SlideShare ist ein Scribd-Unternehmen logo
1 von 142
Section 6.8 - Variation
Four types of variation in this section:
Four types of variation in this section: Direct Variation
Four types of variation in this section: Direct Variation Inverse Variation
Four types of variation in this section: Direct Variation Inverse Variation Combined Variation (really just a combination of #1 and #2)
Four types of variation in this section: Direct Variation Inverse Variation Combined Variation (really just a combination of #1 and #2) Joint Variation
Direct Variation    The relationship “y varies directly as x” or “y is proportional to x” could be written in equation form as:
Direct Variation    The relationship “y varies directly as x” or “y is proportional to x” could be written in equation form as: y= k x
Direct Variation    The relationship “y varies directly as x” or “y is proportional to x” could be written in equation form as: 		where k represents the constant of proportionality y= k x
Direct Variation    The relationship “y varies directly as x” or “y is proportional to x” could be written in equation form as: 		where k represents the constant of proportionality y= k x Example   The circumference,C, of a circle varies directly to the diameter, d, of the circle as seen in the equation:
Direct Variation    The relationship “y varies directly as x” or “y is proportional to x” could be written in equation form as: 		where k represents the constant of proportionality y= k x Example The circumference,C, of a circle varies directly to the diameter, d, of the circle as seen in the equation:  C= π d
Direct Variation    The relationship “y varies directly as x” or “y is proportional to x” could be written in equation form as: 		where k represents the constant of proportionality y= k x Example The circumference,C, of a circle varies directly to the diameter, d, of the circle as seen in the equation:  In this case the constant of proportionality is the number π≈ 3.14 C= π d
 So why call it direct variation?
 So why call it direct variation? Look at the circle below.  What will happen to the circle’s circumference (distance around) if we make the diameter(distance across) bigger? d = 5 inches C = π(5) ≈ 15.7 in.
 So why call it direct variation? Look at the circle below.  What will happen to the circle’s circumference (distance around) if we make the diameter(distance across) bigger? d = 5 inches C = π(5) ≈ 15.7 in.
 So why call it direct variation? Look at the circle below.  What will happen to the circle’s circumference (distance around) if we make the diameter(distance across) bigger? d = 8 inches C = π(8) ≈ 25.12 in. d = 5 inches C = π(5) ≈ 15.7 in.
 So why call it direct variation? Look at the circle below.  What will happen to the circle’s circumference (distance around) if we make the diameter(distance across) bigger? Notice that increasing the diameter also increased the circumference.  This is typical of things that vary directly.  Increasing one variable will also increase the other variable.  Likewise decreasing one variable will also decrease the other variable.  This is why it is called directvariation, whatever you do to one variable (increase or decrease) it will directly affect the other variable in the same way. d = 8 inches C = π(8) ≈ 25.12 in. d = 5 inches C = π(5) ≈ 15.7 in.
Exercise 1: Write a general equation that represents the given relationship. The electric resistance, R, of a wire varies directly as its length, L. The volume, V, of a sphere varies directly as the cube of its radius.
Exercise 1: Write a general equation that represents the given relationship. The electric resistance, R, of a wire varies directly as its length, L. The volume, V, of a sphere varies directly as the cube of its radius.
Exercise 1: Write a general equation that represents the given relationship. The electric resistance, R, of a wire varies directly as its length, L. The volume, V, of a sphere varies directly as the cube of its radius. Remember: direct variation always looks like  y = kx.  However, we now have different variables.
Exercise 1: Write a general equation that represents the given relationship. The electric resistance, R, of a wire varies directly as its length, L. The volume, V, of a sphere varies directly as the cube of its radius. Remember: direct variation always looks like  y = kx.  However, we now have different variables. R = k L
Exercise 1: Write a general equation that represents the given relationship. The electric resistance, R, of a wire varies directly as its length, L. The volume, V, of a sphere varies directly as the cube of its radius. Remember: direct variation always looks like  y = kx.  However, we now have different variables. R = k L
Exercise 1: Write a general equation that represents the given relationship. The electric resistance, R, of a wire varies directly as its length, L. The volume, V, of a sphere varies directly as the cube of its radius. Remember: direct variation always looks like  y = kx.  However, we now have different variables. R = k L
Exercise 1: Write a general equation that represents the given relationship. The electric resistance, R, of a wire varies directly as its length, L. The volume, V, of a sphere varies directly as the cube of its radius. Remember: direct variation always looks like  y = kx.  However, we now have different variables. R = k L V = k r 3
Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directly as the depth, d, at which you are swimming.
Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd
Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch.  Calculate the constant of proportionality, k.
Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch.  Calculate the constant of proportionality, k. P = 8.6
Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch.  Calculate the constant of proportionality, k. P = 8.6 and   d = 20
Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch.  Calculate the constant of proportionality, k. P = 8.6 and   d = 20 So…
Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch.  Calculate the constant of proportionality, k. P = 8.6 and   d = 20 So…
Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch.  Calculate the constant of proportionality, k. P = 8.6 and   d = 20 So…
Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch.  Calculate the constant of proportionality, k. P = 8.6 and   d = 20 So…
Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch.  Calculate the constant of proportionality, k. P = 8.6 and   d = 20 So…
Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch.  Calculate the constant of proportionality, k. P = 8.6 and   d = 20 So… At an underwater depth of 80 ft, what is the pressure in your ears?
Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch.  Calculate the constant of proportionality, k. P = 8.6 and   d = 20 So… At an underwater depth of 80 ft, what is the pressure in your ears? We now know(from part b) that when you are underwater the constant of proportionality is k = 0.43. So our actual equation is
Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch.  Calculate the constant of proportionality, k. P = 8.6 and   d = 20 So… At an underwater depth of 80 ft, what is the pressure in your ears? We now know(from part b) that when you are underwater the constant of proportionality is k = 0.43. So our actual equation is  P = 0.43d
Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch.  Calculate the constant of proportionality, k. P = 8.6 and   d = 20 So… At an underwater depth of 80 ft, what is the pressure in your ears? We now know(from part b) that when you are underwater the constant of proportionality is k = 0.43. So our actual equation is  P = 0.43d At a depth of 80 ft we would have
Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch.  Calculate the constant of proportionality, k. P = 8.6 and   d = 20 So… At an underwater depth of 80 ft, what is the pressure in your ears? We now know(from part b) that when you are underwater the constant of proportionality is k = 0.43. So our actual equation is  P = 0.43d At a depth of 80 ft we would have
Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch.  Calculate the constant of proportionality, k. P = 8.6 and   d = 20 So… At an underwater depth of 80 ft, what is the pressure in your ears? We now know(from part b) that when you are underwater the constant of proportionality is k = 0.43. So our actual equation is  P = 0.43d At a depth of 80 ft we would have At a depth of 80 ft the pressure in your ears would be 34.4 pounds per sq. inch.
The three parts of exercise 2 represent a typical problem in this section.   Most problems follow the same basic pattern (see Blitzer textbook, page 465):
The three parts of exercise 2 represent a typical problem in this section.   Most problems follow the same basic pattern (see Blitzer textbook, page 465): Write an equation that models the statement.
The three parts of exercise 2 represent a typical problem in this section.   Most problems follow the same basic pattern (see Blitzer textbook, page 465): Write an equation that models the statement. Substitute the given values in to the equation to find the value of k.
The three parts of exercise 2 represent a typical problem in this section.   Most problems follow the same basic pattern (see Blitzer textbook, page 465): Write an equation that models the statement. Substitute the given values in to the equation to find the value of k. Substitute the value of k into the equation from step 1.
The three parts of exercise 2 represent a typical problem in this section.   Most problems follow the same basic pattern (see Blitzer textbook, page 465): Write an equation that models the statement. Substitute the given values in to the equation to find the value of k. Substitute the value of k into the equation from step 1. Use the equation from step 3 to answer the problem’s question.
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches?
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.          Let B be the height the ball bounces and d the height from which the ball was dropped.
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.          Let B be the height the ball bounces and d the height from which the ball was dropped.
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.          Let B be the height the ball bounces and d the height from which the ball was dropped.          Step 2: Substitute the givens to find k.
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inchesbounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.          Let B be the height the ball bounces and d the height from which the ball was dropped.          Step 2: Substitute the givens to find k.
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.          Let B be the height the ball bounces and d the height from which the ball was dropped.          Step 2: Substitute the givens to find k.
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.          Let B be the height the ball bounces and d the height from which the ball was dropped.          Step 2: Substitute the givens to find k.
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.          Let B be the height the ball bounces and d the height from which the ball was dropped.          Step 2: Substitute the givens to find k.
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.          Let B be the height the ball bounces and d the height from which the ball was dropped.          Step 2: Substitute the givens to find k.
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.          Let B be the height the ball bounces and d the height from which the ball was dropped.          Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1.
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.          Let B be the height the ball bounces and d the height from which the ball was dropped.          Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1.
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.          Let B be the height the ball bounces and d the height from which the ball was dropped.          Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.          Let B be the height the ball bounces and d the height from which the ball was dropped.          Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.      If the ball bounced 56 in. how far was it dropped?
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.          Let B be the height the ball bounces and d the height from which the ball was dropped.          Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.      If the ball bounced 56 in. how far was it dropped? 				                  In other words, if B = 56, what was d ?
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.          Let B be the height the ball bounces and d the height from which the ball was dropped.          Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.      If the ball bounced 56 in. how far was it dropped? 				                  In other words, if B = 56, what was d ?
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.          Let B be the height the ball bounces and d the height from which the ball was dropped.          Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.      If the ball bounced 56 in. how far was it dropped? 				                  In other words, if B = 56, what was d ?
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.          Let B be the height the ball bounces and d the height from which the ball was dropped.          Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.      If the ball bounced 56 in. how far was it dropped? 				                  In other words, if B = 56, what was d ?
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.          Let B be the height the ball bounces and d the height from which the ball was dropped.          Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.      If the ball bounced 56 in. how far was it dropped? 				                  In other words, if B = 56, what was d ?
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.          Let B be the height the ball bounces and d the height from which the ball was dropped.          Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.      If the ball bounced 56 in. how far was it dropped? 				                  In other words, if B = 56, what was d ?	       	  The ball was dropped from a height of 80 inches.
Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped.  A tennis ball dropped from 12 inches bounces 8.4 inches.  From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.          Let B be the height the ball bounces and d the height from which the ball was dropped.          Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.      If the ball bounced 56 in. how far was it dropped? 				                  In other words, if B = 56, what was d ?	       	  The ball was dropped from a height of 80 inches. DON’T FORGET UNITS!!!
Now you try!
Now you try! Try exercise 4 on your own.
Now you try! Try exercise 4 on your own.   Exercise 4 The distance required to stop a car varies directly as the square of its speed.  If 200 feet are required to stop a car traveling 60 miles per hour, how many feet are required to stop a car traveling 100 miles per hour?  (round your answer to the nearest foot)
Now you try! Try exercise 4 on your own.   Exercise 4 The distance required to stop a car varies directly as the square of its speed.  If 200 feet are required to stop a car traveling 60 miles per hour, how many feet are required to stop a car traveling 100 miles per hour?  (round your answer to the nearest foot) 					Verify that the answer is 556 feet.
Inverse Variation   The relationship “y varies inversely as x” or “y is inverselyproportionalto x” could be written in equation form as: 		where k represents the constant of proportionality
Inverse Variation   The relationship “y varies inversely as x” or “y is inverselyproportionalto x” could be written in equation form as: 		where k represents the constant of proportionality
Inverse Variation   The relationship “y varies inversely as x” or “y is inverselyproportionalto x” could be written in equation form as: 		where k represents the constant of proportionality Exercise 5: Write a general equation that represents the following relationship:
Inverse Variation   The relationship “y varies inversely as x” or “y is inverselyproportionalto x” could be written in equation form as: 		where k represents the constant of proportionality Exercise 5: Write a general equation that represents the following relationship: The demand, D, for a product varies inversely as its price, P.
Inverse Variation   The relationship “y varies inversely as x” or “y is inverselyproportionalto x” could be written in equation form as: 		where k represents the constant of proportionality Exercise 5: Write a general equation that represents the following relationship: The demand, D, for a product varies inversely as its price, P.
Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d.  At a depth of 1000 meters, the water temperature is 4.4°C.  What is the water temperature at a depth of 5000 meters?
Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d.  At a depth of 1000 meters, the water temperature is 4.4°C.  What is the water temperature at a depth of 5000 meters? Step 1: Write the equation.
Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d.  At a depth of 1000 meters, the water temperature is 4.4°C.  What is the water temperature at a depth of 5000 meters? Step 1: Write the equation.
Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d.  At a depth of 1000 meters, the water temperature is 4.4°C.  What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k.
Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d.  At a depth of 1000 meters, the water temperature is 4.4°C.  What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k.
Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d.  At a depth of 1000 meters, the water temperature is 4.4°C.  What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k.
Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d.  At a depth of 1000 meters, the water temperature is 4.4°C.  What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k.
Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d.  At a depth of 1000 meters, the water temperature is 4.4°C.  What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k.
Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d.  At a depth of 1000 meters, the water temperature is 4.4°C.  What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k.
Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d.  At a depth of 1000 meters, the water temperature is 4.4°C.  What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1.
Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d.  At a depth of 1000 meters, the water temperature is 4.4°C.  What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1.
Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d.  At a depth of 1000 meters, the water temperature is 4.4°C.  What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.
Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d.  At a depth of 1000 meters, the water temperature is 4.4°C.  What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.      What is the water temperature at a depth of 5000 meters?
Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d.  At a depth of 1000 meters, the water temperature is 4.4°C.  What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.      What is the water temperature at a depth of 5000 meters? 				                  In other words, if d = 1000, what is T  ?
Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d.  At a depth of 1000 meters, the water temperature is 4.4°C.  What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.      What is the water temperature at a depth of 5000 meters? 				                  In other words, if d = 1000, what is T  ?
Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d.  At a depth of 1000 meters, the water temperature is 4.4°C.  What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.      What is the water temperature at a depth of 5000 meters? 				                  In other words, if d = 1000, what is T  ?
Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d.  At a depth of 1000 meters, the water temperature is 4.4°C.  What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.      What is the water temperature at a depth of 5000 meters? 				                  In other words, if d = 1000, what is T  ?	       	  The temperature is 0.88°C at a depth of 5000 m.
Inverse Variation intuitively…
Inverse Variation intuitively… Notice what happened in the last example:
Inverse Variation intuitively… Notice what happened in the last example: When the depth got bigger, the temperature got smaller.
Inverse Variation intuitively… Notice what happened in the last example: When the depth got bigger, the temperature got smaller. This makes sense because the farther underwater you go in the ocean the colder the temperature gets.
Inverse Variation intuitively… Notice what happened in the last example: When the depth got bigger, the temperature got smaller. This makes sense because the farther underwater you go in the ocean the colder the temperature gets. In general, for inverse variation…
Inverse Variation intuitively… Notice what happened in the last example: When the depth got bigger, the temperature got smaller. This makes sense because the farther underwater you go in the ocean the colder the temperature gets. In general, for inverse variation… ,[object Object],[object Object]
When one variable decreases the other increases.,[object Object]
When one variable decreases the other increases.
Basically they do the opposite….that is why we call it inverse variation.,[object Object]
Combined Variation In combined variation, direct and inverse variation occur at the same time. Example:  The sale of a product varies directly as its advertising budget and inversely as the price of the product.
Combined Variation In combined variation, direct and inverse variation occur at the same time. Example:  The sale of a product varies directly as its advertising budget and inversely as the price of the product. We could write this relationship as
Combined Variation In combined variation, direct and inverse variation occur at the same time. Example:  The sale of a product varies directly as its advertising budget and inversely as the price of the product. We could write this relationship as  Notice that since sales vary directly with advertising then if we increased our advertising budget we would expect sales to also increase.
Combined Variation In combined variation, direct and inverse variation occur at the same time. Example:  The sale of a product varies directly as its advertising budget and inversely as the price of the product. We could write this relationship as  Notice that since sales vary directly with advertising then if we increased our advertising budget we would expect sales to also increase. Notice that since sales vary inversely with price then if we increased the price of the product we would expect sales to decrease.
Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems.  If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems?
Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems.  If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation.
Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems.  If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation.  Let m = number of minutes, n = number of problems, and p = number of people
Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems.  If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation.  Let m = number of minutes, n = number of problems, and p = number of people
Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems.  If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation.  Let m = number of minutes, n = number of problems, and p = number of people  Step 2: Substitute the givens to find k.
Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems.  If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation.  Let m = number of minutes, n = number of problems, and p = number of people  Step 2: Substitute the givens to find k.
Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems.  If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation.  Let m = number of minutes, n = number of problems, and p = number of people  Step 2: Substitute the givens to find k.
Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems.  If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation.  Let m = number of minutes, n = number of problems, and p = number of people  Step 2: Substitute the givens to find k.
Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems.  If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation.  Let m = number of minutes, n = number of problems, and p = number of people  Step 2: Substitute the givens to find k.
Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems.  If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation.  Let m = number of minutes, n = number of problems, and p = number of people  Step 2: Substitute the givens to find k.
Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems.  If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation.  Let m = number of minutes, n = number of problems, and p = number of people  Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1.
Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems.  If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation.  Let m = number of minutes, n = number of problems, and p = number of people  Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1.
Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems.  If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation.  Let m = number of minutes, n = number of problems, and p = number of people  Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.
Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems.  If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation.  Let m = number of minutes, n = number of problems, and p = number of people  Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.       How many minutes will it take 8 people to solve 24 problems?
Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems.  If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation.  Let m = number of minutes, n = number of problems, and p = number of people  Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.       How many minutes will it take 8 people to solve 24 problems? 				                  In other words, if p = 8 and n = 24, what is m ?
Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems.  If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation.  Let m = number of minutes, n = number of problems, and p = number of people  Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.       How many minutes will it take 8 people to solve 24 problems? 				                  In other words, if p = 8 and n = 24, what is m ?
Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems.  If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation.  Let m = number of minutes, n = number of problems, and p = number of people  Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.       How many minutes will it take 8 people to solve 24 problems? 				                  In other words, if p = 8 and n = 24, what is m ?
Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems.  If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation.  Let m = number of minutes, n = number of problems, and p = number of people  Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.       How many minutes will it take 8 people to solve 24 problems? 				                  In other words, if p = 8 and n = 24, what is m ?	       	  It will take 24 minutes for 8 people to solve 24 problems.
Joint Variation   The relationship “y varies jointlyas x and z” could be written in equation form as: 		where k represents the constant of proportionality
Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone.  If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ?
Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone.  If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation.
Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone.  If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation.
Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone.  If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k.
Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone.  If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k.
Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone.  If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k.
Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone.  If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k.
Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone.  If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k.
Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone.  If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k.
Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone.  If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k.
Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone.  If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1.
Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone.  If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1.
Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone.  If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.
Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone.  If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.       What is the volume of a cone with B = 20 in. and h = 8 in. ?
Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone.  If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.       What is the volume of a cone with B = 20 in. and h = 8 in. ?
Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone.  If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.       What is the volume of a cone with B = 20 in. and h = 8 in. ?  The volume of a cone with B = 20 in. and h = 8 in. is approximately 53.33cubic inches.

Weitere ähnliche Inhalte

Was ist angesagt?

5.3 Congruent Triangle Proofs
5.3 Congruent Triangle Proofs5.3 Congruent Triangle Proofs
5.3 Congruent Triangle Proofssmiller5
 
Similar figures and_proportions
Similar figures and_proportionsSimilar figures and_proportions
Similar figures and_proportionskaren wagoner
 
Direct Variation
Direct VariationDirect Variation
Direct Variationswartzje
 
Math 8 – triangle congruence, postulates,
Math 8 – triangle congruence, postulates,Math 8 – triangle congruence, postulates,
Math 8 – triangle congruence, postulates,Rebekah Andrea Fullido
 
Right Triangle Similarity
Right Triangle SimilarityRight Triangle Similarity
Right Triangle SimilarityFidelfo Moral
 
Introduction to Postulates and Theorems
Introduction to Postulates and TheoremsIntroduction to Postulates and Theorems
Introduction to Postulates and Theoremsneedmath
 
Properties of Parallelogram
Properties of ParallelogramProperties of Parallelogram
Properties of ParallelogramCipriano De Leon
 
Module 7 triangle trigonometry super final
Module 7 triangle trigonometry super finalModule 7 triangle trigonometry super final
Module 7 triangle trigonometry super finalDods Dodong
 
Special Right Triangles
Special Right TrianglesSpecial Right Triangles
Special Right TrianglesFidelfo Moral
 
Triangle Congruence (Introduction)
Triangle Congruence (Introduction)Triangle Congruence (Introduction)
Triangle Congruence (Introduction)Eduardo Gonzaga Jr.
 
Applying Triangle Congruence to Construct Perpendicular Lines and.pptx
Applying Triangle Congruence to Construct Perpendicular Lines and.pptxApplying Triangle Congruence to Construct Perpendicular Lines and.pptx
Applying Triangle Congruence to Construct Perpendicular Lines and.pptxKahalamanChannel
 
Points, Lines and Planes
Points, Lines and PlanesPoints, Lines and Planes
Points, Lines and Planesranzzley
 
Rectangular Coordinate System Lesson Plan
Rectangular Coordinate System Lesson PlanRectangular Coordinate System Lesson Plan
Rectangular Coordinate System Lesson PlanRealyn Magbanua
 

Was ist angesagt? (20)

5.3 Congruent Triangle Proofs
5.3 Congruent Triangle Proofs5.3 Congruent Triangle Proofs
5.3 Congruent Triangle Proofs
 
Math 9 similar triangles intro
Math 9   similar triangles introMath 9   similar triangles intro
Math 9 similar triangles intro
 
Similar figures and_proportions
Similar figures and_proportionsSimilar figures and_proportions
Similar figures and_proportions
 
Direct Variation
Direct VariationDirect Variation
Direct Variation
 
Combined variation
Combined variationCombined variation
Combined variation
 
Math 8 – triangle congruence, postulates,
Math 8 – triangle congruence, postulates,Math 8 – triangle congruence, postulates,
Math 8 – triangle congruence, postulates,
 
Right Triangle Similarity
Right Triangle SimilarityRight Triangle Similarity
Right Triangle Similarity
 
Introduction to Postulates and Theorems
Introduction to Postulates and TheoremsIntroduction to Postulates and Theorems
Introduction to Postulates and Theorems
 
Properties of Parallelogram
Properties of ParallelogramProperties of Parallelogram
Properties of Parallelogram
 
Inverse Variation (Mathematics 9)
Inverse Variation (Mathematics 9)Inverse Variation (Mathematics 9)
Inverse Variation (Mathematics 9)
 
Module 7 triangle trigonometry super final
Module 7 triangle trigonometry super finalModule 7 triangle trigonometry super final
Module 7 triangle trigonometry super final
 
Special Right Triangles
Special Right TrianglesSpecial Right Triangles
Special Right Triangles
 
Triangle Congruence (Introduction)
Triangle Congruence (Introduction)Triangle Congruence (Introduction)
Triangle Congruence (Introduction)
 
Applying Triangle Congruence to Construct Perpendicular Lines and.pptx
Applying Triangle Congruence to Construct Perpendicular Lines and.pptxApplying Triangle Congruence to Construct Perpendicular Lines and.pptx
Applying Triangle Congruence to Construct Perpendicular Lines and.pptx
 
QUADRATIC FUNCTIONS
QUADRATIC FUNCTIONSQUADRATIC FUNCTIONS
QUADRATIC FUNCTIONS
 
Inverse variation
Inverse variationInverse variation
Inverse variation
 
ASA, SAS,AAS,SSS
ASA, SAS,AAS,SSSASA, SAS,AAS,SSS
ASA, SAS,AAS,SSS
 
Points, Lines and Planes
Points, Lines and PlanesPoints, Lines and Planes
Points, Lines and Planes
 
Rectangular Coordinate System Lesson Plan
Rectangular Coordinate System Lesson PlanRectangular Coordinate System Lesson Plan
Rectangular Coordinate System Lesson Plan
 
Trigonometric ratios
Trigonometric ratiosTrigonometric ratios
Trigonometric ratios
 

Andere mochten auch

6.7 other methods for solving
6.7 other methods for solving6.7 other methods for solving
6.7 other methods for solvinghisema01
 
6.2 solve quadratic equations by graphing
6.2 solve quadratic equations by graphing6.2 solve quadratic equations by graphing
6.2 solve quadratic equations by graphingJessica Garcia
 
Direct and Inverse variations
Direct and Inverse variationsDirect and Inverse variations
Direct and Inverse variationsswartzje
 
AA Section 2-9
AA Section 2-9AA Section 2-9
AA Section 2-9Jimbo Lamb
 
6.7 quadratic inequalities
6.7 quadratic inequalities6.7 quadratic inequalities
6.7 quadratic inequalitiesJessica Garcia
 
4.1 quadratic functions and transformations
4.1 quadratic functions and transformations4.1 quadratic functions and transformations
4.1 quadratic functions and transformationsleblance
 
First Quarter - Chapter 2 - Quadratic Equation
First Quarter - Chapter 2 - Quadratic EquationFirst Quarter - Chapter 2 - Quadratic Equation
First Quarter - Chapter 2 - Quadratic EquationVer Louie Gautani
 
Quadratic Equation solved by Square root property
Quadratic Equation solved by Square root propertyQuadratic Equation solved by Square root property
Quadratic Equation solved by Square root propertyReynz Anario
 
Mathematics 9 Lesson 4-C: Joint and Combined Variation
Mathematics 9 Lesson 4-C: Joint and Combined VariationMathematics 9 Lesson 4-C: Joint and Combined Variation
Mathematics 9 Lesson 4-C: Joint and Combined VariationJuan Miguel Palero
 
direct variation grade9 module 3 by mr. joel garcia
direct variation grade9 module 3 by mr. joel garciadirect variation grade9 module 3 by mr. joel garcia
direct variation grade9 module 3 by mr. joel garciaJanice Cudiamat
 
Quadratic Equations Graphing
Quadratic Equations   GraphingQuadratic Equations   Graphing
Quadratic Equations Graphingkliegey524
 
Add Math(F4) Quadratic Function 3.1
Add Math(F4)  Quadratic Function  3.1Add Math(F4)  Quadratic Function  3.1
Add Math(F4) Quadratic Function 3.1roszelan
 
Inverse variation
Inverse variationInverse variation
Inverse variationBrian Mary
 
Solucionario de fluidos_white
Solucionario de fluidos_whiteSolucionario de fluidos_white
Solucionario de fluidos_whitejonathan
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function PresentationRyanWatt
 
Quadratic Equation
Quadratic EquationQuadratic Equation
Quadratic Equationitutor
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equationsA M
 

Andere mochten auch (20)

Variations
VariationsVariations
Variations
 
6.7 other methods for solving
6.7 other methods for solving6.7 other methods for solving
6.7 other methods for solving
 
Bonus math project
Bonus math projectBonus math project
Bonus math project
 
6.2 solve quadratic equations by graphing
6.2 solve quadratic equations by graphing6.2 solve quadratic equations by graphing
6.2 solve quadratic equations by graphing
 
Direct and Inverse variations
Direct and Inverse variationsDirect and Inverse variations
Direct and Inverse variations
 
AA Section 2-9
AA Section 2-9AA Section 2-9
AA Section 2-9
 
6.7 quadratic inequalities
6.7 quadratic inequalities6.7 quadratic inequalities
6.7 quadratic inequalities
 
4.1 quadratic functions and transformations
4.1 quadratic functions and transformations4.1 quadratic functions and transformations
4.1 quadratic functions and transformations
 
First Quarter - Chapter 2 - Quadratic Equation
First Quarter - Chapter 2 - Quadratic EquationFirst Quarter - Chapter 2 - Quadratic Equation
First Quarter - Chapter 2 - Quadratic Equation
 
Quadratic Equation solved by Square root property
Quadratic Equation solved by Square root propertyQuadratic Equation solved by Square root property
Quadratic Equation solved by Square root property
 
Chapter 5 Direct Variation
Chapter 5 Direct VariationChapter 5 Direct Variation
Chapter 5 Direct Variation
 
Mathematics 9 Lesson 4-C: Joint and Combined Variation
Mathematics 9 Lesson 4-C: Joint and Combined VariationMathematics 9 Lesson 4-C: Joint and Combined Variation
Mathematics 9 Lesson 4-C: Joint and Combined Variation
 
direct variation grade9 module 3 by mr. joel garcia
direct variation grade9 module 3 by mr. joel garciadirect variation grade9 module 3 by mr. joel garcia
direct variation grade9 module 3 by mr. joel garcia
 
Quadratic Equations Graphing
Quadratic Equations   GraphingQuadratic Equations   Graphing
Quadratic Equations Graphing
 
Add Math(F4) Quadratic Function 3.1
Add Math(F4)  Quadratic Function  3.1Add Math(F4)  Quadratic Function  3.1
Add Math(F4) Quadratic Function 3.1
 
Inverse variation
Inverse variationInverse variation
Inverse variation
 
Solucionario de fluidos_white
Solucionario de fluidos_whiteSolucionario de fluidos_white
Solucionario de fluidos_white
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function Presentation
 
Quadratic Equation
Quadratic EquationQuadratic Equation
Quadratic Equation
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equations
 

Ähnlich wie Types of Variation

MIT Math Syllabus 10-3 Lesson 9: Ratio, proportion and variation
MIT Math Syllabus 10-3 Lesson 9: Ratio, proportion and variationMIT Math Syllabus 10-3 Lesson 9: Ratio, proportion and variation
MIT Math Syllabus 10-3 Lesson 9: Ratio, proportion and variationLawrence De Vera
 
Solving problems involving direct variation
Solving problems involving direct variationSolving problems involving direct variation
Solving problems involving direct variationMarzhie Cruz
 
CBSE-class-11-NCERT-Book-Physics-Part-2-MECHANICAL-PROPERTIES-OF-FLUIDS-chapt...
CBSE-class-11-NCERT-Book-Physics-Part-2-MECHANICAL-PROPERTIES-OF-FLUIDS-chapt...CBSE-class-11-NCERT-Book-Physics-Part-2-MECHANICAL-PROPERTIES-OF-FLUIDS-chapt...
CBSE-class-11-NCERT-Book-Physics-Part-2-MECHANICAL-PROPERTIES-OF-FLUIDS-chapt...rupeshsahu55
 
2 8 variations-xy
2 8 variations-xy2 8 variations-xy
2 8 variations-xymath123b
 
2 7 variations
2 7 variations2 7 variations
2 7 variationsmath123b
 
Lecture Ch 10
Lecture Ch 10Lecture Ch 10
Lecture Ch 10rtrujill
 
Surface tension & capillarity c
Surface tension & capillarity cSurface tension & capillarity c
Surface tension & capillarity cShrikunj Patel
 

Ähnlich wie Types of Variation (20)

Variation
VariationVariation
Variation
 
MIT Math Syllabus 10-3 Lesson 9: Ratio, proportion and variation
MIT Math Syllabus 10-3 Lesson 9: Ratio, proportion and variationMIT Math Syllabus 10-3 Lesson 9: Ratio, proportion and variation
MIT Math Syllabus 10-3 Lesson 9: Ratio, proportion and variation
 
Sim variation
Sim variationSim variation
Sim variation
 
Chapter15 a
Chapter15 aChapter15 a
Chapter15 a
 
Direct Variation (Mathematics 9)
Direct Variation (Mathematics 9)Direct Variation (Mathematics 9)
Direct Variation (Mathematics 9)
 
Variation.ppt
Variation.pptVariation.ppt
Variation.ppt
 
Solving problems involving direct variation
Solving problems involving direct variationSolving problems involving direct variation
Solving problems involving direct variation
 
CBSE-class-11-NCERT-Book-Physics-Part-2-MECHANICAL-PROPERTIES-OF-FLUIDS-chapt...
CBSE-class-11-NCERT-Book-Physics-Part-2-MECHANICAL-PROPERTIES-OF-FLUIDS-chapt...CBSE-class-11-NCERT-Book-Physics-Part-2-MECHANICAL-PROPERTIES-OF-FLUIDS-chapt...
CBSE-class-11-NCERT-Book-Physics-Part-2-MECHANICAL-PROPERTIES-OF-FLUIDS-chapt...
 
Intro fluids
Intro fluidsIntro fluids
Intro fluids
 
14 fluids
14 fluids14 fluids
14 fluids
 
COMBINED VARIATION.pptx
COMBINED VARIATION.pptxCOMBINED VARIATION.pptx
COMBINED VARIATION.pptx
 
2 8 variations-xy
2 8 variations-xy2 8 variations-xy
2 8 variations-xy
 
10 fluid dynamics
10 fluid dynamics10 fluid dynamics
10 fluid dynamics
 
joint variation
  joint variation  joint variation
joint variation
 
Mathematical Logic
Mathematical LogicMathematical Logic
Mathematical Logic
 
2 7 variations
2 7 variations2 7 variations
2 7 variations
 
Lecture Ch 10
Lecture Ch 10Lecture Ch 10
Lecture Ch 10
 
311ch9
311ch9311ch9
311ch9
 
Surface tension & capillarity c
Surface tension & capillarity cSurface tension & capillarity c
Surface tension & capillarity c
 
18 variations
18 variations18 variations
18 variations
 

Kürzlich hochgeladen

Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxnelietumpap1
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 

Kürzlich hochgeladen (20)

Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptx
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 

Types of Variation

  • 1. Section 6.8 - Variation
  • 2. Four types of variation in this section:
  • 3. Four types of variation in this section: Direct Variation
  • 4. Four types of variation in this section: Direct Variation Inverse Variation
  • 5. Four types of variation in this section: Direct Variation Inverse Variation Combined Variation (really just a combination of #1 and #2)
  • 6. Four types of variation in this section: Direct Variation Inverse Variation Combined Variation (really just a combination of #1 and #2) Joint Variation
  • 7. Direct Variation    The relationship “y varies directly as x” or “y is proportional to x” could be written in equation form as:
  • 8. Direct Variation    The relationship “y varies directly as x” or “y is proportional to x” could be written in equation form as: y= k x
  • 9. Direct Variation    The relationship “y varies directly as x” or “y is proportional to x” could be written in equation form as: where k represents the constant of proportionality y= k x
  • 10. Direct Variation    The relationship “y varies directly as x” or “y is proportional to x” could be written in equation form as: where k represents the constant of proportionality y= k x Example   The circumference,C, of a circle varies directly to the diameter, d, of the circle as seen in the equation:
  • 11. Direct Variation    The relationship “y varies directly as x” or “y is proportional to x” could be written in equation form as: where k represents the constant of proportionality y= k x Example The circumference,C, of a circle varies directly to the diameter, d, of the circle as seen in the equation: C= π d
  • 12. Direct Variation    The relationship “y varies directly as x” or “y is proportional to x” could be written in equation form as: where k represents the constant of proportionality y= k x Example The circumference,C, of a circle varies directly to the diameter, d, of the circle as seen in the equation: In this case the constant of proportionality is the number π≈ 3.14 C= π d
  • 13. So why call it direct variation?
  • 14. So why call it direct variation? Look at the circle below. What will happen to the circle’s circumference (distance around) if we make the diameter(distance across) bigger? d = 5 inches C = π(5) ≈ 15.7 in.
  • 15. So why call it direct variation? Look at the circle below. What will happen to the circle’s circumference (distance around) if we make the diameter(distance across) bigger? d = 5 inches C = π(5) ≈ 15.7 in.
  • 16. So why call it direct variation? Look at the circle below. What will happen to the circle’s circumference (distance around) if we make the diameter(distance across) bigger? d = 8 inches C = π(8) ≈ 25.12 in. d = 5 inches C = π(5) ≈ 15.7 in.
  • 17. So why call it direct variation? Look at the circle below. What will happen to the circle’s circumference (distance around) if we make the diameter(distance across) bigger? Notice that increasing the diameter also increased the circumference. This is typical of things that vary directly. Increasing one variable will also increase the other variable. Likewise decreasing one variable will also decrease the other variable. This is why it is called directvariation, whatever you do to one variable (increase or decrease) it will directly affect the other variable in the same way. d = 8 inches C = π(8) ≈ 25.12 in. d = 5 inches C = π(5) ≈ 15.7 in.
  • 18. Exercise 1: Write a general equation that represents the given relationship. The electric resistance, R, of a wire varies directly as its length, L. The volume, V, of a sphere varies directly as the cube of its radius.
  • 19. Exercise 1: Write a general equation that represents the given relationship. The electric resistance, R, of a wire varies directly as its length, L. The volume, V, of a sphere varies directly as the cube of its radius.
  • 20. Exercise 1: Write a general equation that represents the given relationship. The electric resistance, R, of a wire varies directly as its length, L. The volume, V, of a sphere varies directly as the cube of its radius. Remember: direct variation always looks like y = kx. However, we now have different variables.
  • 21. Exercise 1: Write a general equation that represents the given relationship. The electric resistance, R, of a wire varies directly as its length, L. The volume, V, of a sphere varies directly as the cube of its radius. Remember: direct variation always looks like y = kx. However, we now have different variables. R = k L
  • 22. Exercise 1: Write a general equation that represents the given relationship. The electric resistance, R, of a wire varies directly as its length, L. The volume, V, of a sphere varies directly as the cube of its radius. Remember: direct variation always looks like y = kx. However, we now have different variables. R = k L
  • 23. Exercise 1: Write a general equation that represents the given relationship. The electric resistance, R, of a wire varies directly as its length, L. The volume, V, of a sphere varies directly as the cube of its radius. Remember: direct variation always looks like y = kx. However, we now have different variables. R = k L
  • 24. Exercise 1: Write a general equation that represents the given relationship. The electric resistance, R, of a wire varies directly as its length, L. The volume, V, of a sphere varies directly as the cube of its radius. Remember: direct variation always looks like y = kx. However, we now have different variables. R = k L V = k r 3
  • 25. Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directly as the depth, d, at which you are swimming.
  • 26. Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd
  • 27. Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch. Calculate the constant of proportionality, k.
  • 28. Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch. Calculate the constant of proportionality, k. P = 8.6
  • 29. Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch. Calculate the constant of proportionality, k. P = 8.6 and d = 20
  • 30. Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch. Calculate the constant of proportionality, k. P = 8.6 and d = 20 So…
  • 31. Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch. Calculate the constant of proportionality, k. P = 8.6 and d = 20 So…
  • 32. Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch. Calculate the constant of proportionality, k. P = 8.6 and d = 20 So…
  • 33. Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch. Calculate the constant of proportionality, k. P = 8.6 and d = 20 So…
  • 34. Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch. Calculate the constant of proportionality, k. P = 8.6 and d = 20 So…
  • 35. Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch. Calculate the constant of proportionality, k. P = 8.6 and d = 20 So… At an underwater depth of 80 ft, what is the pressure in your ears?
  • 36. Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch. Calculate the constant of proportionality, k. P = 8.6 and d = 20 So… At an underwater depth of 80 ft, what is the pressure in your ears? We now know(from part b) that when you are underwater the constant of proportionality is k = 0.43. So our actual equation is
  • 37. Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch. Calculate the constant of proportionality, k. P = 8.6 and d = 20 So… At an underwater depth of 80 ft, what is the pressure in your ears? We now know(from part b) that when you are underwater the constant of proportionality is k = 0.43. So our actual equation is P = 0.43d
  • 38. Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch. Calculate the constant of proportionality, k. P = 8.6 and d = 20 So… At an underwater depth of 80 ft, what is the pressure in your ears? We now know(from part b) that when you are underwater the constant of proportionality is k = 0.43. So our actual equation is P = 0.43d At a depth of 80 ft we would have
  • 39. Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch. Calculate the constant of proportionality, k. P = 8.6 and d = 20 So… At an underwater depth of 80 ft, what is the pressure in your ears? We now know(from part b) that when you are underwater the constant of proportionality is k = 0.43. So our actual equation is P = 0.43d At a depth of 80 ft we would have
  • 40. Exercise 2: Write a general equation that represents the following relationship. When you swim underwater the pressure, P, in your ears varies directlyas the depth, d, at which you are swimming. P = kd Suppose you know that at a depth of 20 ft the pressure in your ears is 8.6 pounds per square inch. Calculate the constant of proportionality, k. P = 8.6 and d = 20 So… At an underwater depth of 80 ft, what is the pressure in your ears? We now know(from part b) that when you are underwater the constant of proportionality is k = 0.43. So our actual equation is P = 0.43d At a depth of 80 ft we would have At a depth of 80 ft the pressure in your ears would be 34.4 pounds per sq. inch.
  • 41. The three parts of exercise 2 represent a typical problem in this section. Most problems follow the same basic pattern (see Blitzer textbook, page 465):
  • 42. The three parts of exercise 2 represent a typical problem in this section. Most problems follow the same basic pattern (see Blitzer textbook, page 465): Write an equation that models the statement.
  • 43. The three parts of exercise 2 represent a typical problem in this section. Most problems follow the same basic pattern (see Blitzer textbook, page 465): Write an equation that models the statement. Substitute the given values in to the equation to find the value of k.
  • 44. The three parts of exercise 2 represent a typical problem in this section. Most problems follow the same basic pattern (see Blitzer textbook, page 465): Write an equation that models the statement. Substitute the given values in to the equation to find the value of k. Substitute the value of k into the equation from step 1.
  • 45. The three parts of exercise 2 represent a typical problem in this section. Most problems follow the same basic pattern (see Blitzer textbook, page 465): Write an equation that models the statement. Substitute the given values in to the equation to find the value of k. Substitute the value of k into the equation from step 1. Use the equation from step 3 to answer the problem’s question.
  • 46. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches?
  • 47. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.
  • 48. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.
  • 49. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation.
  • 50. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation. Let B be the height the ball bounces and d the height from which the ball was dropped.
  • 51. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation. Let B be the height the ball bounces and d the height from which the ball was dropped.
  • 52. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation. Let B be the height the ball bounces and d the height from which the ball was dropped. Step 2: Substitute the givens to find k.
  • 53. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inchesbounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation. Let B be the height the ball bounces and d the height from which the ball was dropped. Step 2: Substitute the givens to find k.
  • 54. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation. Let B be the height the ball bounces and d the height from which the ball was dropped. Step 2: Substitute the givens to find k.
  • 55. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation. Let B be the height the ball bounces and d the height from which the ball was dropped. Step 2: Substitute the givens to find k.
  • 56. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation. Let B be the height the ball bounces and d the height from which the ball was dropped. Step 2: Substitute the givens to find k.
  • 57. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation. Let B be the height the ball bounces and d the height from which the ball was dropped. Step 2: Substitute the givens to find k.
  • 58. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation. Let B be the height the ball bounces and d the height from which the ball was dropped. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1.
  • 59. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation. Let B be the height the ball bounces and d the height from which the ball was dropped. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1.
  • 60. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation. Let B be the height the ball bounces and d the height from which the ball was dropped. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.
  • 61. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation. Let B be the height the ball bounces and d the height from which the ball was dropped. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. If the ball bounced 56 in. how far was it dropped?
  • 62. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation. Let B be the height the ball bounces and d the height from which the ball was dropped. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. If the ball bounced 56 in. how far was it dropped? In other words, if B = 56, what was d ?
  • 63. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation. Let B be the height the ball bounces and d the height from which the ball was dropped. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. If the ball bounced 56 in. how far was it dropped? In other words, if B = 56, what was d ?
  • 64. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation. Let B be the height the ball bounces and d the height from which the ball was dropped. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. If the ball bounced 56 in. how far was it dropped? In other words, if B = 56, what was d ?
  • 65. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation. Let B be the height the ball bounces and d the height from which the ball was dropped. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. If the ball bounced 56 in. how far was it dropped? In other words, if B = 56, what was d ?
  • 66. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation. Let B be the height the ball bounces and d the height from which the ball was dropped. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. If the ball bounced 56 in. how far was it dropped? In other words, if B = 56, what was d ?
  • 67. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation. Let B be the height the ball bounces and d the height from which the ball was dropped. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. If the ball bounced 56 in. how far was it dropped? In other words, if B = 56, what was d ? The ball was dropped from a height of 80 inches.
  • 68. Exercise 3: The height that a ball bounces varies directly as the height from which it was dropped. A tennis ball dropped from 12 inches bounces 8.4 inches. From what height was the tennis ball dropped if it bounces 56 inches? Step 1: Write the equation. Let B be the height the ball bounces and d the height from which the ball was dropped. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. If the ball bounced 56 in. how far was it dropped? In other words, if B = 56, what was d ? The ball was dropped from a height of 80 inches. DON’T FORGET UNITS!!!
  • 70. Now you try! Try exercise 4 on your own.
  • 71. Now you try! Try exercise 4 on your own. Exercise 4 The distance required to stop a car varies directly as the square of its speed. If 200 feet are required to stop a car traveling 60 miles per hour, how many feet are required to stop a car traveling 100 miles per hour? (round your answer to the nearest foot)
  • 72. Now you try! Try exercise 4 on your own. Exercise 4 The distance required to stop a car varies directly as the square of its speed. If 200 feet are required to stop a car traveling 60 miles per hour, how many feet are required to stop a car traveling 100 miles per hour? (round your answer to the nearest foot) Verify that the answer is 556 feet.
  • 73. Inverse Variation   The relationship “y varies inversely as x” or “y is inverselyproportionalto x” could be written in equation form as: where k represents the constant of proportionality
  • 74. Inverse Variation   The relationship “y varies inversely as x” or “y is inverselyproportionalto x” could be written in equation form as: where k represents the constant of proportionality
  • 75. Inverse Variation   The relationship “y varies inversely as x” or “y is inverselyproportionalto x” could be written in equation form as: where k represents the constant of proportionality Exercise 5: Write a general equation that represents the following relationship:
  • 76. Inverse Variation   The relationship “y varies inversely as x” or “y is inverselyproportionalto x” could be written in equation form as: where k represents the constant of proportionality Exercise 5: Write a general equation that represents the following relationship: The demand, D, for a product varies inversely as its price, P.
  • 77. Inverse Variation   The relationship “y varies inversely as x” or “y is inverselyproportionalto x” could be written in equation form as: where k represents the constant of proportionality Exercise 5: Write a general equation that represents the following relationship: The demand, D, for a product varies inversely as its price, P.
  • 78. Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d. At a depth of 1000 meters, the water temperature is 4.4°C. What is the water temperature at a depth of 5000 meters?
  • 79. Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d. At a depth of 1000 meters, the water temperature is 4.4°C. What is the water temperature at a depth of 5000 meters? Step 1: Write the equation.
  • 80. Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d. At a depth of 1000 meters, the water temperature is 4.4°C. What is the water temperature at a depth of 5000 meters? Step 1: Write the equation.
  • 81. Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d. At a depth of 1000 meters, the water temperature is 4.4°C. What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k.
  • 82. Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d. At a depth of 1000 meters, the water temperature is 4.4°C. What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k.
  • 83. Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d. At a depth of 1000 meters, the water temperature is 4.4°C. What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k.
  • 84. Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d. At a depth of 1000 meters, the water temperature is 4.4°C. What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k.
  • 85. Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d. At a depth of 1000 meters, the water temperature is 4.4°C. What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k.
  • 86. Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d. At a depth of 1000 meters, the water temperature is 4.4°C. What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k.
  • 87. Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d. At a depth of 1000 meters, the water temperature is 4.4°C. What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1.
  • 88. Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d. At a depth of 1000 meters, the water temperature is 4.4°C. What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1.
  • 89. Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d. At a depth of 1000 meters, the water temperature is 4.4°C. What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.
  • 90. Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d. At a depth of 1000 meters, the water temperature is 4.4°C. What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. What is the water temperature at a depth of 5000 meters?
  • 91. Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d. At a depth of 1000 meters, the water temperature is 4.4°C. What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. What is the water temperature at a depth of 5000 meters? In other words, if d = 1000, what is T ?
  • 92. Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d. At a depth of 1000 meters, the water temperature is 4.4°C. What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. What is the water temperature at a depth of 5000 meters? In other words, if d = 1000, what is T ?
  • 93. Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d. At a depth of 1000 meters, the water temperature is 4.4°C. What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. What is the water temperature at a depth of 5000 meters? In other words, if d = 1000, what is T ?
  • 94. Exercise 6: The water temperature, T, of the Pacific Ocean varies inversely as the water’s depth, d. At a depth of 1000 meters, the water temperature is 4.4°C. What is the water temperature at a depth of 5000 meters? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. What is the water temperature at a depth of 5000 meters? In other words, if d = 1000, what is T ? The temperature is 0.88°C at a depth of 5000 m.
  • 96. Inverse Variation intuitively… Notice what happened in the last example:
  • 97. Inverse Variation intuitively… Notice what happened in the last example: When the depth got bigger, the temperature got smaller.
  • 98. Inverse Variation intuitively… Notice what happened in the last example: When the depth got bigger, the temperature got smaller. This makes sense because the farther underwater you go in the ocean the colder the temperature gets.
  • 99. Inverse Variation intuitively… Notice what happened in the last example: When the depth got bigger, the temperature got smaller. This makes sense because the farther underwater you go in the ocean the colder the temperature gets. In general, for inverse variation…
  • 100.
  • 101.
  • 102. When one variable decreases the other increases.
  • 103.
  • 104. Combined Variation In combined variation, direct and inverse variation occur at the same time. Example: The sale of a product varies directly as its advertising budget and inversely as the price of the product.
  • 105. Combined Variation In combined variation, direct and inverse variation occur at the same time. Example: The sale of a product varies directly as its advertising budget and inversely as the price of the product. We could write this relationship as
  • 106. Combined Variation In combined variation, direct and inverse variation occur at the same time. Example: The sale of a product varies directly as its advertising budget and inversely as the price of the product. We could write this relationship as Notice that since sales vary directly with advertising then if we increased our advertising budget we would expect sales to also increase.
  • 107. Combined Variation In combined variation, direct and inverse variation occur at the same time. Example: The sale of a product varies directly as its advertising budget and inversely as the price of the product. We could write this relationship as Notice that since sales vary directly with advertising then if we increased our advertising budget we would expect sales to also increase. Notice that since sales vary inversely with price then if we increased the price of the product we would expect sales to decrease.
  • 108. Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems. If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems?
  • 109. Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems. If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation.
  • 110. Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems. If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation. Let m = number of minutes, n = number of problems, and p = number of people
  • 111. Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems. If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation. Let m = number of minutes, n = number of problems, and p = number of people
  • 112. Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems. If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation. Let m = number of minutes, n = number of problems, and p = number of people Step 2: Substitute the givens to find k.
  • 113. Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems. If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation. Let m = number of minutes, n = number of problems, and p = number of people Step 2: Substitute the givens to find k.
  • 114. Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems. If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation. Let m = number of minutes, n = number of problems, and p = number of people Step 2: Substitute the givens to find k.
  • 115. Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems. If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation. Let m = number of minutes, n = number of problems, and p = number of people Step 2: Substitute the givens to find k.
  • 116. Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems. If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation. Let m = number of minutes, n = number of problems, and p = number of people Step 2: Substitute the givens to find k.
  • 117. Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems. If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation. Let m = number of minutes, n = number of problems, and p = number of people Step 2: Substitute the givens to find k.
  • 118. Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems. If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation. Let m = number of minutes, n = number of problems, and p = number of people Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1.
  • 119. Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems. If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation. Let m = number of minutes, n = number of problems, and p = number of people Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1.
  • 120. Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems. If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation. Let m = number of minutes, n = number of problems, and p = number of people Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.
  • 121. Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems. If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation. Let m = number of minutes, n = number of problems, and p = number of people Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. How many minutes will it take 8 people to solve 24 problems?
  • 122. Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems. If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation. Let m = number of minutes, n = number of problems, and p = number of people Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. How many minutes will it take 8 people to solve 24 problems? In other words, if p = 8 and n = 24, what is m ?
  • 123. Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems. If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation. Let m = number of minutes, n = number of problems, and p = number of people Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. How many minutes will it take 8 people to solve 24 problems? In other words, if p = 8 and n = 24, what is m ?
  • 124. Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems. If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation. Let m = number of minutes, n = number of problems, and p = number of people Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. How many minutes will it take 8 people to solve 24 problems? In other words, if p = 8 and n = 24, what is m ?
  • 125. Exercise 7: The number of minutes needed to finish a math assignment varies directly as the number of problems and inversely as the number of people working to solve the problems. If it takes 4 people 32 minutes to solve 16 problems, how many minutes will it take 8 people to solve 24 problems? Step 1: Write the equation. Let m = number of minutes, n = number of problems, and p = number of people Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. How many minutes will it take 8 people to solve 24 problems? In other words, if p = 8 and n = 24, what is m ? It will take 24 minutes for 8 people to solve 24 problems.
  • 126. Joint Variation   The relationship “y varies jointlyas x and z” could be written in equation form as: where k represents the constant of proportionality
  • 127. Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone. If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ?
  • 128. Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone. If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation.
  • 129. Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone. If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation.
  • 130. Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone. If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k.
  • 131. Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone. If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k.
  • 132. Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone. If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k.
  • 133. Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone. If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k.
  • 134. Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone. If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k.
  • 135. Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone. If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k.
  • 136. Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone. If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k.
  • 137. Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone. If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1.
  • 138. Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone. If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1.
  • 139. Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone. If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question.
  • 140. Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone. If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. What is the volume of a cone with B = 20 in. and h = 8 in. ?
  • 141. Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone. If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. What is the volume of a cone with B = 20 in. and h = 8 in. ?
  • 142. Exercise 8: The Volume, V, of a cone varies jointly as the area, B, of the base and the height, h, of the cone. If V = 15.7 in.3 when B = 9.42 in. and h = 5 in., what is the volume of a cone with B = 20 in. and h = 8 in ? Step 1: Write the equation. Step 2: Substitute the givens to find k. Step 3: Substitute k into the equation from step 1. Step 4: Use the equation from step 3 to answer the question. What is the volume of a cone with B = 20 in. and h = 8 in. ? The volume of a cone with B = 20 in. and h = 8 in. is approximately 53.33cubic inches.