SlideShare ist ein Scribd-Unternehmen logo
1 von 36
Optimizing quality characteristics
of 3D printer using six sigma
methodology
Submitted by
Shiva Teja Sepuri
Abbas Sayed
Advisor- Dr. Joseph Chen
Department of IMET
Introduction:
 3D printing or additive manufacturing is
a process of making three dimensional
solid objects from a digital file.
 The creation of a 3D printed object is
achieved using additive processes.
 In an additive process an object is
created by laying down successive
layers of material until the entire object
is created.
 Each of these layers can be seen as a
thinly sliced horizontal cross-section of
the eventual object.
Key Parameters:
• Infill Percentage
• Extruder Speed
• Build Platform Temperature
• Extruder Temperature
• Filament-Maker bot PLA
• No of layers
• No of Shells
Working:
 This virtual design is made in a CAD file using a 3D
modeling program.
 A 3D scanner makes a 3D digital copy of an object.
 Not all 3D printers use the same technology. There are several ways to
print and all those available are additive, differing mainly in the way
layers are build to create the final object.
 Some methods use melting or softening material to produce the layers.
Selective laser sintering (SLS) and fused deposition modeling (FDM)
are the most common technologies using this way of printing.
 Another method of printing is when we talk about curing a photo-
reactive resin with a UV laser or another similar power source one layer
at a time. The most common technology using this method is called
stereolithography (SLA).
Company Overview:
 Shape ways is a 3D printing company, located in Chicago, IL.
 It servers its ever growing customer base from 60,000 units
production capacity facility, and focuses on complex industrial
and plastic components
DEFINE:
Problem statement
CTQ &CTP
Goal statement:
Improve the part Tensile strength to meet the customer’s requirement
Y=F(x1,x2,x3,x4,x5,x6…)
Y=Yield Strength
X1=Material Infill percentage %
X2=Number of shells
X3=Build Platform Temperature °C
X4=Extruder Temperature °C
X5=Raw material type
X6=Layer height mm
Oppurtunity statement:
 Shape ways products are currently experiencing significant quality issues,
which is negatively impacting customer satisfaction. For the year of 2016,
the cost of poor quality is $135,000. The Plastic Rod failed because of the
low strength. So improving the strength of the rod represents a large
opportunity to increase customer satisfaction and reduce the cost
• Cp = 0.73
• Cpk = 0.49
• USL= 5300psi
• LSL = 4500psi
CTQ & CTP- Based on customer needs
Need (VOC) Drivers CTQs/CTCs CTPs
Part with required
specifications
Type of material
Product Quality surface roughness
Layer height (mm)
Infill rate (%)
Number of shells (°C)
Dimensions
Temperature of
extruder(°C)
Tensile Strength Level of plate(°)
Delivery Average order delivery time
Order process time(s)
Order handling time(s)
Order delivery time(s)
Cycle time nozzle speed (mm/sec)
Cost Selling Price
Material Cost($)
Process Cost($)
Packaging Cost ($)
Shipping Cost ($)
MEASURE:
SIPOC
Gauge R&R
Process capability
SIPOC:
Gauge r&r- Gauge Repeatability and Reproducibility
 Equipment Variation (EV)=
0.00092
EV = ( R Avg) (K1)
 Appraiser Variation
(AV)=8.726*E^-5
AV = SQRT[ (Diff Max-Min)(K2)]²
-[(EV)² / (n x r)]
 R & R = 0.00093
R&R = SQR((EV) ²+ (AV)²)
 Part Variation (PV) =0.00020
PV = (Rp)*(K3)
 Total Variation (TV)=0.001
Calculations:
% 100[(EV)/(Total Variation)]
% EV= 97.23
% AV = 100 [ (AV) / (Total Variation)]
% AV=9.18
% R&R= SQRT( ( % EV) ²+ (% AV) ²)
% R&R=97.659
Collected data:
 The collected data for the base samples is as follows
Baseline Input Parameters:
• Infill % - 20%
• Extruder Speed -150mm/S
• Build Platform Temperature - 110°C
• Extruder Temperature - 240°C
• No. of shells -2
• Filament - Maker bot PLA in Red
• Fan power - 50% max power
Part 1 2 3 4 5 6 7 8 9 10 Mean St.dev
Tensile strength
(psi) 4777.084 4527.499 4724.934 4854.003 4493.467 4543.354 4501.850 4441.447 4509.883 4607.335 4598.086 139.128
Tensile Strength= (Max load) (psi)
Cross sectional Area
Cross sectional Area = Width*Thickness
(square inch)
Process capabilities:
Cp = (USL-LSL)/6σ
Cpk = Min{(usl-x.bar);(x.bar-lsl)}/3σ
Cp = 0.73
Cpk =0.49
On calculating,
USL= 5015.47 =5300psi
LSL = 4389.39 =4500psi
Nominal value =4900psi
ANALYZE:
C&E Matrix
FMEA
Fish bone diagram
C & E Matrix:
Fishbone diagram:
FMEA:
Analysis & results:
• Understand what can cause Modulus go wrong by Fishbone Study for six
categories
• Identify the key process input variables and key process output variables by
C & E Matrix Study
• Use process FMEA to prioritize the tasks
Target KPIV for improve stage:
• Infill%
• Number of Shells
• Extruder temperature deg.F
• Layer height mm
IMPROVE:
Using Taguchi technique and T-test
Input parameters
Levels
Designation variable Unit 1 2 3
Controllable factors
A Infill Rate (IR) % 20 30 40
B Number of Shells
(NS)
1 2 3
C Layer Height (LH) mm 0.1 0.2 0.3
D Extruded
Temperature (ET)
°F 230 240 250
Non-Controllable Factors
1 Ambient
Temperature (65-
75) °F
2 Ambient
Temperature
(76-85) °F
Output variable Tensile strength (psi)
Taguchi design:
N
Factor Ambient Temperature
Y-Bar
S/N
RatioA (IR) B (NS) C (LH) D (ET) (65-75)F (65-75)F (76-85)F (76-85)F
1 1(20) 1(1) 1(0.1) 1(230) y111 y112 y113 y114
2 1(20) 2(2) 2(0.2) 2(240) y211 y212 y213 y214
3 1((20) 3(3) 3(0.3) 3(250) y311 y312 y313 y314
4 2(30) 1(1) 2(0.2) 3(250) y411 y412 y413 y414
5 2(30) 2(2) 3(0.3) 1(230) y511 y512 y513 y514
6 2(30) 3(3) 1(0.1) 2(240) y611 y612 y613 y614
7 3(40) 1(1) 3(0.3) 2(240) y711 y712 y713 y714
8 3(40) 2(2) 1(0.1) 3(250) y811 y812 y813 y814
9 3(40) 3(3) 2(0.2) 1(230) y911 y912 y913 y914
Average:
Basic template used for Taguchi design
Taguchi design:
Customer requirement for strength: USL: 5300 psi
LSL: 4500 psi
Nominal Value: 4900psi
Quality:
N
Factor Ambient Temperature
Y-bar
S/N
A (IR) B (NS) C (LH) D (ET) (65-75)F (65-75)F (76-85)F (76-85)F Ratio
1 1(20) 1(1) 1(0.1) 1(230) 4778.95 4681.1 5000.17 4922.52 4845.7 31.132
2 1(20) 2(2) 2(0.2) 2(240) 4558.77 4441.13 4607.21 4734.39 4585.4 32.553
3 1((20) 3(3) 3(0.3) 3(250) 5354.52 5426.98 5416.25 5345.87 5385.9 41.85
4 2(30) 1(1) 2(0.2) 3(250) 4293.22 4287.46 4502.79 4501.56 4396.3 32.485
5 2(30) 2(2) 3(0.3) 1(230) 4817.84 4699.59 5156.44 5046.76 4930.2 27.848
6 2(30) 3(3) 1(0.1) 2(240) 5226.98 5946.31 5275.23 6020.67 5617.3 21.681
7 3(40) 1(1) 3(0.3) 2(240) 5962.6 5625.17 6299.33 5945.39 5958.1 25.438
8 3(40) 2(2) 1(0.1) 3(250) 4527.186 4872.37 4780.93 5122.33 4825.7 26.423
9 3(40) 3(3) 2(0.2) 1(230) 5774.94 5814.01 5795.39 5829.68 5803.5 46.761
Average 5149.8 31.797
Nominal-the-Better Equation: η = 10log(y-bar^2/s2)
Taguchi method- response variables
From collected data:
(Optima value)
A1B2C2D3 - 4067 psi
From S/N ratio:
(Optima value)
A1B3C2D1 - 5213 psi
Tensile Strength
Level A (IR) B (NS) C (LH) D (ET)
1 4939.0 5066.7 5096.2 5193.1
2 4981.2 4780.4 4928.4 5386.9
3 5529.1 5602.2 5424.7 4869.3
optima: 4067.732167
S/N Ratio
Level A (IR) B (NS) C (LH) D (ET)
1 35.18 29.68 26.41 35.25
2 27.34 28.94 37.27 26.56
3 32.87 36.76 31.71 33.59
optima: 5213.382833
Nominal Value: 4900psi
As, S/N ratio’s value is nearer to nominal value the respective parameters are
selected
Mean and s/n response figure:
0.00
5.00
10.00
15.00
20.00
25.00
30.00
35.00
40.00
4600.0
4700.0
4800.0
4900.0
5000.0
5100.0
5200.0
5300.0
5400.0
5500.0
5600.0
1 2 3
Tensilestrength(psi)
Mean and S/N ratio based on Factor A (Infill rate)
Tensile
Strength
S/N ratio
0.00
5.00
10.00
15.00
20.00
25.00
30.00
35.00
40.00
4200.0
4400.0
4600.0
4800.0
5000.0
5200.0
5400.0
5600.0
5800.0
1 2 3
TensileStrength(psi)
Mean and S/N ratio based on Factor B (Number of
shells)
Tensile
Strength
S/N ratio
0.00
5.00
10.00
15.00
20.00
25.00
30.00
35.00
40.00
4600.0
4700.0
4800.0
4900.0
5000.0
5100.0
5200.0
5300.0
5400.0
5500.0
1 2 3
TensileStrength(psi)
Mean and S/N ratio based on Factor C (Layer
Height)
Tensile
Strengt
h
S/N
ratio 0.00
5.00
10.00
15.00
20.00
25.00
30.00
35.00
40.00
4600.0
4700.0
4800.0
4900.0
5000.0
5100.0
5200.0
5300.0
5400.0
5500.0
1 2 3
TensileStrength(psi)
Mean and S/N ratio based on Factor D (Extruded
Temperature)
Tensile
Strength
S/N ratio
Infill rate (1=20%, 2=30%, 3=30%) Number of shells (1=1, 2=2, 3=3)
Layer Height (1=0.1mm, 2=0.2mm, 3=0.3mm) Extruded Temperature (1=230°F, 2=240°F, 3=250°F)
T test – Non-controllable factor analysis
 Average (high temperature) = 5239.051psi
 Average (low temperature) = 5060.507 psi
 Std.dev (high temperature) = 547.7732 psi
 Std.dev (low temperature) = 583.9924 psi
 T-stat = 0.9461 T (alpha=0.0.1, d.f=34) =2.75
Hypothesis for noise factor:
Conclusion:
H0: μAT (65-75) = μAT (76-85)
H1: μAT (65-75) ≠ μAT (76-85)
since t-stat=0.946 which is smaller
than the t(alpha=0.01, two tails)=2.75
we fail to reject H0 and this means no
significant difference between high
temperature and low temperature.
Optima results for input parameters:
A ( Infill rate ) 20%
B ( Number of shells) 3
C ( Layer height ) 0.2mm
D ( Extruded Temperature) 230 °F
Ambient Temperature: (65-75) °F
Confirmation run:
Part 1 2 3 4 5 6 7 8 9 10 Mean Std.dev
Tensile Strength
(psi) 4953.255025.2564878.4534998.6394834.0774923.857 4896.945089.3414987.5114947.2494953.457 75.1345
A ( Infill rate ) 20%
B ( Number of
shells)
3
C ( Layer height ) 0.2mm
D ( Extruded
Temperature)
230 °F
Cp 1.73
Cpk 1.5
CONTROL:
SPC chart
SPC-chart:
Takt Time of Shapeways:
 Annual demand for products per annum: 60,000 pieces
 Number of working days in a year: 250 days
 Daily Demand: 240 pieces
 Time available per working shift : 480 (8 hours)-30 mins(break time)= 450 minutes/ shift
 One shift working hours : 450 minutes/day
 Efficiency: 91%
 Total daily operating time: 450*0.91= 409 minutes/day
 Takt Time:
Total daily operating time
Total daily 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 requirement
= 409/240= 1.70 minutes per piece
 Number of machines needed : Cycle time / Takt Time
Calculations:
USL = 5300
LSL = 4400
Xbar = 4953.46
Std.dev = 75.13
At n=6,
d2 = 2.534
A2 = 0.483
D3 = 0
D4 = 2.004
Sigma = R-
bar/d2
R-bar= 190.39
X-bar bar chart:
UCL= X-bar+A2*R-bar = 5045.42
LCL = X-bar+A2*R-bar =4861.5
R-bar chart:
UCL = D4*R-bar =381.541
LCL = D3*R-bar = 0
Performance Improvement:
Base samples Conformation run Samples
Cost estimation:
 Product unit price = $3.
 Cost of poor quality per part =$9.
 Annual demand =60,000 pieces
 Annual defect rate =13,500 pieces
 Annual cost of poor quality =$121,500.
 Money saved on each machine = $5,000.
 Money saved on 2 machines = $10,000.
 Miscellaneous savings (power, maintenance, etc.) =$3,500.
 Total savings =$135,000.
Performance improvement -Overall
Baseline Process
 Production Capacity=60,000 Units
 Cycle Time= 23 Minutes
 D.p.M.O=226,627 (2.25 Sigma Level)
 Defects per year=13,500
 Number of machines used : Cycle Time/ Takt Time = 23 mins/ 1.70 mins = 14
Improved Process(Using Taguchi)
 Production Capacity=60,000 Units
 Cycle Time=19 Minutes
 D.P.M.O=72 (5.30 Sigma Level)
 Defects Per year= 5.4 units
 Number of machines used : Cycle Time/ Takt Time = 19 mins/ 1.70 mins = 12
 Estimated annual savings = $ 135,000
Questions?
Thank you!

Weitere ähnliche Inhalte

Was ist angesagt? (9)

2015, wbc, archila, h., measurement of the in plane shear moduli of bamboo-gu...
2015, wbc, archila, h., measurement of the in plane shear moduli of bamboo-gu...2015, wbc, archila, h., measurement of the in plane shear moduli of bamboo-gu...
2015, wbc, archila, h., measurement of the in plane shear moduli of bamboo-gu...
 
Capítulo 08 parafusos
Capítulo 08   parafusosCapítulo 08   parafusos
Capítulo 08 parafusos
 
B012420715
B012420715B012420715
B012420715
 
Solution manual-of-probability-statistics-for-engineers-scientists-9th-editio...
Solution manual-of-probability-statistics-for-engineers-scientists-9th-editio...Solution manual-of-probability-statistics-for-engineers-scientists-9th-editio...
Solution manual-of-probability-statistics-for-engineers-scientists-9th-editio...
 
0625 w09 qp_32
0625 w09 qp_320625 w09 qp_32
0625 w09 qp_32
 
Solutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th editionSolutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th edition
 
Capítulo 10 mola
Capítulo 10   molaCapítulo 10   mola
Capítulo 10 mola
 
Mechanical report
Mechanical reportMechanical report
Mechanical report
 
Mechanical report
Mechanical reportMechanical report
Mechanical report
 

Andere mochten auch

Andere mochten auch (10)

Teebotmax Open Source 3D printer
Teebotmax Open Source 3D printerTeebotmax Open Source 3D printer
Teebotmax Open Source 3D printer
 
La rivoluzione del fare impresa: creatività e digital fabrication per il calz...
La rivoluzione del fare impresa: creatività e digital fabrication per il calz...La rivoluzione del fare impresa: creatività e digital fabrication per il calz...
La rivoluzione del fare impresa: creatività e digital fabrication per il calz...
 
Boutique 3d - 3d é o nosso negócio.
Boutique 3d - 3d é o nosso negócio.Boutique 3d - 3d é o nosso negócio.
Boutique 3d - 3d é o nosso negócio.
 
Design e Stampa 3d - Tecnificio al Faberlab
Design e Stampa 3d - Tecnificio al Faberlab Design e Stampa 3d - Tecnificio al Faberlab
Design e Stampa 3d - Tecnificio al Faberlab
 
Impresoras 3D
Impresoras 3DImpresoras 3D
Impresoras 3D
 
Stampa 3D e responsabilità penale
Stampa 3D e responsabilità penaleStampa 3D e responsabilità penale
Stampa 3D e responsabilità penale
 
Stampa 3D e Regolazione del Piatto
Stampa 3D e Regolazione del PiattoStampa 3D e Regolazione del Piatto
Stampa 3D e Regolazione del Piatto
 
MakerBot Replicator 2x Primer
MakerBot Replicator 2x Primer MakerBot Replicator 2x Primer
MakerBot Replicator 2x Primer
 
Scanner 3D e Reverse Engineering
Scanner 3D e Reverse EngineeringScanner 3D e Reverse Engineering
Scanner 3D e Reverse Engineering
 
3D Print - a short introduction
3D Print - a short introduction 3D Print - a short introduction
3D Print - a short introduction
 

Ähnlich wie 3D final

Thermal modeling and management of cluster storage systems xunfei jiang 2014
Thermal modeling and management of cluster storage systems xunfei jiang 2014Thermal modeling and management of cluster storage systems xunfei jiang 2014
Thermal modeling and management of cluster storage systems xunfei jiang 2014
Xiao Qin
 
ME 273 FInal Slides
ME 273 FInal SlidesME 273 FInal Slides
ME 273 FInal Slides
adityamadhwa
 
33 residual stress simulation and experimental stress replication of mock up ...
33 residual stress simulation and experimental stress replication of mock up ...33 residual stress simulation and experimental stress replication of mock up ...
33 residual stress simulation and experimental stress replication of mock up ...
leann_mays
 
Final Presentation
Final PresentationFinal Presentation
Final Presentation
Ash Abel
 
Hibbeler - Mechanics of Materials 9th Edition c2014 txtbk bookmarked.pdf
Hibbeler - Mechanics of Materials 9th Edition c2014 txtbk bookmarked.pdfHibbeler - Mechanics of Materials 9th Edition c2014 txtbk bookmarked.pdf
Hibbeler - Mechanics of Materials 9th Edition c2014 txtbk bookmarked.pdf
TomCosta18
 

Ähnlich wie 3D final (20)

Sustainable Manufacturing: Optimization of single pass Turning machining oper...
Sustainable Manufacturing: Optimization of single pass Turning machining oper...Sustainable Manufacturing: Optimization of single pass Turning machining oper...
Sustainable Manufacturing: Optimization of single pass Turning machining oper...
 
NON LINEAR ANALYSIS OF STRUCTURAL STEEL I BEAM
NON LINEAR ANALYSIS OF STRUCTURAL STEEL I BEAMNON LINEAR ANALYSIS OF STRUCTURAL STEEL I BEAM
NON LINEAR ANALYSIS OF STRUCTURAL STEEL I BEAM
 
Soldering iron mr
Soldering iron mrSoldering iron mr
Soldering iron mr
 
HH4115
HH4115HH4115
HH4115
 
LexanHF1110R
LexanHF1110RLexanHF1110R
LexanHF1110R
 
Compact goniophotometer
Compact goniophotometerCompact goniophotometer
Compact goniophotometer
 
Compact goniophotometer
Compact goniophotometerCompact goniophotometer
Compact goniophotometer
 
Thermal modeling and management of cluster storage systems xunfei jiang 2014
Thermal modeling and management of cluster storage systems xunfei jiang 2014Thermal modeling and management of cluster storage systems xunfei jiang 2014
Thermal modeling and management of cluster storage systems xunfei jiang 2014
 
lexan copolymer SLX2271T
lexan copolymer SLX2271Tlexan copolymer SLX2271T
lexan copolymer SLX2271T
 
SLX2271T
SLX2271TSLX2271T
SLX2271T
 
ME 273 FInal Slides
ME 273 FInal SlidesME 273 FInal Slides
ME 273 FInal Slides
 
LEXAN121R
LEXAN121RLEXAN121R
LEXAN121R
 
33 residual stress simulation and experimental stress replication of mock up ...
33 residual stress simulation and experimental stress replication of mock up ...33 residual stress simulation and experimental stress replication of mock up ...
33 residual stress simulation and experimental stress replication of mock up ...
 
The Effect of Process Parameters on Surface Roughness in Face Milling
The Effect of Process Parameters on Surface Roughness in Face MillingThe Effect of Process Parameters on Surface Roughness in Face Milling
The Effect of Process Parameters on Surface Roughness in Face Milling
 
thermocomp D551
thermocomp D551thermocomp D551
thermocomp D551
 
Final Presentation
Final PresentationFinal Presentation
Final Presentation
 
06.09.2017 Computer Science, Machine Learning & Statistiks Meetup - MULTI-GPU...
06.09.2017 Computer Science, Machine Learning & Statistiks Meetup - MULTI-GPU...06.09.2017 Computer Science, Machine Learning & Statistiks Meetup - MULTI-GPU...
06.09.2017 Computer Science, Machine Learning & Statistiks Meetup - MULTI-GPU...
 
Hibbeler - Mechanics of Materials 9th Edition c2014 txtbk bookmarked.pdf
Hibbeler - Mechanics of Materials 9th Edition c2014 txtbk bookmarked.pdfHibbeler - Mechanics of Materials 9th Edition c2014 txtbk bookmarked.pdf
Hibbeler - Mechanics of Materials 9th Edition c2014 txtbk bookmarked.pdf
 
LexanHF1110R
LexanHF1110RLexanHF1110R
LexanHF1110R
 
thermocomp DC0041PQ
thermocomp DC0041PQthermocomp DC0041PQ
thermocomp DC0041PQ
 

3D final

  • 1. Optimizing quality characteristics of 3D printer using six sigma methodology Submitted by Shiva Teja Sepuri Abbas Sayed Advisor- Dr. Joseph Chen Department of IMET
  • 2. Introduction:  3D printing or additive manufacturing is a process of making three dimensional solid objects from a digital file.  The creation of a 3D printed object is achieved using additive processes.  In an additive process an object is created by laying down successive layers of material until the entire object is created.  Each of these layers can be seen as a thinly sliced horizontal cross-section of the eventual object. Key Parameters: • Infill Percentage • Extruder Speed • Build Platform Temperature • Extruder Temperature • Filament-Maker bot PLA • No of layers • No of Shells
  • 3. Working:  This virtual design is made in a CAD file using a 3D modeling program.  A 3D scanner makes a 3D digital copy of an object.  Not all 3D printers use the same technology. There are several ways to print and all those available are additive, differing mainly in the way layers are build to create the final object.  Some methods use melting or softening material to produce the layers. Selective laser sintering (SLS) and fused deposition modeling (FDM) are the most common technologies using this way of printing.  Another method of printing is when we talk about curing a photo- reactive resin with a UV laser or another similar power source one layer at a time. The most common technology using this method is called stereolithography (SLA).
  • 4. Company Overview:  Shape ways is a 3D printing company, located in Chicago, IL.  It servers its ever growing customer base from 60,000 units production capacity facility, and focuses on complex industrial and plastic components
  • 6. Goal statement: Improve the part Tensile strength to meet the customer’s requirement Y=F(x1,x2,x3,x4,x5,x6…) Y=Yield Strength X1=Material Infill percentage % X2=Number of shells X3=Build Platform Temperature °C X4=Extruder Temperature °C X5=Raw material type X6=Layer height mm
  • 7. Oppurtunity statement:  Shape ways products are currently experiencing significant quality issues, which is negatively impacting customer satisfaction. For the year of 2016, the cost of poor quality is $135,000. The Plastic Rod failed because of the low strength. So improving the strength of the rod represents a large opportunity to increase customer satisfaction and reduce the cost • Cp = 0.73 • Cpk = 0.49 • USL= 5300psi • LSL = 4500psi
  • 8. CTQ & CTP- Based on customer needs Need (VOC) Drivers CTQs/CTCs CTPs Part with required specifications Type of material Product Quality surface roughness Layer height (mm) Infill rate (%) Number of shells (°C) Dimensions Temperature of extruder(°C) Tensile Strength Level of plate(°) Delivery Average order delivery time Order process time(s) Order handling time(s) Order delivery time(s) Cycle time nozzle speed (mm/sec) Cost Selling Price Material Cost($) Process Cost($) Packaging Cost ($) Shipping Cost ($)
  • 11. Gauge r&r- Gauge Repeatability and Reproducibility
  • 12.  Equipment Variation (EV)= 0.00092 EV = ( R Avg) (K1)  Appraiser Variation (AV)=8.726*E^-5 AV = SQRT[ (Diff Max-Min)(K2)]² -[(EV)² / (n x r)]  R & R = 0.00093 R&R = SQR((EV) ²+ (AV)²)  Part Variation (PV) =0.00020 PV = (Rp)*(K3)  Total Variation (TV)=0.001 Calculations: % 100[(EV)/(Total Variation)] % EV= 97.23 % AV = 100 [ (AV) / (Total Variation)] % AV=9.18 % R&R= SQRT( ( % EV) ²+ (% AV) ²) % R&R=97.659
  • 13. Collected data:  The collected data for the base samples is as follows Baseline Input Parameters: • Infill % - 20% • Extruder Speed -150mm/S • Build Platform Temperature - 110°C • Extruder Temperature - 240°C • No. of shells -2 • Filament - Maker bot PLA in Red • Fan power - 50% max power Part 1 2 3 4 5 6 7 8 9 10 Mean St.dev Tensile strength (psi) 4777.084 4527.499 4724.934 4854.003 4493.467 4543.354 4501.850 4441.447 4509.883 4607.335 4598.086 139.128 Tensile Strength= (Max load) (psi) Cross sectional Area Cross sectional Area = Width*Thickness (square inch)
  • 14. Process capabilities: Cp = (USL-LSL)/6σ Cpk = Min{(usl-x.bar);(x.bar-lsl)}/3σ Cp = 0.73 Cpk =0.49 On calculating, USL= 5015.47 =5300psi LSL = 4389.39 =4500psi Nominal value =4900psi
  • 16. C & E Matrix:
  • 18. FMEA:
  • 19. Analysis & results: • Understand what can cause Modulus go wrong by Fishbone Study for six categories • Identify the key process input variables and key process output variables by C & E Matrix Study • Use process FMEA to prioritize the tasks Target KPIV for improve stage: • Infill% • Number of Shells • Extruder temperature deg.F • Layer height mm
  • 21. Input parameters Levels Designation variable Unit 1 2 3 Controllable factors A Infill Rate (IR) % 20 30 40 B Number of Shells (NS) 1 2 3 C Layer Height (LH) mm 0.1 0.2 0.3 D Extruded Temperature (ET) °F 230 240 250 Non-Controllable Factors 1 Ambient Temperature (65- 75) °F 2 Ambient Temperature (76-85) °F Output variable Tensile strength (psi)
  • 22. Taguchi design: N Factor Ambient Temperature Y-Bar S/N RatioA (IR) B (NS) C (LH) D (ET) (65-75)F (65-75)F (76-85)F (76-85)F 1 1(20) 1(1) 1(0.1) 1(230) y111 y112 y113 y114 2 1(20) 2(2) 2(0.2) 2(240) y211 y212 y213 y214 3 1((20) 3(3) 3(0.3) 3(250) y311 y312 y313 y314 4 2(30) 1(1) 2(0.2) 3(250) y411 y412 y413 y414 5 2(30) 2(2) 3(0.3) 1(230) y511 y512 y513 y514 6 2(30) 3(3) 1(0.1) 2(240) y611 y612 y613 y614 7 3(40) 1(1) 3(0.3) 2(240) y711 y712 y713 y714 8 3(40) 2(2) 1(0.1) 3(250) y811 y812 y813 y814 9 3(40) 3(3) 2(0.2) 1(230) y911 y912 y913 y914 Average: Basic template used for Taguchi design
  • 23. Taguchi design: Customer requirement for strength: USL: 5300 psi LSL: 4500 psi Nominal Value: 4900psi Quality: N Factor Ambient Temperature Y-bar S/N A (IR) B (NS) C (LH) D (ET) (65-75)F (65-75)F (76-85)F (76-85)F Ratio 1 1(20) 1(1) 1(0.1) 1(230) 4778.95 4681.1 5000.17 4922.52 4845.7 31.132 2 1(20) 2(2) 2(0.2) 2(240) 4558.77 4441.13 4607.21 4734.39 4585.4 32.553 3 1((20) 3(3) 3(0.3) 3(250) 5354.52 5426.98 5416.25 5345.87 5385.9 41.85 4 2(30) 1(1) 2(0.2) 3(250) 4293.22 4287.46 4502.79 4501.56 4396.3 32.485 5 2(30) 2(2) 3(0.3) 1(230) 4817.84 4699.59 5156.44 5046.76 4930.2 27.848 6 2(30) 3(3) 1(0.1) 2(240) 5226.98 5946.31 5275.23 6020.67 5617.3 21.681 7 3(40) 1(1) 3(0.3) 2(240) 5962.6 5625.17 6299.33 5945.39 5958.1 25.438 8 3(40) 2(2) 1(0.1) 3(250) 4527.186 4872.37 4780.93 5122.33 4825.7 26.423 9 3(40) 3(3) 2(0.2) 1(230) 5774.94 5814.01 5795.39 5829.68 5803.5 46.761 Average 5149.8 31.797 Nominal-the-Better Equation: η = 10log(y-bar^2/s2)
  • 24. Taguchi method- response variables From collected data: (Optima value) A1B2C2D3 - 4067 psi From S/N ratio: (Optima value) A1B3C2D1 - 5213 psi Tensile Strength Level A (IR) B (NS) C (LH) D (ET) 1 4939.0 5066.7 5096.2 5193.1 2 4981.2 4780.4 4928.4 5386.9 3 5529.1 5602.2 5424.7 4869.3 optima: 4067.732167 S/N Ratio Level A (IR) B (NS) C (LH) D (ET) 1 35.18 29.68 26.41 35.25 2 27.34 28.94 37.27 26.56 3 32.87 36.76 31.71 33.59 optima: 5213.382833 Nominal Value: 4900psi As, S/N ratio’s value is nearer to nominal value the respective parameters are selected
  • 25. Mean and s/n response figure: 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 4600.0 4700.0 4800.0 4900.0 5000.0 5100.0 5200.0 5300.0 5400.0 5500.0 5600.0 1 2 3 Tensilestrength(psi) Mean and S/N ratio based on Factor A (Infill rate) Tensile Strength S/N ratio 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 4200.0 4400.0 4600.0 4800.0 5000.0 5200.0 5400.0 5600.0 5800.0 1 2 3 TensileStrength(psi) Mean and S/N ratio based on Factor B (Number of shells) Tensile Strength S/N ratio 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 4600.0 4700.0 4800.0 4900.0 5000.0 5100.0 5200.0 5300.0 5400.0 5500.0 1 2 3 TensileStrength(psi) Mean and S/N ratio based on Factor C (Layer Height) Tensile Strengt h S/N ratio 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 4600.0 4700.0 4800.0 4900.0 5000.0 5100.0 5200.0 5300.0 5400.0 5500.0 1 2 3 TensileStrength(psi) Mean and S/N ratio based on Factor D (Extruded Temperature) Tensile Strength S/N ratio Infill rate (1=20%, 2=30%, 3=30%) Number of shells (1=1, 2=2, 3=3) Layer Height (1=0.1mm, 2=0.2mm, 3=0.3mm) Extruded Temperature (1=230°F, 2=240°F, 3=250°F)
  • 26. T test – Non-controllable factor analysis  Average (high temperature) = 5239.051psi  Average (low temperature) = 5060.507 psi  Std.dev (high temperature) = 547.7732 psi  Std.dev (low temperature) = 583.9924 psi  T-stat = 0.9461 T (alpha=0.0.1, d.f=34) =2.75 Hypothesis for noise factor: Conclusion: H0: μAT (65-75) = μAT (76-85) H1: μAT (65-75) ≠ μAT (76-85) since t-stat=0.946 which is smaller than the t(alpha=0.01, two tails)=2.75 we fail to reject H0 and this means no significant difference between high temperature and low temperature.
  • 27. Optima results for input parameters: A ( Infill rate ) 20% B ( Number of shells) 3 C ( Layer height ) 0.2mm D ( Extruded Temperature) 230 °F Ambient Temperature: (65-75) °F
  • 28. Confirmation run: Part 1 2 3 4 5 6 7 8 9 10 Mean Std.dev Tensile Strength (psi) 4953.255025.2564878.4534998.6394834.0774923.857 4896.945089.3414987.5114947.2494953.457 75.1345 A ( Infill rate ) 20% B ( Number of shells) 3 C ( Layer height ) 0.2mm D ( Extruded Temperature) 230 °F Cp 1.73 Cpk 1.5
  • 31. Takt Time of Shapeways:  Annual demand for products per annum: 60,000 pieces  Number of working days in a year: 250 days  Daily Demand: 240 pieces  Time available per working shift : 480 (8 hours)-30 mins(break time)= 450 minutes/ shift  One shift working hours : 450 minutes/day  Efficiency: 91%  Total daily operating time: 450*0.91= 409 minutes/day  Takt Time: Total daily operating time Total daily 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 requirement = 409/240= 1.70 minutes per piece  Number of machines needed : Cycle time / Takt Time
  • 32. Calculations: USL = 5300 LSL = 4400 Xbar = 4953.46 Std.dev = 75.13 At n=6, d2 = 2.534 A2 = 0.483 D3 = 0 D4 = 2.004 Sigma = R- bar/d2 R-bar= 190.39 X-bar bar chart: UCL= X-bar+A2*R-bar = 5045.42 LCL = X-bar+A2*R-bar =4861.5 R-bar chart: UCL = D4*R-bar =381.541 LCL = D3*R-bar = 0
  • 33. Performance Improvement: Base samples Conformation run Samples
  • 34. Cost estimation:  Product unit price = $3.  Cost of poor quality per part =$9.  Annual demand =60,000 pieces  Annual defect rate =13,500 pieces  Annual cost of poor quality =$121,500.  Money saved on each machine = $5,000.  Money saved on 2 machines = $10,000.  Miscellaneous savings (power, maintenance, etc.) =$3,500.  Total savings =$135,000.
  • 35. Performance improvement -Overall Baseline Process  Production Capacity=60,000 Units  Cycle Time= 23 Minutes  D.p.M.O=226,627 (2.25 Sigma Level)  Defects per year=13,500  Number of machines used : Cycle Time/ Takt Time = 23 mins/ 1.70 mins = 14 Improved Process(Using Taguchi)  Production Capacity=60,000 Units  Cycle Time=19 Minutes  D.P.M.O=72 (5.30 Sigma Level)  Defects Per year= 5.4 units  Number of machines used : Cycle Time/ Takt Time = 19 mins/ 1.70 mins = 12  Estimated annual savings = $ 135,000