SlideShare ist ein Scribd-Unternehmen logo
1 von 10
What is SOHO Network (Short Overview)<br />Posted on November 7, 2009, 7:06 am, by Danish. <br />One network type that is growing in popularity is the small office/home office (SOHO) network, which generally includes less than 10 PCs and may not include servers at all. Network resources such as DNS server resolution and e-mail servers are generally located offsite, either hosted by an ISP or at a corporate office. Internet access for the SOHO network is usually provided by cable, DSL, or perhaps ISDN. The boundary between the LAN and the WAN connections is an inexpensive router, frequently costing less than $100.<br />This router may also serve double duty as a firewall to shield the SOHO network from malicious activity originating outside the network. On the LAN side of the network, either a workgroup hub or low-end switch may be used to provide interconnections between client PCs and the router, and many routers include an integral hub or switch. Due to its simplicity, Ethernet is generally the LAN standard used to wire the SOHO network. Wireless standards such as 802.11b are starting to appear for the SOHO market, eliminating the need for adding LAN wiring in the home.<br />The IP suite of protocols is used for communications on the Internet. In addition to the IP, a requirement to support other protocols used in the corporate network, or to provide local communication in the SOHO network, may exist. In later chapters, we will discuss how this complex environment might be supported. In some instances, when a small office needs to connect to a corporate environment in a secure manner, some sort of VPN device is either built into the router itself or on the LAN. Below figure shows an illustration of a SOHO network.<br />Description of Enterprise Network<br />Posted on November 14, 2009, 3:14 pm, by Danish. <br />free person search<br />forex investments<br />shares<br />and software<br />informations<br />The largest and most complex of network types is the enterprise network. These networks are found around the world in the offices of multinational corporations. While a company may have a main corporate headquarters, the network itself may have more than one data center, acting as a regional hub. The data centers would be connected to one another using some form of high-speed WAN; in addition, numerous lower-speed spoke networks radiate from each hub, connecting branch offices, SOHO telecommuters, and traveling employees. The reliance on computer networks creates some serious challenges for today’s corporations.<br />Network reliability and security are essential, particularly when connected to the Internet. Companies must be willing to make significant investments in hardware, software, and people to achieve these goals. Not doing so could be fatal. As with the medium-sized company, large company networks use a variety of LAN technologies. The most common technology is Ethernet, but other technologies may be found, including Token Ring and Fiber Distributed Data Interface (FDDI). Unlike smaller companies, the large corporate network most likely evolved through the years as technology matured, and as mergers, acquisitions, and new branch offices added new network. segments. As such, the enterprise network could best be conceived as many different LAN technologies connected by WAN links. Below Figure shows the enterprise network with hubs and firewalls in place.<br />Many different networking protocols are likely in the corporate network, particularly in older more established companies. They will be supporting many legacy applications and protocols alongside the IP suite. In short, the network is a microcosm of the Internet as a whole, except under the administrative control of one or more IT professionals. The enterprise network topology is complex. Typically, the WAN links between the hubs of the network will be engineered to operate as a high-speed and reliable backbone connection. Each part of the hub network operates as a transit network for the backbone as well. This means that data from one remote office to another remote office will be routed through one or more hubs. This backbone network may be so large and so well engineered that the hubs will also serve as transit networks for information from other corporations. Since the enterprise network is composed of many hubs, branch offices, and SOHOs, the internal LAN topology will resemble that of the branch office closely. Information from the backbone will be distributed to the edges of the network and from there will access the LANs in a hierarchical fashion. One remote office sending traffic to another remote office must do so through the backbone because the offices do not share a direct connection.<br />Because of the complexity, size, and importance of the information on the network to the financial health of the company, staff will be devoted solely to network security on the enterprise network. Users will be strictly policed through the use of passwords, internal firewalls, and proxy servers. Network usage such as e-mail and Web access will be monitored, and well-defined and strict network security polices will be in place and enforced on a regular basis. While branch offices may have a person responsible for the security of that network under guidelines from the main office, some sort of network operations center will monitor the health and security of the network full time from a central location. Firewalls, proxy servers, and intrusion detection hardware and software will also be in use throughout the network to help provide network security. To protect communications between hubs and between the remote branch or SOHO user, VPN devices will also be employed. Physically, the network will be secured as well, and access to servers and workstations will be controlled by locks and identity checks whenever possible.<br />Telephone Network Structure in the field of Telecommunication<br />Posted on October 7, 2009, 12:20 pm, by Danish. <br />If you wished, you could create a simple telephone network by running a line between each person’s telephone and the telephone of every other subscriber to whom that person might wish to talk. However, the amount of wire required for such a network would be overwhelming. Interestingly enough, the first telephone installations followed exactly this method; with only a few telephones in existence, the number of wires were manageable. As the telephone caught on, this approach proved to be uneconomical. Therefore, the telephone industry of today uses a switched network, in which a single telephone line connects each telephone to a centralized switch. This switch provides connections that are enabled only for the period during which two parties are connected. Once the conversation/ transmission is concluded, the connection is broken. <br /> <br />This switched network allows all users to share equipment, thereby reducing network costs. The amount of equipment that is shared by the users is determined by the traffic engineers and is often a cost tradeoff. Indeed, a guiding principle of network design is to provide a reasonable grade of service in the most cost-effective manner. The switched network takes advantage of the fact that not everyone wants to talk at the same time. The direct connection from each telephone to a local switch is called the local loop (or line) that, in the simplest case, is a pair of wires. Typically, each subscriber has a dedicated wire pair that serves as the connection to the network. In party-line service, this local loop is shared by multiple subscribers (in early rural networks, eight-party service was common). <br />Most telephone networks require that each switch provide connections between the lines of any two subscribers that connect to that switch. Because there is a community of interest among the customers served by a switch, most calls are just line-to-line connections within one switch. However, any two subscribers should be able to connect, and this requires connections between switches so customers served by two different switches can complete calls. These switch-to-switch connections are called trunks. If 10 trunks connect offices A and B, only 10 simultaneous conversations are possible between subscribers on A talking to B. <br />But, as soon as one call is concluded, the trunk becomes free to serve another call. Therefore, many subscribers can share trunks sequentially.Traffic engineers are responsible for calculating the proper number of trunks to provide between switches.<br />Evolution of Computing and Mainframes<br />Posted on October 19, 2009, 3:31 am, by Danish. <br />and software<br />informations<br />the new millennium<br />retails<br />It is hard to imagine life without computers. Computers are everywhere—from small microprocessors in watches, microwave ovens, cars, calculators, and PCs, to mainframes and highly specialized supercomputers. A series of hardware and software developments, such as the development of the microchip, made this revolution possible. Moreover, computers today are rarely stand-alone devices. They are connected into networks that span the globe to provide us with a wealth of information. Thus, computers and communications have become increasingly interdependent. The nature and structure of computer networks have changed in conjunction with hardware and software technology. Computers and networks have evolved from the highly centralized mainframe systems of the 1950s and 1960s to the distributed systems of the 1990s and into the new millennium.<br />Today’s enterprise networks include a variety of computing devices, such as terminals, PCs, workstations, minicomputers, mainframes, and supercomputers. These devices can be connected via a number of networking technologies: data is transmitted over local area networks (LANs) within a small geographic area, such as within a building; metropolitan area networks (MANs) provide communication over an area roughly the size of a city; and wide area networks (WANs) connect computers throughout the world.<br />Mainframes <br />The parent of all computers is the mainframe. The first mainframe computers were developed in the 1940s, but they were largely confined to research and development uses. These machines were huge—in size and in price. Together with connected input/output (I/O) devices, they occupied entire rooms. The systems were also highly specialized; they were designed for specific tasks, such as military applications, and required specialized environments. Not surprisingly, few organizations could afford to acquire and maintain these costly devices. Any computer is essentially a device to accept data (i.e., input), process it, and return the results (i.e., output). The early mainframe computers in the 1950s were primarily large systems placed in a central area (the computer center), where users physically brought programs and data on punched cards or paper tapes. Devices, such as card or paper-tape readers, read jobs into the computer’s memory; the central processing unit (CPU) would then process the jobs sequentially to completion. The user and computer did not interact during processing. <br />The systems of the 1950s were stand-alone devices—they were not connected to other mainframes. The processor communicated only with peripheral I/O devices such as card readers and printers, over short distances, and at relatively low speeds. In those days, one large computer usually performed the entire company’s processing. Because of the long execution times associated with I/O-bound jobs, turnaround times were typically quite long. People often had to wait 24 hours or more for the printed results of their calculations. For example, by the time inventory data had been decremented to indicate that a refrigerator had been sold, a day or two might have passed with additional sales to further reduce inventory. In such a world, the concept of transaction processing, in which transactions are executed immediately after they are received by the system, was unheard of. Instead, these early computing systems processed a collection, or batch, of transactions that took place over an extended time period. This gave rise to the term batch processing. In batch jobs, a substantial number of records must be processed, with no particular time criticality. Several processing tasks of today still fit the batch-processing model perfectly (such as payroll and accounts payable).<br />Although the mainframe industry has lost market share to vendors of smaller systems, the large and expensive mainframe system, as a single component in the corporate computing structure, is still with us today and is not likely to disappear in the near future. IBM is still the leading vendor of mainframes, with its System/390 computers, and SNA is still the predominant mainframe-oriented networking architecture. Although IBM has been developing no centralized networking alternatives, the model for mainframe communications remains centralized, which is perfectly adequate for several business applications in which users need to access a few shared applications.<br />In an airline reservation database application, for example, a users’ primary goal is not to communicate with each other, but to get up-to-date flight information. It makes sense to maintain this application in a location that is centrally controlled and can be accessed by everybody. Moreover, this application requires a large disk storage capacity and fast processing— features a mainframe provides. Banks and retail businesses also use mainframes and centralized networking approaches for tasks such as inventory control and maintaining customer information.<br />Client or Server Computing History<br />Posted on October 25, 2009, 11:34 am, by Danish. <br />shares<br />downloading<br />free downloads<br />build a website<br />informations<br />The rapid proliferation of PCs in the workplace quickly exposed a number of their weaknesses. A stand-alone PC can be extremely inefficient. Any computing device requires some form of I/O system. The basic keyboard and monitor system is dedicated to one user, as it is hardly expected that two or more users will share the same PC at the same time. The same is not true for more specialized I/O devices, with which, for example, two or three printers attached to a mainframe or minicomputer environment can be accessed by any system user who can download a file to the printer. It might mean a walk to the I/O window to pick up a printout, but a few printers can meet many users’ needs. In the stand-alone PC world, the printer is accessible only from the computer to which it is attached. Because the computer is a single-user system accessible only from the local keyboard, the printer cannot be shared, and therefore, must be purchased for each PC that needs to print; otherwise, PCs with dedicated printers must be available for anyone’s use, in which case a user would take a file or data (usually on a floppy disk) to the printer station to print it.<br />right0This is affectionately referred to as sneakernet. It doesn’t take a rocket scientist to note the waste in time, resources, and flexibility of this approach. We use printers here as just one example of the inefficiency of stand-alone PCs. Any specialized I/O device faces the same problems (i.e., plotters, scanners, and so on), along with such necessities as hard disk space (secondary storage) and even the processing power itself. Software is another resource that cannot be shared in stand-alone systems. Separate programs must be purchased and loaded on each station. If a department or company maintains database information, the database needs to be copied to any station that needs it. This is a sure-fire formula for inconsistent information or for creating an information bottleneck at some central administrative site. Finally, the stand-alone PC is isolated from the resources of the mainframe or minicomputer environment. Important information assets are not available, usually leading to two or more separate devices on each desk (such as a PC and a terminal into the corporate network). A vast array of computing power develops that is completely out of the control of the Information Technology (IT) group. The result can be (and often is) chaotic.<br />It rapidly became evident that a scheme was necessary to provide some level of interconnection. Enter the local area network (LAN). The LAN became the medium to connect these PCs to shared resources. However, the simple connection of resources and computers was not all that was required. Sharing these resources effectively requires a server. As an example of server function, consider again the problem of sharing a printer among a collection of end users.A printer is inherently a serial device (it prints one thing at a time). A printer cannot print a few characters submitted by user A, then a few from user B, and so on; it must print user A’s complete document before printing user B’s job. Simply connecting a printer to the network will not accomplish the serialization of printing, since users A and B are not synchronized with respect to job submission.A simple solution to this problem is to attach the printer to the network via a specialized processor, called a printer server. This processor accumulates inputs from users A and B, assembles each collection of inputs into a print job, and then sends the jobs to the printer in serial fashion.<br />right0The printer server can also perform such tasks as initializing the printer and downloading fonts. The server must have substantial memory capability to assemble the various jobs, and it must contain the logic required to build a number of print queues (to prioritize the stream of printer jobs). A second example of a server’s function involves a shared database connected to the network. In most systems, different users have different privileges associated with database access. Some might not be allowed access to certain files, others might be allowed to access these files to read information but not write to the files, while still others might have full read/write access. When multiple users can update files, a gate-keeping task must be performed, so that when user A has accessed a given file, user B is denied access to the file until user A is finished. Otherwise, user B could update a file at the central location while user A is still working on it, causing file overwrites. Some authority must perform file locking to assure that databases are correctly updated. In sophisticated systems, locking could be performed on a record (rather than a file) basis—user B can access any record that user A has not downloaded, but B cannot obtain access to a record currently being updated.<br />left0The job of the file (or database) server is to enforce security measures and guarantee consistency of the shared database. The file server must have substantial resources to store all the requisite databases and enough processing power to respond quickly to the many requests submitted via the network. Many other server types are available. For example, a communications server might manage requests for access to remote resources (offsite resources that are not maintained locally). This server would allow all requests for remote communication to be funneled through a common processor, and it would provide an attachment point for a link to a WAN. Application servers might perform specialized computational tasks (graphics is a good example), minimizing the requirement for sophisticated hardware deployed at every network location. Servers are sometimes simply PCs, but they are often specialized high-speed machines called workstations. In some environments, the servers might even be minicomputers or mainframes. Those computers that do not provide a server function are typically called clients, and most PC networks are client/server oriented.<br />
What is soho network
What is soho network
What is soho network
What is soho network
What is soho network
What is soho network
What is soho network
What is soho network
What is soho network

Weitere ähnliche Inhalte

Was ist angesagt?

Computer networks wireless lan,ieee-802.11,bluetooth
Computer networks  wireless lan,ieee-802.11,bluetoothComputer networks  wireless lan,ieee-802.11,bluetooth
Computer networks wireless lan,ieee-802.11,bluetoothDeepak John
 
1 introduction-to-computer-networking
1 introduction-to-computer-networking1 introduction-to-computer-networking
1 introduction-to-computer-networkingMayank Jain
 
SOHO Network Setup Tutorial
SOHO Network Setup Tutorial SOHO Network Setup Tutorial
SOHO Network Setup Tutorial junaidahmedsaba
 
Seminar on “4G Technology” held at University Institute of Technology, Burdwa...
Seminar on “4G Technology” held at University Institute of Technology, Burdwa...Seminar on “4G Technology” held at University Institute of Technology, Burdwa...
Seminar on “4G Technology” held at University Institute of Technology, Burdwa...Sushil Kundu
 
Configuration of lan in cisco packet tracer by TAnjilur Rahman
Configuration of lan in cisco packet tracer by TAnjilur RahmanConfiguration of lan in cisco packet tracer by TAnjilur Rahman
Configuration of lan in cisco packet tracer by TAnjilur RahmanTanjilurRahman6
 
Computer Network & Types
Computer Network & TypesComputer Network & Types
Computer Network & TypesShefa Idrees
 
Wireless Network
Wireless NetworkWireless Network
Wireless Networkdfg1990
 
Networking basic fundamental
Networking basic fundamentalNetworking basic fundamental
Networking basic fundamentalSatish Sehrawat
 
Wireless communication for 8th sem EC VTU students
Wireless communication for 8th sem EC VTU studentsWireless communication for 8th sem EC VTU students
Wireless communication for 8th sem EC VTU studentsSURESHA V
 
Networking Fundamentals
Networking  FundamentalsNetworking  Fundamentals
Networking FundamentalsManjit Chavda
 
Cellular network
Cellular networkCellular network
Cellular networkshreb
 
Cloud RAN for Mobile Networks_Final
Cloud RAN for Mobile Networks_FinalCloud RAN for Mobile Networks_Final
Cloud RAN for Mobile Networks_FinalSumedh Deshpande
 
Network protocol
Network protocolNetwork protocol
Network protocolSWAMY NAYAK
 

Was ist angesagt? (20)

Computer networks wireless lan,ieee-802.11,bluetooth
Computer networks  wireless lan,ieee-802.11,bluetoothComputer networks  wireless lan,ieee-802.11,bluetooth
Computer networks wireless lan,ieee-802.11,bluetooth
 
1 introduction-to-computer-networking
1 introduction-to-computer-networking1 introduction-to-computer-networking
1 introduction-to-computer-networking
 
Network protocals
Network protocalsNetwork protocals
Network protocals
 
WSN IN IOT
WSN IN IOTWSN IN IOT
WSN IN IOT
 
Adhoc wireless
Adhoc wirelessAdhoc wireless
Adhoc wireless
 
SOHO Network Setup Tutorial
SOHO Network Setup Tutorial SOHO Network Setup Tutorial
SOHO Network Setup Tutorial
 
Subnetting
SubnettingSubnetting
Subnetting
 
Seminar on “4G Technology” held at University Institute of Technology, Burdwa...
Seminar on “4G Technology” held at University Institute of Technology, Burdwa...Seminar on “4G Technology” held at University Institute of Technology, Burdwa...
Seminar on “4G Technology” held at University Institute of Technology, Burdwa...
 
Mobile and wireless computing
Mobile and wireless computingMobile and wireless computing
Mobile and wireless computing
 
Configuration of lan in cisco packet tracer by TAnjilur Rahman
Configuration of lan in cisco packet tracer by TAnjilur RahmanConfiguration of lan in cisco packet tracer by TAnjilur Rahman
Configuration of lan in cisco packet tracer by TAnjilur Rahman
 
Computer Network & Types
Computer Network & TypesComputer Network & Types
Computer Network & Types
 
Wireless Network
Wireless NetworkWireless Network
Wireless Network
 
Networking basic fundamental
Networking basic fundamentalNetworking basic fundamental
Networking basic fundamental
 
Wireless communication for 8th sem EC VTU students
Wireless communication for 8th sem EC VTU studentsWireless communication for 8th sem EC VTU students
Wireless communication for 8th sem EC VTU students
 
3G Radio Network Planning
3G Radio Network Planning3G Radio Network Planning
3G Radio Network Planning
 
Networking Fundamentals
Networking  FundamentalsNetworking  Fundamentals
Networking Fundamentals
 
Cellular network
Cellular networkCellular network
Cellular network
 
Cloud RAN for Mobile Networks_Final
Cloud RAN for Mobile Networks_FinalCloud RAN for Mobile Networks_Final
Cloud RAN for Mobile Networks_Final
 
Wlan security
Wlan securityWlan security
Wlan security
 
Network protocol
Network protocolNetwork protocol
Network protocol
 

Ähnlich wie What is soho network

Data Communication & Network
Data Communication & NetworkData Communication & Network
Data Communication & NetworkMaulen Bale
 
Telecommunication The Fastest Way To Communicate
Telecommunication The Fastest Way To CommunicateTelecommunication The Fastest Way To Communicate
Telecommunication The Fastest Way To CommunicateEric Ronald
 
Basic networking tutorial
Basic networking tutorialBasic networking tutorial
Basic networking tutorialreddydivakara
 
Network plus study guide N10-005
Network plus study guide N10-005 Network plus study guide N10-005
Network plus study guide N10-005 ramloganricki
 
Networking tutorial
Networking tutorialNetworking tutorial
Networking tutorialajaymane22
 
Data Communication and Computer Network Overview
Data Communication and Computer Network Overview Data Communication and Computer Network Overview
Data Communication and Computer Network Overview RANVIJAY GAUR
 
itpresentation-160222172239.pdf
itpresentation-160222172239.pdfitpresentation-160222172239.pdf
itpresentation-160222172239.pdfIbrahimRashidBayoh
 
fmxhnkmcjbg,lBasics of network
fmxhnkmcjbg,lBasics of networkfmxhnkmcjbg,lBasics of network
fmxhnkmcjbg,lBasics of networkammulu99
 
Basic networking tutorial
Basic networking tutorialBasic networking tutorial
Basic networking tutorialRodel Morales
 
computer networks presentation
computer networks presentationcomputer networks presentation
computer networks presentationKrishi Agrawal
 
networking tutorial
networking tutorialnetworking tutorial
networking tutorialRaj Alam
 

Ähnlich wie What is soho network (20)

Data Communication & Network
Data Communication & NetworkData Communication & Network
Data Communication & Network
 
Telecommunication The Fastest Way To Communicate
Telecommunication The Fastest Way To CommunicateTelecommunication The Fastest Way To Communicate
Telecommunication The Fastest Way To Communicate
 
Basic networking tutorial
Basic networking tutorialBasic networking tutorial
Basic networking tutorial
 
Network plus study guide N10-005
Network plus study guide N10-005 Network plus study guide N10-005
Network plus study guide N10-005
 
Types of network
Types of networkTypes of network
Types of network
 
final IT ppt.pptx
final IT ppt.pptxfinal IT ppt.pptx
final IT ppt.pptx
 
Networking tutorial
Networking tutorialNetworking tutorial
Networking tutorial
 
Basic lecture
Basic lectureBasic lecture
Basic lecture
 
Fg c
Fg cFg c
Fg c
 
Networking
NetworkingNetworking
Networking
 
Data Communication and Computer Network Overview
Data Communication and Computer Network Overview Data Communication and Computer Network Overview
Data Communication and Computer Network Overview
 
itpresentation-160222172239.pdf
itpresentation-160222172239.pdfitpresentation-160222172239.pdf
itpresentation-160222172239.pdf
 
Cn
CnCn
Cn
 
Cnetworks
CnetworksCnetworks
Cnetworks
 
fmxhnkmcjbg,lBasics of network
fmxhnkmcjbg,lBasics of networkfmxhnkmcjbg,lBasics of network
fmxhnkmcjbg,lBasics of network
 
Basic networking tutorial
Basic networking tutorialBasic networking tutorial
Basic networking tutorial
 
computer networks presentation
computer networks presentationcomputer networks presentation
computer networks presentation
 
ICTL
ICTLICTL
ICTL
 
networking tutorial
networking tutorialnetworking tutorial
networking tutorial
 
Essay On Networking
Essay On NetworkingEssay On Networking
Essay On Networking
 

Kürzlich hochgeladen

Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsHyundai Motor Group
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetHyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetEnjoy Anytime
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?XfilesPro
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxnull - The Open Security Community
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 

Kürzlich hochgeladen (20)

Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetHyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 

What is soho network

  • 1. What is SOHO Network (Short Overview)<br />Posted on November 7, 2009, 7:06 am, by Danish. <br />One network type that is growing in popularity is the small office/home office (SOHO) network, which generally includes less than 10 PCs and may not include servers at all. Network resources such as DNS server resolution and e-mail servers are generally located offsite, either hosted by an ISP or at a corporate office. Internet access for the SOHO network is usually provided by cable, DSL, or perhaps ISDN. The boundary between the LAN and the WAN connections is an inexpensive router, frequently costing less than $100.<br />This router may also serve double duty as a firewall to shield the SOHO network from malicious activity originating outside the network. On the LAN side of the network, either a workgroup hub or low-end switch may be used to provide interconnections between client PCs and the router, and many routers include an integral hub or switch. Due to its simplicity, Ethernet is generally the LAN standard used to wire the SOHO network. Wireless standards such as 802.11b are starting to appear for the SOHO market, eliminating the need for adding LAN wiring in the home.<br />The IP suite of protocols is used for communications on the Internet. In addition to the IP, a requirement to support other protocols used in the corporate network, or to provide local communication in the SOHO network, may exist. In later chapters, we will discuss how this complex environment might be supported. In some instances, when a small office needs to connect to a corporate environment in a secure manner, some sort of VPN device is either built into the router itself or on the LAN. Below figure shows an illustration of a SOHO network.<br />Description of Enterprise Network<br />Posted on November 14, 2009, 3:14 pm, by Danish. <br />free person search<br />forex investments<br />shares<br />and software<br />informations<br />The largest and most complex of network types is the enterprise network. These networks are found around the world in the offices of multinational corporations. While a company may have a main corporate headquarters, the network itself may have more than one data center, acting as a regional hub. The data centers would be connected to one another using some form of high-speed WAN; in addition, numerous lower-speed spoke networks radiate from each hub, connecting branch offices, SOHO telecommuters, and traveling employees. The reliance on computer networks creates some serious challenges for today’s corporations.<br />Network reliability and security are essential, particularly when connected to the Internet. Companies must be willing to make significant investments in hardware, software, and people to achieve these goals. Not doing so could be fatal. As with the medium-sized company, large company networks use a variety of LAN technologies. The most common technology is Ethernet, but other technologies may be found, including Token Ring and Fiber Distributed Data Interface (FDDI). Unlike smaller companies, the large corporate network most likely evolved through the years as technology matured, and as mergers, acquisitions, and new branch offices added new network. segments. As such, the enterprise network could best be conceived as many different LAN technologies connected by WAN links. Below Figure shows the enterprise network with hubs and firewalls in place.<br />Many different networking protocols are likely in the corporate network, particularly in older more established companies. They will be supporting many legacy applications and protocols alongside the IP suite. In short, the network is a microcosm of the Internet as a whole, except under the administrative control of one or more IT professionals. The enterprise network topology is complex. Typically, the WAN links between the hubs of the network will be engineered to operate as a high-speed and reliable backbone connection. Each part of the hub network operates as a transit network for the backbone as well. This means that data from one remote office to another remote office will be routed through one or more hubs. This backbone network may be so large and so well engineered that the hubs will also serve as transit networks for information from other corporations. Since the enterprise network is composed of many hubs, branch offices, and SOHOs, the internal LAN topology will resemble that of the branch office closely. Information from the backbone will be distributed to the edges of the network and from there will access the LANs in a hierarchical fashion. One remote office sending traffic to another remote office must do so through the backbone because the offices do not share a direct connection.<br />Because of the complexity, size, and importance of the information on the network to the financial health of the company, staff will be devoted solely to network security on the enterprise network. Users will be strictly policed through the use of passwords, internal firewalls, and proxy servers. Network usage such as e-mail and Web access will be monitored, and well-defined and strict network security polices will be in place and enforced on a regular basis. While branch offices may have a person responsible for the security of that network under guidelines from the main office, some sort of network operations center will monitor the health and security of the network full time from a central location. Firewalls, proxy servers, and intrusion detection hardware and software will also be in use throughout the network to help provide network security. To protect communications between hubs and between the remote branch or SOHO user, VPN devices will also be employed. Physically, the network will be secured as well, and access to servers and workstations will be controlled by locks and identity checks whenever possible.<br />Telephone Network Structure in the field of Telecommunication<br />Posted on October 7, 2009, 12:20 pm, by Danish. <br />If you wished, you could create a simple telephone network by running a line between each person’s telephone and the telephone of every other subscriber to whom that person might wish to talk. However, the amount of wire required for such a network would be overwhelming. Interestingly enough, the first telephone installations followed exactly this method; with only a few telephones in existence, the number of wires were manageable. As the telephone caught on, this approach proved to be uneconomical. Therefore, the telephone industry of today uses a switched network, in which a single telephone line connects each telephone to a centralized switch. This switch provides connections that are enabled only for the period during which two parties are connected. Once the conversation/ transmission is concluded, the connection is broken. <br /> <br />This switched network allows all users to share equipment, thereby reducing network costs. The amount of equipment that is shared by the users is determined by the traffic engineers and is often a cost tradeoff. Indeed, a guiding principle of network design is to provide a reasonable grade of service in the most cost-effective manner. The switched network takes advantage of the fact that not everyone wants to talk at the same time. The direct connection from each telephone to a local switch is called the local loop (or line) that, in the simplest case, is a pair of wires. Typically, each subscriber has a dedicated wire pair that serves as the connection to the network. In party-line service, this local loop is shared by multiple subscribers (in early rural networks, eight-party service was common). <br />Most telephone networks require that each switch provide connections between the lines of any two subscribers that connect to that switch. Because there is a community of interest among the customers served by a switch, most calls are just line-to-line connections within one switch. However, any two subscribers should be able to connect, and this requires connections between switches so customers served by two different switches can complete calls. These switch-to-switch connections are called trunks. If 10 trunks connect offices A and B, only 10 simultaneous conversations are possible between subscribers on A talking to B. <br />But, as soon as one call is concluded, the trunk becomes free to serve another call. Therefore, many subscribers can share trunks sequentially.Traffic engineers are responsible for calculating the proper number of trunks to provide between switches.<br />Evolution of Computing and Mainframes<br />Posted on October 19, 2009, 3:31 am, by Danish. <br />and software<br />informations<br />the new millennium<br />retails<br />It is hard to imagine life without computers. Computers are everywhere—from small microprocessors in watches, microwave ovens, cars, calculators, and PCs, to mainframes and highly specialized supercomputers. A series of hardware and software developments, such as the development of the microchip, made this revolution possible. Moreover, computers today are rarely stand-alone devices. They are connected into networks that span the globe to provide us with a wealth of information. Thus, computers and communications have become increasingly interdependent. The nature and structure of computer networks have changed in conjunction with hardware and software technology. Computers and networks have evolved from the highly centralized mainframe systems of the 1950s and 1960s to the distributed systems of the 1990s and into the new millennium.<br />Today’s enterprise networks include a variety of computing devices, such as terminals, PCs, workstations, minicomputers, mainframes, and supercomputers. These devices can be connected via a number of networking technologies: data is transmitted over local area networks (LANs) within a small geographic area, such as within a building; metropolitan area networks (MANs) provide communication over an area roughly the size of a city; and wide area networks (WANs) connect computers throughout the world.<br />Mainframes <br />The parent of all computers is the mainframe. The first mainframe computers were developed in the 1940s, but they were largely confined to research and development uses. These machines were huge—in size and in price. Together with connected input/output (I/O) devices, they occupied entire rooms. The systems were also highly specialized; they were designed for specific tasks, such as military applications, and required specialized environments. Not surprisingly, few organizations could afford to acquire and maintain these costly devices. Any computer is essentially a device to accept data (i.e., input), process it, and return the results (i.e., output). The early mainframe computers in the 1950s were primarily large systems placed in a central area (the computer center), where users physically brought programs and data on punched cards or paper tapes. Devices, such as card or paper-tape readers, read jobs into the computer’s memory; the central processing unit (CPU) would then process the jobs sequentially to completion. The user and computer did not interact during processing. <br />The systems of the 1950s were stand-alone devices—they were not connected to other mainframes. The processor communicated only with peripheral I/O devices such as card readers and printers, over short distances, and at relatively low speeds. In those days, one large computer usually performed the entire company’s processing. Because of the long execution times associated with I/O-bound jobs, turnaround times were typically quite long. People often had to wait 24 hours or more for the printed results of their calculations. For example, by the time inventory data had been decremented to indicate that a refrigerator had been sold, a day or two might have passed with additional sales to further reduce inventory. In such a world, the concept of transaction processing, in which transactions are executed immediately after they are received by the system, was unheard of. Instead, these early computing systems processed a collection, or batch, of transactions that took place over an extended time period. This gave rise to the term batch processing. In batch jobs, a substantial number of records must be processed, with no particular time criticality. Several processing tasks of today still fit the batch-processing model perfectly (such as payroll and accounts payable).<br />Although the mainframe industry has lost market share to vendors of smaller systems, the large and expensive mainframe system, as a single component in the corporate computing structure, is still with us today and is not likely to disappear in the near future. IBM is still the leading vendor of mainframes, with its System/390 computers, and SNA is still the predominant mainframe-oriented networking architecture. Although IBM has been developing no centralized networking alternatives, the model for mainframe communications remains centralized, which is perfectly adequate for several business applications in which users need to access a few shared applications.<br />In an airline reservation database application, for example, a users’ primary goal is not to communicate with each other, but to get up-to-date flight information. It makes sense to maintain this application in a location that is centrally controlled and can be accessed by everybody. Moreover, this application requires a large disk storage capacity and fast processing— features a mainframe provides. Banks and retail businesses also use mainframes and centralized networking approaches for tasks such as inventory control and maintaining customer information.<br />Client or Server Computing History<br />Posted on October 25, 2009, 11:34 am, by Danish. <br />shares<br />downloading<br />free downloads<br />build a website<br />informations<br />The rapid proliferation of PCs in the workplace quickly exposed a number of their weaknesses. A stand-alone PC can be extremely inefficient. Any computing device requires some form of I/O system. The basic keyboard and monitor system is dedicated to one user, as it is hardly expected that two or more users will share the same PC at the same time. The same is not true for more specialized I/O devices, with which, for example, two or three printers attached to a mainframe or minicomputer environment can be accessed by any system user who can download a file to the printer. It might mean a walk to the I/O window to pick up a printout, but a few printers can meet many users’ needs. In the stand-alone PC world, the printer is accessible only from the computer to which it is attached. Because the computer is a single-user system accessible only from the local keyboard, the printer cannot be shared, and therefore, must be purchased for each PC that needs to print; otherwise, PCs with dedicated printers must be available for anyone’s use, in which case a user would take a file or data (usually on a floppy disk) to the printer station to print it.<br />right0This is affectionately referred to as sneakernet. It doesn’t take a rocket scientist to note the waste in time, resources, and flexibility of this approach. We use printers here as just one example of the inefficiency of stand-alone PCs. Any specialized I/O device faces the same problems (i.e., plotters, scanners, and so on), along with such necessities as hard disk space (secondary storage) and even the processing power itself. Software is another resource that cannot be shared in stand-alone systems. Separate programs must be purchased and loaded on each station. If a department or company maintains database information, the database needs to be copied to any station that needs it. This is a sure-fire formula for inconsistent information or for creating an information bottleneck at some central administrative site. Finally, the stand-alone PC is isolated from the resources of the mainframe or minicomputer environment. Important information assets are not available, usually leading to two or more separate devices on each desk (such as a PC and a terminal into the corporate network). A vast array of computing power develops that is completely out of the control of the Information Technology (IT) group. The result can be (and often is) chaotic.<br />It rapidly became evident that a scheme was necessary to provide some level of interconnection. Enter the local area network (LAN). The LAN became the medium to connect these PCs to shared resources. However, the simple connection of resources and computers was not all that was required. Sharing these resources effectively requires a server. As an example of server function, consider again the problem of sharing a printer among a collection of end users.A printer is inherently a serial device (it prints one thing at a time). A printer cannot print a few characters submitted by user A, then a few from user B, and so on; it must print user A’s complete document before printing user B’s job. Simply connecting a printer to the network will not accomplish the serialization of printing, since users A and B are not synchronized with respect to job submission.A simple solution to this problem is to attach the printer to the network via a specialized processor, called a printer server. This processor accumulates inputs from users A and B, assembles each collection of inputs into a print job, and then sends the jobs to the printer in serial fashion.<br />right0The printer server can also perform such tasks as initializing the printer and downloading fonts. The server must have substantial memory capability to assemble the various jobs, and it must contain the logic required to build a number of print queues (to prioritize the stream of printer jobs). A second example of a server’s function involves a shared database connected to the network. In most systems, different users have different privileges associated with database access. Some might not be allowed access to certain files, others might be allowed to access these files to read information but not write to the files, while still others might have full read/write access. When multiple users can update files, a gate-keeping task must be performed, so that when user A has accessed a given file, user B is denied access to the file until user A is finished. Otherwise, user B could update a file at the central location while user A is still working on it, causing file overwrites. Some authority must perform file locking to assure that databases are correctly updated. In sophisticated systems, locking could be performed on a record (rather than a file) basis—user B can access any record that user A has not downloaded, but B cannot obtain access to a record currently being updated.<br />left0The job of the file (or database) server is to enforce security measures and guarantee consistency of the shared database. The file server must have substantial resources to store all the requisite databases and enough processing power to respond quickly to the many requests submitted via the network. Many other server types are available. For example, a communications server might manage requests for access to remote resources (offsite resources that are not maintained locally). This server would allow all requests for remote communication to be funneled through a common processor, and it would provide an attachment point for a link to a WAN. Application servers might perform specialized computational tasks (graphics is a good example), minimizing the requirement for sophisticated hardware deployed at every network location. Servers are sometimes simply PCs, but they are often specialized high-speed machines called workstations. In some environments, the servers might even be minicomputers or mainframes. Those computers that do not provide a server function are typically called clients, and most PC networks are client/server oriented.<br />