SlideShare ist ein Scribd-Unternehmen logo
1 von 26
Downloaden Sie, um offline zu lesen
Frances Kuo @ UNSW Sydney, Australia p.1
Application of QMC methods to
PDEs with random coefficients
Frances Kuo
f.kuo@unsw.edu.au
University of New South Wales, Sydney, Australia
joint work with
Ivan Graham and Rob Scheichl (Bath), Dirk Nuyens (KU Leuven),
Christoph Schwab (ETH Zurich), Elizabeth Ullmann (TU Munich),
James Nichols (Paris 6), Mahadevan Ganesh (Colorado), Mike Giles (Oxford),
Grzegorz Wasilkowski (Kentucky), Leszek Plaskota (Warsaw),
Michael Feischl, Alexander Gilbert,
Josef Dick, Thong Le Gia, and Ian Sloan (UNSW)
Frances Kuo @ UNSW Sydney, Australia p.2
Outline
Motivating example – a flow through a porous medium
Introduction to QMC methods
QMC theory
Application of QMC to PDEs with random coefficients
Cost reduction strategies
Software
Concluding remarks
Frances Kuo @ UNSW Sydney, Australia p.3
Motivating example
Uncertainty in groundwater flow
eg. risk analysis of radwaste disposal or CO2 sequestration
Darcy’s law q + a ∇p = κ
mass conservation law ∇ · q = 0
in D ⊂ Rd
, d = 1, 2, 3
together with boundary conditions
Uncertainty in a(xxx, ω) leads to uncertainty in q(xxx, ω) and p(xxx, ω)
Frances Kuo @ UNSW Sydney, Australia p.4
Expected values of quantities of interest
To compute the expected value of some quantity of interest:
1. Generate a number of realizations of the random field
(Some approximation may be required)
2. For each realization, solve the PDE using e.g. FEM / FVM / mFEM
3. Take the average of all solutions from different realizations
This describes Monte Carlo simulation.
Example: particle dispersion
p = 1 p = 0
∂p
∂n = 0
∂p
∂n = 0
◦release point →
•
0
0.2
0.4
0.6
0.8
1
0 0.2 0.4 0.6 0.8 1
Frances Kuo @ UNSW Sydney, Australia p.5
Expected values of quantities of interest
To compute the expected value of some quantity of interest:
1. Generate a number of realizations of the random field
(Some approximation may be required)
2. For each realization, solve the PDE using e.g. FEM / FVM / mFEM
3. Take the average of all solutions from different realizations
This describes Monte Carlo simulation.
NOTE: expected value = (high dimensional) integral
s = stochastic dimension
→ use quasi-Monte Carlo methods
10
3
10
4
10
5
10
6
10
−5
10
−4
10
−3
10
−2
10
−1
error
n
n−1/2
n−1
or better QMC
MC
Frances Kuo @ UNSW Sydney, Australia p.6
MC v.s. QMC in the unit cube
[0,1]s
f(yyy) dyyy ≈
1
n
n
i=1
f(ttti)
Monte Carlo method Quasi-Monte Carlo methods
ttti random uniform ttti deterministic
n−1/2
convergence close to n−1
convergence or better
0 1
1
64 random points
•
•
•
•
•
•
•
•
•
•
•
•••
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
••
•
•
•
•
•
••
•
•
•
•
•
•
••
•
0 1
1
First 64 points of a
2D Sobol′ sequence
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
0 1
1
A lattice rule with 64 points
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
more effective for earlier variables and lower-order projections
order of variables irrelevant order of variables very important
use randomized QMC methods for error estimation
Frances Kuo @ UNSW Sydney, Australia p.7
QMC
Two main families of QMC methods:
(t,m,s)-nets and (t,s)-sequences
lattice rules
0 1
1
First 64 points of a
2D Sobol′ sequence
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
0 1
1
A lattice rule with 64 points
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
(0,6,2)-netHaving the right number of
points in various sub-cubes
A group under addition modulo Z
and includes the integer points
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
••
•
••
• •
•
•
•• •
•
•
•
•
•
•
• ••
•
•
•
•
•
•
•
•
•
•
•
•
•
Important developments:
component-by-component (CBC) construction, “fast” CBC
higher order digital nets
Niederreiter book (1992)
Sloan and Joe book (1994)
Lemieux book (2009)
Dick and Pillichshammer book (2010)
Dick, K., Sloan Acta Numerica (2013)
Leobacher and Pillichshammer book
(2014)
Frances Kuo @ UNSW Sydney, Australia p.8
Lattice rules
Rank-1 lattice rules have points
ttti = frac
i
n
zzz , i = 1, 2, . . . , n
zzz ∈ Zs
– the generating vector, with all components coprime to n
frac(·) – means to take the fractional part of all components
0 1
1
A lattice rule with 64 points
64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
∼ quality determined by the choice of zzz ∼
n = 64 zzz = (1, 19) ttti = frac
i
64
(1, 19)
Frances Kuo @ UNSW Sydney, Australia p.9
Randomly shifted lattice rules
Shifted rank-1 lattice rules have points
ttti = frac
i
n
zzz + ∆∆∆ , i = 1, 2, . . . , n
∆∆∆ ∈ [0, 1)s
– the shift
shifted by
∆∆∆ = (0.1, 0.3)
0 1
1
A lattice rule with 64 points
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
0 1
1
A shifted lattice rule with 64 points
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
∼ use a number of random shifts for error estimation ∼
Frances Kuo @ UNSW Sydney, Australia p.10
Component-by-component construction
Want to find zzz for which some error criterion is as small possible
CBC algorithm [Korobov (1959); Sloan, Reztsov (2002); Sloan, K., Joe (2002),. . . ]
1. Set z1 = 1.
2. With z1 fixed, choose z2 to minimize the error criterion in 2D.
3. With z1, z2 fixed, choose z3 to minimize the error criterion in 3D.
4. etc.
[Hickernell (1997); Sloan, Wo´zniakowski (1998)]
[K. (2003); Dick (2004)]
Optimal rate of convergence O(n−1+δ
) in “weighted Sobolev space”,
independently of s under an appropriate condition on the weights
[Nuyens, Cools (2006)]
Cost of algorithm for “product weights” is O(n log n s) using FFT
Extensible/embedded variants
[Hickernell, Hong, L’Ecuyer, Lemieux (2000); Hickernell, Niederreiter (2003)]
[Cools, K., Nuyens (2006)]
[Dick, Pillichshammer, Waterhouse (2007)]
http://people.cs.kuleuven.be/~dirk.nuyens/fast-cbc/
http://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/
Frances Kuo @ UNSW Sydney, Australia p.11
Application of QMC to PDEs with random coefficients
[0] Graham, K., Nuyens, Scheichl, Sloan (J. Comput. Physics, 2011)
[1] K., Schwab, Sloan (SIAM J. Numer. Anal., 2012)
[2] K., Schwab, Sloan (J. FoCM, 2015)
[3] Graham, K., Nichols, Scheichl, Schwab, Sloan (Numer. Math., 2015)
[4] K., Scheichl, Schwab, Sloan, Ullmann (Math. Comp., to appear)
[5] Dick, K., Le Gia, Nuyens, Schwab (SIAM J. Numer. Anal., 2014)
[6] Dick, K., Le Gia, Schwab (SIAM J. Numer. Anal., 2016)
[7] Graham, K., Nuyens, Scheichl, Sloan (in progress)
Also Schwab
Le Gia
Dick, Le Gia, Schwab
Dick, Gantner, Le Gia, Schwab
Gantner, Schwab
Gantner, Herrmann, Schwab
Kazashi
Harbrecht, Peters, Siebenmorgen
Ganesh, Hawking
Robbe, Nuyens, Vandewalle
Scheichl, Stuart, Teckentrup
Graham, Parkinson, Scheichl
Gilbert, Graham, K., Scheichl, Sloan
Feischl, K., Sloan
Ganesh, K., Sloan
etc.
Frances Kuo @ UNSW Sydney, Australia p.12
Application of QMC to PDEs with random coefficients
Three different QMC theoretical settings:
[1,2] Weighted Sobolev space over [0, 1]s
and “randomly shifted lattice rules”
[3,4] Weighted space setting in Rs
and “randomly shifted lattice rules”
[5,6] Weighted space of smooth functions over [0, 1]s
and (deterministic)
“interlaced polynomial lattice rules”
Uniform Lognormal Lognormal
KL expansion Circulant embedding
Experiments only [0]*
First order, single-level [1] [3]* [7]*
First order, multi-level [2] [4]*
Higher order, single-level [5]
Higher order, multi-level [6]*
The * indicates there are accompanying numerical results
K., Nuyens (J. FoCM, 2016) – a survey of [1,2], [3,4], [5,6] in a unified view
Accompanying software package
http://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde/
Frances Kuo @ UNSW Sydney, Australia p.13
5-minute QMC primer
Common features among all three QMC theoretical settings:
Separation in error bound
(rms) QMC error ≤ (rms) worst case errorγγγ × norm of integrandγγγ(rms) QMC error ≤ (rms) worst case errorγγγ × norm of integrandγγγ
Weighted spaces
Pairing of QMC rule with function space
Optimal rate of convergence
Rate and constant independent of dimension
Fast component-by-component (CBC) construction
Extensible or embedded rules
Application of QMC theory
Estimate the norm (critical step)
Choose the weights
Weights as input to the CBC construction
Frances Kuo @ UNSW Sydney, Australia p.14
Overview
Motivating example
Introduction to QMC
Application
PDEs with random coefficients
uniform
lognormal
Setting 1
domain [0, 1]s
randomly shifted lattice rules
mixed first derivatives
first order convergence
Setting 2
domain Rs
randomly shifted lattice rules
mixed first derivatives
first order convergence
Setting 3
domain [0, 1]s
interlaced polynomial lattice rules
mixed higher derivatives
higher order convergence
Frances Kuo @ UNSW Sydney, Australia p.15
Uniform v.s. lognormal
−∇ · (a(xxx,yyy) ∇u(xxx,yyy)) = κ(xxx), xxx ∈ D ⊂ Rd
, d = 1, 2, 3
u(xxx,yyy) = 0, xxx ∈ ∂D
Uniform [Cohen, DeVore, Schwab (2011)]
a(xxx,yyy) = a(xxx) +
j≥1
yj ψj(xxx), yj ∼ U[−1
2
, 1
2
]
Goal:
(−
1
2
,
1
2
)N
G(u(·,yyy)) dyyy G – bounded linear functional
Lognormal [many references]
a(xxx,yyy) = exp(Z(xxx,yyy))
Karhunen–Loève expansion:
Z(xxx,yyy) = Z(xxx) +
j≥1
yj
√
µj ξj(xxx), yj ∼ N(0, 1)
Goal:
RN
∗
G(u(·,yyy))
j≥1
φnor(yj) dyyy
Frances Kuo @ UNSW Sydney, Australia p.16
Error analysis (the uniform case, single-level algorithm)
[K., Nuyens (2016) – survey]
(−
1
2
,
1
2
)N
G(u(·, yyy)) dyyy ≈
1
n
n
i=1
G(us
h(·,ttti)) (1) dimension truncation
(2) FE discretization
(3) QMC quadrature
Balance three sources of error
QMC error
Estimate the norm G(us
h) γγγ by “differentiating the PDE”
Choose the weights to minimize (bound on ewor
γγγ )×(bound on G(us
h) γγγ )
Get POD weights (product and order dependent) ⇒ feed into fast CBC construction
Frances Kuo @ UNSW Sydney, Australia p.17
TUTORIAL: Differentiate the PDE (the uniform case)
1. Variational formulation
D
a(xxx, yyy) ∇u(xxx, yyy) · ∇w(xxx) dxxx =
D
κ(xxx) w(xxx) dxxx ∀w ∈ H1
0 (D)
2. Mixed derivatives in yyy with multi-index ννν = 000
D
∂ννν
a(xxx, yyy) ∇u(xxx, yyy) · ∇w(xxx) dxxx = 0 ∀w ∈ H1
0 (D)
3. Leibniz product rule
D mmm≤ννν
ννν
mmm
(∂mmm
a)(xxx, yyy) ∇(∂ννν−mmm
u)(xxx, yyy) · ∇w(xxx) dxxx = 0 ∀w ∈ H1
0 (D)
4. Uniform case
a(xxx, yyy) = a(xxx) +
j≥1
yj ψj(xxx) =⇒ (∂mmm
a)(xxx, yyy) =



a(xxx, yyy) if mmm = 000,
ψj(xxx) if mmm = eeej,
0 otherwise
5. Separate out the mmm = 000 term
D
a(xxx, yyy) ∇(∂ννν
u)(xxx, yyy) · ∇w(xxx) dxxx
= −
j≥1
νj
D
ψj(xxx) ∇(∂ννν−eeej u)(xxx, yyy) · ∇w(xxx) dxxx ∀w ∈ H1
0 (D)
Frances Kuo @ UNSW Sydney, Australia p.18
TUTORIAL: Differentiate the PDE (the uniform case)
5. Separate out the mmm = 000 term
D
a(xxx, yyy) ∇(∂ννν
u)(xxx, yyy) · ∇w(xxx) dxxx
= −
j≥1
νj
D
ψj(xxx) ∇(∂ννν−eeej u)(xxx, yyy) · ∇w(xxx) dxxx ∀w ∈ H1
0 (D)
6. Take w = (∂ννν
u)(·,yyy) and apply Cauchy-Schwarz
amin
D
|∇(∂ννν
u)(xxx, yyy)|2
dxxx
≤
j≥1
νj ψj L∞
D
|∇(∂ννν−eeej u)(xxx, yyy)|2
dxxx
1/2
D
|∇(∂ννν
u)(xxx, yyy)|2
dxxx
1/2
7. Cancel one common factor
∇(∂ννν
u)(·, yyy) L2 ≤
j≥1
νj bj ∇(∂ννν−eeej u)(·, yyy) L2 , bj =
ψj L∞
amin
8. Induction hypothesis
∇(∂ννν
u)(·, yyy) L2 ≤
j≥1
νj bj |ννν − eeej|! bbbννν−eeej
κ H-1
amin
= |ννν|! bbbννν κ H-1
amin
Frances Kuo @ UNSW Sydney, Australia p.19
Extensions
Lognormal a(xxx,yyy) = exp(Z(xxx,yyy))
circulant embedding [Graham, K., Nuyens, Scheichl, Sloan (in progress)]
Z(xxxi, yyy) for i = 1, . . . , M ⇒ M × M covariance matrix R
Assume stationary covariance function and regular grid
Extend R to an s × s circulant matrix Rext = AAT
Compute matrix-vector multiplication Ayyy using FFT
H-matrix [Feischl, K., Sloan (in review)]
Does not require stationary covariance function or regular grid
Approximate R by an H2
-matrix of interpolation order p, Rp = BBT
Iterative method to compute Byyy to some prescribed accuracy
QMC for PDE eigenvalue problems (neutron diffusion)
[Gilbert, Graham, K., Scheichl, Sloan (in progress)]
QMC for wave propagation models [Ganesh, K., Sloan (in progress)]
QMC for Bayesian inverse problems [several research groups]
Frances Kuo @ UNSW Sydney, Australia p.20
Overview
Motivating example
Introduction to QMC
Application
PDEs with random coefficients
uniform
lognormal
Setting 1
domain [0, 1]s
randomly shifted lattice rules
mixed first derivatives
first order convergence
Setting 2
domain Rs
randomly shifted lattice rules
mixed first derivatives
first order convergence
Setting 3
domain [0, 1]s
interlaced polynomial lattice rules
mixed higher derivatives
higher order convergence
KL expansion
circulant embedding
H-matrix
Cost reduction
Saving 1
Saving 2
Saving 3
Software
Frances Kuo @ UNSW Sydney, Australia p.21
Saving 1: multi-level and multi-index
Multi-level method [Heinrich (1998); Giles (2008); . . . ; Giles (2016)]
Telescoping sum
f =
∞
ℓ=0
(fℓ − fℓ−1), f−1 := 0 AML(f) =
L
ℓ=0
Qℓ(fℓ − fℓ−1)
|I(f) − AML(f)| ≤ |I(f) − IL(fL)|
≤ 1
2
ε
+
L
ℓ=0
|(Iℓ − Qℓ)(fℓ − fℓ−1)|
≤ 1
2
ε
choose L specify parameters for Qℓ
Successive differences fℓ − fℓ−1 become smaller
Require less samples for higher dimensional sub-problems
Lagrange multiplier to minimize cost subject to a given error threshold
Multi-index method [Haji-Ali, Nobile, Tempone (2016)]
Apply multi-level simultaneously to more than one aspect of the problem
e.g., quadrature, spatial discretization, time discretization, etc.
[Giles, K., Sloan (in review)]
Frances Kuo @ UNSW Sydney, Australia p.22
Saving 2: MDM
Multivariate decomposition method [. . . ; Wasilkowski (2013); . . . ]
[K., Nuyens, Plaskota, Sloan, Wasilkowski (2017)]
Decomposition
f =
u⊂{1,2,...},|u|<∞
fu AMDM(f) =
u∈A
Qu(fu)
|I(f) − AMDM(f)| ≤
u /∈A
|Iu(fu)|
≤ 1
2
ε
+
u∈A
|(Iu − Qu)(fu)|
≤ 1
2
ε
choose A specify parameters for Qu
Assume bounds on the norms fu Fu ≤ Bu are given
Qu can be QMC or other quadratures including Smolyak
Cardinality of active set A might be huge, but cardinality of u ∈ A is small
Implementation [Gilbert, K., Nuyens, Wasilkowski (in progress)]
Anchored decomposition fu(xxxu) = v⊆u(−1)|u|−|v|f(xxxv; aaa)
Explore nestedness/embedding in the quadratures
Efficient data structure to reuse function evaluations
Application to PDEs with random coefficients
[Gilbert, K., Nuyens, Nguyen, Sloan (in progress)]
Frances Kuo @ UNSW Sydney, Australia p.23
Saving 3: QMC fast matrix-vector mult.
QMC fast matrix-vector multiplication [Dick, K., Le Gia, Schwab (2015)]
Want to compute yyyiA for all i = 1, . . . , n
Row vectors yyyi = ϕ(ttti) where ttti are QMC points
Write Y ′
=



yyy1
...
yyyn−1


 = CP
C(n−1)×(n−1) is circulant
P has a single 1 in each column
and 0 everywhere else
Can compute Y ′
aaa in O(n log n) operations for any column aaa of A
Where does this appy?
Generating normally distributed points with a general covariance matrix
PDEs with uniform random coefficients
PDEs with lognormal random coefficients involving FE quadrature
Frances Kuo @ UNSW Sydney, Australia p.25
Software
http://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde
Construction script in Python
Input: generic bound on mixed derivatives (weights are set automatically)
|∂ννν
F (yyy)| (|ννν| + a1)!
d1
s
j=1
(a2Bj)νj exp(a3Bj|yj|)
F (yyy) =



G(us
h) single-level
G(us
hℓ
− us
hℓ−1
) multi-level



a3 = 0 uniform case
a3 > 0 lognormal case
Output: generating vector for lattice sequence z.txt
## uniform case, 100-dim rule, 2ˆ10 points, with specified bounds b:
./lat-cbc.py --s=100 --m=10 --d2=3 --b=”0.1 * j**-3 / log(j+1)”
## lognormal case, 100-dim rule, 2ˆ10 points, with algebraic decay:
./lat-cbc.py --s=100 --m=10 --a2=”1/log(2)” --a3=1 --d2=3 --c=0.1
Output: generating matrices for interlaced polynomial lattice rule Bs53.col
## 100-dim rule, 2ˆ10 points, interlacing 3, with bounds from file:
./polylat-cbc.py --s=100 --m=10 --alpha=3 --a1=5 --b_file=bounds.txt
Frances Kuo @ UNSW Sydney, Australia p.26
Software
http://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde
Point generators in Matlab/Octave (also C++ and Python)
Lattice sequences
load z.txt % load generating vector
latticeseq_b2(’init0’, z) % initialize the procedural generator
Pa = latticeseq_b2(20, 512); % first 512 20-dimensional points
Pb = latticeseq_b2(20, 512); % next 512 20-dimensional points
Interlaced polynomial lattice rules
load Bs53.col % load generating matrices
digitalseq_b2g(’init0’, Bs53) % initialize the procedural generator
Pa = digitalseq_b2g(100, 512); % first 512 100-dimensional points
Pb = digitalseq_b2g(100, 512); % next 512 100-dimensional points
Interlaced Sobol′
sequences
load sobol_alpha3_Bs53.col % load generating matrices
digitalseq_b2g(’init0’, sobol_alpha3_Bs53) % initialize the procedural gen
Pa = digitalseq_b2g(50, 512); % first 512 50-dimensional points
Pb = digitalseq_b2g(50, 512); % next 512 50-dimensional points
Frances Kuo @ UNSW Sydney, Australia p.27
Summary
Motivating example
Introduction to QMC
Application
PDEs with random coefficients
uniform
lognormal
Setting 1
domain [0, 1]s
randomly shifted lattice rules
mixed first derivatives
first order convergence
Setting 2
domain Rs
randomly shifted lattice rules
mixed first derivatives
first order convergence
Setting 3
domain [0, 1]s
interlaced polynomial lattice rules
mixed higher derivatives
higher order convergence
KL expansion
circulant embedding
H-matrix
Cost reduction
Saving 1 multi-level and multi-index methods
Saving 2 multivariate decomposition method (MDM)
Saving 3 QMC fast matrix-vector multiplication
Software

Weitere ähnliche Inhalte

Was ist angesagt?

MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsElvis DOHMATOB
 
Micro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effectMicro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effectGuillaume Costeseque
 
Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...Valentin De Bortoli
 
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithmsRao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithmsChristian Robert
 
Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesFrank Nielsen
 
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...Alexander Litvinenko
 
Non-sampling functional approximation of linear and non-linear Bayesian Update
Non-sampling functional approximation of linear and non-linear Bayesian UpdateNon-sampling functional approximation of linear and non-linear Bayesian Update
Non-sampling functional approximation of linear and non-linear Bayesian UpdateAlexander Litvinenko
 

Was ist angesagt? (20)

QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priors
 
Micro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effectMicro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effect
 
Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...
 
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
 
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
 
Chris Sherlock's slides
Chris Sherlock's slidesChris Sherlock's slides
Chris Sherlock's slides
 
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithmsRao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
 
Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective Divergences
 
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
How to find a cheap surrogate to approximate Bayesian Update Formula and to a...
 
Non-sampling functional approximation of linear and non-linear Bayesian Update
Non-sampling functional approximation of linear and non-linear Bayesian UpdateNon-sampling functional approximation of linear and non-linear Bayesian Update
Non-sampling functional approximation of linear and non-linear Bayesian Update
 

Ähnlich wie Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applied Mathematics Opening Workshop, Application of QMC to PDEs with Random Coefficients -- a survey of analysis and implementation - Frances Kuo, Aug 28, 2017

Introduction to Chainer Chemistry
Introduction to Chainer ChemistryIntroduction to Chainer Chemistry
Introduction to Chainer ChemistryPreferred Networks
 
Teaching Population Genetics with R
Teaching Population Genetics with RTeaching Population Genetics with R
Teaching Population Genetics with RBruce Cochrane
 
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINESAPPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINEScseij
 
Application of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip linesApplication of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip linescseij
 
Computationally Efficient Protocols to Evaluate the Fatigue Resistance of Pol...
Computationally Efficient Protocols to Evaluate the Fatigue Resistance of Pol...Computationally Efficient Protocols to Evaluate the Fatigue Resistance of Pol...
Computationally Efficient Protocols to Evaluate the Fatigue Resistance of Pol...npaulson
 
C.L. Edmunds APS March 2020 slides
C.L. Edmunds APS March 2020 slidesC.L. Edmunds APS March 2020 slides
C.L. Edmunds APS March 2020 slidesClaireEdmunds3
 
Spacey random walks and higher-order data analysis
Spacey random walks and higher-order data analysisSpacey random walks and higher-order data analysis
Spacey random walks and higher-order data analysisDavid Gleich
 
BASIC STATISTICS AND PROBABILITY.pptx
BASIC STATISTICS AND PROBABILITY.pptxBASIC STATISTICS AND PROBABILITY.pptx
BASIC STATISTICS AND PROBABILITY.pptxRanjuBijoy
 
Numerical and analytical studies of single and multiphase starting jets and p...
Numerical and analytical studies of single and multiphase starting jets and p...Numerical and analytical studies of single and multiphase starting jets and p...
Numerical and analytical studies of single and multiphase starting jets and p...Ruo-Qian (Roger) Wang
 
Dynamics of structures with uncertainties
Dynamics of structures with uncertaintiesDynamics of structures with uncertainties
Dynamics of structures with uncertaintiesUniversity of Glasgow
 
Large strain computational solid dynamics: An upwind cell centred Finite Volu...
Large strain computational solid dynamics: An upwind cell centred Finite Volu...Large strain computational solid dynamics: An upwind cell centred Finite Volu...
Large strain computational solid dynamics: An upwind cell centred Finite Volu...Jibran Haider
 
Vladimir Milov and Andrey Savchenko - Classification of Dangerous Situations...
Vladimir Milov and  Andrey Savchenko - Classification of Dangerous Situations...Vladimir Milov and  Andrey Savchenko - Classification of Dangerous Situations...
Vladimir Milov and Andrey Savchenko - Classification of Dangerous Situations...AIST
 
04 computational thermo mechanics of crystalline rock salt for nuclear waste ...
04 computational thermo mechanics of crystalline rock salt for nuclear waste ...04 computational thermo mechanics of crystalline rock salt for nuclear waste ...
04 computational thermo mechanics of crystalline rock salt for nuclear waste ...leann_mays
 
Myers_SIAMCSE15
Myers_SIAMCSE15Myers_SIAMCSE15
Myers_SIAMCSE15Karen Pao
 
Learning to Search Henry Kautz
Learning to Search Henry KautzLearning to Search Henry Kautz
Learning to Search Henry Kautzbutest
 

Ähnlich wie Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applied Mathematics Opening Workshop, Application of QMC to PDEs with Random Coefficients -- a survey of analysis and implementation - Frances Kuo, Aug 28, 2017 (20)

Introduction to Chainer Chemistry
Introduction to Chainer ChemistryIntroduction to Chainer Chemistry
Introduction to Chainer Chemistry
 
Teaching Population Genetics with R
Teaching Population Genetics with RTeaching Population Genetics with R
Teaching Population Genetics with R
 
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINESAPPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
 
Application of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip linesApplication of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip lines
 
Respose surface methods
Respose surface methodsRespose surface methods
Respose surface methods
 
Computationally Efficient Protocols to Evaluate the Fatigue Resistance of Pol...
Computationally Efficient Protocols to Evaluate the Fatigue Resistance of Pol...Computationally Efficient Protocols to Evaluate the Fatigue Resistance of Pol...
Computationally Efficient Protocols to Evaluate the Fatigue Resistance of Pol...
 
C.L. Edmunds APS March 2020 slides
C.L. Edmunds APS March 2020 slidesC.L. Edmunds APS March 2020 slides
C.L. Edmunds APS March 2020 slides
 
Spacey random walks and higher-order data analysis
Spacey random walks and higher-order data analysisSpacey random walks and higher-order data analysis
Spacey random walks and higher-order data analysis
 
BASIC STATISTICS AND PROBABILITY.pptx
BASIC STATISTICS AND PROBABILITY.pptxBASIC STATISTICS AND PROBABILITY.pptx
BASIC STATISTICS AND PROBABILITY.pptx
 
Numerical and analytical studies of single and multiphase starting jets and p...
Numerical and analytical studies of single and multiphase starting jets and p...Numerical and analytical studies of single and multiphase starting jets and p...
Numerical and analytical studies of single and multiphase starting jets and p...
 
Dynamics of structures with uncertainties
Dynamics of structures with uncertaintiesDynamics of structures with uncertainties
Dynamics of structures with uncertainties
 
Large strain computational solid dynamics: An upwind cell centred Finite Volu...
Large strain computational solid dynamics: An upwind cell centred Finite Volu...Large strain computational solid dynamics: An upwind cell centred Finite Volu...
Large strain computational solid dynamics: An upwind cell centred Finite Volu...
 
1789 1800
1789 18001789 1800
1789 1800
 
1789 1800
1789 18001789 1800
1789 1800
 
Vladimir Milov and Andrey Savchenko - Classification of Dangerous Situations...
Vladimir Milov and  Andrey Savchenko - Classification of Dangerous Situations...Vladimir Milov and  Andrey Savchenko - Classification of Dangerous Situations...
Vladimir Milov and Andrey Savchenko - Classification of Dangerous Situations...
 
PhysRevE.89.042911
PhysRevE.89.042911PhysRevE.89.042911
PhysRevE.89.042911
 
04 computational thermo mechanics of crystalline rock salt for nuclear waste ...
04 computational thermo mechanics of crystalline rock salt for nuclear waste ...04 computational thermo mechanics of crystalline rock salt for nuclear waste ...
04 computational thermo mechanics of crystalline rock salt for nuclear waste ...
 
Numerical Solution and Stability Analysis of Huxley Equation
Numerical Solution and Stability Analysis of Huxley EquationNumerical Solution and Stability Analysis of Huxley Equation
Numerical Solution and Stability Analysis of Huxley Equation
 
Myers_SIAMCSE15
Myers_SIAMCSE15Myers_SIAMCSE15
Myers_SIAMCSE15
 
Learning to Search Henry Kautz
Learning to Search Henry KautzLearning to Search Henry Kautz
Learning to Search Henry Kautz
 

Mehr von The Statistical and Applied Mathematical Sciences Institute

Mehr von The Statistical and Applied Mathematical Sciences Institute (20)

Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...
Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...
Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...
 
2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...
2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...
2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...
 
Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...
Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...
Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...
 
Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...
Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...
Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...
 
Causal Inference Opening Workshop - A Bracketing Relationship between Differe...
Causal Inference Opening Workshop - A Bracketing Relationship between Differe...Causal Inference Opening Workshop - A Bracketing Relationship between Differe...
Causal Inference Opening Workshop - A Bracketing Relationship between Differe...
 
Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...
Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...
Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...
 
Causal Inference Opening Workshop - Difference-in-differences: more than meet...
Causal Inference Opening Workshop - Difference-in-differences: more than meet...Causal Inference Opening Workshop - Difference-in-differences: more than meet...
Causal Inference Opening Workshop - Difference-in-differences: more than meet...
 
Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...
Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...
Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...
 
Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...
Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...
Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...
 
Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...
Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...
Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...
 
Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...
Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...
Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...
 
Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...
Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...
Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...
 
Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...
Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...
Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...
 
Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...
Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...
Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...
 
Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...
Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...
Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...
 
Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...
Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...
Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...
 
2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...
2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...
2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...
 
2019 Fall Series: Professional Development, Writing Academic Papers…What Work...
2019 Fall Series: Professional Development, Writing Academic Papers…What Work...2019 Fall Series: Professional Development, Writing Academic Papers…What Work...
2019 Fall Series: Professional Development, Writing Academic Papers…What Work...
 
2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...
2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...
2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...
 
2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...
2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...
2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...
 

Kürzlich hochgeladen

Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesShubhangi Sonawane
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIShubhangi Sonawane
 

Kürzlich hochgeladen (20)

Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 

Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applied Mathematics Opening Workshop, Application of QMC to PDEs with Random Coefficients -- a survey of analysis and implementation - Frances Kuo, Aug 28, 2017

  • 1. Frances Kuo @ UNSW Sydney, Australia p.1 Application of QMC methods to PDEs with random coefficients Frances Kuo f.kuo@unsw.edu.au University of New South Wales, Sydney, Australia joint work with Ivan Graham and Rob Scheichl (Bath), Dirk Nuyens (KU Leuven), Christoph Schwab (ETH Zurich), Elizabeth Ullmann (TU Munich), James Nichols (Paris 6), Mahadevan Ganesh (Colorado), Mike Giles (Oxford), Grzegorz Wasilkowski (Kentucky), Leszek Plaskota (Warsaw), Michael Feischl, Alexander Gilbert, Josef Dick, Thong Le Gia, and Ian Sloan (UNSW)
  • 2. Frances Kuo @ UNSW Sydney, Australia p.2 Outline Motivating example – a flow through a porous medium Introduction to QMC methods QMC theory Application of QMC to PDEs with random coefficients Cost reduction strategies Software Concluding remarks
  • 3. Frances Kuo @ UNSW Sydney, Australia p.3 Motivating example Uncertainty in groundwater flow eg. risk analysis of radwaste disposal or CO2 sequestration Darcy’s law q + a ∇p = κ mass conservation law ∇ · q = 0 in D ⊂ Rd , d = 1, 2, 3 together with boundary conditions Uncertainty in a(xxx, ω) leads to uncertainty in q(xxx, ω) and p(xxx, ω)
  • 4. Frances Kuo @ UNSW Sydney, Australia p.4 Expected values of quantities of interest To compute the expected value of some quantity of interest: 1. Generate a number of realizations of the random field (Some approximation may be required) 2. For each realization, solve the PDE using e.g. FEM / FVM / mFEM 3. Take the average of all solutions from different realizations This describes Monte Carlo simulation. Example: particle dispersion p = 1 p = 0 ∂p ∂n = 0 ∂p ∂n = 0 ◦release point → • 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
  • 5. Frances Kuo @ UNSW Sydney, Australia p.5 Expected values of quantities of interest To compute the expected value of some quantity of interest: 1. Generate a number of realizations of the random field (Some approximation may be required) 2. For each realization, solve the PDE using e.g. FEM / FVM / mFEM 3. Take the average of all solutions from different realizations This describes Monte Carlo simulation. NOTE: expected value = (high dimensional) integral s = stochastic dimension → use quasi-Monte Carlo methods 10 3 10 4 10 5 10 6 10 −5 10 −4 10 −3 10 −2 10 −1 error n n−1/2 n−1 or better QMC MC
  • 6. Frances Kuo @ UNSW Sydney, Australia p.6 MC v.s. QMC in the unit cube [0,1]s f(yyy) dyyy ≈ 1 n n i=1 f(ttti) Monte Carlo method Quasi-Monte Carlo methods ttti random uniform ttti deterministic n−1/2 convergence close to n−1 convergence or better 0 1 1 64 random points • • • • • • • • • • • ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • •• • • • • • • •• • 0 1 1 First 64 points of a 2D Sobol′ sequence • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 0 1 1 A lattice rule with 64 points • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • more effective for earlier variables and lower-order projections order of variables irrelevant order of variables very important use randomized QMC methods for error estimation
  • 7. Frances Kuo @ UNSW Sydney, Australia p.7 QMC Two main families of QMC methods: (t,m,s)-nets and (t,s)-sequences lattice rules 0 1 1 First 64 points of a 2D Sobol′ sequence • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 0 1 1 A lattice rule with 64 points • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (0,6,2)-netHaving the right number of points in various sub-cubes A group under addition modulo Z and includes the integer points • • • • • • • • • • • • • • • • • • • • •• • •• • • • • •• • • • • • • • • •• • • • • • • • • • • • • • Important developments: component-by-component (CBC) construction, “fast” CBC higher order digital nets Niederreiter book (1992) Sloan and Joe book (1994) Lemieux book (2009) Dick and Pillichshammer book (2010) Dick, K., Sloan Acta Numerica (2013) Leobacher and Pillichshammer book (2014)
  • 8. Frances Kuo @ UNSW Sydney, Australia p.8 Lattice rules Rank-1 lattice rules have points ttti = frac i n zzz , i = 1, 2, . . . , n zzz ∈ Zs – the generating vector, with all components coprime to n frac(·) – means to take the fractional part of all components 0 1 1 A lattice rule with 64 points 64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 ∼ quality determined by the choice of zzz ∼ n = 64 zzz = (1, 19) ttti = frac i 64 (1, 19)
  • 9. Frances Kuo @ UNSW Sydney, Australia p.9 Randomly shifted lattice rules Shifted rank-1 lattice rules have points ttti = frac i n zzz + ∆∆∆ , i = 1, 2, . . . , n ∆∆∆ ∈ [0, 1)s – the shift shifted by ∆∆∆ = (0.1, 0.3) 0 1 1 A lattice rule with 64 points • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 0 1 1 A shifted lattice rule with 64 points • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ∼ use a number of random shifts for error estimation ∼
  • 10. Frances Kuo @ UNSW Sydney, Australia p.10 Component-by-component construction Want to find zzz for which some error criterion is as small possible CBC algorithm [Korobov (1959); Sloan, Reztsov (2002); Sloan, K., Joe (2002),. . . ] 1. Set z1 = 1. 2. With z1 fixed, choose z2 to minimize the error criterion in 2D. 3. With z1, z2 fixed, choose z3 to minimize the error criterion in 3D. 4. etc. [Hickernell (1997); Sloan, Wo´zniakowski (1998)] [K. (2003); Dick (2004)] Optimal rate of convergence O(n−1+δ ) in “weighted Sobolev space”, independently of s under an appropriate condition on the weights [Nuyens, Cools (2006)] Cost of algorithm for “product weights” is O(n log n s) using FFT Extensible/embedded variants [Hickernell, Hong, L’Ecuyer, Lemieux (2000); Hickernell, Niederreiter (2003)] [Cools, K., Nuyens (2006)] [Dick, Pillichshammer, Waterhouse (2007)] http://people.cs.kuleuven.be/~dirk.nuyens/fast-cbc/ http://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/
  • 11. Frances Kuo @ UNSW Sydney, Australia p.11 Application of QMC to PDEs with random coefficients [0] Graham, K., Nuyens, Scheichl, Sloan (J. Comput. Physics, 2011) [1] K., Schwab, Sloan (SIAM J. Numer. Anal., 2012) [2] K., Schwab, Sloan (J. FoCM, 2015) [3] Graham, K., Nichols, Scheichl, Schwab, Sloan (Numer. Math., 2015) [4] K., Scheichl, Schwab, Sloan, Ullmann (Math. Comp., to appear) [5] Dick, K., Le Gia, Nuyens, Schwab (SIAM J. Numer. Anal., 2014) [6] Dick, K., Le Gia, Schwab (SIAM J. Numer. Anal., 2016) [7] Graham, K., Nuyens, Scheichl, Sloan (in progress) Also Schwab Le Gia Dick, Le Gia, Schwab Dick, Gantner, Le Gia, Schwab Gantner, Schwab Gantner, Herrmann, Schwab Kazashi Harbrecht, Peters, Siebenmorgen Ganesh, Hawking Robbe, Nuyens, Vandewalle Scheichl, Stuart, Teckentrup Graham, Parkinson, Scheichl Gilbert, Graham, K., Scheichl, Sloan Feischl, K., Sloan Ganesh, K., Sloan etc.
  • 12. Frances Kuo @ UNSW Sydney, Australia p.12 Application of QMC to PDEs with random coefficients Three different QMC theoretical settings: [1,2] Weighted Sobolev space over [0, 1]s and “randomly shifted lattice rules” [3,4] Weighted space setting in Rs and “randomly shifted lattice rules” [5,6] Weighted space of smooth functions over [0, 1]s and (deterministic) “interlaced polynomial lattice rules” Uniform Lognormal Lognormal KL expansion Circulant embedding Experiments only [0]* First order, single-level [1] [3]* [7]* First order, multi-level [2] [4]* Higher order, single-level [5] Higher order, multi-level [6]* The * indicates there are accompanying numerical results K., Nuyens (J. FoCM, 2016) – a survey of [1,2], [3,4], [5,6] in a unified view Accompanying software package http://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde/
  • 13. Frances Kuo @ UNSW Sydney, Australia p.13 5-minute QMC primer Common features among all three QMC theoretical settings: Separation in error bound (rms) QMC error ≤ (rms) worst case errorγγγ × norm of integrandγγγ(rms) QMC error ≤ (rms) worst case errorγγγ × norm of integrandγγγ Weighted spaces Pairing of QMC rule with function space Optimal rate of convergence Rate and constant independent of dimension Fast component-by-component (CBC) construction Extensible or embedded rules Application of QMC theory Estimate the norm (critical step) Choose the weights Weights as input to the CBC construction
  • 14. Frances Kuo @ UNSW Sydney, Australia p.14 Overview Motivating example Introduction to QMC Application PDEs with random coefficients uniform lognormal Setting 1 domain [0, 1]s randomly shifted lattice rules mixed first derivatives first order convergence Setting 2 domain Rs randomly shifted lattice rules mixed first derivatives first order convergence Setting 3 domain [0, 1]s interlaced polynomial lattice rules mixed higher derivatives higher order convergence
  • 15. Frances Kuo @ UNSW Sydney, Australia p.15 Uniform v.s. lognormal −∇ · (a(xxx,yyy) ∇u(xxx,yyy)) = κ(xxx), xxx ∈ D ⊂ Rd , d = 1, 2, 3 u(xxx,yyy) = 0, xxx ∈ ∂D Uniform [Cohen, DeVore, Schwab (2011)] a(xxx,yyy) = a(xxx) + j≥1 yj ψj(xxx), yj ∼ U[−1 2 , 1 2 ] Goal: (− 1 2 , 1 2 )N G(u(·,yyy)) dyyy G – bounded linear functional Lognormal [many references] a(xxx,yyy) = exp(Z(xxx,yyy)) Karhunen–Loève expansion: Z(xxx,yyy) = Z(xxx) + j≥1 yj √ µj ξj(xxx), yj ∼ N(0, 1) Goal: RN ∗ G(u(·,yyy)) j≥1 φnor(yj) dyyy
  • 16. Frances Kuo @ UNSW Sydney, Australia p.16 Error analysis (the uniform case, single-level algorithm) [K., Nuyens (2016) – survey] (− 1 2 , 1 2 )N G(u(·, yyy)) dyyy ≈ 1 n n i=1 G(us h(·,ttti)) (1) dimension truncation (2) FE discretization (3) QMC quadrature Balance three sources of error QMC error Estimate the norm G(us h) γγγ by “differentiating the PDE” Choose the weights to minimize (bound on ewor γγγ )×(bound on G(us h) γγγ ) Get POD weights (product and order dependent) ⇒ feed into fast CBC construction
  • 17. Frances Kuo @ UNSW Sydney, Australia p.17 TUTORIAL: Differentiate the PDE (the uniform case) 1. Variational formulation D a(xxx, yyy) ∇u(xxx, yyy) · ∇w(xxx) dxxx = D κ(xxx) w(xxx) dxxx ∀w ∈ H1 0 (D) 2. Mixed derivatives in yyy with multi-index ννν = 000 D ∂ννν a(xxx, yyy) ∇u(xxx, yyy) · ∇w(xxx) dxxx = 0 ∀w ∈ H1 0 (D) 3. Leibniz product rule D mmm≤ννν ννν mmm (∂mmm a)(xxx, yyy) ∇(∂ννν−mmm u)(xxx, yyy) · ∇w(xxx) dxxx = 0 ∀w ∈ H1 0 (D) 4. Uniform case a(xxx, yyy) = a(xxx) + j≥1 yj ψj(xxx) =⇒ (∂mmm a)(xxx, yyy) =    a(xxx, yyy) if mmm = 000, ψj(xxx) if mmm = eeej, 0 otherwise 5. Separate out the mmm = 000 term D a(xxx, yyy) ∇(∂ννν u)(xxx, yyy) · ∇w(xxx) dxxx = − j≥1 νj D ψj(xxx) ∇(∂ννν−eeej u)(xxx, yyy) · ∇w(xxx) dxxx ∀w ∈ H1 0 (D)
  • 18. Frances Kuo @ UNSW Sydney, Australia p.18 TUTORIAL: Differentiate the PDE (the uniform case) 5. Separate out the mmm = 000 term D a(xxx, yyy) ∇(∂ννν u)(xxx, yyy) · ∇w(xxx) dxxx = − j≥1 νj D ψj(xxx) ∇(∂ννν−eeej u)(xxx, yyy) · ∇w(xxx) dxxx ∀w ∈ H1 0 (D) 6. Take w = (∂ννν u)(·,yyy) and apply Cauchy-Schwarz amin D |∇(∂ννν u)(xxx, yyy)|2 dxxx ≤ j≥1 νj ψj L∞ D |∇(∂ννν−eeej u)(xxx, yyy)|2 dxxx 1/2 D |∇(∂ννν u)(xxx, yyy)|2 dxxx 1/2 7. Cancel one common factor ∇(∂ννν u)(·, yyy) L2 ≤ j≥1 νj bj ∇(∂ννν−eeej u)(·, yyy) L2 , bj = ψj L∞ amin 8. Induction hypothesis ∇(∂ννν u)(·, yyy) L2 ≤ j≥1 νj bj |ννν − eeej|! bbbννν−eeej κ H-1 amin = |ννν|! bbbννν κ H-1 amin
  • 19. Frances Kuo @ UNSW Sydney, Australia p.19 Extensions Lognormal a(xxx,yyy) = exp(Z(xxx,yyy)) circulant embedding [Graham, K., Nuyens, Scheichl, Sloan (in progress)] Z(xxxi, yyy) for i = 1, . . . , M ⇒ M × M covariance matrix R Assume stationary covariance function and regular grid Extend R to an s × s circulant matrix Rext = AAT Compute matrix-vector multiplication Ayyy using FFT H-matrix [Feischl, K., Sloan (in review)] Does not require stationary covariance function or regular grid Approximate R by an H2 -matrix of interpolation order p, Rp = BBT Iterative method to compute Byyy to some prescribed accuracy QMC for PDE eigenvalue problems (neutron diffusion) [Gilbert, Graham, K., Scheichl, Sloan (in progress)] QMC for wave propagation models [Ganesh, K., Sloan (in progress)] QMC for Bayesian inverse problems [several research groups]
  • 20. Frances Kuo @ UNSW Sydney, Australia p.20 Overview Motivating example Introduction to QMC Application PDEs with random coefficients uniform lognormal Setting 1 domain [0, 1]s randomly shifted lattice rules mixed first derivatives first order convergence Setting 2 domain Rs randomly shifted lattice rules mixed first derivatives first order convergence Setting 3 domain [0, 1]s interlaced polynomial lattice rules mixed higher derivatives higher order convergence KL expansion circulant embedding H-matrix Cost reduction Saving 1 Saving 2 Saving 3 Software
  • 21. Frances Kuo @ UNSW Sydney, Australia p.21 Saving 1: multi-level and multi-index Multi-level method [Heinrich (1998); Giles (2008); . . . ; Giles (2016)] Telescoping sum f = ∞ ℓ=0 (fℓ − fℓ−1), f−1 := 0 AML(f) = L ℓ=0 Qℓ(fℓ − fℓ−1) |I(f) − AML(f)| ≤ |I(f) − IL(fL)| ≤ 1 2 ε + L ℓ=0 |(Iℓ − Qℓ)(fℓ − fℓ−1)| ≤ 1 2 ε choose L specify parameters for Qℓ Successive differences fℓ − fℓ−1 become smaller Require less samples for higher dimensional sub-problems Lagrange multiplier to minimize cost subject to a given error threshold Multi-index method [Haji-Ali, Nobile, Tempone (2016)] Apply multi-level simultaneously to more than one aspect of the problem e.g., quadrature, spatial discretization, time discretization, etc. [Giles, K., Sloan (in review)]
  • 22. Frances Kuo @ UNSW Sydney, Australia p.22 Saving 2: MDM Multivariate decomposition method [. . . ; Wasilkowski (2013); . . . ] [K., Nuyens, Plaskota, Sloan, Wasilkowski (2017)] Decomposition f = u⊂{1,2,...},|u|<∞ fu AMDM(f) = u∈A Qu(fu) |I(f) − AMDM(f)| ≤ u /∈A |Iu(fu)| ≤ 1 2 ε + u∈A |(Iu − Qu)(fu)| ≤ 1 2 ε choose A specify parameters for Qu Assume bounds on the norms fu Fu ≤ Bu are given Qu can be QMC or other quadratures including Smolyak Cardinality of active set A might be huge, but cardinality of u ∈ A is small Implementation [Gilbert, K., Nuyens, Wasilkowski (in progress)] Anchored decomposition fu(xxxu) = v⊆u(−1)|u|−|v|f(xxxv; aaa) Explore nestedness/embedding in the quadratures Efficient data structure to reuse function evaluations Application to PDEs with random coefficients [Gilbert, K., Nuyens, Nguyen, Sloan (in progress)]
  • 23. Frances Kuo @ UNSW Sydney, Australia p.23 Saving 3: QMC fast matrix-vector mult. QMC fast matrix-vector multiplication [Dick, K., Le Gia, Schwab (2015)] Want to compute yyyiA for all i = 1, . . . , n Row vectors yyyi = ϕ(ttti) where ttti are QMC points Write Y ′ =    yyy1 ... yyyn−1    = CP C(n−1)×(n−1) is circulant P has a single 1 in each column and 0 everywhere else Can compute Y ′ aaa in O(n log n) operations for any column aaa of A Where does this appy? Generating normally distributed points with a general covariance matrix PDEs with uniform random coefficients PDEs with lognormal random coefficients involving FE quadrature
  • 24. Frances Kuo @ UNSW Sydney, Australia p.25 Software http://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde Construction script in Python Input: generic bound on mixed derivatives (weights are set automatically) |∂ννν F (yyy)| (|ννν| + a1)! d1 s j=1 (a2Bj)νj exp(a3Bj|yj|) F (yyy) =    G(us h) single-level G(us hℓ − us hℓ−1 ) multi-level    a3 = 0 uniform case a3 > 0 lognormal case Output: generating vector for lattice sequence z.txt ## uniform case, 100-dim rule, 2ˆ10 points, with specified bounds b: ./lat-cbc.py --s=100 --m=10 --d2=3 --b=”0.1 * j**-3 / log(j+1)” ## lognormal case, 100-dim rule, 2ˆ10 points, with algebraic decay: ./lat-cbc.py --s=100 --m=10 --a2=”1/log(2)” --a3=1 --d2=3 --c=0.1 Output: generating matrices for interlaced polynomial lattice rule Bs53.col ## 100-dim rule, 2ˆ10 points, interlacing 3, with bounds from file: ./polylat-cbc.py --s=100 --m=10 --alpha=3 --a1=5 --b_file=bounds.txt
  • 25. Frances Kuo @ UNSW Sydney, Australia p.26 Software http://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde Point generators in Matlab/Octave (also C++ and Python) Lattice sequences load z.txt % load generating vector latticeseq_b2(’init0’, z) % initialize the procedural generator Pa = latticeseq_b2(20, 512); % first 512 20-dimensional points Pb = latticeseq_b2(20, 512); % next 512 20-dimensional points Interlaced polynomial lattice rules load Bs53.col % load generating matrices digitalseq_b2g(’init0’, Bs53) % initialize the procedural generator Pa = digitalseq_b2g(100, 512); % first 512 100-dimensional points Pb = digitalseq_b2g(100, 512); % next 512 100-dimensional points Interlaced Sobol′ sequences load sobol_alpha3_Bs53.col % load generating matrices digitalseq_b2g(’init0’, sobol_alpha3_Bs53) % initialize the procedural gen Pa = digitalseq_b2g(50, 512); % first 512 50-dimensional points Pb = digitalseq_b2g(50, 512); % next 512 50-dimensional points
  • 26. Frances Kuo @ UNSW Sydney, Australia p.27 Summary Motivating example Introduction to QMC Application PDEs with random coefficients uniform lognormal Setting 1 domain [0, 1]s randomly shifted lattice rules mixed first derivatives first order convergence Setting 2 domain Rs randomly shifted lattice rules mixed first derivatives first order convergence Setting 3 domain [0, 1]s interlaced polynomial lattice rules mixed higher derivatives higher order convergence KL expansion circulant embedding H-matrix Cost reduction Saving 1 multi-level and multi-index methods Saving 2 multivariate decomposition method (MDM) Saving 3 QMC fast matrix-vector multiplication Software