𝑧
𝑥𝑧
=
2 𝑥+𝑦
𝑥𝑦
Using (6),
𝑥+2𝑧
𝑥𝑧
=
2 𝑥+𝑥
𝑥𝑥
⇒
𝑥+2𝑧
𝑥𝑧
=
4𝑥
𝑥2
⇒
𝑥+2𝑧
𝑥𝑧
=
4
𝑥
⇒
𝑥+2𝑧
𝑧
= 4
⇒ 𝑥 + 2𝑧 = 4𝑧
⇒ 4𝑧 − 2𝑧 = 𝑥
⇒ 2𝑧 = 𝑥
⇒ 𝑧 =
𝑥
2
-------- (7)
Given volume 𝑥𝑦𝑧 = 32
From (6) & (7)
𝑥 . 𝑥 .
𝑥
2
= 32 , (∵ 𝑦 = 𝑥 & 𝑧 =
𝑥
2
)
𝑥3
= 2 32 = 64
𝑥 = 64
1
3
𝑥 = 43
1
3 = 4
3
3 = 4
Hence 𝑥 = 4 , 𝑦 = 𝑥 = 4 and 𝑧 =
𝑥
2
=
4
2
= 2
The required dimension is 𝑥 = 4, 𝑦 = 4 𝑎𝑛𝑑 𝑧 = 2
Problem 3:
Find the dimensions of the rectangular box, open at the top, of maximum capacity
whose surface area is 432 square meter.
Solution:
Given a rectangular open box with surface area 432 sq.m
Let us take the length, width and height of the box be x, y and z respectively.
Hence the surface area 𝑥𝑦 + 2𝑥𝑧 + 2𝑦𝑧 = 432, which is the given constrain(condition)
Let ∅ 𝑥, 𝑦, 𝑧 = 𝑥𝑦 + 2𝑥𝑧 + 2𝑦𝑧 − 432 ------ (1)
Requirement of a open rectangular box with maximum capacity (volume)
Total volume of the open rectangular box is 𝑥𝑦𝑧
Let 𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦𝑧 ------ (2)
Consider the Lagrangian function 𝐹 = 𝑓 + 𝜆𝜙
𝐹 = 𝑥𝑦𝑧 + 𝜆 𝑥𝑦 + 2𝑥𝑧 + 2𝑦𝑧 − 432 ( by using (1) & (2))
To find the stationary points:
Put
𝜕F
𝜕𝑥
= 0,
𝜕F
𝜕𝑦
= 0 &
𝜕F
𝜕𝑧
= 0
𝜕𝐹
𝜕𝑥
= 0 ⟹ yz + 𝜆 𝑦 + 2z = 0 ⟹ 𝜆 𝑦 + 2𝑧 = −𝑦𝑧 ⟹ 𝜆 =
−𝑦𝑧
𝑦+2𝑧
------ (3)
𝜕F
𝜕𝑦
= 0 ⟹ 𝑥𝑧 + 𝜆(x + 2z) = 0 ⟹ 𝜆(𝑥 + 2𝑧) = −𝑥𝑧 ⟹ 𝜆 =
−𝑥𝑧
𝑥+2𝑧
------ (4)
𝜕F
𝜕𝑧
= 0 ⟹ xy + λ 2x + 2y = 0 ⟹ λ 2x + 2y = −xy ⇒ 𝜆 =
−𝑥𝑦
2𝑥+2𝑦
----- (5)
𝜕𝐹
𝜕𝑥
= 𝑦𝑧 + 𝜆(𝑦 + 2𝑧)
𝜕𝐹
𝜕𝑦
= 𝑥𝑧 + 𝜆(𝑥 + 2𝑧)
𝜕𝐹
𝜕𝑧
= 𝑥𝑦 + 𝜆(2𝑥 + 2𝑦)
From (3), (4), (5),
−𝑦𝑧
𝑦+2𝑧
=
−𝑥𝑧
𝑥+2𝑧
=
−𝑥𝑦
2𝑥+2𝑦
Consider
−𝑦𝑧
𝑦+2𝑧
=
−𝑥𝑧
𝑥+2𝑧
⇒
𝑦𝑧
𝑦+2𝑧
=
𝑥𝑧
𝑥+2𝑧
⇒
𝑦
𝑦+2𝑧
=
𝑥
𝑥+2𝑧
⇒ 𝑦 𝑥 + 2𝑧 = 𝑥(𝑦 + 2𝑧)
⇒ 𝑥𝑦 + 2𝑧𝑦 = 𝑥𝑦 + 2𝑧𝑥
⇒ 2𝑧𝑦 = 2𝑧𝑥
⇒ 𝑦 = 𝑥 -------- (6)
Consider
−𝑥𝑧
𝑥+2𝑧
=
−𝑥𝑦
2𝑥+2𝑦
⇒
𝑧
𝑥+2𝑧
=
𝑦
2 𝑥+𝑦
⇒
𝑧
𝑥+2𝑧
=
𝑥
2 𝑥+𝑥
(by using (6))
⇒
𝑧
𝑥+2𝑧
=
𝑥
2 2𝑥
⇒
𝑧
𝑥+2𝑧
=
1
4
⇒
𝑧
𝑥+2𝑧
=
1
4
⇒ 4𝑧 = 𝑥 + 2𝑧
⇒ 4𝑧 − 2𝑧 = 𝑥
⇒ 2𝑧 = 𝑥
⇒ 𝑧 =
𝑥
2
------- (7)
Given surface area 𝑥𝑦 + 2𝑥𝑧 + 2𝑦𝑧 = 432
Using (6) & (7),
𝑥. 𝑥 + 2𝑥.
𝑥
2
+ 2𝑥.
𝑥
2
= 432
⇒ 𝑥2
+ 𝑥2
+ 𝑥2
= 432
⇒ 3𝑥2
= 432
⇒ 𝑥2
=
432
3
⇒ 𝑥2
= 144
⇒ 𝑥 = ± 144
⇒ 𝑥 = ±12
(since 𝑥 is the length , 𝑥 = −12 is not possible )
Hence 𝑥 = 12 , 𝑦 = 𝑥 = 12 , & 𝑧 =
𝑥
2
=
12
2
= 6
The required dimension for maximum capacity is 𝑥 = 12 , 𝑦 = 12 & 𝑧 = 6
Problem 4:
Find the minimum distance from the point (𝟏, 𝟐, 𝟎) to the cone 𝒛 𝟐 = 𝒙 𝟐 + 𝒚 𝟐
Solution:
Wkt, the square of the distance (𝑑2
) from the point (1, 2, 0) to (𝑥, 𝑦, 𝑧) is
𝑥 − 1 2 + 𝑦 − 2 2 + 𝑧 − 0 2 = 𝑥 − 1 2 + 𝑦 − 2 2 + 𝑧2
Let 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 − 1 2 + 𝑦 − 2 2 + 𝑧2 --------- (1)
Subject to 𝑧2
= 𝑥2
+ 𝑦2
⇒ 𝑧2
− 𝑥2
− 𝑦2
= 0
Let ∅ 𝑥, 𝑦, 𝑧 = 𝑧2
− 𝑥2
− 𝑦2
---------- (2)
Consider the Lagrangian function 𝐹 = 𝑓 + 𝜆𝜙
𝐹 = 𝑥 − 1 2 + 𝑦 − 2 2 + 𝑧2 + 𝜆(𝑧2 − 𝑥2 − 𝑦2)
𝜕F
𝜕x
= 2 x − 1 − λ(2x)
𝜕F
𝜕y
= 2 y − 2 − λ(2y)
𝜕F
𝜕z
= 2z + λ 2z
= 2z(1 + λ)
To find the stationary points:
Put
𝜕F
𝜕𝑥
= 0,
𝜕F
𝜕𝑦
= 0 &
𝜕F
𝜕𝑧
= 0
𝜕𝐹
𝜕𝑥
= 0 ⟹ 2 𝑥 − 1 − 𝜆 2𝑥 = 0 ⟹ 2𝜆𝑥 = 2 𝑥 − 1
⟹ 𝜆 =
(𝑥−1)
𝑥
------ (3)
𝜕F
𝜕𝑦
= 0 ⟹ 2 𝑦 − 2 − 𝜆 2𝑦 = 0 ⟹ 2𝜆𝑦 = 2 𝑦 − 2
⟹ 𝜆 =
(𝑦−2)
𝑦
------ (4)
𝜕F
𝜕𝑧
= 0 ⟹ 2𝑧(1 + 𝜆) = 0 ----- (5)
5 ⟹ 𝑧 = 0 𝑜𝑟 1 + 𝜆 = 0
⟹ 𝑧 = 0 𝑜𝑟 𝜆 = −1
Suppose 𝑧 = 0, Since 𝑥2
+ 𝑦2
= 𝑧2
⇒ 𝑥2
+ 𝑦2
= 0
⇒ 𝑥 = 0 & 𝑦 = 0 , this is not possible.
Hence 𝜆 = −1
From (3) , -1=
(𝑥−1)
𝑥
⇒ −𝑥 = 𝑥 − 1 ⇒ −𝑥 − 𝑥 = −1 ⇒ −2𝑥 = −1
⇒ 2𝑥 = 1 ⇒ 𝑥 =
1
2
From(4), −1 =
𝑦−2
𝑦
⇒ −𝑦 = 𝑦 − 2 ⇒ −𝑦 − 𝑦 = −2 ⇒ −2𝑦 = −2
⇒ 𝑦 = 1
Since 𝑥2 + 𝑦2 = 𝑧2
Substitute 𝑥 =
1
2
, 𝑦 = 1
𝑧2 =
1
2
2
+ 1 2 =
1
4
+ 1 =
1+4
4
=
5
4
⇒ 𝑧 = ±
5
4
= ±
5
2
Hence , 𝑥 =
1
2
, 𝑦 = 1 , 𝑧 = ±
5
2
The square distance (𝑑2) is 𝑥 − 1 2 + 𝑦 − 2 2 + 𝑧2
=
1
2
− 1
2
+ 1 − 2 2
+
5
2
2
= −
1
2
2
+ −1 2
+
5
4
=
1
4
+ 1 +
5
4
=
1+4+5
4
=
10
4
=
5
2
The minimum distance (𝑑) =
5
2
Jacobian
• If 𝑢 = 𝑓(𝑥, 𝑦) and 𝑣 = 𝑔(𝑥, 𝑦) are two continuous functions of two
independent variables x and y then the functional determinant
𝐽 =
𝜕𝑢
𝜕𝑥
𝜕𝑢
𝜕𝑦
𝜕𝑣
𝜕𝑥
𝜕𝑣
𝜕𝑦
=
𝑢 𝑥 𝑢 𝑦
𝑣 𝑥 𝑣 𝑦
is called Jacobian of 𝑢 , 𝑣 with respect to 𝑥, 𝑦 and it is
denoted by
𝜕 𝑢,𝑣
𝜕 𝑥,𝑦
• If u , v, w are functions of x ,y , z then jacobian of u , v , w with respect to x , y , z
is given by
𝜕 𝑢,𝑣,𝑤
𝜕 𝑥,𝑦,𝑧
=
𝜕𝑢
𝜕𝑥
𝜕𝑢
𝜕𝑦
𝜕𝑢
𝜕𝑧
𝜕𝑣
𝜕𝑥
𝜕𝑣
𝜕𝑦
𝜕𝑣
𝜕𝑧
𝜕𝑤
𝜕𝑥
𝜕𝑤
𝜕𝑦
𝜕𝑤
𝜕𝑧
=
𝑢 𝑥 𝑢 𝑦 𝑢 𝑧
𝑣 𝑥 𝑣 𝑦 𝑣𝑧
𝑤 𝑥 𝑤 𝑦 𝑤𝑧
Two important Properties of Jacobian
1. If 𝑢, 𝑣 are functions of 𝑥, 𝑦 and 𝑥, 𝑦 are the function of 𝑟, 𝑠 then
𝜕 𝑢,𝑣
𝜕 𝑟,𝑠
=
𝜕 𝑢,𝑣
𝜕 𝑥,𝑦
𝜕 𝑥,𝑦
𝜕 𝑟,𝑠
2. If 𝑢, 𝑣 are the functions of 𝑥, 𝑦 then
𝜕 𝑥,𝑦
𝜕 𝑢,𝑣
=
1
𝜕 𝑢,𝑣
𝜕 𝑥,𝑦
Note :
Two functions 𝑢(𝑥, 𝑦) & 𝑣(𝑥, 𝑦) are functionally depended if
𝜕 𝑢,𝑣
𝜕 𝑥,𝑦
=0
Problem 1:
If 𝒖 =
𝒚𝒛
𝒙
, 𝒗 =
𝒛𝒙
𝒚
, 𝒘 =
𝒙𝒚
𝒛
find
𝝏 𝒖,𝒗,𝒘
𝝏 𝒙,𝒚,𝒛
Solution:
Wkt, the jacobian of 𝑢, 𝑣, 𝑤 with respect to 𝑥, 𝑦, 𝑧 is given by
𝜕 𝑢,𝑣,𝑤
𝜕 𝑥,𝑦,𝑧
=
𝑢 𝑥 𝑢 𝑦 𝑢 𝑧
𝑣 𝑥 𝑣 𝑦 𝑣𝑧
𝑤 𝑥 𝑤 𝑦 𝑤𝑧
Given
𝑢 =
𝑦𝑧
𝑥
, 𝑣 =
𝑧𝑥
𝑦
, 𝑤 =
𝑥𝑦
𝑧
𝜕 𝑢,𝑣,𝑤
𝜕 𝑥,𝑦,𝑧
=
𝑢 𝑥 𝑢 𝑦 𝑢 𝑧
𝑣 𝑥 𝑣 𝑦 𝑣𝑧
𝑤 𝑥 𝑤 𝑦 𝑤𝑧
=
−
𝑦𝑧
𝑥2
𝑧
𝑥
𝑦
𝑥
𝑧
𝑦
−
𝑧𝑥
𝑦2
𝑥
𝑦
𝑦
𝑧
𝑥
𝑧
−
𝑥𝑦
𝑧2
=
1
𝑥
1
𝑦
1
𝑧
−
𝑦𝑧
𝑥
𝑧 𝑦
𝑧 −
𝑧𝑥
𝑦
𝑥
𝑦 𝑥 −
𝑥𝑦
𝑧
=
1
𝑥𝑦𝑧
−
𝑦𝑧
𝑥
−
𝑧𝑥
𝑦
−
𝑥𝑦
𝑧
− 𝑥2 − 𝑧 𝑧 −
𝑥𝑦
𝑧
− 𝑦𝑥 + 𝑦 𝑧𝑥 − −
𝑧𝑥
𝑦
𝑦
=
1
𝑥𝑦𝑧
[ −
𝑦𝑧
𝑥
𝑥2 − 𝑥2 − 𝑧 −𝑥𝑦 − 𝑥𝑦 + 𝑦 𝑧𝑥 + 𝑧𝑥 ]
=
1
𝑥𝑦𝑧
−
𝑦𝑧
𝑥
0 − 𝑧 −2𝑥𝑦 + 𝑦 2𝑧𝑥 =
1
𝑥𝑦𝑧
2𝑥𝑦𝑧 + 2𝑥𝑦𝑧 =
4𝑥𝑦𝑧
𝑥𝑦𝑧
= 4
Problem 2:
If 𝒙 = 𝒖 𝟐 – 𝒗 𝟐 , 𝒚 = 𝟐𝒖𝒗 find the Jacobian of 𝒙, 𝒚 with respect to 𝒖 𝒂𝒏𝒅 𝒗
Solution:
Given 𝑥 = 𝑢2 – 𝑣2 , 𝑦 = 2𝑢𝑣
To find the jacobian of 𝑥, 𝑦 w . r. to 𝑢 & 𝑣
To find
𝜕 𝑥,𝑦
𝜕 𝑢,𝑣
=
𝑥 𝑢 𝑥 𝑣
𝑦 𝑢 𝑦𝑣
𝑥 = 𝑢2 – 𝑣2 𝑦 = 2𝑢𝑣
𝑥 𝑢 = 2𝑢 𝑦𝑢 = 2𝑣
𝑥 𝑣 = −2𝑣 𝑦𝑣 = 2𝑢
𝜕 𝑥,𝑦
𝜕 𝑢,𝑣
=
𝑥 𝑢 𝑥 𝑣
𝑦 𝑢 𝑦𝑣
=
2𝑢 −2𝑣
−2𝑣 2𝑢
= 4𝑢2
− 4𝑣2
= 4 𝑢2
− 𝑣2
Problem 3:
If 𝒙 = 𝒖𝒗 𝒂𝒏𝒅 𝒚 =
𝒖
𝒗
, then find
𝝏 𝒙,𝒚
𝝏 𝒖,𝒗
Solution:
Given
𝑥 = 𝑢𝑣 𝑎𝑛𝑑 𝑦 =
𝑢
𝑣
𝑥 = 𝑢𝑣
𝑦 =
𝑢
𝑣
𝑥 𝑢 = 𝑣
𝑦𝑢 =
1
𝑣
𝑥 𝑣 = 𝑢
𝑦𝑣 = −
𝑢
𝑣2
𝜕 𝑥,𝑦
𝜕 𝑢,𝑣
=
𝑥 𝑢 𝑥 𝑣
𝑦 𝑢 𝑦𝑣
=
𝑣 𝑢
1
𝑣
−
𝑢
𝑣2
= 𝑣
𝑢
𝑣2 −
1
𝑣
𝑢 =
𝑢
𝑣
−
𝑢
𝑣
= 0
Problem 4:
If 𝒙 = 𝒓 𝐜𝐨𝐬 𝜽 and 𝒚 = 𝒓 𝐬𝐢𝐧 𝜽 then find
𝝏𝒓
𝝏𝒙
Solution:
Given 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃
𝑥2 + 𝑦2 = 𝑟2 cos2 𝜃 + 𝑟2 sin2 𝜃 = 𝑟2(cos2 𝜃 + sin2 𝜃) = 𝑟2
∴ 𝑟2 = 𝑥2 + 𝑦2
2𝑟
𝜕𝑟
𝜕𝑥
= 2𝑥 ⟹
𝜕𝑟
𝜕𝑥
=
2𝑥
2𝑟
=
𝑥
𝑟
=
𝑥
𝑥2+𝑦2
, ∵ 𝑟 = 𝑥2 + 𝑦2
Problem 5:
If 𝒙 = 𝒖 (𝟏 – 𝒗) and 𝒚 = 𝒖𝒗, find
𝝏 𝒖,𝒗
𝝏 𝒙,𝒚
Solution:
Given 𝑥 = 𝑢 (1 – 𝑣) and 𝑦 = 𝑢𝑣
𝑖. 𝑒 𝑥 = 𝑢 − 𝑢𝑣 and 𝑦 = 𝑢𝑣
Wkt
𝜕 𝑢,𝑣
𝜕 𝑥,𝑦
=
1
𝜕 𝑥,𝑦
𝜕 𝑢,𝑣
Now
𝜕 𝑥,𝑦
𝜕 𝑢,𝑣
=
𝑥 𝑢 𝑥 𝑣
𝑦 𝑢 𝑦𝑣
𝑥 = 𝑢 − 𝑢𝑣 𝑦 = 𝑢𝑣
𝑥 𝑢 = 1 − 𝑣 𝑦𝑢 = 𝑣
𝑥 𝑣 = −𝑢 𝑦𝑣 = 𝑢
𝜕 𝑥,𝑦
𝜕 𝑢,𝑣
=
𝑥 𝑢 𝑥 𝑣
𝑦 𝑢 𝑦𝑣
=
1 − 𝑣 −𝑢
𝑣 𝑢
= 1 − 𝑣 𝑢 + 𝑢𝑣 = 𝑢 − 𝑢𝑣 + 𝑢𝑣 = 𝑢
Hence
𝜕 𝑢,𝑣
𝜕 𝑥,𝑦
=
1
𝜕 𝑥,𝑦
𝜕 𝑢,𝑣
=
1
𝑢
Problem 6:
If 𝒙 = 𝒓 𝒄𝒐𝒔𝜽 𝒚 = 𝒓 𝐬𝐢𝐧 𝜽 then find
𝝏 𝒓,𝜽
𝝏 𝒙,𝒚
Solution:
Given 𝑥 = 𝑟 𝑐𝑜𝑠𝜃 𝑦 = 𝑟 sin 𝜃
Wkt,
𝜕 𝑥,𝑦
𝜕 𝑟,𝜃
=
𝑥 𝑟 𝑥 𝜃
𝑦𝑟 𝑦 𝜃
𝑥 = 𝑟 𝑐𝑜𝑠𝜃 𝑦 = 𝑟 𝑠𝑖𝑛𝜃
𝑥 𝑟 = 𝑐𝑜𝑠𝜃 𝑦𝑟 = 𝑠𝑖𝑛𝜃
𝑥 𝜃 = −𝑟𝑠𝑖𝑛𝜃 𝑦 𝜃 = 𝑟 𝑐𝑜𝑠𝜃
𝜕 𝑥,𝑦
𝜕 𝑟,𝜃
=
𝑥 𝑟 𝑥 𝜃
𝑦𝑟 𝑦 𝜃
=
𝑐𝑜𝑠𝜃 −𝑟𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑟 𝑐𝑜𝑠𝜃
= 𝑟 cos2 𝜃 + 𝑟𝑠𝑖𝑛2 𝜃 = 𝑟 (cos2 𝜃 + sin2 𝜃) = 𝑟
𝜕 𝑟,𝜃
𝜕 𝑥,𝑦
=
1
𝜕 𝑥,𝑦
𝜕 𝑟,𝜃
=
1
𝑟
Problem 7
If 𝒖 = 𝒙 + 𝒚 & 𝒚 = 𝒖𝒗, then find the jacobian
𝝏 𝒙,𝒚
𝝏 𝒖,𝒗
Solution:
Given 𝑢 = 𝑥 + 𝑦 & 𝑦 = 𝑢𝑣
⟹ 𝑢 = 𝑥 + 𝑢𝑣 ∵ 𝑦 = 𝑢𝑣
⟹ 𝑥 = 𝑢 − 𝑢𝑣 & 𝑦 = 𝑢𝑣
Wkt,
𝜕 𝑥,𝑦
𝜕 𝑢,𝑣
=
𝑥 𝑢 𝑥 𝑣
𝑦 𝑢 𝑦𝑣
𝑥 = 𝑢 − 𝑢𝑣 𝑦 = 𝑢𝑣
𝑥 𝑢 = 1 − 𝑣 𝑦𝑢 = 𝑣
𝑥 𝑣 = −𝑢 𝑦𝑣 = 𝑢
𝜕 𝑥,𝑦
𝜕 𝑢,𝑣
=
𝑥 𝑢 𝑥 𝑣
𝑦𝑢 𝑦𝑣
=
1 − 𝑣 −𝑢
𝑣 𝑢
= 1 − 𝑣 𝑢 + 𝑢𝑣 = 𝑢 − 𝑢𝑣 + 𝑢𝑣 = 𝑢
Note :
Implicit vs Explicit
Explicit: "y = some function of x". When we know x we can calculate y directly.
An explicit function is one which is given in terms of the independent variable.
Example , consider 𝑦 = 𝑥2 + 3𝑥 – 8
here y is the dependent variable and is given in terms of the independent variable x.
More Examples : 𝑦 = 𝑥 + 3 , 𝑦 = 𝑥2
− 𝑟2
𝑒𝑡𝑐.,
Implicit: "some function of y and x equals something else".
Implicit functions, on the other hand, are usually given in terms of both dependent and
independent variables.
Example, consider 𝑦 + 𝑥2 − 3𝑥 + 8 = 0
More Examples: 𝑥2
+ 𝑦2
= 𝑎2
, 𝑥3
+ 𝑥𝑦2
+ 4𝑥 = 5, 𝑒𝑡𝑐. ,
Differentiation of implicit functions
If 𝑓(𝑥, 𝑦 ) is the given implicit function , then
𝑑𝑦
𝑑𝑥
= −
𝜕𝑓
𝜕𝑥
𝜕𝑓
𝜕𝑦
Producer to find the differentiation:
(i) Take 𝑓(𝑥, 𝑦)
(ii) Find
𝜕𝑓
𝜕𝑥
&
𝜕𝑓
𝜕𝑦
(iii) Find
𝑑𝑦
𝑑𝑥
= −
𝜕𝑓
𝜕𝑥
𝜕𝑓
𝜕𝑦
Problem 1:
If 𝒙 𝒚
+ 𝒚 𝒙
= 𝒄, then find
𝒅𝒚
𝒅𝒙
Solution:
Given 𝑥 𝑦
+ 𝑦 𝑥
= 𝑐
⟹ 𝑥 𝑦
+ 𝑦 𝑥
− 𝑐 = 0
Take 𝑓 𝑥, 𝑦 = 𝑥 𝑦
+ 𝑦 𝑥
− 𝑐
Now
𝜕𝑓
𝜕𝑥
=
𝜕
𝜕𝑥
𝑥 𝑦 + 𝑦 𝑥 − 𝑐 =
𝜕
𝜕𝑥
𝑥 𝑦 +
𝜕
𝜕𝑥
𝑦 𝑥 −
𝜕
𝜕𝑥
(𝑐)
= 𝑦𝑥 𝑦−1
+ 𝑦 𝑥
log 𝑦 − 0 , (∵
𝑑
𝑑𝑥
𝑥 𝑛
= 𝑛𝑥 𝑛−1
&
𝑑
𝑑𝑥
𝑎 𝑥
= 𝑎 𝑥
log 𝑎 )
𝜕𝑓
𝜕𝑥
= 𝑦𝑥 𝑦−1
+ 𝑦 𝑥
log 𝑦
Now
𝜕𝑓
𝜕𝑦
=
𝜕
𝜕𝑦
𝑥 𝑦 + 𝑦 𝑥 − 𝑐 =
𝜕
𝜕𝑦
𝑥 𝑦 +
𝜕
𝜕𝑦
𝑦 𝑥 −
𝜕
𝜕𝑦
(𝑐)
= 𝑥 𝑦
log 𝑥 + 𝑥 𝑦 𝑥−1
− 0
𝜕𝑓
𝜕𝑦
= 𝑥 𝑦
log 𝑥 + 𝑥 𝑦 𝑥−1
Wkt
𝑑𝑦
𝑑𝑥
= −
𝜕𝑓
𝜕𝑥
𝜕𝑓
𝜕𝑦
= −
𝑦𝑥 𝑦−1 +𝑦 𝑥 log 𝑦
𝑥 𝑦 log 𝑥+𝑥 𝑦 𝑥−1

Weitere ähnliche Inhalte

Was ist angesagt?

Numerical Solutions of Burgers' Equation Project Report
Numerical Solutions of Burgers' Equation Project ReportNumerical Solutions of Burgers' Equation Project Report
Numerical Solutions of Burgers' Equation Project Report
Shikhar Agarwal
 
Unit v laplace transform(formula)
Unit v laplace transform(formula)Unit v laplace transform(formula)
Unit v laplace transform(formula)
Babu Rao
 

Was ist angesagt? (20)

1575 numerical differentiation and integration
1575 numerical differentiation and integration1575 numerical differentiation and integration
1575 numerical differentiation and integration
 
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONSAPPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
 
Fourier Series
Fourier SeriesFourier Series
Fourier Series
 
Euler and runge kutta method
Euler and runge kutta methodEuler and runge kutta method
Euler and runge kutta method
 
Interpolation
InterpolationInterpolation
Interpolation
 
Numerical Solutions of Burgers' Equation Project Report
Numerical Solutions of Burgers' Equation Project ReportNumerical Solutions of Burgers' Equation Project Report
Numerical Solutions of Burgers' Equation Project Report
 
Numerical differentiation integration
Numerical differentiation integrationNumerical differentiation integration
Numerical differentiation integration
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference Interpolation
 
Finite Difference Method
Finite Difference MethodFinite Difference Method
Finite Difference Method
 
Runge-Kutta methods with examples
Runge-Kutta methods with examplesRunge-Kutta methods with examples
Runge-Kutta methods with examples
 
Line integral.ppt
Line integral.pptLine integral.ppt
Line integral.ppt
 
3 bessel's functions
3 bessel's functions3 bessel's functions
3 bessel's functions
 
Unit v laplace transform(formula)
Unit v laplace transform(formula)Unit v laplace transform(formula)
Unit v laplace transform(formula)
 
Fourier Transform
Fourier TransformFourier Transform
Fourier Transform
 
Introduction to fourier analysis
Introduction to fourier analysisIntroduction to fourier analysis
Introduction to fourier analysis
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
Finite DIfference Methods Mathematica
Finite DIfference Methods MathematicaFinite DIfference Methods Mathematica
Finite DIfference Methods Mathematica
 
FINITE DIFFERENCE MODELLING FOR HEAT TRANSFER PROBLEMS
FINITE DIFFERENCE MODELLING FOR HEAT TRANSFER PROBLEMSFINITE DIFFERENCE MODELLING FOR HEAT TRANSFER PROBLEMS
FINITE DIFFERENCE MODELLING FOR HEAT TRANSFER PROBLEMS
 
A brief introduction to finite difference method
A brief introduction to finite difference methodA brief introduction to finite difference method
A brief introduction to finite difference method
 
Higher Differential Equation
Higher Differential EquationHigher Differential Equation
Higher Differential Equation
 

Ähnlich wie Functions of severable variables

graphs of quadratic function grade 9.pptx
graphs of quadratic function grade 9.pptxgraphs of quadratic function grade 9.pptx
graphs of quadratic function grade 9.pptx
MeryAnnMAlday
 

Ähnlich wie Functions of severable variables (20)

Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2
 
Piii taller transformaciones lineales
Piii taller transformaciones linealesPiii taller transformaciones lineales
Piii taller transformaciones lineales
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential Equations
 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptx
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
INVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORINVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATOR
 
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...
 
derivatives part 1.pptx
derivatives part 1.pptxderivatives part 1.pptx
derivatives part 1.pptx
 
Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007
 
Functions ppt Dr Frost Maths Mixed questions
Functions ppt Dr Frost Maths Mixed questionsFunctions ppt Dr Frost Maths Mixed questions
Functions ppt Dr Frost Maths Mixed questions
 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4
 
Lecture-1-Mech.pptx . .
Lecture-1-Mech.pptx                   . .Lecture-1-Mech.pptx                   . .
Lecture-1-Mech.pptx . .
 
graphs of quadratic function grade 9.pptx
graphs of quadratic function grade 9.pptxgraphs of quadratic function grade 9.pptx
graphs of quadratic function grade 9.pptx
 
Euler's and picard's
Euler's and picard'sEuler's and picard's
Euler's and picard's
 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptx
 

Mehr von Santhanam Krishnan

Mehr von Santhanam Krishnan (20)

Matrices
MatricesMatrices
Matrices
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minima
 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiation
 
Differential calculus
Differential calculus  Differential calculus
Differential calculus
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transforms
 
Fourier series
Fourier series Fourier series
Fourier series
 
Solution to second order pde
Solution to second order pdeSolution to second order pde
Solution to second order pde
 
Solution to pde
Solution to pdeSolution to pde
Solution to pde
 
Pde lagrangian
Pde lagrangianPde lagrangian
Pde lagrangian
 
Laplace transformation
Laplace transformationLaplace transformation
Laplace transformation
 
Complex integration
Complex integrationComplex integration
Complex integration
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Analytic function
Analytic functionAnalytic function
Analytic function
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Design of experiments
Design of experimentsDesign of experiments
Design of experiments
 
Numerical solution of ordinary differential equations
Numerical solution of ordinary differential equationsNumerical solution of ordinary differential equations
Numerical solution of ordinary differential equations
 
Solution of equations and eigenvalue problems
Solution of equations and eigenvalue problemsSolution of equations and eigenvalue problems
Solution of equations and eigenvalue problems
 
Testing of hypothesis
Testing of hypothesisTesting of hypothesis
Testing of hypothesis
 

Kürzlich hochgeladen

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 

Kürzlich hochgeladen (20)

TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 

Functions of severable variables

  • 2. A function of several variables is a function where the domain is a subset of 𝑅 𝑛 and range is 𝑅. A real valued function of 𝑛–variables is a function 𝑓 ∶ 𝐷 → R, where the domain D is a subset of 𝑅 𝑛. So: for each (𝑥1, 𝑥2, . . . , 𝑥 𝑛) in D, the value of f is a real number 𝑓(𝑥1, 𝑥2, . . . , 𝑥 𝑛 ). For example, 1.𝑓(𝑥, 𝑦) = 𝑥 − 𝑦 (a function of 2 variables defined for all (𝑥, 𝑦) ∈ 𝑅2) 2. If 𝑓 is a function defined by 𝑓(𝑥, 𝑦) = 9 − cos(𝑥) + sin(𝑥2 + 𝑦2), (a function of 2 variables defined for all (𝑥, 𝑦) ∈ 𝑅2 )
  • 3. 2. 𝑓 𝑥, 𝑦, 𝑧 = 1 𝑥2+𝑦2+𝑧2 Then f is a function of 3 variables, defined whenever 𝑥2 + 𝑦2 + 𝑧2 ≠ 0 This is all (𝑥, 𝑦, 𝑧) ∈ 𝑅3 except for (𝑥, 𝑦, 𝑧) = (0, 0, 0).
  • 4. Partial Derivative If 𝑓(𝑥, 𝑦) is a function of two variables 𝑥 and 𝑦, the partial derivative of 𝑓 with respect to 𝑥, is given by 𝑓𝑥 𝑥, 𝑦 = lim ℎ→0 𝑓 𝑥+ℎ,𝑦 −𝑓 𝑥,𝑦 ℎ The partial derivative of 𝑓 with respect to 𝑦, is given by 𝑓𝑦 𝑥, 𝑦 = lim ℎ→0 𝑓 𝑥,𝑦+ℎ −𝑓 𝑥,𝑦 ℎ
  • 5. Note • If 𝑓(𝑥, 𝑦) is a function of two variables 𝑥 and 𝑦, then Partial derivative of 𝑓(𝑥, 𝑦) with respect to 𝑥 is 𝜕𝑓 𝜕𝑥 , it is denoted by 𝑓𝑥 • Partial derivative of 𝑓(𝑥, 𝑦) with respect to 𝑦 is 𝜕𝑓 𝜕𝑦 , it is denoted by 𝑓𝑦 • Partial second derivative of 𝑓(𝑥, 𝑦) with respect to 𝑥 is 𝜕2 𝑓 𝜕𝑥2 , it is denoted by 𝑓𝑥𝑥 • Partial second derivative of 𝑓(𝑥, 𝑦) with respect to 𝑦 is 𝜕2 𝑓 𝜕𝑦2 , it is denoted by 𝑓𝑦𝑦 • Partial derivative of 𝜕𝑓 𝜕𝑥 with respect to 𝑦 is 𝜕2 𝑓 𝜕𝑦𝜕𝑥 , it is denoted by 𝑓𝑥𝑦 and so on
  • 6. Problem 1: If 𝒇 𝒙, 𝒚 = 𝟑𝒙𝒚 𝟐 − 𝟐𝒙 𝟐 𝒚,then find 𝒇 𝒙, 𝒇 𝒚, 𝒇 𝒙𝒙, 𝒇 𝒚𝒚, 𝒇 𝒙𝒚 Solution: Given 𝑓 𝑥, 𝑦 = 3𝑥𝑦2 − 2𝑥2 𝑦 ---(1) Diff. (1) partially w.r.to x, 𝑓𝑥 = 3 1 𝑦2 − 2 2𝑥 𝑦 𝑓𝑥 = 3𝑦2 − 4𝑥𝑦 --------- (2) Diff. (1) partially w.r.to y, 𝑓𝑦 = 3𝑥 (2𝑦) − 2𝑥2 (1) 𝑓𝑦 = 6𝑥𝑦 − 2𝑥2 -----------(3) Diff. (2) p.w.r.to x, 𝑓𝑥𝑥 = 0 − 4 1 𝑦 𝑓𝑥𝑥 = −4𝑦 Diff. (3) p.w.r.to y, 𝑓𝑦𝑦 = 6𝑥 1 − 0 𝑓𝑦𝑦 = 6𝑥 Diff. (2) p.w.r.to y, 𝑓𝑥𝑦 = 3 2𝑦 − 4𝑥(1) 𝑓𝑥𝑦 = 6𝑦 − 4𝑥 Note : Diff.(3) p.w.r.to x, 𝑓𝑦𝑥 = 6 1 𝑦 − 2 2𝑥 = 6𝑦 − 4𝑥 𝑓𝑥𝑦 = 𝑓𝑦𝑥
  • 7. Problem 2: Find 𝝏𝒖 𝝏𝒙 , 𝝏𝒖 𝝏𝒚 , if 𝒖 = 𝒙𝒆 𝒚 + 𝒚 𝒆 𝒙 Solution: Given 𝑢 = 𝑥𝑒 𝑦 + 𝑦 𝑒 𝑥 -------(1) Diff. (1) p.w.r.to x, 𝜕𝑢 𝜕𝑥 = 1 𝑒 𝑦 + 𝑦 𝑒 𝑥 = 𝑒 𝑦 + 𝑦 𝑒 𝑥 Diff.(1) p.w.r.to y, 𝜕𝑢 𝜕𝑦 = 𝑥 𝑒 𝑦 + 1 𝑒 𝑥 = 𝑥𝑒 𝑦 + 𝑒 𝑥
  • 8. Problem 3: If 𝒖 = 𝒙 𝟐 + 𝒚 𝟐 + 𝒛 𝟐 − 𝟏 𝟐 then find the value of 𝝏 𝟐 𝒖 𝝏𝒙 𝟐 + 𝝏 𝟐 𝒖 𝝏𝒚 𝟐 + 𝝏 𝟐 𝒖 𝝏𝒛 𝟐 Solution: Given 𝑢 = 𝑥2 + 𝑦2 + 𝑧2 −1 2 ------(1) Diff. (1) p. w.r.to x, 𝜕𝑢 𝜕𝑥 = − 1 2 𝑥2 + 𝑦2 + 𝑧2 − 1 2 −1 2𝑥 + 0 + 0 = − 1 2 𝑥2 + 𝑦2 + 𝑧2 − 3 2(2𝑥) 𝜕𝑢 𝜕𝑥 = −𝑥 𝑥2 + 𝑦2 + 𝑧2 − 3 2 ------- (2) Diff. (2) p. w.r.to x, 𝜕2 𝑢 𝜕𝑥2 = −𝑥 − 3 2 𝑥2 + 𝑦2 + 𝑧2 − 3 2 −1 (2𝑥) + 𝑥2 + 𝑦2 + 𝑧2 − 3 2(−1) = 3𝑥2 𝑥2 + 𝑦2 + 𝑧2 − 3 2 −1 − 𝑥2 + 𝑦2 + 𝑧2 − 3 2 = 𝑥2 + 𝑦2 + 𝑧2 − 3 2 3𝑥2 𝑥2 + 𝑦2 + 𝑧2 −1 − 1
  • 9. = 𝑥2 + 𝑦2 + 𝑧2 − 3 2 3𝑥2 𝑥2+𝑦2+𝑧2 1 − 1 = 𝑥2+𝑦2+𝑧2 − 3 2 3𝑥2− 𝑥2+𝑦2+𝑧2 𝑥2+𝑦2+𝑧2 = 𝑥2 + 𝑦2 + 𝑧2 − 3 2 𝑥2 + 𝑦2 + 𝑧2 −1 3𝑥2 − 𝑥2 − 𝑦2 − 𝑧2 = 𝑥2 + 𝑦2 + 𝑧2 − 3 2 −1 2𝑥2 − 𝑦2 − 𝑧2 𝜕2 𝑢 𝜕𝑥2 = 𝑥2 + 𝑦2 + 𝑧2 − 5 2 2𝑥2 − 𝑦2 − 𝑧2 ------ (3) Similarly, 𝜕2 𝑢 𝜕𝑦2 = 𝑥2 + 𝑦2 + 𝑧2 − 5 2 2𝑦2 − 𝑧2 − 𝑥2 ------- (4) 𝜕2 𝑢 𝜕𝑧2 = 𝑥2 + 𝑦2 + 𝑧2 − 5 2 2𝑧2 − 𝑥2 − 𝑦2 ------ (5) (3)+(4)+(5) ⇒ 𝜕2 𝑢 𝜕𝑥2+ 𝜕2 𝑢 𝜕𝑦2+ 𝜕2 𝑢 𝜕𝑧2 = 𝑥2 + 𝑦2 + 𝑧2 − 5 2(2𝑥2 − 𝑦2 − 𝑧2 +2𝑦2 − 𝑧2 − 𝑥2 +2𝑧2 − 𝑥2 − 𝑦2 ) = 𝑥2 + 𝑦2 + 𝑧2 − 5 2 2𝑥2 + 2𝑦2 + 2𝑧2 − 2𝑥2 − 2𝑦2 − 2𝑧2 = 0
  • 10. Problem 4 If 𝒖 = 𝒍𝒐𝒈 𝒕𝒂𝒏𝒙 + 𝒕𝒂𝒏𝒚 + 𝒕𝒂𝒏𝒛 𝒇𝒊𝒏𝒅 𝒔𝒊𝒏𝟐𝒙. 𝝏𝒖 𝝏𝒙 . Solution: Given 𝑢 = log 𝑡𝑎𝑛𝑥 + 𝑡𝑎𝑛𝑦 + 𝑡𝑎𝑛𝑧 ------- (1) Diff. (1) p.w.r.to x, 𝜕𝑢 𝜕𝑥 = 1 𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧 (sec2 𝑥) = 1 cos2 𝑥(𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧) , (∵ sec2 𝑥 = 1 cos2 𝑥 ) Now 𝑠𝑖𝑛2𝑥. 𝜕𝑢 𝜕𝑥 = 𝑠𝑖𝑛2𝑥 1 cos2 𝑥(𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧) = 2𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑥 cos2 𝑥(𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧) , (∵ 𝑠𝑖𝑛2𝑥 = 2𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑥) = 2𝑠𝑖𝑛𝑥 cos 𝑥(𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧) = 2 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑥 ( 1 𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧 )
  • 11. ∴ 𝑠𝑖𝑛2𝑥. 𝜕𝑢 𝜕𝑥 = 2𝑡𝑎𝑛𝑥 ( 1 𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧 )----(2) Similarly, 𝑠𝑖𝑛2𝑦. 𝜕𝑢 𝜕𝑦 = 2𝑡𝑎𝑛𝑦 ( 1 𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧 )----- (3) 𝑠𝑖𝑛2𝑧. 𝜕𝑢 𝜕𝑧 = 2𝑡𝑎𝑛𝑧 ( 1 𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧 )------ (4) (3)+(4)+(5)⟹ 𝑠𝑖𝑛2𝑥. 𝜕𝑢 𝜕𝑥 +𝑠𝑖𝑛2𝑦. 𝜕𝑢 𝜕𝑦 +𝑠𝑖𝑛2𝑧. 𝜕𝑢 𝜕𝑧 =2𝑡𝑎𝑛𝑥 1 𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧 + 2𝑡𝑎𝑛𝑦 1 𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧 +2𝑡𝑎𝑛𝑧 1 𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧 =2 1 𝑡𝑎𝑛𝑥+𝑡𝑎𝑛𝑦+𝑡𝑎𝑛𝑧 𝑡𝑎𝑛𝑥 + 𝑡𝑎𝑛𝑦 + 𝑡𝑎𝑛𝑧 = 2
  • 12. Homogeneous Function: A function 𝑓(𝑥, 𝑦) is called a homogeneous function of the degree ′𝑛′ if the following relationship is valid for all 𝑡 > 0: 𝑓 𝑡𝑥, 𝑡𝑦 = 𝑡 𝑛 𝑓 𝑥, 𝑦 . Example: Consider 𝑓 𝑥, 𝑦 = 𝑥2+𝑦2 𝑥𝑦 𝑓 𝑡𝑥, 𝑡𝑦 = 𝑡𝑥 2+ 𝑡𝑦 2 𝑡𝑥 𝑡𝑦 = 𝑡2 𝑥2+𝑡2 𝑦2 𝑡2 𝑥𝑦 = 𝑡2 𝑥2+𝑦2 𝑡2 𝑥𝑦 = 𝑥2+𝑦2 𝑥𝑦 = 𝑡0 𝑓(𝑥, 𝑦) Hence f(x, y ) is homogeneous of order zero
  • 13. Euler’s Theorem: If 𝑢 = 𝑓 𝑥, 𝑦 is a homogeneous function of degree ‘n’, then 𝑥 𝜕𝑢 𝜕𝑥 + 𝑦 𝜕𝑢 𝜕𝑦 = 𝑛𝑢 (OR) 𝑥 𝜕𝑓 𝜕𝑥 + 𝑦 𝜕𝑓 𝜕𝑦 = 𝑛𝑓 Problem 1: If 𝒖 = 𝒇 𝒙 𝒚 , prove that 𝒙 𝝏𝒖 𝝏𝒙 + 𝒚 𝝏𝒖 𝝏𝒚 = 𝟎 Solution: Given 𝑢 𝑥, 𝑦 = 𝑓 𝑥 𝑦 For any 𝑡 > 0, 𝑢 𝑡𝑥, 𝑡𝑦 = 𝑓 𝑡𝑥 𝑡𝑦 = 𝑓 𝑥 𝑦 = 𝑡0 𝑓 𝑥 𝑦 = 𝑡0 𝑢(𝑥, 𝑦) Hence 𝑢 = 𝑓 𝑥 𝑦 is a homogeneous function of order zero 𝑖. 𝑒 𝑛 = 0 By Euler’s Theorem , 𝑥 𝜕𝑢 𝜕𝑥 + 𝑦 𝜕𝑢 𝜕𝑦 = 𝑛𝑢 ⟹ 𝑥 𝜕𝑢 𝜕𝑥 + 𝑦 𝜕𝑢 𝜕𝑦 = 0 u = 0 Hence proved. .
  • 14. Problem 2: If 𝒖 = 𝐬𝐢𝐧−𝟏 𝒙 𝒚 + 𝐭𝐚𝐧−𝟏 𝒚 𝒙 , prove that 𝒙 𝝏𝒖 𝝏𝒙 + 𝒚 𝝏𝒖 𝝏𝒚 = 𝟎. Solution: Given 𝑢(𝑥, 𝑦) = sin−1 𝑥 𝑦 + tan−1 𝑦 𝑥 For any 𝑡 > 0, 𝑢(𝑡𝑥, 𝑡𝑦) = sin−1 𝑡𝑥 𝑡𝑦 + tan−1 𝑡𝑦 𝑡𝑥 = sin−1 𝑥 𝑦 + tan−1 𝑦 𝑥 = 𝑡0 ( sin−1 𝑥 𝑦 + tan−1 𝑦 𝑥 ) Hence 𝑢(𝑥, 𝑦) is a homogeneous function of order zero 𝑖. 𝑒 𝑛 = 0 By Euler’s Theorem, 𝑥 𝜕𝑢 𝜕𝑥 + 𝑦 𝜕𝑢 𝜕𝑦 = 𝑛𝑢 = 0 𝑢 = 0
  • 15. Total differential coefficient If 𝑢 = 𝑓 𝑥, 𝑦 , the total differential of 𝑢 is given by 𝑑𝑢 = 𝑢 𝑥 𝑑𝑥 + 𝑢 𝑦 𝑑𝑦 (OR) 𝑑𝑓 = 𝑓𝑥 𝑑𝑥 + 𝑓𝑦 𝑑𝑦 If 𝑢 = 𝑓 𝑥, 𝑦 , and x = g(t) , y = h(t) , the total differential of 𝑢 is given by 𝑑𝑢 𝑑𝑡 = 𝜕𝑢 𝜕𝑥 𝑑𝑥 𝑑𝑡 + 𝜕𝑢 𝜕𝑦 𝑑𝑦 𝑑𝑡 = 𝑢 𝑥 𝑑𝑥 𝑑𝑡 + 𝑢 𝑦 𝑑𝑦 𝑑𝑡 (OR) 𝑑𝑓 𝑑𝑡 = 𝜕𝑓 𝜕𝑥 𝑑𝑥 𝑑𝑡 + 𝜕𝑓 𝜕𝑦 𝑑𝑦 𝑑𝑡 = 𝑓𝑥 𝑑𝑥 𝑑𝑡 + 𝑓𝑦 𝑑𝑦 𝑑𝑡
  • 16. Note : If 𝑢 = 𝑓 𝑝, 𝑞, 𝑟 and p = 𝑔 𝑥, 𝑦, 𝑧 , 𝑞 = ℎ(𝑥, 𝑦, 𝑧) 𝑟 = 𝑘(𝑥, 𝑦, 𝑧) Total differential 𝑑𝑢 𝑑𝑥 = 𝑢 𝑝 𝑑𝑝 𝑑𝑥 + 𝑢 𝑞 𝑑𝑞 𝑑𝑥 + 𝑢 𝑟 𝑑𝑟 𝑑𝑥 𝑑𝑢 𝑑𝑦 = 𝑢 𝑝 𝑑𝑝 𝑑𝑦 + 𝑢 𝑞 𝑑𝑞 𝑑𝑦 + 𝑢 𝑟 𝑑𝑟 𝑑𝑦 𝑑𝑢 𝑑𝑧 = 𝑢 𝑝 𝑑𝑝 𝑑𝑧 + 𝑢 𝑞 𝑑𝑞 𝑑𝑧 + 𝑢 𝑟 𝑑𝑟 𝑑𝑧
  • 17. Partial derivative: If 𝑧 = 𝑓 𝑢, 𝑣 and 𝑢 = 𝑔 𝑥, 𝑦 , 𝑣 = ℎ(𝑥, 𝑦) then 𝜕𝑧 𝜕𝑥 = 𝜕𝑧 𝜕𝑢 𝜕𝑢 𝜕𝑥 + 𝜕𝑧 𝜕𝑣 𝜕𝑣 𝜕𝑥 = 𝑧 𝑢 𝑢 𝑥 + 𝑧 𝑣 𝑣 𝑥 𝜕𝑧 𝜕𝑦 = 𝜕𝑧 𝜕𝑢 𝜕𝑢 𝜕𝑦 + 𝜕𝑧 𝜕𝑣 𝜕𝑣 𝜕𝑦 = 𝑧 𝑢 𝑢 𝑦 + 𝑧 𝑣 𝑣 𝑦 Note : If 𝑢 = 𝑓 𝑝, 𝑞, 𝑟 and p = 𝑔 𝑥, 𝑦, 𝑧 , 𝑞 = ℎ(𝑥, 𝑦, 𝑧) 𝑟 = 𝑘(𝑥, 𝑦, 𝑧) Partial differential 𝜕𝑢 𝜕𝑥 = 𝑢 𝑝 𝑝 𝑥 + 𝑢 𝑞 𝑞 𝑥 + 𝑢 𝑟 𝑟𝑥 𝜕𝑢 𝜕𝑦 = 𝑢 𝑝 𝑝 𝑦 + 𝑢 𝑞 𝑞 𝑦 + 𝑢 𝑟 𝑟𝑦 𝜕𝑢 𝜕𝑧 = 𝑢 𝑝 𝑝 𝑧 + 𝑢 𝑞 𝑞 𝑧 + 𝑢 𝑟 𝑟𝑧
  • 18. Problem 1: If 𝒘 = 𝒇(𝒚 − 𝒛, 𝒛 − 𝒙, 𝒙 − 𝒚) then show that 𝝏𝒘 𝝏𝒙 + 𝝏𝒘 𝝏𝒚 + 𝝏𝒘 𝝏𝒛 = 𝟎 Solution: Given 𝑤 = 𝑓(𝑦 − 𝑧, 𝑧 − 𝑥, 𝑥 − 𝑦) Take p = 𝑦 − 𝑧, 𝑞 = 𝑧 − 𝑥, 𝑟 = 𝑥 − 𝑦 ⇒ 𝑤 = 𝑓(𝑝, 𝑞, 𝑟) and 𝑝 𝑦, 𝑧 , 𝑞 𝑧, 𝑥 , 𝑟(𝑥, 𝑦) p = 𝑦 − 𝑧, 𝑞 = 𝑧 − 𝑥, 𝑟 = 𝑥 − 𝑦 𝑝 𝑥 = 0 𝑞 𝑥 = −1 𝑟𝑥 = 1 𝑝 𝑦 = 1 𝑞 𝑦 = 0 𝑟𝑦 = −1 𝑝 𝑧 = −1 𝑞 𝑧 = 1 𝑟𝑧 = 0 𝜕𝑤 𝜕𝑥 = 𝑤 𝑝 𝑝 𝑥 + 𝑤 𝑞 𝑞 𝑥 + 𝑤𝑟 𝑟𝑥 = 𝑤 𝑝 0 + 𝑤 𝑞 −1 + 𝑤𝑟 1 𝜕𝑤 𝜕𝑥 = −𝑤 𝑞 + 𝑤𝑟 ------ (1) 𝜕𝑤 𝜕𝑦 = 𝑤 𝑝 𝑝 𝑦 + 𝑤 𝑞 𝑞 𝑦 + 𝑤𝑟 𝑟𝑦 = 𝑤 𝑝 1 + 𝑤 𝑞 0 + 𝑤𝑟 −1 𝜕𝑤 𝜕𝑦 = 𝑤 𝑝 − 𝑤𝑟 ------ (2) 𝜕𝑤 𝜕𝑧 = 𝑤 𝑝 𝑝 𝑧 + 𝑤 𝑞 𝑞 𝑧 + 𝑤𝑟 𝑟𝑧 = 𝑤 𝑝 −1 + 𝑤 𝑞 1 + 𝑤𝑟 0 𝜕𝑤 𝜕𝑧 = −𝑤 𝑝 + 𝑤 𝑞 ------ (3) (1)+(2)+(3) ⇒ 𝜕𝑤 𝜕𝑥 + 𝜕𝑤 𝜕𝑦 + 𝜕𝑤 𝜕𝑧 = −𝑤 𝑞 + 𝑤𝑟+𝑤 𝑝 − 𝑤𝑟 −𝑤 𝑝 +𝑤 𝑞 = 0
  • 19. Problem2: If 𝒖 = 𝒇(𝟐𝒙 − 𝟑𝒚, 𝟑𝒚 − 𝟒𝒛, 𝟒𝒛 − 𝟐𝒙) then find 𝟏 𝟐 𝝏𝒖 𝝏𝒙 + 𝟏 𝟑 𝝏𝒖 𝝏𝒚 + 𝟏 𝟒 𝝏𝒖 𝝏𝒛 Solution: Given 𝑢 = 𝑓(2𝑥 − 3𝑦, 3𝑦 − 4𝑧, 4𝑧 − 2𝑥) Take p = 2𝑥 − 3𝑦, 𝑞 = 3𝑦 − 4𝑧, 𝑟 = 4𝑧 − 2𝑥 ⇒ 𝑢 = 𝑓(𝑝, 𝑞, 𝑟) and 𝑝 𝑥, 𝑦 , 𝑞 𝑦, 𝑧 , 𝑟(𝑧, 𝑥) p = 2𝑥 − 3𝑦, 𝑞 = 3𝑦 − 4𝑧, 𝑟 = 4𝑧 − 2𝑥 𝑝 𝑥 = 2 𝑞 𝑥 = 0 𝑟𝑥 = −2 𝑝 𝑦 = −3 𝑞 𝑦 = 3 𝑟𝑦 = 0 𝑝 𝑧 = 0 𝑞 𝑧 = −4 𝑟𝑧 = 4 𝜕𝑢 𝜕𝑥 = 𝑢 𝑝 𝑝 𝑥 + 𝑢 𝑞 𝑞 𝑥 + 𝑢 𝑟 𝑟𝑥 = 𝑢 𝑝 2 + 𝑢 𝑞 0 + 𝑢 𝑟 −2 1 2 𝜕𝑢 𝜕𝑥 = 1 2 2𝑢 𝑝 − 2𝑢 𝑟 = 1 2 (2 𝑢 𝑝 − 𝑢 𝑟 ) = 𝑢 𝑝 − 𝑢 𝑟 --------- (1) 𝜕𝑢 𝜕𝑦 = 𝑢 𝑝 𝑝 𝑦 + 𝑢 𝑞 𝑞 𝑦 + 𝑢 𝑟 𝑟𝑦 = 𝑢 𝑝 −3 + 𝑢 𝑞 3 + 𝑢 𝑟 0 1 3 𝜕𝑢 𝜕𝑦 = 1 3 (−3𝑢 𝑝+3𝑢 𝑞) = 1 3 3 −up + uq = −𝑢 𝑝 + 𝑢 𝑞 ---------(2) 𝜕𝑢 𝜕𝑧 = 𝑢 𝑝 𝑝 𝑧 + 𝑢 𝑞 𝑞 𝑧 + 𝑢 𝑟 𝑟𝑧 = 𝑢 𝑝 0 + 𝑢 𝑞 −4 + 𝑢 𝑟 4 1 4 𝜕𝑢 𝜕𝑧 = 1 4 −4𝑢 𝑞 + 4𝑢 𝑟 = 1 4 4 −𝑢 𝑞 ∓ 𝑢 𝑟 = −𝑢 𝑞 + 𝑢 𝑟 ------- (3) (1)+(2)+(3) ⇒ 1 2 𝜕𝑢 𝜕𝑥 + 1 3 𝜕𝑢 𝜕𝑦 + 1 4 𝜕𝑢 𝜕𝑧 = 𝑢 𝑝 − 𝑢 𝑟 − 𝑢 𝑝 + 𝑢 𝑞 − 𝑢 𝑞 + 𝑢 𝑟 = 0
  • 20. Problem3: If 𝒖 = 𝒇( 𝒚−𝒙 𝒙𝒚 , 𝒛−𝒙 𝒙𝒛 ) then find 𝒙 𝟐 𝝏𝒖 𝝏𝒙 + 𝒚 𝟐 𝝏𝒖 𝝏𝒚 + 𝒛 𝟐 𝝏𝒖 𝝏𝒛 Solution: Given𝒖 = 𝒇( 𝒚−𝒙 𝒙𝒚 , 𝒛−𝒙 𝒙𝒛 ) Take p = 𝒚−𝒙 𝒙𝒚 , 𝑞 = 𝒛−𝒙 𝒙𝒛 ⇒ 𝑢 = 𝑓(𝑝, 𝑞) and 𝑝 𝑥, 𝑦 , 𝑞 𝑥, 𝑧 𝐩 = 𝐲 − 𝐱 𝐱𝐲 𝐪 = 𝐳 − 𝐱 𝐱𝐳 𝐩 𝐱 = 𝐱𝐲 −𝟏 − 𝐲−𝐱 𝐲 𝐱𝐲 𝟐 = −𝐱𝐲−𝐲 𝟐+𝐱𝐲 𝐱 𝟐 𝐲 𝟐 = − 𝐲 𝟐 𝐱 𝟐 𝐲 𝟐 = − 𝟏 𝐱 𝟐 𝐪 𝐱 = 𝐱𝐳 −𝟏 − 𝐳−𝐱 𝐳 𝐱𝐳 𝟐 = −𝐱𝐳−𝐳 𝟐+𝐱𝐳 𝐱 𝟐 𝐳 𝟐 = − 𝐳 𝟐 𝐱 𝟐 𝐳 𝟐 = − 𝟏 𝐱 𝟐 𝐩 𝐲 = 𝐱𝐲 𝟏 − 𝐲−𝐱 𝐱 𝐱𝐲 𝟐 = 𝐱𝐲−𝐱𝐲+𝐱 𝟐 𝐱 𝟐 𝐲 𝟐 = 𝐱 𝟐 𝐱 𝟐 𝐲 𝟐 = 𝟏 𝐲 𝟐 𝐪 𝐲 = 𝟎 𝐩 𝐳 = 𝟎 𝐪 𝐳 = 𝐱𝐳 𝟏 − 𝐳−𝐱 𝐱 𝐱𝐳 𝟐 = 𝐱𝐳−𝐳𝐱+𝐱 𝟐 𝐱 𝟐 𝐳 𝟐 = 𝐱 𝟐 𝐱 𝟐 𝐳 𝟐 = 𝟏 𝐳 𝟐
  • 21. 𝜕𝑢 𝜕𝑥 = 𝑢 𝑝 𝑝 𝑥 + 𝑢 𝑞 𝑞 𝑥 = 𝑢 𝑝 − 1 𝑥2 + 𝑢 𝑞 − 1 𝑥2 = − 1 𝑥2 (𝑢 𝑝 + 𝑢 𝑞) 𝑥2 𝜕𝑢 𝜕𝑥 = 𝑥2 − 1 𝑥2 𝑢 𝑝 + 𝑢 𝑞 = −𝑢 𝑝 − 𝑢 𝑞 --------- (1) 𝜕𝑢 𝜕𝑦 = 𝑢 𝑝 𝑝 𝑦 + 𝑢 𝑞 𝑞 𝑦 = 𝑢 𝑝 1 𝑦2 + 𝑢 𝑞 0 𝑦2 𝜕𝑢 𝜕𝑦 = 𝑦2 ( 1 𝑦2 𝑢 𝑝) = 𝑢 𝑝 ---------(2) 𝜕𝑢 𝜕𝑧 = 𝑢 𝑝 𝑝 𝑧 + 𝑢 𝑞 𝑞 𝑧 = 𝑢 𝑝 0 + 𝑢 𝑞 1 𝑧2 𝑧2 𝜕𝑢 𝜕𝑧 = 𝑧2 1 𝑧2 (𝑢 𝑞) = 𝑢 𝑞 ------- (3) (1)+(2)+(3) ⇒ 𝑥2 𝜕𝑢 𝜕𝑥 + 𝑦2 𝜕𝑢 𝜕𝑦 + 𝑧2 𝜕𝑢 𝜕𝑧 = −𝑢 𝑝 − 𝑢 𝑞 + 𝑢 𝑝 + 𝑢 𝑞 = 0
  • 22. • If 𝑓(𝑥, 𝑦) is a function of two variables x and y, then Taylor’s expansion of 𝑓(𝑥, 𝑦) about the point (𝑎, 𝑏) is given by 𝑓 𝑥, 𝑦 = 𝑓 𝑎, 𝑏 + 𝑥 − 𝑎 𝑓𝑥 𝑎, 𝑏 + 𝑦 − 𝑏 𝑓𝑦 𝑎, 𝑏 + 1 2! 𝑥 − 𝑎 2 𝑓𝑥𝑥 𝑎, 𝑏 + 2 𝑥 − 𝑎 𝑦 − 𝑏 𝑓𝑥𝑦 𝑎, 𝑏 + 𝑦 − 𝑏 2 𝑓𝑦𝑦 𝑎, 𝑏 + 1 3! 𝑥 − 𝑎 3 𝑓𝑥𝑥𝑥 𝑎, 𝑏 + 3 𝑥 − 𝑎 2 𝑦 − 𝑏 𝑓𝑥𝑥𝑦 + 3 𝑥 − 𝑎 𝑦 − 𝑏 2 𝑓𝑥𝑦𝑦 + 𝑦 − 𝑏 3 𝑓𝑦𝑦𝑦 𝑎, 𝑏 + ⋯ • Taylor’s expansion of 𝑓(𝑥, 𝑦) about the origin or (0,0) is given by 𝑓 𝑥, 𝑦 = 𝑓 0,0 + 𝑥𝑓𝑥 0,0 + 𝑦𝑓𝑦 0,0 + 1 2! 𝑥2 𝑓𝑥𝑥 0,0 + 2𝑥𝑦𝑓𝑥𝑦 0,0 + 𝑦2 𝑓𝑦𝑦 0,0 + ⋯ Taylor’s Theorem for functions of two variables
  • 23. Problem 1: Obtain the Taylor series of 𝒙 𝟑 + 𝒚 𝟑 + 𝒙𝒚 𝟐 in powers of 𝒙 − 𝟏 𝒂𝒏𝒅 𝒚 − 𝟐. Solution: W.kt, Taylor’s expansion of 𝑓(𝑥, 𝑦) about the point (𝑎, 𝑏) is given by 𝑓 𝑥, 𝑦 = 𝑓 𝑎, 𝑏 + 𝑥 − 𝑎 𝑓𝑥 𝑎, 𝑏 + 𝑦 − 𝑏 𝑓𝑦 𝑎, 𝑏 + 1 2! 𝑥 − 𝑎 2 𝑓𝑥𝑥 𝑎, 𝑏 + 2 𝑥 − 𝑎 𝑦 − 𝑏 𝑓𝑥𝑦 𝑎, 𝑏 + 𝑦 − 𝑏 2 𝑓𝑦𝑦 𝑎, 𝑏 + 1 3! 𝑥 − 𝑎 3 𝑓𝑥𝑥𝑥 𝑎, 𝑏 + 3 𝑥 − 𝑎 2 𝑦 − 𝑏 𝑓𝑥𝑥𝑦(𝑎, 𝑏) + 3 𝑥 − 𝑎 𝑦 − 𝑏 2 𝑓𝑥𝑦𝑦(𝑎, 𝑏) + 𝑦 − 𝑏 3 𝑓𝑦𝑦𝑦 𝑎, 𝑏 + ⋯ Here 𝑓 𝑥, 𝑦 = 𝑥3 + 𝑦3 + 𝑥𝑦2 , the points are 𝑎 = 1, 𝑏 = 2 , (∵ 𝑥 − 1 = 0 & 𝑦 − 2 = 0 ⇒ 𝑥 = 1, 𝑦 = 2 )
  • 24. 𝑓 𝑥, 𝑦 = 𝑥3 + 𝑦3 + 𝑥𝑦2 𝑓 1,2 = 13 + 23 + 1 22 = 1 + 8 + 4 = 13 𝑓𝑥 = 3𝑥2 + 𝑦2 𝑓𝑥 1,2 = 3 1 2 + 22 = 3 + 4 = 7 𝑓𝑦 = 3𝑦2 + 𝑥 2𝑦 = 3𝑦2 + 2𝑥𝑦 𝑓𝑦 1,2 = 3 2 2 + 2 1 2 = 12 + 4 = 16 𝑓𝑥𝑥 = 6𝑥 + 0 = 6𝑥 𝑓𝑥𝑥 1,2 = 6 1 = 6 𝑓𝑥𝑦 = 0 + 2𝑦 = 2𝑦 𝑓𝑥𝑦 1,2 = 2 2 = 4 𝑓𝑦𝑦 = 3 2𝑦 + 2𝑥 1 = 6𝑦 + 2𝑥 𝑓𝑦𝑦 1,2 = 6 2 + 2 1 = 12 + 2 = 14 𝑓𝑥𝑥𝑥 = 6 1 = 6 𝑓𝑥𝑥𝑥 1,2 = 6 𝑓𝑥𝑥𝑦 =0 𝑓𝑥𝑥𝑦(1,2) = 0 𝑓𝑥𝑦𝑦 = 2 1 = 2 𝑓𝑥𝑦𝑦(1,2) = 2 𝑓𝑦𝑦𝑦 = 6 1 + 0 = 6 𝑓𝑦𝑦𝑦(1,2) = 6
  • 25. Taylor’s expansion of 𝑓(𝑥, 𝑦) about the point (1,2) is given by 𝑓 𝑥, 𝑦 = 𝑓 1,2 + 𝑥 − 1 𝑓𝑥 1,2 + 𝑦 − 2 𝑓𝑦 1,2 + 1 2! 𝑥 − 1 2 𝑓𝑥𝑥 1,2 + 2 𝑥 − 1 𝑦 − 2 𝑓𝑥𝑦 1,2 + 𝑦 − 2 2 𝑓𝑦𝑦 1,2 + 1 3! 𝑥 − 1 3 𝑓𝑥𝑥𝑥 1,2 + 3 𝑥 − 1 2 𝑦 − 2 𝑓𝑥𝑥𝑦(1,2) + 3 𝑥 − 1 𝑦 − 2 2 𝑓𝑥𝑦𝑦 (1,2) + 𝑦 − 2 3 𝑓𝑦𝑦𝑦 1,2 + ⋯ 𝑓 𝑥, 𝑦 = 13 + 7 𝑥 − 1 + 16 𝑦 − 2 + 1 2! [6 𝑥 − 1 2 + 2 4 𝑥 − 1 𝑦 − 2 + 14 𝑦 − 2 2 ] + 1 3! 6 𝑥 − 1 3 + 3 0 𝑥 − 1 2 𝑦 − 2 + 3 2 𝑥 − 1 𝑦 − 2 2 + 6 𝑦 − 2 3 + ⋯ = 13 + 7 𝑥 − 1 + 16 𝑦 − 2 + 1 2! [6 𝑥 − 1 2 + 8 𝑥 − 1 𝑦 − 2 + 14 𝑦 − 2 2 ] + 1 3! 6 𝑥 − 1 3 + 0 + 6 𝑥 − 1 𝑦 − 2 2 + 6 𝑦 − 2 3 + ⋯ = 13 + 7 𝑥 − 1 + 16 𝑦 − 2 + 6 2 𝑥 − 1 2 + 8 2 𝑥 − 1 𝑦 − 2 + 14 2 𝑦 − 2 2 + 6 6 𝑥 − 1 3 + 6 6 𝑥 − 1 𝑦 − 2 2 + 6 6 𝑦 − 2 3 +… , (2! = 1.2 = 2, 3! = 1.2.3 = 6)
  • 26. = 13 + 7 𝑥 − 1 + 16 𝑦 − 2 + 6 2 𝑥 − 1 2 + 8 2 𝑥 − 1 𝑦 − 2 + 14 2 𝑦 − 2 2 + 𝑥 − 1 3 + 𝑥 − 1 𝑦 − 2 2 + 𝑦 − 2 3 + ⋯ Problem 2 Expand 𝒆 𝒙 𝒄𝒐𝒔𝒚 at 𝟎, 𝝅 𝟐 upto the third term by using Taylor’s series. Solution W.kt, Taylor’s expansion of 𝑓(𝑥, 𝑦) about the point (𝑎, 𝑏) is given by 𝑓 𝑥, 𝑦 = 𝑓 𝑎, 𝑏 + 𝑥 − 𝑎 𝑓𝑥 𝑎, 𝑏 + 𝑦 − 𝑏 𝑓𝑦 𝑎, 𝑏 + 1 2! 𝑥 − 𝑎 2 𝑓𝑥𝑥 𝑎, 𝑏 + 2 𝑥 − 𝑎 𝑦 − 𝑏 𝑓𝑥𝑦 𝑎, 𝑏 + 𝑦 − 𝑏 2 𝑓𝑦𝑦 𝑎, 𝑏 + 1 3! 𝑥 − 𝑎 3 𝑓𝑥𝑥𝑥 𝑎, 𝑏 + 3 𝑥 − 𝑎 2 𝑦 − 𝑏 𝑓𝑥𝑥𝑦(𝑎, 𝑏) + 3 𝑥 − 𝑎 𝑦 − 𝑏 2 𝑓𝑥𝑦𝑦(𝑎, 𝑏) + 𝑦 − 𝑏 3 𝑓𝑦𝑦𝑦 𝑎, 𝑏 + ⋯ Here 𝑓 𝑥, 𝑦 = 𝑒 𝑥 𝑐𝑜𝑠𝑦 the points are 𝑎 = 0, 𝑏 = 𝜋 2 ,
  • 27. 𝑓 𝑥, 𝑦 = 𝑒 𝑥 𝑐𝑜𝑠𝑦 𝑓 0, 𝜋 2 = 𝑒0 cos 𝜋 2 = 1.0 = 0, (∵ 𝑒0 = 1, cos 𝜋 2 = 0 ) 𝑓𝑥 = 𝑒 𝑥 𝑐𝑜𝑠𝑦 𝑓𝑥 0, 𝜋 2 = 𝑒0 cos 𝜋 2 = 0 𝑓𝑦 = 𝑒 𝑥 −𝑠𝑖𝑛𝑦 = −𝑒 𝑥 𝑠𝑖𝑛𝑦 𝑓𝑦 0, 𝜋 2 = −𝑒0 sin 𝜋 2 = −1.1 = −1 (∵ 𝑒0 = 1, sin 𝜋 2 = 1) 𝑓𝑥𝑥 = 𝑒 𝑥 𝑐𝑜𝑠𝑦 𝑓𝑥𝑥 0, 𝜋 2 = 𝑒0 cos 𝜋 2 = 0 𝑓𝑥𝑦 = −𝑒 𝑥 𝑠𝑖𝑛𝑦 𝑓𝑥𝑦 0, 𝜋 2 = −1 𝑓𝑦𝑦 = −𝑒 𝑥 (𝑐𝑜𝑠𝑦) 𝑓𝑦𝑦 0, 𝜋 2 = −𝑒0 cos 𝜋 2 = 0 𝑓𝑥𝑥𝑥 = 𝑒 𝑥 𝑐𝑜𝑠𝑦 𝑓𝑥𝑥𝑥 0, 𝜋 2 = 0 𝑓𝑥𝑥𝑦 = −𝑒 𝑥 𝑠𝑖𝑛𝑦 𝑓𝑥𝑥𝑦 0, 𝜋 2 = −1 𝑓𝑥𝑦𝑦 = −𝑒 𝑥 𝑐𝑜𝑠𝑦 𝑓𝑥𝑦𝑦(0, 𝜋 2 ) = 0 𝑓𝑦𝑦𝑦 = −𝑒 𝑥 −𝑠𝑖𝑛𝑦 = 𝑒 𝑥 𝑠𝑖𝑛𝑦 𝑓𝑦𝑦𝑦 0, 𝜋 2 = 1.1 = 1
  • 28. Taylor’s expansion of 𝑓(𝑥, 𝑦) about the point (0, 𝜋 2 ) is given by 𝑓 𝑥, 𝑦 = 𝑓 0, 𝜋 2 + 𝑥 − 0 𝑓𝑥 0, 𝜋 2 + 𝑦 − 𝜋 2 𝑓𝑦 0, 𝜋 2 + 1 2! 𝑥 − 0 2 𝑓𝑥𝑥 0, 𝜋 2 + 2 𝑥 − 0 𝑦 − 𝜋 2 𝑓𝑥𝑦 0, 𝜋 2 + 𝑦 − 𝜋 2 2 𝑓𝑦𝑦 0, 𝜋 2 + 1 3! 𝑥 − 0 3 𝑓𝑥𝑥𝑥 0, 𝜋 2 + 3 𝑥 − 0 2 𝑦 − 𝜋 2 𝑓𝑥𝑥𝑦(0, 𝜋 2 ) + 3 𝑥 − 0 𝑦 − 𝜋 2 2 𝑓𝑥𝑦𝑦(0, 𝜋 2 ) + 𝑦 − 𝜋 2 3 𝑓𝑦𝑦𝑦 0, 𝜋 2 + ⋯ = 0 + 𝑥 0 + 𝑦 − 𝜋 2 −1 + 1 2! 𝑥 2 0 + 2 𝑥 𝑦 − 𝜋 2 −1 + 𝑦 − 𝜋 2 2 0 + 1 3! 𝑥 3 0 + 3 𝑥 2 𝑦 − 𝜋 2 −1 + 3 𝑥 𝑦 − 𝜋 2 2 (0) + 𝑦 − 𝜋 2 3 (1) + ⋯
  • 29. = − 𝑦 − 𝜋 2 + − 2 2 𝑥 𝑦 − 𝜋 2 + − 3 6 𝑥 2 𝑦 − 𝜋 2 + 1 6 𝑦 − 𝜋 2 3 + ⋯ (∵ 2! = 1.2 = 2, 3! = 1.2.3 = 6) = − 𝑦 − 𝜋 2 − 𝑥 𝑦 − 𝜋 2 − 1 2 𝑥 2 𝑦 − 𝜋 2 + 1 6 𝑦 − 𝜋 2 3 + ⋯ Problem 3 Find the Taylor’s series expansion of 𝟏 + 𝒙 + 𝒚 𝟐 in powers of 𝒙 − 𝟏 and 𝒚 upto second degree term. Solution: W.kt, Taylor’s expansion (upto second degree) of 𝑓(𝑥, 𝑦) about the point (𝑎, 𝑏) is given by 𝑓 𝑥, 𝑦 = 𝑓 𝑎, 𝑏 + 𝑥 − 𝑎 𝑓𝑥 𝑎, 𝑏 + 𝑦 − 𝑏 𝑓𝑦 𝑎, 𝑏 + 1 2! 𝑥 − 𝑎 2 𝑓𝑥𝑥 𝑎, 𝑏 + 2 𝑥 − 𝑎 𝑦 − 𝑏 𝑓𝑥𝑦 𝑎, 𝑏 + 𝑦 − 𝑏 2 𝑓𝑦𝑦 𝑎, 𝑏 + ⋯ Here 𝑓 𝑥, 𝑦 = 1 + 𝑥 + 𝑦2 the points are 𝑎 = 1, 𝑏 = 0,
  • 30. 𝑓 𝑥, 𝑦 = 1 + 𝑥 + 𝑦2 = 1 + 𝑥 + 𝑦2 1 2 𝑓 1,0 = 1 + 1 + 0 = 2 1 2 𝑓𝑥 = 1 2 1 + 𝑥 + 𝑦2 1 2 −1 1 = 1 2 (1 + 𝑥 + 𝑓𝑥 1,0 = 1 2 1 + 1 + 0 − 1 2 = 1 2 2 − 1 2 = 2− 1 2 −1 = 2− 3 2 𝑓𝑦 = 1 2 1 + 𝑥 + 𝑦2 1 2 −1 2𝑦 = 𝑦 1 + 𝑥 + 𝑦2 − 1 2 𝑓𝑦 1,0 = 0 𝑓𝑥𝑥 = 1 2 − 1 2 1 + 𝑥 + 𝑦2 − 1 2 −1 1 = −1 4 1 + 𝑥 + 𝑦2 − 3 2 𝑓𝑥𝑥 1,0 = − 1 4 1 + 1 + 0 − 3 2 = 1 4 2 − 3 2 = − 1 22 2 − 3 2 = −2− 3 2 −2 = −2− 7 2 𝑓𝑥𝑦 = 1 2 − 1 2 1 + 𝑥 + 𝑦2 − 1 2 −1 2𝑦 = −𝑦 2 1 + 𝑥 + 𝑦2 − 3 2 𝑓𝑥𝑦 1,0 = 0 𝑓𝑦𝑦 = 𝑦 − 1 2 1 + 𝑥 + 𝑦2 − 1 2 −1 2𝑦 + 1 + 𝑥 + 𝑦2 − 1 2 1 = −𝑦 1 + 𝑥 + 𝑦2 − 3 2 +(1 + 𝑥 + 𝑓𝑦𝑦 1,0 = 0 + 1 + 1 + 0 − 1 2 = 2− 1 2
  • 31. Taylor’s expansion of 𝑓(𝑥, 𝑦) about the point (1,0) is given by 𝑓 𝑥, 𝑦 = 𝑓 1,0 + 𝑥 − 1 𝑓𝑥 1,0 + 𝑦 𝑓𝑦 1,0 + 1 2! 𝑥 − 1 2 𝑓𝑥𝑥 1,0 + 2 𝑥 − 1 𝑦 𝑓𝑥𝑦 1,0 + 𝑦 2 𝑓𝑦𝑦 1,0 + ⋯ = 2 1 2 + 𝑥 − 1 2− 3 2 + 𝑦 0 + 1 2 𝑥 − 1 2 −2 − 7 2 + 2 2 𝑥 − 1 𝑦 0 + 𝑦22− 1 2 = 2 1 2 + 2− 3 2 𝑥 − 1 − −2 − 7 2 −1 𝑥 − 1 2 + 2− 1 2 𝑦2 = 2 1 2 + 2− 3 2 𝑥 − 1 − −2 − 9 2 𝑥 − 1 2 + 2− 1 2 𝑦2
  • 32. Maximum and Minimum (Extreme Values) of two variable function
  • 33. Necessary Conditions The necessary conditions for 𝑓(𝑥, 𝑦) to have a maximum or minimum at a point (𝑎, 𝑏) are that 𝑓𝑥 𝑎, 𝑏 = 0 𝑎𝑛𝑑 𝑓𝑦(𝑎, 𝑏) = 0 𝑎𝑡 (𝑎, 𝑏) Sufficient Conditions The sufficient conditions for 𝑓(𝑥, 𝑦) to have a maximum or minimum at a point (𝑎, 𝑏) are as follows Let 𝑟 = 𝑓𝑥𝑥 𝑎, 𝑏 , 𝑠 = 𝑓𝑥𝑦 𝑎, 𝑏 𝑎𝑛𝑑 𝑡 = 𝑓𝑦𝑦 𝑎, 𝑏 The function 𝑓(𝑥, 𝑦) has maximum or minimum (extreme values) at ( a, b) if 1. 𝑓𝑥 𝑎, 𝑏 = 0 𝑎𝑛𝑑 𝑓𝑦(𝑎, 𝑏) = 0 2. 𝑟𝑡 − 𝑠2 > 0 3. 𝑓(𝑥, 𝑦) has maximum or minimum at (𝑎, 𝑏) according as 𝑟 < 0 or 𝑟 > 0
  • 34. Procedure to find maximum or minimum (extreme values): Step 1. Find 𝑓𝑥 𝑎𝑛𝑑 𝑓𝑦 Step 2. Put 𝑓𝑥 = 0 𝑎𝑛𝑑 𝑓𝑦 = 0 Step 3. Solve the simultaneous equations in a and y, find the values of x and y Say (𝑎, 𝑏), (𝑐, 𝑑) … . ( these points are called stationary / critical points) Step 4.Find 𝑟 = 𝑓𝑥𝑥 , 𝑡 = 𝑓𝑦𝑦 𝑎𝑛𝑑 𝑠 = 𝑓𝑥𝑦 (at each pair (𝑎, 𝑏) , (𝑐, 𝑑) … . ) Step 5. Find 𝑟𝑡 − 𝑠2 (at each pair (𝑎, 𝑏) , (𝑐, 𝑑) … . ) Step 6. (i) If r𝑡 − 𝑠2 > 0 𝑎𝑛𝑑 𝑟 < 0 𝑎𝑡 (𝑎, 𝑏) , then 𝑓(𝑥, 𝑦) has maximum at (𝑎, 𝑏) And the maximum value is 𝑓(𝑎, 𝑏) (ii) If r𝑡 − 𝑠2 > 0 𝑎𝑛𝑑 𝑟 > 0 𝑎𝑡 (𝑎, 𝑏) , then 𝑓(𝑥, 𝑦) has minimum at (𝑎, 𝑏) And the minimum value is 𝑓(𝑎, 𝑏) (iii) If r𝑡 − 𝑠2 < 0 𝑎𝑡 (𝑎, 𝑏) , then 𝑓(𝑥, 𝑦) has neither maximum nor minimum at (𝑎, 𝑏) (no extreme values at (𝑎, 𝑏)) and the point (𝑎, 𝑏) is called saddle point. (iv) If 𝑟𝑡 − 𝑠2 = 0 𝑎𝑡 (𝑎, 𝑏), the case is doubtful and need further investigation. Step 7. Step 6 to be repeated for other pair of values (c, d) … to examine extreme values
  • 35. Problem 1: Discuss the maxima and minima of the function 𝒇 𝒙, 𝒚 = 𝒙 𝟒 + 𝒚 𝟒 − 𝟐𝒙 𝟐 + 𝟒𝒙𝒚 − 𝟐𝒚 𝟐 Solution: Given 𝑓 𝑥, 𝑦 = 𝑥4 + 𝑦4 − 2𝑥2 + 4𝑥𝑦 − 2𝑦2 --------- (1) To find the stationary point: Put 𝝏𝒇 𝝏𝒙 = 𝑓𝑥 = 0 & 𝝏𝒇 𝝏𝒚 = 𝒇 𝒚 = 0 𝝏𝒇 𝝏𝒙 = 0 ⟹ 4𝑥3 − 4𝑥 + 4𝑦 = 0 ⟹ 4(𝑥3 − 𝑥 + 𝑦) = 0 ⟹ 𝑥3 − 𝑥 + 𝑦 = 0 ---------(2) 𝝏𝒇 𝝏𝒚 = 0 ⟹ 4𝑦3 + 4𝑥 − 4𝑦 = 0 ⟹ 4 𝑦3 + 𝑥 − 𝑦 = 0 ⟹ 𝑦3 + 𝑥 − 𝑦 = 0 ------(3) 𝐩 = 𝛛𝐟 𝛛𝐱 = 𝒇 𝒙 = 𝟒𝐱 𝟑 − 𝟒𝐱 + 𝟒𝐲 𝐫 = 𝛛 𝟐 𝐟 𝛛𝐱 𝟐 = 𝐟 𝐱𝐱 = = 𝟏𝟐𝐱 𝟐 − 𝟒 𝐬 = 𝛛 𝟐 𝐟 𝛛𝐱𝛛𝐲 = 𝒇 𝒙𝒚 = 𝟒 𝐪 = 𝛛𝐟 𝛛𝐲 = 𝐟 𝐲 = 𝟒𝐲 𝟑 + 𝟒𝐱 − 𝟒𝐲 𝐭 = 𝛛 𝟐𝐟 𝛛𝐲 𝟐 = 𝐟 𝐲𝐲 = 𝟏𝟐𝐲 𝟐 − 𝟒
  • 36. 2 ⟹ 𝑥3 − 𝑥 + 𝑦 = 0 3 ⟹ 𝑦3 + 𝑥 − 𝑦 = 0 Add ------------------------ 𝑥3 + 𝑦3 = 0 ⟹ 𝑥 + 𝑦 𝑥2 − 𝑥𝑦 + 𝑦2 = 0 , (∵ 𝑎3 + 𝑏3 = (𝑎 + 𝑏)(𝑎2 − 𝑎𝑏 + 𝑏2 ) ⟹ 𝑥 + 𝑦 = 0 𝑜𝑟 (𝑥2 − 𝑥𝑦 + 𝑦2) = 0 ⟹ 𝑥 = −𝑦 𝑜𝑟 𝑥2 − 𝑥𝑦 + 𝑦2 = 0 Put 𝑥 = −𝑦 in (2) ⟹ −𝑦 3 − −𝑦 + 𝑦 = 0 ⟹ −𝑦3 + 𝑦 + 𝑦 = 0 ⟹ −𝑦3 + 2𝑦 = 0 ⟹ 𝑦(−𝑦2 + 2) = 0 ⟹ 𝑦 = 0 𝑜𝑟 − 𝑦2 + 2 = 0 ⟹ 𝑦 = 0 𝑜𝑟 𝑦2 = 2 ⟹ 𝑦 = 0 𝑜𝑟 𝑦 = ± 2 When 𝑦 = 0 , from (3) 0 + 𝑥 − 0 = 0 ⟹ 𝑥 = 0 The point is ( 𝑥, 𝑦) = (0,0) When 𝑦 = 2 , from (3) 2 3 + 𝑥 − 2 = 0 ⟹ 𝑥 = − 2 3 + 2 ⟹ 𝑥 = 2 (− 2 2 + 1) ⟹ 𝑥 = 2 −2 + 1 = 2 −1 = − 2 The point is ( 𝑥, 𝑦) = (− 2, 2)
  • 37. When 𝑦 = − 2 , from (3), − 2 3 + 𝑥 − (− 2) = 0 ⟹ − 2 3 + 𝑥 + 2 = 0 ⟹ 𝑥 = 2 3 − 2 = 2 2 2 − 1 = 2 2 − 1 = 2 1 = 2 The point is ( 𝑥, 𝑦) = ( 2, − 2) The stationary / critical points are (0,0), − 2, 2 , ( 2, − 2) To find the point at which 𝒇(𝒙, 𝒚) has maximum/minimum: 𝑟𝑡 − 𝑠2 = 12𝑥2 − 4 12𝑦2 − 4 − 4 2 = 12𝑥2 − 4 12𝑦2 − 4 − 16 At the Point (0,0): 𝑟𝑡 − 𝑠2 𝑎𝑡 0,0 = 12 0 2 − 4 12 0 2 − 4 − 16 = −4 −4 − 16 = 16 − 16 = 𝟎 Hence there is no maximum / minimum for 𝑓(𝑥, 𝑦) at (0,0) (we can’t judge) At the Point − 𝟐, 𝟐 : 𝑟𝑡 − 𝑠2 𝑎𝑡 − 2, 2 = 12 − 2 2 − 4 12 2 2 − 4 − 16 = 12 2 − 4 12 2 − 4 − 16 = 24 − 4 24 − 4 − 16 = 20 20 − 16 = 400 − 16 = 394 > 𝟎 𝑟 𝑎𝑡 − 2, 2 = 12 − 2 2 − 4 = 12 2 − 4 = 24 − 4 = 20 > 𝟎 Hence 𝑓(𝑥, 𝑦) has minimum at − 2, 2
  • 38. To find the minimum value : Put x, y = − 2, 2 in (1) The minimum value is 𝑓(− 2, 2) = − 2 4 + 2 4 − 2 − 2 2 + 4 − 2 2 − 2 2 2 = 4 + 4 − 4 − 8 − 4 = −8 Hence the minimum value is −8 At the Point 𝟐, − 𝟐 : 𝑟𝑡 − 𝑠2 𝑎𝑡 2,− 2 = 12 2 2 − 4 12 − 2 2 − 4 − 16 = 12 2 − 4 12 2 − 4 − 16 = 24 − 4 24 − 4 − 16 = 20 20 − 16 = 400 − 16 = 394 > 𝟎 𝑟 𝑎𝑡 − 2, 2 = 12 − 2 2 − 4 = 12 2 − 4 = 24 − 4 = 20 > 𝟎 Again 𝑓(𝑥, 𝑦) has minimum at 2, − 2
  • 39. Problem 2: Find the maximum or minimum values of 𝒇 𝒙, 𝒚 = 𝟑𝒙 𝟐 − 𝒚 𝟐 + 𝒙 𝟑 Solution: Given 𝑓 𝑥, 𝑦 = 3𝑥2 − 𝑦2 + 𝑥3 ------- (1) To find the stationary point: Put 𝜕𝑓 𝜕𝑥 = 𝑓𝑥 = 0 & 𝜕𝑓 𝜕𝑦 = 𝑓𝑦 = 0 𝜕𝑓 𝜕𝑥 = 0 ⇒ 6𝑥 + 3𝑥2 = 0 ⟹ 3𝑥 2 + 𝑥 = 0 ⟹ 𝑥 = 0, 𝑥 + 2 = 0 ⟹ 𝑥 = 0, 𝑥 = −2 𝜕𝑓 𝜕𝑦 = 0 ⟹ −2𝑦 = 0 ⟹ 𝑦 = 0 The stationary points are 0,0 , (−2,0) 𝑝 = 𝐟 𝐱 = 𝜕𝑓 𝜕𝑥 = 6𝑥 + 3𝑥2 𝑟 = 𝐟 𝐱𝐱 = 𝜕2 𝑓 𝜕𝑥2 = 6 + 6𝑥 𝑠 = 𝐟 𝐱𝐲 = 𝜕2 𝑓 𝜕𝑥𝜕𝑦 = 0 𝑞 = 𝐟 𝐲 = 𝜕𝑓 𝜕𝑦 = −2𝑦 𝑡 = 𝑓𝑦𝑦 = 𝜕2𝑓 𝜕𝑦2 = −2
  • 40. To find the point at which 𝒇(𝒙, 𝒚) has maximum/minimum: 𝑟𝑡 − 𝑠2 = 6 + 6𝑥 −2 − 0 = −12 − 12𝑥 At the Point (0,0): 𝑟𝑡 − 𝑠2 𝑎𝑡 0,0 = −12 − 12 0 = −12 < 𝟎 Hence the point (0,0) is the saddle point of 𝑓(𝑥, 𝑦) At the Point (-2,0): 𝑟𝑡 − 𝑠2 𝑎𝑡 −2,0 = −12 − 12 −2 = −12 + 24 = 12 > 𝟎 𝑟at −2,0 = 6 + 6 −2 = 6 − 12 = −6 < 𝟎 Hence at the point −2,0 the function 𝑓 𝑥, 𝑦 has maximum. To find the maximum value: Put 𝑥, 𝑦 = (−2,0) in (1), 𝑓 −2,0 = 3(−2)2 − 0 2 + −2 3 = 12 − 8 = 4
  • 41. Constrained Maxima and Minima – Lagrangian Multiplier If 𝑓(𝑥, 𝑦, 𝑧) is a function of three variables 𝑥, 𝑦, 𝑧 , we will find the extreme values (maximum or minimum) of 𝑓(𝑥, 𝑦, 𝑧) with respect to a constraint ∅ 𝑥, 𝑦, 𝑧 = 0 Procedure Step 1. Identify the constraint equation ∅ 𝑥, 𝑦, 𝑧 = 0 Step 2. Identify the main function for which we have to find the extreme value, let it be 𝑓(𝑥, 𝑦, 𝑧) Step 3. Form the equation 𝐹 = 𝑓 + 𝜆∅ Step 4. Find 𝐹𝑥 , 𝐹𝑦, 𝐹𝑧 Step 5. Put 𝐹𝑥 = 0 , 𝐹𝑦 = 0, 𝐹𝑧 = 0 and solve all the equations including ∅ 𝑥, 𝑦, 𝑧 = 0 Step 6. Find the values of 𝑥, 𝑦, 𝑧 and 𝜆 Step 7. The values of 𝑥, 𝑦, 𝑧 gives the extreme values of 𝑓(𝑥, 𝑦, 𝑧)
  • 42. Note : Distance of a point 𝑥1, 𝑦1, 𝑧1 𝑓𝑟𝑜𝑚 𝑥, 𝑦, 𝑧 is given by 𝑑 = 𝑥 − 𝑥1 2 + 𝑦 − 𝑦1 2 + 𝑧 − 𝑧1 2 Square of the distance is 𝑑2 = 𝑥 − 𝑥1 2 + 𝑦 − 𝑦1 2 + 𝑧 − 𝑧1 2
  • 43. Problem 1: Find the length of the shortest line form the point (𝟎, 𝟎, 𝟐𝟓 𝟗 ) to the surface 𝒛 = 𝒙𝒚 Solution: The square of the distance from the point (0,0, 25 9 ) to (𝑥, 𝑦, 𝑧) is (𝑑2) 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 − 0 2 + 𝑦 − 0 2 + 𝑧 − 25 9 2 𝑓 𝑥, 𝑦, 𝑧 = 𝑥2 + 𝑦2 + 𝑧 − 25 9 2 ------- (1) Subject to ( to the surface) ∅ 𝑥, 𝑦𝑧 = 𝑧 − 𝑥𝑦 = 0 ------------(2) (∵ 𝑧 = 𝑥𝑦 ⟹ 𝑧 − 𝑥𝑦 = 0) Consider the Lagrangian function F = 𝑓 𝑥, 𝑦, 𝑧 + 𝜆𝜙 𝑥, 𝑦, 𝑧 𝐹 = 𝑥2 + 𝑦2 + 𝑧 − 25 9 2 + 𝜆(𝑧 − 𝑥𝑦) 𝜕F 𝜕𝐱 = 2x − λy 𝜕F 𝜕y = 2y − λx 𝜕F 𝜕z = 2 z − 25 9 + λ
  • 44. To find the stationary points: Put 𝜕F 𝜕𝑥 = 0, 𝜕F 𝜕𝑦 = 0 & 𝜕F 𝜕𝑧 = 0 𝜕𝐹 𝜕𝑥 = 0 ⟹ 2𝑥 − 𝜆𝑦 = 0 ⟹ 𝜆𝑦 = 2𝑥 ⟹ 𝜆 = 2𝑥 𝑦 ------- (3) 𝜕F 𝜕𝑦 = 0 ⟹ 2𝑦 − 𝜆x = 0 ⟹ 𝜆𝑥 = 2𝑦 ⟹ 𝜆 = 2𝑦 𝑥 ------ (4) 𝜕F 𝜕𝑧 = 0 ⟹ 2 z − 25 9 + λ = 0 ⟹ λ = −2 z − 25 9 ----- (5) From (3), (4), (5), 2𝑥 𝑦 = 2𝑦 𝑥 = −2 z − 25 9 ⟹ 𝑥 𝑦 = 𝑦 𝑥 = −z + 25 9 Consider 𝑥 𝑦 = 𝑦 𝑥 ⟹ 𝑥2 = 𝑦2 ⟹ 𝑥 = ±𝑦 Consider 𝑦 𝑥 = −z + 25 9 , If 𝑥 = 𝑦 −𝑧 + 25 9 = 𝑦 𝑦 = 1 ⟹ 𝑧 = 25 9 − 1 = 25−9 9 = 16 9 Given 𝑧 = 𝑥𝑦 = 𝑦. 𝑦 = 𝑦2 (∵ 𝑥 = 𝑦) ⟹ 𝑦2 = 16 9 ∵ 𝑧 = 16 9 ⟹ 𝑦 = ± 16 9 = ± 4 3 If 𝑥 = −𝑦 −𝑧 + 25 9 = 𝑦 −𝑦 = −1 ⟹ 𝑧 = 25 9 + 1 = 25+9 9 = 34 9 Given 𝑧 = 𝑥𝑦 = −𝑦. 𝑦 = −𝑦2 (∵ 𝑥 = −𝑦) ⟹ −𝑦2 = 34 9 ⟹ 𝑦2 = − 34 9 ∵ 𝑧 = 34 9 ⟹ 𝑦 = ± −34 9 (Imaginary , this is not possible) Hence 𝑥 = −𝑦 is ruled out.
  • 45. Hence 𝑥 = 𝑦 = ± 4 3 & 𝑧 = 𝑥𝑦 = 𝑦2 = 4 3 2 = 16 9 From (1) square distance is 𝑑2 = 𝑥2 + 𝑦2 + 𝑧 − 25 9 2 = 4 3 2 + 4 3 2 + 16 9 − 25 9 2 = 16 9 + 16 9 + − 9 9 2 = 2 16 9 + −1 2 = 32 9 + 1 = 32+9 9 = 41 9 The required minimum distance is (d) = 41 9 = 41 3 units Problem 2: A rectangular box open at the top is to have a volume of 32 cc .Find the dimensions of the box that requires the least material for its construction Solution: Given a rectangular open box with volume 32cc Let us take the length, width and height of the box be x, y and z respectively.
  • 46. Hence the volume of the box is 𝑥𝑦𝑧 = 32 , which is the given constrain (condition). Let ∅ 𝑥, 𝑦, 𝑧 = 𝑥𝑦𝑧 − 32 ------ (1) Requirement of least material to construct the open top box is the total least surface area of the box. Total surface area of the open rectangular box is 𝑥𝑦 + 2𝑥𝑧 + 2𝑦𝑧 Let 𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦 + 2𝑥𝑧 + 2𝑦𝑧 ------ (2)
  • 47. Note:
  • 48.
  • 49. Hence the total surface area of a open rectangular box is 𝒙𝒚 + 𝟐𝒙𝒛 + 𝟐𝒚𝒛
  • 50. Consider the Lagrangian function 𝐹 = 𝑓 + 𝜆𝜙 𝐹 = 𝑥𝑦 + 2𝑥𝑧 + 2𝑦𝑧 + 𝜆 𝑥𝑦𝑧 − 32 ( by using (1) & (2)) To find the stationary points: Put 𝜕F 𝜕𝑥 = 0, 𝜕F 𝜕𝑦 = 0 & 𝜕F 𝜕𝑧 = 0 𝜕𝐹 𝜕𝑥 = 0 ⟹ y + 2z + 𝜆𝑦𝑧 = 0 ⟹ 𝜆𝑦𝑧 = − 𝑦 + 2𝑧 ⟹ 𝜆 = −(𝑦+2𝑧) 𝑦𝑧 ------ (3) 𝜕F 𝜕𝑦 = 0 ⟹ 𝑥 + 2𝑧 + 𝜆xz = 0 ⟹ 𝜆𝑥𝑧 = −(𝑥 + 2𝑧) ⟹ 𝜆 = −(𝑥+2𝑧) 𝑥𝑧 ------ (4) 𝜕F 𝜕𝑧 = 0 ⟹ 2x + 2y + λxy = 0 ⟹ λxy = −2x − 2y = −2 x + y 𝜆 = −2 𝑥+𝑦 𝑥𝑦 ----- (5) 𝜕𝐹 𝜕𝑥 = 𝑦 + 2𝑧 + 𝜆𝑦𝑧 𝜕𝐹 𝜕𝑦 = 𝑥 + 2𝑧 + 𝜆𝑥𝑧 𝜕𝐹 𝜕𝑧 = 2𝑥 + 2𝑦 + 𝜆𝑥𝑦
  • 51. From (3), (4), (5), −(𝑦+2𝑧) 𝑦𝑧 = −(𝑥+2𝑧) 𝑥𝑧 = −2 𝑥+𝑦 𝑥𝑦 Consider −(𝑦+2𝑧) 𝑦𝑧 = −(𝑥+2𝑧) 𝑥𝑧 ⇒ −𝑥(𝑦+2𝑧) 𝑥𝑦𝑧 = −𝑦(𝑥+2𝑧) 𝑦𝑥𝑧 ⇒ 𝑥𝑦 + 2𝑧𝑥 = (𝑦𝑥 + 2𝑧𝑦) ⇒ 2𝑧𝑥 = 2𝑧𝑦 ⇒ 𝑥 = 𝑦 ------ (6) Consider −(𝑥+2𝑧) 𝑥𝑧 = −2 𝑥+𝑦 𝑥𝑦 ⇒ 𝑥+2𝑧 𝑥𝑧 = 2 𝑥+𝑦 𝑥𝑦 Using (6), 𝑥+2𝑧 𝑥𝑧 = 2 𝑥+𝑥 𝑥𝑥 ⇒ 𝑥+2𝑧 𝑥𝑧 = 4𝑥 𝑥2 ⇒ 𝑥+2𝑧 𝑥𝑧 = 4 𝑥 ⇒ 𝑥+2𝑧 𝑧 = 4
  • 52. ⇒ 𝑥 + 2𝑧 = 4𝑧 ⇒ 4𝑧 − 2𝑧 = 𝑥 ⇒ 2𝑧 = 𝑥 ⇒ 𝑧 = 𝑥 2 -------- (7) Given volume 𝑥𝑦𝑧 = 32 From (6) & (7) 𝑥 . 𝑥 . 𝑥 2 = 32 , (∵ 𝑦 = 𝑥 & 𝑧 = 𝑥 2 ) 𝑥3 = 2 32 = 64 𝑥 = 64 1 3 𝑥 = 43 1 3 = 4 3 3 = 4 Hence 𝑥 = 4 , 𝑦 = 𝑥 = 4 and 𝑧 = 𝑥 2 = 4 2 = 2 The required dimension is 𝑥 = 4, 𝑦 = 4 𝑎𝑛𝑑 𝑧 = 2
  • 53. Problem 3: Find the dimensions of the rectangular box, open at the top, of maximum capacity whose surface area is 432 square meter. Solution: Given a rectangular open box with surface area 432 sq.m Let us take the length, width and height of the box be x, y and z respectively. Hence the surface area 𝑥𝑦 + 2𝑥𝑧 + 2𝑦𝑧 = 432, which is the given constrain(condition) Let ∅ 𝑥, 𝑦, 𝑧 = 𝑥𝑦 + 2𝑥𝑧 + 2𝑦𝑧 − 432 ------ (1) Requirement of a open rectangular box with maximum capacity (volume) Total volume of the open rectangular box is 𝑥𝑦𝑧 Let 𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦𝑧 ------ (2)
  • 54. Consider the Lagrangian function 𝐹 = 𝑓 + 𝜆𝜙 𝐹 = 𝑥𝑦𝑧 + 𝜆 𝑥𝑦 + 2𝑥𝑧 + 2𝑦𝑧 − 432 ( by using (1) & (2)) To find the stationary points: Put 𝜕F 𝜕𝑥 = 0, 𝜕F 𝜕𝑦 = 0 & 𝜕F 𝜕𝑧 = 0 𝜕𝐹 𝜕𝑥 = 0 ⟹ yz + 𝜆 𝑦 + 2z = 0 ⟹ 𝜆 𝑦 + 2𝑧 = −𝑦𝑧 ⟹ 𝜆 = −𝑦𝑧 𝑦+2𝑧 ------ (3) 𝜕F 𝜕𝑦 = 0 ⟹ 𝑥𝑧 + 𝜆(x + 2z) = 0 ⟹ 𝜆(𝑥 + 2𝑧) = −𝑥𝑧 ⟹ 𝜆 = −𝑥𝑧 𝑥+2𝑧 ------ (4) 𝜕F 𝜕𝑧 = 0 ⟹ xy + λ 2x + 2y = 0 ⟹ λ 2x + 2y = −xy ⇒ 𝜆 = −𝑥𝑦 2𝑥+2𝑦 ----- (5) 𝜕𝐹 𝜕𝑥 = 𝑦𝑧 + 𝜆(𝑦 + 2𝑧) 𝜕𝐹 𝜕𝑦 = 𝑥𝑧 + 𝜆(𝑥 + 2𝑧) 𝜕𝐹 𝜕𝑧 = 𝑥𝑦 + 𝜆(2𝑥 + 2𝑦)
  • 55. From (3), (4), (5), −𝑦𝑧 𝑦+2𝑧 = −𝑥𝑧 𝑥+2𝑧 = −𝑥𝑦 2𝑥+2𝑦 Consider −𝑦𝑧 𝑦+2𝑧 = −𝑥𝑧 𝑥+2𝑧 ⇒ 𝑦𝑧 𝑦+2𝑧 = 𝑥𝑧 𝑥+2𝑧 ⇒ 𝑦 𝑦+2𝑧 = 𝑥 𝑥+2𝑧 ⇒ 𝑦 𝑥 + 2𝑧 = 𝑥(𝑦 + 2𝑧) ⇒ 𝑥𝑦 + 2𝑧𝑦 = 𝑥𝑦 + 2𝑧𝑥 ⇒ 2𝑧𝑦 = 2𝑧𝑥 ⇒ 𝑦 = 𝑥 -------- (6) Consider −𝑥𝑧 𝑥+2𝑧 = −𝑥𝑦 2𝑥+2𝑦 ⇒ 𝑧 𝑥+2𝑧 = 𝑦 2 𝑥+𝑦 ⇒ 𝑧 𝑥+2𝑧 = 𝑥 2 𝑥+𝑥 (by using (6)) ⇒ 𝑧 𝑥+2𝑧 = 𝑥 2 2𝑥 ⇒ 𝑧 𝑥+2𝑧 = 1 4
  • 56. ⇒ 𝑧 𝑥+2𝑧 = 1 4 ⇒ 4𝑧 = 𝑥 + 2𝑧 ⇒ 4𝑧 − 2𝑧 = 𝑥 ⇒ 2𝑧 = 𝑥 ⇒ 𝑧 = 𝑥 2 ------- (7) Given surface area 𝑥𝑦 + 2𝑥𝑧 + 2𝑦𝑧 = 432 Using (6) & (7), 𝑥. 𝑥 + 2𝑥. 𝑥 2 + 2𝑥. 𝑥 2 = 432 ⇒ 𝑥2 + 𝑥2 + 𝑥2 = 432 ⇒ 3𝑥2 = 432 ⇒ 𝑥2 = 432 3 ⇒ 𝑥2 = 144 ⇒ 𝑥 = ± 144 ⇒ 𝑥 = ±12 (since 𝑥 is the length , 𝑥 = −12 is not possible ) Hence 𝑥 = 12 , 𝑦 = 𝑥 = 12 , & 𝑧 = 𝑥 2 = 12 2 = 6 The required dimension for maximum capacity is 𝑥 = 12 , 𝑦 = 12 & 𝑧 = 6
  • 57. Problem 4: Find the minimum distance from the point (𝟏, 𝟐, 𝟎) to the cone 𝒛 𝟐 = 𝒙 𝟐 + 𝒚 𝟐 Solution: Wkt, the square of the distance (𝑑2 ) from the point (1, 2, 0) to (𝑥, 𝑦, 𝑧) is 𝑥 − 1 2 + 𝑦 − 2 2 + 𝑧 − 0 2 = 𝑥 − 1 2 + 𝑦 − 2 2 + 𝑧2 Let 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 − 1 2 + 𝑦 − 2 2 + 𝑧2 --------- (1) Subject to 𝑧2 = 𝑥2 + 𝑦2 ⇒ 𝑧2 − 𝑥2 − 𝑦2 = 0 Let ∅ 𝑥, 𝑦, 𝑧 = 𝑧2 − 𝑥2 − 𝑦2 ---------- (2) Consider the Lagrangian function 𝐹 = 𝑓 + 𝜆𝜙 𝐹 = 𝑥 − 1 2 + 𝑦 − 2 2 + 𝑧2 + 𝜆(𝑧2 − 𝑥2 − 𝑦2) 𝜕F 𝜕x = 2 x − 1 − λ(2x) 𝜕F 𝜕y = 2 y − 2 − λ(2y) 𝜕F 𝜕z = 2z + λ 2z = 2z(1 + λ)
  • 58. To find the stationary points: Put 𝜕F 𝜕𝑥 = 0, 𝜕F 𝜕𝑦 = 0 & 𝜕F 𝜕𝑧 = 0 𝜕𝐹 𝜕𝑥 = 0 ⟹ 2 𝑥 − 1 − 𝜆 2𝑥 = 0 ⟹ 2𝜆𝑥 = 2 𝑥 − 1 ⟹ 𝜆 = (𝑥−1) 𝑥 ------ (3) 𝜕F 𝜕𝑦 = 0 ⟹ 2 𝑦 − 2 − 𝜆 2𝑦 = 0 ⟹ 2𝜆𝑦 = 2 𝑦 − 2 ⟹ 𝜆 = (𝑦−2) 𝑦 ------ (4) 𝜕F 𝜕𝑧 = 0 ⟹ 2𝑧(1 + 𝜆) = 0 ----- (5) 5 ⟹ 𝑧 = 0 𝑜𝑟 1 + 𝜆 = 0 ⟹ 𝑧 = 0 𝑜𝑟 𝜆 = −1 Suppose 𝑧 = 0, Since 𝑥2 + 𝑦2 = 𝑧2 ⇒ 𝑥2 + 𝑦2 = 0 ⇒ 𝑥 = 0 & 𝑦 = 0 , this is not possible. Hence 𝜆 = −1
  • 59. From (3) , -1= (𝑥−1) 𝑥 ⇒ −𝑥 = 𝑥 − 1 ⇒ −𝑥 − 𝑥 = −1 ⇒ −2𝑥 = −1 ⇒ 2𝑥 = 1 ⇒ 𝑥 = 1 2 From(4), −1 = 𝑦−2 𝑦 ⇒ −𝑦 = 𝑦 − 2 ⇒ −𝑦 − 𝑦 = −2 ⇒ −2𝑦 = −2 ⇒ 𝑦 = 1 Since 𝑥2 + 𝑦2 = 𝑧2 Substitute 𝑥 = 1 2 , 𝑦 = 1 𝑧2 = 1 2 2 + 1 2 = 1 4 + 1 = 1+4 4 = 5 4 ⇒ 𝑧 = ± 5 4 = ± 5 2 Hence , 𝑥 = 1 2 , 𝑦 = 1 , 𝑧 = ± 5 2 The square distance (𝑑2) is 𝑥 − 1 2 + 𝑦 − 2 2 + 𝑧2 = 1 2 − 1 2 + 1 − 2 2 + 5 2 2 = − 1 2 2 + −1 2 + 5 4 = 1 4 + 1 + 5 4 = 1+4+5 4 = 10 4 = 5 2 The minimum distance (𝑑) = 5 2
  • 60. Jacobian • If 𝑢 = 𝑓(𝑥, 𝑦) and 𝑣 = 𝑔(𝑥, 𝑦) are two continuous functions of two independent variables x and y then the functional determinant 𝐽 = 𝜕𝑢 𝜕𝑥 𝜕𝑢 𝜕𝑦 𝜕𝑣 𝜕𝑥 𝜕𝑣 𝜕𝑦 = 𝑢 𝑥 𝑢 𝑦 𝑣 𝑥 𝑣 𝑦 is called Jacobian of 𝑢 , 𝑣 with respect to 𝑥, 𝑦 and it is denoted by 𝜕 𝑢,𝑣 𝜕 𝑥,𝑦 • If u , v, w are functions of x ,y , z then jacobian of u , v , w with respect to x , y , z is given by 𝜕 𝑢,𝑣,𝑤 𝜕 𝑥,𝑦,𝑧 = 𝜕𝑢 𝜕𝑥 𝜕𝑢 𝜕𝑦 𝜕𝑢 𝜕𝑧 𝜕𝑣 𝜕𝑥 𝜕𝑣 𝜕𝑦 𝜕𝑣 𝜕𝑧 𝜕𝑤 𝜕𝑥 𝜕𝑤 𝜕𝑦 𝜕𝑤 𝜕𝑧 = 𝑢 𝑥 𝑢 𝑦 𝑢 𝑧 𝑣 𝑥 𝑣 𝑦 𝑣𝑧 𝑤 𝑥 𝑤 𝑦 𝑤𝑧
  • 61. Two important Properties of Jacobian 1. If 𝑢, 𝑣 are functions of 𝑥, 𝑦 and 𝑥, 𝑦 are the function of 𝑟, 𝑠 then 𝜕 𝑢,𝑣 𝜕 𝑟,𝑠 = 𝜕 𝑢,𝑣 𝜕 𝑥,𝑦 𝜕 𝑥,𝑦 𝜕 𝑟,𝑠 2. If 𝑢, 𝑣 are the functions of 𝑥, 𝑦 then 𝜕 𝑥,𝑦 𝜕 𝑢,𝑣 = 1 𝜕 𝑢,𝑣 𝜕 𝑥,𝑦 Note : Two functions 𝑢(𝑥, 𝑦) & 𝑣(𝑥, 𝑦) are functionally depended if 𝜕 𝑢,𝑣 𝜕 𝑥,𝑦 =0
  • 62. Problem 1: If 𝒖 = 𝒚𝒛 𝒙 , 𝒗 = 𝒛𝒙 𝒚 , 𝒘 = 𝒙𝒚 𝒛 find 𝝏 𝒖,𝒗,𝒘 𝝏 𝒙,𝒚,𝒛 Solution: Wkt, the jacobian of 𝑢, 𝑣, 𝑤 with respect to 𝑥, 𝑦, 𝑧 is given by 𝜕 𝑢,𝑣,𝑤 𝜕 𝑥,𝑦,𝑧 = 𝑢 𝑥 𝑢 𝑦 𝑢 𝑧 𝑣 𝑥 𝑣 𝑦 𝑣𝑧 𝑤 𝑥 𝑤 𝑦 𝑤𝑧 Given 𝑢 = 𝑦𝑧 𝑥 , 𝑣 = 𝑧𝑥 𝑦 , 𝑤 = 𝑥𝑦 𝑧
  • 63.
  • 64. 𝜕 𝑢,𝑣,𝑤 𝜕 𝑥,𝑦,𝑧 = 𝑢 𝑥 𝑢 𝑦 𝑢 𝑧 𝑣 𝑥 𝑣 𝑦 𝑣𝑧 𝑤 𝑥 𝑤 𝑦 𝑤𝑧 = − 𝑦𝑧 𝑥2 𝑧 𝑥 𝑦 𝑥 𝑧 𝑦 − 𝑧𝑥 𝑦2 𝑥 𝑦 𝑦 𝑧 𝑥 𝑧 − 𝑥𝑦 𝑧2 = 1 𝑥 1 𝑦 1 𝑧 − 𝑦𝑧 𝑥 𝑧 𝑦 𝑧 − 𝑧𝑥 𝑦 𝑥 𝑦 𝑥 − 𝑥𝑦 𝑧 = 1 𝑥𝑦𝑧 − 𝑦𝑧 𝑥 − 𝑧𝑥 𝑦 − 𝑥𝑦 𝑧 − 𝑥2 − 𝑧 𝑧 − 𝑥𝑦 𝑧 − 𝑦𝑥 + 𝑦 𝑧𝑥 − − 𝑧𝑥 𝑦 𝑦 = 1 𝑥𝑦𝑧 [ − 𝑦𝑧 𝑥 𝑥2 − 𝑥2 − 𝑧 −𝑥𝑦 − 𝑥𝑦 + 𝑦 𝑧𝑥 + 𝑧𝑥 ] = 1 𝑥𝑦𝑧 − 𝑦𝑧 𝑥 0 − 𝑧 −2𝑥𝑦 + 𝑦 2𝑧𝑥 = 1 𝑥𝑦𝑧 2𝑥𝑦𝑧 + 2𝑥𝑦𝑧 = 4𝑥𝑦𝑧 𝑥𝑦𝑧 = 4
  • 65. Problem 2: If 𝒙 = 𝒖 𝟐 – 𝒗 𝟐 , 𝒚 = 𝟐𝒖𝒗 find the Jacobian of 𝒙, 𝒚 with respect to 𝒖 𝒂𝒏𝒅 𝒗 Solution: Given 𝑥 = 𝑢2 – 𝑣2 , 𝑦 = 2𝑢𝑣 To find the jacobian of 𝑥, 𝑦 w . r. to 𝑢 & 𝑣 To find 𝜕 𝑥,𝑦 𝜕 𝑢,𝑣 = 𝑥 𝑢 𝑥 𝑣 𝑦 𝑢 𝑦𝑣 𝑥 = 𝑢2 – 𝑣2 𝑦 = 2𝑢𝑣 𝑥 𝑢 = 2𝑢 𝑦𝑢 = 2𝑣 𝑥 𝑣 = −2𝑣 𝑦𝑣 = 2𝑢
  • 66. 𝜕 𝑥,𝑦 𝜕 𝑢,𝑣 = 𝑥 𝑢 𝑥 𝑣 𝑦 𝑢 𝑦𝑣 = 2𝑢 −2𝑣 −2𝑣 2𝑢 = 4𝑢2 − 4𝑣2 = 4 𝑢2 − 𝑣2 Problem 3: If 𝒙 = 𝒖𝒗 𝒂𝒏𝒅 𝒚 = 𝒖 𝒗 , then find 𝝏 𝒙,𝒚 𝝏 𝒖,𝒗 Solution: Given 𝑥 = 𝑢𝑣 𝑎𝑛𝑑 𝑦 = 𝑢 𝑣 𝑥 = 𝑢𝑣 𝑦 = 𝑢 𝑣 𝑥 𝑢 = 𝑣 𝑦𝑢 = 1 𝑣 𝑥 𝑣 = 𝑢 𝑦𝑣 = − 𝑢 𝑣2
  • 67. 𝜕 𝑥,𝑦 𝜕 𝑢,𝑣 = 𝑥 𝑢 𝑥 𝑣 𝑦 𝑢 𝑦𝑣 = 𝑣 𝑢 1 𝑣 − 𝑢 𝑣2 = 𝑣 𝑢 𝑣2 − 1 𝑣 𝑢 = 𝑢 𝑣 − 𝑢 𝑣 = 0 Problem 4: If 𝒙 = 𝒓 𝐜𝐨𝐬 𝜽 and 𝒚 = 𝒓 𝐬𝐢𝐧 𝜽 then find 𝝏𝒓 𝝏𝒙 Solution: Given 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃 𝑥2 + 𝑦2 = 𝑟2 cos2 𝜃 + 𝑟2 sin2 𝜃 = 𝑟2(cos2 𝜃 + sin2 𝜃) = 𝑟2 ∴ 𝑟2 = 𝑥2 + 𝑦2 2𝑟 𝜕𝑟 𝜕𝑥 = 2𝑥 ⟹ 𝜕𝑟 𝜕𝑥 = 2𝑥 2𝑟 = 𝑥 𝑟 = 𝑥 𝑥2+𝑦2 , ∵ 𝑟 = 𝑥2 + 𝑦2
  • 68. Problem 5: If 𝒙 = 𝒖 (𝟏 – 𝒗) and 𝒚 = 𝒖𝒗, find 𝝏 𝒖,𝒗 𝝏 𝒙,𝒚 Solution: Given 𝑥 = 𝑢 (1 – 𝑣) and 𝑦 = 𝑢𝑣 𝑖. 𝑒 𝑥 = 𝑢 − 𝑢𝑣 and 𝑦 = 𝑢𝑣 Wkt 𝜕 𝑢,𝑣 𝜕 𝑥,𝑦 = 1 𝜕 𝑥,𝑦 𝜕 𝑢,𝑣 Now 𝜕 𝑥,𝑦 𝜕 𝑢,𝑣 = 𝑥 𝑢 𝑥 𝑣 𝑦 𝑢 𝑦𝑣 𝑥 = 𝑢 − 𝑢𝑣 𝑦 = 𝑢𝑣 𝑥 𝑢 = 1 − 𝑣 𝑦𝑢 = 𝑣 𝑥 𝑣 = −𝑢 𝑦𝑣 = 𝑢
  • 69. 𝜕 𝑥,𝑦 𝜕 𝑢,𝑣 = 𝑥 𝑢 𝑥 𝑣 𝑦 𝑢 𝑦𝑣 = 1 − 𝑣 −𝑢 𝑣 𝑢 = 1 − 𝑣 𝑢 + 𝑢𝑣 = 𝑢 − 𝑢𝑣 + 𝑢𝑣 = 𝑢 Hence 𝜕 𝑢,𝑣 𝜕 𝑥,𝑦 = 1 𝜕 𝑥,𝑦 𝜕 𝑢,𝑣 = 1 𝑢 Problem 6: If 𝒙 = 𝒓 𝒄𝒐𝒔𝜽 𝒚 = 𝒓 𝐬𝐢𝐧 𝜽 then find 𝝏 𝒓,𝜽 𝝏 𝒙,𝒚 Solution: Given 𝑥 = 𝑟 𝑐𝑜𝑠𝜃 𝑦 = 𝑟 sin 𝜃 Wkt, 𝜕 𝑥,𝑦 𝜕 𝑟,𝜃 = 𝑥 𝑟 𝑥 𝜃 𝑦𝑟 𝑦 𝜃
  • 70. 𝑥 = 𝑟 𝑐𝑜𝑠𝜃 𝑦 = 𝑟 𝑠𝑖𝑛𝜃 𝑥 𝑟 = 𝑐𝑜𝑠𝜃 𝑦𝑟 = 𝑠𝑖𝑛𝜃 𝑥 𝜃 = −𝑟𝑠𝑖𝑛𝜃 𝑦 𝜃 = 𝑟 𝑐𝑜𝑠𝜃 𝜕 𝑥,𝑦 𝜕 𝑟,𝜃 = 𝑥 𝑟 𝑥 𝜃 𝑦𝑟 𝑦 𝜃 = 𝑐𝑜𝑠𝜃 −𝑟𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜃 𝑟 𝑐𝑜𝑠𝜃 = 𝑟 cos2 𝜃 + 𝑟𝑠𝑖𝑛2 𝜃 = 𝑟 (cos2 𝜃 + sin2 𝜃) = 𝑟 𝜕 𝑟,𝜃 𝜕 𝑥,𝑦 = 1 𝜕 𝑥,𝑦 𝜕 𝑟,𝜃 = 1 𝑟
  • 71. Problem 7 If 𝒖 = 𝒙 + 𝒚 & 𝒚 = 𝒖𝒗, then find the jacobian 𝝏 𝒙,𝒚 𝝏 𝒖,𝒗 Solution: Given 𝑢 = 𝑥 + 𝑦 & 𝑦 = 𝑢𝑣 ⟹ 𝑢 = 𝑥 + 𝑢𝑣 ∵ 𝑦 = 𝑢𝑣 ⟹ 𝑥 = 𝑢 − 𝑢𝑣 & 𝑦 = 𝑢𝑣 Wkt, 𝜕 𝑥,𝑦 𝜕 𝑢,𝑣 = 𝑥 𝑢 𝑥 𝑣 𝑦 𝑢 𝑦𝑣 𝑥 = 𝑢 − 𝑢𝑣 𝑦 = 𝑢𝑣 𝑥 𝑢 = 1 − 𝑣 𝑦𝑢 = 𝑣 𝑥 𝑣 = −𝑢 𝑦𝑣 = 𝑢
  • 72. 𝜕 𝑥,𝑦 𝜕 𝑢,𝑣 = 𝑥 𝑢 𝑥 𝑣 𝑦𝑢 𝑦𝑣 = 1 − 𝑣 −𝑢 𝑣 𝑢 = 1 − 𝑣 𝑢 + 𝑢𝑣 = 𝑢 − 𝑢𝑣 + 𝑢𝑣 = 𝑢 Note : Implicit vs Explicit Explicit: "y = some function of x". When we know x we can calculate y directly. An explicit function is one which is given in terms of the independent variable. Example , consider 𝑦 = 𝑥2 + 3𝑥 – 8 here y is the dependent variable and is given in terms of the independent variable x. More Examples : 𝑦 = 𝑥 + 3 , 𝑦 = 𝑥2 − 𝑟2 𝑒𝑡𝑐., Implicit: "some function of y and x equals something else". Implicit functions, on the other hand, are usually given in terms of both dependent and independent variables. Example, consider 𝑦 + 𝑥2 − 3𝑥 + 8 = 0 More Examples: 𝑥2 + 𝑦2 = 𝑎2 , 𝑥3 + 𝑥𝑦2 + 4𝑥 = 5, 𝑒𝑡𝑐. ,
  • 73. Differentiation of implicit functions If 𝑓(𝑥, 𝑦 ) is the given implicit function , then 𝑑𝑦 𝑑𝑥 = − 𝜕𝑓 𝜕𝑥 𝜕𝑓 𝜕𝑦 Producer to find the differentiation: (i) Take 𝑓(𝑥, 𝑦) (ii) Find 𝜕𝑓 𝜕𝑥 & 𝜕𝑓 𝜕𝑦 (iii) Find 𝑑𝑦 𝑑𝑥 = − 𝜕𝑓 𝜕𝑥 𝜕𝑓 𝜕𝑦 Problem 1: If 𝒙 𝒚 + 𝒚 𝒙 = 𝒄, then find 𝒅𝒚 𝒅𝒙 Solution: Given 𝑥 𝑦 + 𝑦 𝑥 = 𝑐 ⟹ 𝑥 𝑦 + 𝑦 𝑥 − 𝑐 = 0 Take 𝑓 𝑥, 𝑦 = 𝑥 𝑦 + 𝑦 𝑥 − 𝑐
  • 74. Now 𝜕𝑓 𝜕𝑥 = 𝜕 𝜕𝑥 𝑥 𝑦 + 𝑦 𝑥 − 𝑐 = 𝜕 𝜕𝑥 𝑥 𝑦 + 𝜕 𝜕𝑥 𝑦 𝑥 − 𝜕 𝜕𝑥 (𝑐) = 𝑦𝑥 𝑦−1 + 𝑦 𝑥 log 𝑦 − 0 , (∵ 𝑑 𝑑𝑥 𝑥 𝑛 = 𝑛𝑥 𝑛−1 & 𝑑 𝑑𝑥 𝑎 𝑥 = 𝑎 𝑥 log 𝑎 ) 𝜕𝑓 𝜕𝑥 = 𝑦𝑥 𝑦−1 + 𝑦 𝑥 log 𝑦 Now 𝜕𝑓 𝜕𝑦 = 𝜕 𝜕𝑦 𝑥 𝑦 + 𝑦 𝑥 − 𝑐 = 𝜕 𝜕𝑦 𝑥 𝑦 + 𝜕 𝜕𝑦 𝑦 𝑥 − 𝜕 𝜕𝑦 (𝑐) = 𝑥 𝑦 log 𝑥 + 𝑥 𝑦 𝑥−1 − 0 𝜕𝑓 𝜕𝑦 = 𝑥 𝑦 log 𝑥 + 𝑥 𝑦 𝑥−1 Wkt 𝑑𝑦 𝑑𝑥 = − 𝜕𝑓 𝜕𝑥 𝜕𝑓 𝜕𝑦 = − 𝑦𝑥 𝑦−1 +𝑦 𝑥 log 𝑦 𝑥 𝑦 log 𝑥+𝑥 𝑦 𝑥−1