Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
Builder Design Pattern
Generic Construction - Different Representation
Sameer Singh Rathoud
About presentation
This presentation provide information to understand builder design pattern, it’s
structure, it’s implem...
Definition
Separate the construction of complex object from its representation, such that

same construction process can b...
Motivation and Intent
At times, application contains complex objects and these complex objects are
made of other objects. ...
Structure
Director
Construct()

Builder.Buildpart()

builder

<< interface >>
Builder

<< interface >>
Product

BuildPart(...
Participants in structure
• Director: Construct a object using Builder interface. Client interacts with the Director.
• Bu...
Participants in structure continue …
• ConcreteBuilder (Concrete BuilderA and Concrete BuilderB): Provides implementation ...
Collaborations
• The client creates the Director object and configures it with the desired Builder object.
• Director noti...
Implementation (C#)
Product (Interface)
public abstract class Vehicle {
private string mEngine;
public string Engine {
get...
Implementation (C#)
ConcreteProduct
class Car : Vehicle {
public override void Drive() {
System.Console.WriteLine("Drive C...
Implementation (C#)
Builder (interface)
public abstract class VehicleBuilder {
protected Vehicle vehicle;

public abstract...
Implementation (C#)
ConcreteBuilder
class CarBuilder : VehicleBuilder {
public CarBuilder() {
vehicle = new Car();
}
publi...
Implementation (C#)
ConcreteBuilder
class TruckBuilder : VehicleBuilder {
public TruckBuilder() {
vehicle = new Truck();
}...
Implementation (C#)
Director
class VehicleMaker {
private VehicleBuilder vehicleBuilder;
public VehicleMaker(VehicleBuilde...
Implementation (C#)
Client
class Client {
static void Main(string[] args) {
VehicleBuilder carBuilder = new CarBuilder();
...
End of Presentation . . .
Nächste SlideShare
Wird geladen in …5
×

Builder Design Pattern (Generic Construction -Different Representation)

3.411 Aufrufe

Veröffentlicht am

Generic Construction -Different Representation
This presentation provide information to understand builder design pattern, it’s structure, it’s implementation.

Veröffentlicht in: Technologie
  • Loggen Sie sich ein, um Kommentare anzuzeigen.

Builder Design Pattern (Generic Construction -Different Representation)

  1. 1. Builder Design Pattern Generic Construction - Different Representation Sameer Singh Rathoud
  2. 2. About presentation This presentation provide information to understand builder design pattern, it’s structure, it’s implementation. I have tried my best to explain the concept in very simple language. The programming language used for implementation is c#. But any one from different programming background can easily understand the implementation.
  3. 3. Definition Separate the construction of complex object from its representation, such that same construction process can be used to build different representation. Builder pattern is a creational design pattern.
  4. 4. Motivation and Intent At times, application contains complex objects and these complex objects are made of other objects. Such application requires a generic mechanism to build these complex object and related objects. • Separate the construction of complex object from its representation. • Same construction process is used to create different representation.
  5. 5. Structure Director Construct() Builder.Buildpart() builder << interface >> Builder << interface >> Product BuildPart() Inheritance Concrete BuilderA Concrete BuilderB BuildPart() BuildPart() GetProduct() GetProduct() Inheritance Concrete ProductA Concrete ProductB
  6. 6. Participants in structure • Director: Construct a object using Builder interface. Client interacts with the Director. • Builder (interface): Provides an abstract interface for creating parts of the Product object. • Product (interface): Provides an interface for Product family.
  7. 7. Participants in structure continue … • ConcreteBuilder (Concrete BuilderA and Concrete BuilderB): Provides implementation to Builder interface • Construct and assembles parts of the Product object. • Define and keeps track of representation it creates. • Provide an interface for retrieving the Product object (GetProduct()). • ConcreteProduct (Concrete ProductA and Concrete ProductB): Implements Product interface. • Represents the complex object under construction. ConcreteBuilder builds the product's internal representation and defines the process by which it's assembled. • Includes classes that define the constituent parts, including interfaces for assembling the parts into the final result.
  8. 8. Collaborations • The client creates the Director object and configures it with the desired Builder object. • Director notifies the builder whenever a part of the product should be built. • Builder handles requests from the director and adds parts to the product. • The client retrieves the product from the builder/Director. Client new Concrete Builder Director Concrete Builder new Director(Concrete Builder) Construct() BuildPart1() BuildPart2() BuildPart3() GetResult()
  9. 9. Implementation (C#) Product (Interface) public abstract class Vehicle { private string mEngine; public string Engine { get { return mEngine; } set { mEngine = value; } } private string mInterior; public string Interior { get { return mInterior; } set { mInterior = value; } } public abstract void Drive(); private string mBrakingSystem; } public string BrakingSystem { get { return mBrakingSystem; } set { mBrakingSystem = value; } } private string mBody; public string Body { get { return mBody; } set { mBody = value; } } Here “Vehicle” is an abstract class with some “properties” and abstract method “Drive”. Now all the concrete classes implementing this abstract class will inherit these properties and will override “Drive” method. << interface >> Product - mEngine (string) + Engine { get set } - mBody (string) + Body { get set } - mBrakingSystem (string) + BrakingSystem { get set } + Drive () - mInterior (string) + Interior { get set }
  10. 10. Implementation (C#) ConcreteProduct class Car : Vehicle { public override void Drive() { System.Console.WriteLine("Drive Car"); } } class Truck : Vehicle { public override void Drive() { System.Console.WriteLine("Drive Truck"); } } Here the concrete classes “Car” and “Truck” are implementing abstract class “Vehicle” and these concrete classes are inheriting the properties and overriding method “Drive” (giving class specific definition of function) of “Vehicle” class. << interface >> Product - mEngine (string) + Engine { get set } - mBody (string) + Body { get set } - mBrakingSystem (string) + BrakingSystem { get set } - mInterior (string) + Interior { get set } + Drive () Car Truck Drive () Drive ()
  11. 11. Implementation (C#) Builder (interface) public abstract class VehicleBuilder { protected Vehicle vehicle; public abstract void public abstract void public abstract void public abstract void BuildEngine(); BuildBrakingSystem(); BuildBody(); BuildInterior(); public Vehicle GetVehicle() { return vehicle; } } Here “VehicleBuilder” is an abstract builder class having the reference of “Vehicle” object, few abstract methods for setting the properties of “Vehicle” and method for returning the fully constructed “Vehicle” object. Here this “VehicleBuilder” class is also responsible for assembling the entire “Vehicle” object. << interface >> VehicleBuilder - vehicle (Vehicle) + BuildEngine () + BuildBody () + BuildBrakingSystem () + BuildInterior () + GetVehicle ()
  12. 12. Implementation (C#) ConcreteBuilder class CarBuilder : VehicleBuilder { public CarBuilder() { vehicle = new Car(); } public override void BuildEngine() { vehicle.Engine = "Car Engine"; } public override void BuildBrakingSystem() { vehicle.BrakingSystem = "Car Braking System"; } public override void BuildBody() { vehicle.Body = "Car Body"; } public override void BuildInterior() { vehicle.Interior = "Car Interior"; } } Here “CarBuilder” is a concrete class implementing “VehicleBuilder” class. In the constructor of “CarBuilder”, “Car” object is assigned to the reference of “Vehicle” and class “CarBuilder” overrides the abstract methods defined in “Vehicle” class. << interface >> VehicleBuilder - vehicle (Vehicle) + BuildEngine () + BuildBody () + BuildBrakingSystem () + BuildInterior () + GetVehicle () CarBuilder + BuildEngine () + BuildBrakingSystem () + BuildBody () + BuildInterior ()
  13. 13. Implementation (C#) ConcreteBuilder class TruckBuilder : VehicleBuilder { public TruckBuilder() { vehicle = new Truck(); } public override void BuildEngine() { vehicle.Engine = "Truck Engine"; } public override void BuildBrakingSystem() { vehicle.BrakingSystem = "Truck Braking System"; } public override void BuildBody() { vehicle.Body = "Truck Body"; } public override void BuildInterior() { vehicle.Interior = "Truck Interior"; } } Here “TruckBuilder” is another concrete class implementing “VehicleBuilder” class. In the constructor of “TruckBuilder”, “Truck” object is assigned to the reference of “Vehicle” and class “TruckBuilder” overrides the abstract methods defined in “Vehicle” class. << interface >> VehicleBuilder - vehicle (Vehicle) + BuildEngine () + BuildBody () + BuildBrakingSystem () + BuildInterior () + GetVehicle () TruckBuilder + BuildEngine () + BuildBrakingSystem () + BuildBody () + BuildInterior ()
  14. 14. Implementation (C#) Director class VehicleMaker { private VehicleBuilder vehicleBuilder; public VehicleMaker(VehicleBuilder builder) { vehicleBuilder = builder; } public void BuildVehicle() { vehicleBuilder.BuildEngine(); vehicleBuilder.BuildBrakingSystem(); vehicleBuilder.BuildBody(); vehicleBuilder.BuildInterior(); } Here “VehicleMaker” is a class acting as “Director” for builder pattern. This class will have a reference of “VehicleBuilder”. In the constructor of “VehicleMaker” appropriate builder will get assigned to the reference of “VehicleBuilder”. Additionally this class implements “BuildVehicle” and “GetVehicle” methods. “BuildVehicle” will create the different parts of the vehicle and “GetVehicle” will return the fully constructed “Vehicle” object by calling the “VehicleBuilder.GetVehicle” method. public Vehicle GetVehicle() { return vehicleBuilder.GetVehicle(); } VehicleMaker } + BuildVehicle () + GetVehicle ()
  15. 15. Implementation (C#) Client class Client { static void Main(string[] args) { VehicleBuilder carBuilder = new CarBuilder(); VehicleMaker maker1 = new VehicleMaker(carBuilder); maker1.BuildVehicle(); Vehicle car = carBuilder.GetVehicle(); car.Drive(); VehicleBuilder truckBuilder = new TruckBuilder(); VehicleMaker maker2 = new VehicleMaker(truckBuilder); maker2.BuildVehicle(); Vehicle truck = truckBuilder.GetVehicle(); truck.Drive(); } } For using this builder pattern the client has to create a required “VehicleBuilder” object and a “VehicleMaker” object, pass the created object of “VehicleBuilder” to the constructor of “VehicleMaker”. Call the “BuildVehicle” from “VehicleMaker” object (this call will create the “Vehicle” and assemble it) and we will get the constructed “Vehicle” by calling the “GetVehicle” from “VehicleBuilder” object.
  16. 16. End of Presentation . . .

×