Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Number sequences

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Nächste SlideShare
Algebra and Formulas
Algebra and Formulas
Wird geladen in …3
×

Hier ansehen

1 von 15 Anzeige

Number sequences

Herunterladen, um offline zu lesen

This presentation is a helping guide for students who have just begun the topic of Number Sequences and Patterns.

This presentation is a helping guide for students who have just begun the topic of Number Sequences and Patterns.

Anzeige
Anzeige

Weitere Verwandte Inhalte

Aktuellste (20)

Anzeige

Number sequences

  1. 1. TYPES OF NUMBER PATTERNS IN MATH • ARITHMETIC SEQUENCE • GEOMETRIC SEQUENCE • TRIANGULAR NUMBERS • SQUARE NUMBERS • CUBE NUMBERS • FIBONACCI SEQUENCE
  2. 2. • A number sequence is a list of numbers • The numbers in this sequence are known as the terms • These terms are governed by a specific rule
  3. 3. NUMBER TERMS AND SEQUENCES
  4. 4. FIBONACCI SEQUENCE IN NATURE
  5. 5. Number Sequence s observed in Daily- life
  6. 6. EXEMPLARY PRACTICE QUESTIONS • WRITE DOWN THE NEXT 2 TERMS OF EACH OF THE FOLLOWING SEQUENCES. a. 98, 89, 80, 71, 62, … b. -2, 0, 4, 10, 18, … c. 1, 9, 25, 49, 81, … Question # 1 59, 50 121, 199 28, 40
  7. 7. EXEMPLARY PRACTICE QUESTIONS • CONSIDER THE SEQUENCE 2, 1, 3, 4, 7, … i. WRITE DOWN THE NEXT 2 TERMS OF THE SEQUENCE. 11, 18, … Question # 2
  8. 8. EXEMPLARY PRACTICE QUESTIONS • CONSIDER THE SEQUENCE 9, 16, 25, 36, 49, … i. WRITE DOWN THE NEXT 2 TERMS OF THE SEQUENCE. 64, 81, … ii. FIND IN TERMS OF n, A FORMULA FOR THE nth TERM OF THE SEQUENCE.  Tn= (n + 2)2 Question # 3
  9. 9. EXEMPLARY PRACTICE QUESTIONS • CONSIDER THE SEQUENCE 44, 41, 38, 35, 32, … i. WRITE DOWN THE NEXT 2 TERMS OF THE SEQUENCE. 29, 26, … Question # 4
  10. 10. EXEMPLARY WORD PROBLEM • There are n people at a party. If each person shakes hand with each of the other people only once, find an expression, in terms of n, for the number of handshakes that will take place.  Number of handshakes that will take place= ½ n(n – 1) Question # 5
  11. 11. Reference Material

×