SlideShare ist ein Scribd-Unternehmen logo
1 von 107
Group Members:
Pritish Shardul
Mohit Meena
Guide: Mr. Ganesh Kale,
Senior Scientist,
NCL, Pune
Introduction
 Gasification is a process that converts organic or fossil based
carbonaceous materials mainly into carbon monoxide,
hydrogen and carbon dioxide
 Today there is a huge demand for fuel because of the
increasing population. Biomass is renewable resource and is
available very easily. It is the third among the primary energy
sources after coal and oil
 The gasification of biomass allows the production of a
synthesis gas or “syngas”, consisting primarily of H2, CO, CH4,
CO2 and N2, which further has a variety of uses
Introduction
 A thermodynamic analysis of the process of biomass
gasification was conducted to find the Thermoneutral Points
(TNP’s) for different gasifying agents for different compositions
of the input streams to the gasifier
 Reaction TNP’s (R-TNP’s), Process TNP’s (P-TNP’s) with and
without Heat Exchanger were calculated and product gas
compositions at TNP’s were analysed for syngas production,
syngas ratio, %CO2 conversion and heat utilities during the
course of this study
Introduction
 It is assumed that the exit products of the coal gasifier are in
thermodynamic equilibrium.
 HSC Chemistry software is well known software that uses
the Gibbs free energy minimization algorithm to find the
equilibrium product composition from a feed mixture and
has been used in gasification studies earlier
[Kumabe K, Hanaoka T, Fujimoto S, Minowa T, Sakanishi K.
Co-gasification of woody biomass and coal with air and
steam. Fuel 2007;86:684–9.]
 We have also used HSC Chemistry 5.11 for our calculations
Literature Survey
 We downloaded many abstracts and shortlisted around 80
relevant abstracts
 We sorted out the shortlisted abstracts in the following
divisions
- Thermodynamic Analysis
- Experimental
- Modelling
- Reviews
- Theoretical
Biomass Selection
 We chose Rice husk as the biomass to be gasified.
Composition by weight: 47.8% C, 5.1% H, 38.9% O, 0.1% N
(Ref : Jenkins, B.M. & Ebeling, J.M, Correlation of physical &
chemical properties of terrestrial biomass with conversion,
symposium, Energy from biomass & waste, Pg no-371)
 Weight for 1 mole of rice husk is calculated to be 25.105 grams
 We calculated the compositions in moles for one mole of
carbon in biomass as follows,
For 1 mole carbon, 0.6402 moles of H2, 0.3052 moles O2,
0.0008 moles N2
 Temperature range considered in this study is 500-1000 °C
Methodology
PART A : R-TNP Analysis
 For a particular feed condition, we calculated the output
composition of the reactor using 'Equilibrium Compositions'
module of HSC Chemistry 5.11 at temperatures ranging from
500 to 1000 °C, with intervals of 50 °C and constant pressure
of 1 bar
 Using those compositions and 'Reaction Equations' module of
HSC Chemistry 5.11, we calculated the reaction enthalpy at
respective temperatures
Methodology (cont.)
PART A : R-TNP Analysis
 By plotting the graph of Enthalpy vs. Temperature we
calculated the R-TNP's of the reaction
 We calculated the product gas compositions at the R-TNP's
and analysed the parameters: Syngas, Syngas Ratio, %CO2
Conversion, Heat utility (without HE), Reduced Heat Utility
(with HE)
1. Gasifying Agent: CO2
 We defined the parameter CCBR (CO2 to Carbon in biomass
molar ratio)
 We varied CCBR in the input of the gasifier. Values of CCBR
are: 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5
 From the graphs of enthalpy change vs. temperature for all
the CCBR, we found that thermoneutral points (TNP’s) can
be obtained for all the CCBR considered except 0 and 0.5
Thermoneutral temperature decreased with increase of
CCBR
Reaction TNP’s
-160
-140
-120
-100
-80
-60
-40
-20
0
20
40
500 550 600 650 700 750 800 850 900 950 1000
Enthalpy(KJ)
Temp (oC)
Reaction Enthalpy
CCBR 5
CCBR 4
CCBR 3
CCBR 2.5
CCBR 2
CCBR 1.5
CCBR 1
CCBR 0.5
CCBR 0
Reaction TNP’s
550
570
590
610
630
650
670
690
710
730
750
1 1.5 2 2.5 3 3.5 4 4.5 5
TNP(oC)
CCBR
TNP’S
CCBR
R-TNP
oC
CO2(g)
moles
CO(g)
moles
H2O(g)
moles
H2(g)
moles
CH4(g)
moles
N2(g)
moles
C
moles
1 728.4831 0.4989 1.4924 0.1203 0.5024 0.0087 0.0008 0
1.5 688.1006 0.9606 1.518 0.1707 0.4495 0.0099 0.0008 0.0115
2 665.2904 1.4324 1.538 0.2076 0.4136 0.0095 0.0008 0.0202
2.5 648.5094 1.9114 1.5512 0.236 0.3861 0.0089 0.0008 0.0285
3 635.3741 2.3938 1.5636 0.2588 0.3645 0.0084 0.0008 0.0342
4 615.2267 3.3678 1.5809 0.2939 0.3315 0.0074 0.0008 0.0439
5 600 4.3489 1.5921 0.3202 0.3066 0.0066 0.0008 0.0524
Reaction TNP’s
CCBR
R-TNP
oC
Syngas
(moles)
Syngas
Ratio
% CO2
Conversion
1 728.4831 1.99482 0.336652 50.115
1.5 688.1006 1.96747 0.296094 35.9573
2 665.2904 1.95162 0.268934 28.38
2.5 648.5094 1.93733 0.248923 23.544
3 635.3741 1.92809 0.233109 20.2067
4 615.2267 1.91235 0.209659 15.805
5 600 1.8987 0.192576 13.022
Reaction TNP’s
Gasifying Agent: CO2 - Trends
 Syngas, Syngas Ratio and % CO2 conversion decreased with
increase in CCBR
 Heat utility (without HE) increased linearly with increase in
CCBR
 However, Heat utility (with HE) decreased then remained
constant with the increase of CCBR
Reaction TNP’s
1.88
1.9
1.92
1.94
1.96
1.98
2
1 1.5 2 2.5 3 3.5 4 4.5 5
Syngas(moles)
CCBR
Syngas
Reaction TNP’s
0.15
0.2
0.25
0.3
0.35
1 1.5 2 2.5 3 3.5 4 4.5 5
SyngasRatio
CCBR
Syngas Ratio
Reaction TNP’s
0
10
20
30
40
50
60
1 1.5 2 2.5 3 3.5 4 4.5 5
%CO2Conv.
CCBR
% CO2 Conversion
Configuration (Heat Utility) without Heat Exchanger
Heat Utility at Reaction TNP’s
60
80
100
120
140
160
180
1 1.5 2 2.5 3 3.5 4 4.5 5
Heatutility(KJ)
CCBR
Heat Utility (without HE)
Configuration (Reduced Heat Utility) with Heat Exchanger
Heat Utility at Reaction TNP’s
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
1 1.5 2 2.5 3 3.5 4 4.5 5
Heatutility(KJ)
CCBR
Reduced Heat utility (with HE)
2. Gasifying Agent: H2O
 We defined the parameter HCBR (H2O to Carbon in biomass
molar ratio)
 We varied HCBR in the in the input of the gasifier. Values of
HCBR are: 0, 1, 2, 3, 4
 From the graphs of enthalpy change vs. temperature for all
the HCBR, we found that no thermoneutral points can be
obtained for any of the HCBR considered
Reaction TNP’s
-160
-140
-120
-100
-80
-60
-40
-20
0
500 550 600 650 700 750 800 850 900 950 1000
Enthalpy(KJ)
Temp (oC)
Reaction Enthalpy
HCBR 0
HCBR 1
HCBR 2
HCBR 3
HCBR 4
3. Gasifying Agent: CO2 & H2O
 We defined the parameter GaCR (Gasifying Agents to
Carbon in Biomass molar ratio)
 We varied GaCR from 1 to 4 in the input of gasifier and
considered different combinations of CCBR and HCBR for
each GaCR
 For GaCR = 1, R-TNP’s were obtained only for 1/0
 For GaCR = 2, P-TNP’s were obtained only for 2/0
 For GaCR = 3, P-TNP’s were obtained for 3/0, 2.5/0.5
 For GaCR = 4, P-TNP’s were obtained for all combinations
which had CCBR greater than or equal to 3
Reaction TNP’s at GaCR = 1
-160
-140
-120
-100
-80
-60
-40
-20
0
20
500 550 600 650 700 750 800 850 900 950 1000
Enthalpy(KJ)
Temp (oC)
Reaction Enthalpy
1/0
0.5/0.5
0/1.0
Reaction TNP’s at GaCR = 2
-140
-120
-100
-80
-60
-40
-20
0
20
500 550 600 650 700 750 800 850 900 950 1000
Enthalpy(KJ)
Temp (oC)
Reaction Enthalpy
2/0
1.5/0.5
1.0/1.0
0.5/1.5
0.0/2.0
Reaction TNP’s at GaCR = 3
-140
-120
-100
-80
-60
-40
-20
0
20
500 550 600 650 700 750 800 850 900 950 1000
Enthalpy(KJ)
Temp (oC)
Reaction Enthalpy
3/0
2.5/0.5
2.0/1.0
1.5/1.5
1.0/2.0
0.5/2.5
0.0/3.0
Reaction TNP’s at GaCR = 4
-140
-120
-100
-80
-60
-40
-20
0
20
500 550 600 650 700 750 800 850 900 950 1000
Enthalpy(KJ)
Temp (oC)
Reaction Enthalpy
4/0
3.75/0.25
3.5/0.5
3.25/0.75
3.0/1.0
2.5/1.5
2.0/2.0
1.5/2.5
1.0/3.0
0.5/3.5
0.0/4.0
GaCR
CCBR/
HCBR
TNP
oC
CO2(g)
moles
CO(g)
moles
H2O(g)
moles
H2(g)
moles
CH4(g)
moles
N2(g)
moles
C
moles
1 1/0 728.483 0.4989 1.4924 0.1203 0.5024 0.0087 0.001 0
2 2/0 665.290 1.4324 1.538 0.2076 0.4136 0.0095 0.001 0.0201
3 3/0 635.374 2.3938 1.5636 0.2588 0.3645 0.0084 0.001 0.0342
3 2.5/0.5 718.730 2.0504 1.4485 0.5612 0.5767 0.0011 0.001 0
4 4/0 615.227 3.3678 1.5809 0.2940 0.3315 0.0074 0.001 0.0439
4 3.75/0.25 612.965 3.2257 1.5054 0.4032 0.4577 0.0145 0.001 0.0044
4 3.5/0.5 647.993 3.0412 1.4533 0.5743 0.5547 0.0055 0.001 0
4 3.25/0.75 728.611 2.8031 1.4465 0.8077 0.5816 0.0004 0.001 0
4 3/1 858.285 2.5239 1.4761 1.0865 0.5537 0.00001 0.001 0
Reaction TNP’s
GaCR
CCBR/
HCBR
TNP
oC
Syngas
(moles)
Syngas
Ratio
% CO2
Conversion
1 1/0 728.483 1.99482 0.336652 50.115
2 2/0 665.290 1.95162 0.268934 28.38
3 3/0 635.374 1.92809 0.233109 20.20667
3 2.5/0.5 718.730 2.0252 0.398136 17.984
4 4/0 615.227 1.91235 0.209659 15.805
4 3.75/0.25 612.965 1.96314 0.304065 13.98133
4 3.5/0.5 647.993 2.00804 0.381711 13.10857
4 3.25/0.75 728.611 2.02811 0.402081 13.75077
4 3/1 858.285 2.0298 0.37511 15.87
Reaction TNP’s
GaCR = 4 - Trends
 R-TNP first slightly decreased with HCBR then increased
 Syngas increased (from 1.9124 to 2.0298 moles per moles of
Biomass) with increase in HCBR
 Syngas ratio showed a maxima (of 0.403) at HCBR = 0.714
 % CO2 conversion first decreased then increased with increase
in HCBR
 Heat utility (with HE) increased with increase in HCBR
 However, Heat utility (without HE) first decreased slightly and
the increased with increase in HCBR
Reaction TNP’s at GaCR = 4
600
650
700
750
800
850
900
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
TNP(oC)
HCBR
TNP
Reaction TNP’s at GaCR = 4
1.9
1.92
1.94
1.96
1.98
2
2.02
2.04
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Syngas(moles)
HCBR
Syngas
Reaction TNP’s at GaCR = 4
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
syngasRatio
HCBR
Syngas Ratio
Reaction TNP’s at GaCR = 4
10
11
12
13
14
15
16
17
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
%CO2Conversion
HCBR
% CO2 conversion
Reaction TNP’s at GaCR = 4
18
20
22
24
26
28
30
32
34
36
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
HeatUtility(KJ)
HCBR
Reduced Heat Utility (with HE)
Reaction TNP’s at GaCR = 4
250
270
290
310
330
350
370
390
410
430
450
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
HeatUtility
HCBR
Heat Utility (without HE)
Methodology
PART B: Process TNP Analysis (without HE)
 We calculated the Biomass preheating value for temperatures
between 500 to 1000 °C, with intervals of 50 °C.
Cp value of Rice husk was taken as 2.094 J/gK [Kaupp (1984)]
 We then calculated the preheating value of gasifying agents
(CO2 and H2O) for respective temperatures. Cp value of CO2
and H2O was taken from Perry's Chemical Engineers'
Handbook 7e
 We then calculated the Process enthalpy (without Heat
Exchanger) as the sum of Reaction enthalpy, Biomass
preheating and Gasifying Agents preheating
(Figure 1)
Configuration (Heat Utility) without Heat Exchanger
Methodology (cont.)
PART B: Process TNP Analysis (without HE)
 We plotted the graph of Process enthalpy without heat
exchanger vs. Temperature and calculated the P-TNP's without
HE
 We calculated the product gas compositions at the P-TNP's
and analysed the parameters: Syngas, Syngas Ratio, %CO2
Conversion, Reaction Enthalpy at P-TNP's
1. Gasifying Agent: CO2
 We varied CCBR in the input of gasifier from 0 to 5
 From the graphs of enthalpy change vs. temperature for all
the CCBR, we found that TNP’s can be obtained for all the
CCBR except 0 and 5
Process TNP’s without Heat Exchanger
-150
-100
-50
0
50
100
150
200
250
300
350
500 550 600 650 700 750 800 850 900 950 1000
Enthalpy(KJ)
Temp oC
Process Enthalpy (without HE)
CCBR 0
CCBR 0.5
CCBR 1
CCBR 1.5
CCBR 2
CCBR 2.5
CCBR 3
CCBR 4
CCBR 5
CCBR
TNP
oC
CO2(g)
moles
CO(g)
moles
H2O(g)
moles
H2(g)
moles
CH4(g)
moles
N2(g)
moles
C
moles
0.5 714.931 0.3081 0.8768 0.1171 0.4927 0.0151 0.001 0.3
1 655.605 0.7993 0.8063 0.205 0.4024 0.0163 0.001 0.3781
1.5 619.546 1.3119 0.7202 0.266 0.3426 0.0157 0.001 0.4522
2 591.731 1.832 0.6327 0.3134 0.297 0.0148 0.001 0.5205
2.5 568.257 2.3542 0.5492 0.3524 0.2597 0.0139 0.001 0.5827
3 547.193 2.8771 0.4697 0.386 0.2278 0.0131 0.001 0.64
4 509.452 3.9189 0.3303 0.442 0.1748 0.0116 0.001 0.7393
Process TNP’s without Heat Exchanger
CCBR
TNP
oC
Syngas
(moles)
Syngas
Ratio
% CO2
Conversion
0.5 714.931 1.3695 0.56193 38.38
1 655.605 1.2087 0.49907 20.07
1.5 619.546 1.0628 0.475701 12.54
2 591.731 0.9297 0.469417 8.4
2.5 568.257 0.8089 0.47287 5.832
3 547.193 0.6975 0.48499 4.0966
4 509.452 0.5051 0.529216 2.0275
Process TNP’s without Heat Exchanger
Gasifying Agent: CO2 - Trends
 P-TNP’s, Syngas and %CO2 conversion decreased with
increase in CCBR
 Syngas Ratio showed a minima (of 0.469) at CCBR =2.056
 Reaction Enthalpy at P-TNP’s was calculated and it showed a
decrease with increase in CCBR
Process TNP’s without Heat Exchanger
500
550
600
650
700
750
0.5 1 1.5 2 2.5 3 3.5 4
TNP(oC)
CCBR
P- TNP
Process TNP’s without Heat Exchanger
0.4
0.6
0.8
1
1.2
1.4
0.5 1 1.5 2 2.5 3 3.5 4
Syngas(moles)
CCBR
Syngas
Process TNP’s without Heat Exchanger
0.4
0.45
0.5
0.55
0.6
0.5 1 1.5 2 2.5 3 3.5 4
SyngasRatio
CCBR
Syngas Ratio
Process TNP’s without Heat Exchanger
0
5
10
15
20
25
30
35
40
45
0.5 1 1.5 2 2.5 3 3.5 4
%CO2conversion
CCBR
%CO2 conversion
Process TNP’s without Heat Exchanger
-120
-110
-100
-90
-80
-70
-60
-50
0.5 1 1.5 2 2.5 3 3.5 4
Enthalpy(KJ)
CCBR
Reaction Enthalpy at P-TNP's
2. Gasifying Agent: H2O
 We varied HCBR from 0 to 4 in the input of gasifier
 From the graphs of enthalpy change vs. temperature for all
the HCBR, we found that TNP can be obtained only for HCBR
= 1, in the range of 500-1000 °C
HCBR
TNP
oC
CO2(g)
moles
CO(g)
moles
H2O(g)
moles
H2(g)
moles
CH4(g)
moles
N2(g)
moles
C
moles
Syngas
moles
Syngas
Ratio
% CO2
Conv.
1 580.012 0.4341 0.2164 0.5254 0.7704 0.1721 0.001 0.1775 0.9868 3.56 47.46
Process TNP’s without Heat Exchanger
-200
-100
0
100
200
300
400
500 550 600 650 700 750 800 850 900 950 1000
Enthalpy(KJ)
Temp C
Process Enthalpy (without HE)
HCBR 0
HCBR 1
HCBR 2
HCBR 3
HCBR 4
3. Gasifying Agent: CO2 & H2O
 We varied GaCR from 1 to 4 in the input of gasifier
 For GaCR = 1, P-TNP’s were obtained for all the
combinations of CCBR and HCBR considered
 For GaCR = 2, P-TNP’s were obtained for three combinations
2/0, 1.5/0.5, 1/1
 For GaCR = 3, P-TNP’s were obtained for two combinations
3/0, 2.5/0.5
 For GaCR =4, only 1 P-TNP was obtained for 4/0
Process TNP’s at GaCR = 1
-100
-50
0
50
100
150
500 550 600 650 700 750 800 850 900 950 1000
Enthalpy(KJ)
Temp oC
Process Enthalpy (without HE)
1/0
0.5/0.5
0/1
Process TNP’s at GaCR = 2
-100
-50
0
50
100
150
200
500 550 600 650 700 750 800 850 900 950 1000
Enthalpy(KJ)
Temp oC
Process Enthalpy (without HE)
2/0
1.5/0.5
1.0/1.0
0.5/1.5
0.0/2.0
Process TNP’s at GaCR = 3
-50
0
50
100
150
200
250
300
500 550 600 650 700 750 800 850 900 950 1000
Enthalpy(KJ)
Temp oC
Process Enthalpy (without HE)
3/0
2.5/0.5
2.0/1.0
1.5/1.5
1.0/2.0
0.5/2.5
0.0/3.0
Process TNP’s at GaCR = 4
-50
0
50
100
150
200
250
300
350
400
500 550 600 650 700 750 800 850 900 950 1000
Enthalpy(KJ)
Temp oC
Process Enthalpy (without HE)
4/0
3.75/0.25
3.5/0.5
3.25/0.75
3.0/1.0
2.5/1.5
2.0/2.0
1.5/2.5
1.0/3.0
0.0/4.0
GaCR
CCBR/
HCBR
TNP
oC
CO2(g)
moles
CO(g)
moles
H2O(g)
moles
H2(g)
moles
CH4(g)
moles
N2(g)
moles
C
moles
1 1/0 655.605 0.7993 0.8063 0.205 0.4024 0.0163 0.001 0.3781
1 0.5/0.5 623.6980 0.6311 0.4779 0.3699 0.6428 0.0636 0.0010 0.3274
1 0/1 580.012 0.4341 0.2164 0.5254 0.7704 0.1721 0.001 0.1775
2 2/0 591.731 1.832 0.6327 0.3134 0.297 0.0148 0.001 0.5205
2 1.5/0.5 560.256 1.5802 0.3708 0.5787 0.4512 0.0551 0.001 0.4938
2 1/1 518.773 1.2883 0.1726 0.8608 0.5059 0.1366 0.001 0.4025
3 3/0 547.193 2.8771 0.4697 0.386 0.2278 0.0131 0.001 0.64
3 2.5/0.5 514.018 2.5669 0.2587 0.7174 0.3283 0.0471 0.001 0.6272
4 4/0 509.452 3.9189 0.3303 0.442 0.1748 0.0116 0.001 0.7393
Process TNP’s without Heat Exchanger
GaCR
CCBR/
HCBR
TNP
oC
Syngas
(moles)
Syngas
Ratio
% CO2
Conversion
1 1/0 655.605 1.2087 0.49907 20.07
1 0.5/0.5 623.6980 1.1207 1.345051 -26.22
1 0/1 580.012 0.9868 3.560074 -
2 2/0 591.731 0.9297 0.469417 8.4
2 1.5/0.5 560.256 0.822 1.216828 -5.34667
2 1/1 518.773 0.6785 2.931054 -28.83
3 3/0 547.193 0.6975 0.48499 4.096667
3 2.5/0.5 514.018 0.587 1.269037 -2.676
4 4/0 509.452 0.5051 0.529216 2.0275
Process TNP’s without Heat Exchanger
Gasifying Agent: Both -Trends
 P-TNP’s and Syngas production decreased with increase in
HCBR for both GaCR 1 and 2
 Syngas ratio showed an increase with increase in HCBR for
both the GaCR
 Reaction enthalpy at P-TNP’s decreased with increase in
HCBR
Process TNP’s without HE at GaCR = 1 & 2
500
520
540
560
580
600
620
640
660
680
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
TNP(oC)
HCBR
P- TNP's
GaCR 1
GaCR 2
Process TNP’s without HE at GaCR = 1 & 2
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
syngas(moles)
HCBR
Syngas
GaCR 1
GaCR 2
Process TNP’s without HE at GaCR = 1 & 2
0
0.5
1
1.5
2
2.5
3
3.5
4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SyngasRatio
HCBR
Syngas ratio
GaCR 1
GaCR 2
Process TNP’s without HE at GaCR = 1 & 2
-120
-100
-80
-60
-40
-20
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Enthalpy(KJ)
HCBR
Reaction Enthalpy at P-TNP's
GaCR 1
GaCR 2
Methodology
PART C: Process TNP Analysis (with HE)
 We calculated the Product Gas Cooling Energy released at
respective temperature. Product gas consisted of CO2(g),
CO(g), C, H2O(g), H2(g), CH4(g) and N2(g). Cp values of all the
components were taken from Perry's Chemical Engineers'
Handbook 7e
 We then calculated the Process enthalpy (with Heat
Exchanger) as the sum of Reaction enthalpy, Biomass
preheating, Gasifying Agents preheating + Product Gas
Cooling (Figure 2)
Configuration (Reduced Heat Utility) with Heat Exchanger
Methodology (cont.)
PART C: Process TNP Analysis (with HE)
 We plotted the graph of Process enthalpy with heat
exchanger vs. Temperature and calculated the P-TNP's with
HE
 We calculated the product gas compositions at the P-TNP's
and analysed the parameters: Syngas, Syngas Ratio, %CO2
Conversion, Reaction Enthalpy at P-TNP's
1. Gasifying Agent: CO2
 We varied CCBR in the input of gasifier from 0 to 5
 From the graphs of enthalpy change vs. temperature for all
the CCBR, we found that TNP’s can be obtained for all the
CCBR except 0
Process TNP’s with Heat Exchanger
-150
-130
-110
-90
-70
-50
-30
-10
10
30
50
500 550 600 650 700 750 800 850 900 950 1000
Enthalpy(KJ)
Temp oC
Process Enthalpy (with HE)
CCBR 0
CCBR 0.5
CCBR 1
CCBR 1.5
CCBR 2
CCBR 2.5
CCBR 3
CCBR 4
CCBR 5
CCBR
TNP
oC
CO2(g)
moles
CO(g)
moles
H2O(g)
moles
H2(g)
moles
CH4(g)
moles
N2(g)
moles
C
moles
0.5 812.239 0.1006 1.3665 0.0423 0.5838 0.0069 0.001 0.026
1 720.674 0.5193 1.4481 0.1234 0.4965 0.0101 0.001 0.0226
1.5 686.357 0.9715 1.494 0.173 0.4469 0.01 0.001 0.0245
2 664.59 1.4374 1.5267 0.2086 0.4124 0.0095 0.001 0.0264
2.5 648.385 1.9124 1.549 0.2362 0.3859 0.0089 0.001 0.0297
3 635.522 2.3926 1.5663 0.2585 0.3647 0.0084 0.001 0.0327
4 615.714 3.3631 1.5907 0.2931 0.3321 0.0074 0.001 0.0388
5 600.67 4.3423 1.6063 0.3191 0.3077 0.0066 0.001 0.0448
Process TNP’s with Heat Exchanger
CCBR
TNP
oC
Syngas
(moles)
Syngas
Ratio
% CO2
Conversion
0.5 812.239 1.9503 0.427223 79.88
1 720.674 1.9446 0.342863 48.07
1.5 686.357 1.9409 0.29913 35.2333
2 664.59 1.9391 0.270125 28.13
2.5 648.385 1.9349 0.249128 23.504
3 635.522 1.931 0.232842 20.2466
4 615.714 1.9228 0.208776 15.9225
5 600.67 1.914 0.191558 13.154
Process TNP’s with Heat Exchanger
Gasifying Agent: CO2 - Trends
 P-TNP’s, Syngas production, Syngas ratio and % CO2
conversion decreased with increase in HCBR
 Reaction enthalpy at R-TNP’s increased and went from
exothermic region to endothermic region
 Reaction enthalpy for CCBR = 2.68 was zero. Thus, R-TNP
and P-TNP is same for CCBR 2.68
Process TNP’s with Heat Exchanger
550
600
650
700
750
800
850
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
TNP(oC)
CCBR
TNP
Process TNP’s with Heat Exchanger
1.91
1.915
1.92
1.925
1.93
1.935
1.94
1.945
1.95
1.955
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Syngas(moles)
CCBR
Syngas
Process TNP’s with Heat Exchanger
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
SyngasRatio
CCBR
Syngas Ratio
Process TNP’s with Heat Exchanger
0
10
20
30
40
50
60
70
80
90
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
%CO2conversion
CCBR
%CO2 conversion
Process TNP’s with Heat Exchanger
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Enthalpy(KJ)
CCBR
Reaction Enthalpy at P-TNP's
2. Gasifying Agent: H2O
 We varied HCBR in the input of gasifier from 0 to 4
 From the graphs of enthalpy change vs. temperature for all
the HCBR, we found that TNP’s can be obtained for all the
HCBR except 0
Process TNP’s with Heat Exchanger
-150
-100
-50
0
50
100
500 550 600 650 700 750 800 850 900 950 1000
Enthalpy(KJ)
Temp oC
Process Enthalpy (with HE)
HCBR 0
HCBR 1
HCBR 2
HCBR 3
HCBR 4
HCBR
TNP
oC
CO2(g)
moles
CO(g)
moles
H2O(g)
moles
H2(g)
moles
CH4(g)
moles
N2(g)
moles
C
moles
1 713.0330 0.2900 0.6788 0.3513 1.2262 0.0313 0.0010 0.0000
2 651.626 0.5681 0.3973 1.0765 1.4943 0.0346 0.001 0
3 611.497 0.7161 0.2478 1.9301 1.6375 0.0362 0.001 0
4 581.206 0.7982 0.1647 2.8489 1.7169 0.0371 0.001 0
Process TNP’s with Heat Exchanger
HCBR
TNP
oC
Syngas
(moles)
Syngas
Ratio
% CO2
Conversion
1 713.0330 1.905 1.806423 71
2 651.626 1.8916 3.761138 71.595
3 611.497 1.8853 6.608152 76.13
4 581.206 1.8816 10.42441 80.045
Gasifying Agent: H2O - Trends
 P-TNP’s and Syngas Production decreased with increase in
HCBR
 Syngas ratio and % CO2 Conversion increased with increase
in HCBR
 Reaction enthalpy at P-TNP’s decreased with increase in
HCBR
Process TNP’s with Heat Exchanger
550.000
570.000
590.000
610.000
630.000
650.000
670.000
690.000
710.000
730.000
1 1.5 2 2.5 3 3.5 4
P-TNP(C)
CCBR
P-TNP’s
Process TNP’s with Heat Exchanger
1.88
1.885
1.89
1.895
1.9
1.905
1.91
1 1.5 2 2.5 3 3.5 4
Syngas(moles)
CCBR
Syngas
Process TNP’s with Heat Exchanger
0
2
4
6
8
10
12
1 1.5 2 2.5 3 3.5 4
SyngasRatio
CCBR
Syngas Ratio
Process TNP’s with Heat Exchanger
70
71
72
73
74
75
76
77
78
79
80
81
1 1.5 2 2.5 3 3.5 4
%CO2conversion
CCBR
%CO2 conversion
Process TNP’s with Heat Exchanger
-60
-55
-50
-45
-40
-35
-30
1 1.5 2 2.5 3 3.5 4
Enthalpy(KJ)
CCBR
Reaction Enthalpy at P-TNP's
3. Gasifying Agent: CO2 & H2O
 We varied GaCR from 1 to 4 in the input of gasifier
 For all the GaCR, P-TNP’s were obtained for all the
combinations of CCBR and HCBR considered
Process TNP’s GaCR = 1
-160
-140
-120
-100
-80
-60
-40
-20
0
20
500 550 600 650 700 750 800 850 900 950 1000
Enthalpy(KJ)
Temp oC
Process Enthalpy (with HE)
2/0
1.5/0.5
0.0/1.0
GaCR
CCBR/
HCBR
TNP
oC
CO2(g)
moles
CO(g)
moles
H2O(g)
moles
H2(g)
moles
CH4(g)
moles
N2(g)
moles
C
moles
1 1/0 720.674 0.5193 1.4481 0.1234 0.4965 0.0101 0.001 0.0226
1 0.5/0.5 709.568 0.4155 1.0557 0.2234 0.8589 0.0288 0.001 0
1 0/1 713.0330 0.2900 0.6788 0.3513 1.2262 0.0313 0.0010 0.0000
Process TNP’s with Heat Exchanger at GaCR = 1
GaCR
CCBR/
HCBR
TNP
oC
Syngas
(moles)
Syngas
Ratio
% CO2
Conversion
1 1/0 720.674 1.9446 0.342863 48.07
1 0.5/0.5 709.568 1.9146 0.813583 16.9
1 0/1 713.0330 1.905 1.806423 -
Process TNP’s at GaCR = 2
-160
-140
-120
-100
-80
-60
-40
-20
0
20
500 550 600 650 700 750 800 850 900 950 1000
Enthalpy(KJ)
Temp oC
Process Enthalpy (with HE)
2/0
1.5/0.5
1.0/1.0
0.5/1.5
0.0/2.0
GaCR
CCBR/
HCBR
TNP
oC
CO2(g)
moles
CO(g)
moles
H2O(g)
moles
H2(g)
moles
CH4(g)
moles
N2(g)
moles
C
moles
2 2/0 664.59 1.4374 1.5267 0.2086 0.4124 0.0095 0.001 0.0264
2 1.5/0.5 652.73 1.2654 1.2043 0.375 0.7044 0.0303 0.001 0
2 1/1 659.959 1.0503 0.9177 0.5917 0.9844 0.032 0.001 0
2 0.5/1.5 659.844 0.8178 0.649 0.8254 1.2482 0.0332 0.001 0
2 0/2 651.626 0.5681 0.3973 1.0765 1.4943 0.0346 0.001 0
Process TNP’s with Heat Exchanger at GaCR = 2
GaCR
CCBR/
HCBR
TNP
oC
Syngas
(moles)
Syngas
Ratio
% CO2
Conversion
2 2/0 664.59 1.9391 0.270125 28.13
2 1.5/0.5 652.73 1.9087 0.584904 15.64
2 1/1 659.959 1.9021 1.072682 -5.03
2 0.5/1.5 659.844 1.8972 1.923267 -63.56
2 0/2 651.626 1.8916 3.761138 -
Process TNP’s at GaCR = 3
-160
-140
-120
-100
-80
-60
-40
-20
0
20
500 550 600 650 700 750 800 850 900 950 1000
Enthalpy(KJ)
Temp oC
Process Enthalpy (with HE)
3/0
2.5/0.5
2.0/1.0
1.5/1.5
1.0/2.0
0.5/2.5
0.0/3.0
GaCR
CCBR/
HCBR
TNP
oC
CO2(g)
moles
CO(g)
moles
H2O(g)
moles
H2(g)
moles
CH4(g)
moles
N2(g)
moles
C
moles
3 3/0 635.522 2.3926 1.5663 0.2585 0.3647 0.0084 0.001 0.0327
3 2.5/0.5 623.346 2.184 1.2807 0.4612 0.6217 0.0286 0.001 0.0067
3 2/1 627.597 1.9311 1.0347 0.7131 0.8585 0.0342 0.001 0
3 1.5/1.5 630.18 1.6536 0.8113 0.9915 1.0782 0.0351 0.001 0
3 1/2 628.676 1.3587 0.6057 1.287 1.2817 0.0357 0.001 0
3 0.5/2.5 622.846 1.0468 0.4171 1.5993 1.4685 0.0361 0.001 0
3 0/3 611.497 0.7161 0.2478 1.9301 1.6375 0.0362 0.001 0
Process TNP’s with Heat Exchanger at GaCR = 3
GaCR
CCBR/
HCBR
TNP
oC
Syngas
(moles)
Syngas
Ratio
% CO2
Conversion
3 3/0 635.522 1.931 0.232842 20.24667
3 2.5/0.5 623.346 1.9024 0.485438 12.64
3 2/1 627.597 1.8932 0.829709 3.445
3 1.5/1.5 630.18 1.8895 1.328978 -10.24
3 1/2 628.676 1.8874 2.116064 -35.87
3 0.5/2.5 622.846 1.8856 3.520738 -109.36
3 0/3 611.497 1.8853 6.608152 -
Process TNP’s with Heat Exchanger at GaCR = 3
Process TNP’s at GaCR = 4
-140
-120
-100
-80
-60
-40
-20
0
20
500 550 600 650 700 750 800 850 900 950 1000
Enthalpy(KJ)
Temp oC
Process Enthalpy (with HE)
4/0
3.75/0.25
3.5/0.5
3.25/0.75
3.0/1.0
2.5/1.5
2.0/2.0
1.5/2.5
1.0/3.0
0.5/3.5
0.0/4.0
GaCR
CCBR/
HCBR
TNP
oC
CO2(g)
moles
CO(g)
moles
H2O(g)
moles
H2(g)
moles
CH4(g)
moles
N2(g)
moles
C
moles
4 4/0 615.714 3.3631 1.5907 0.2931 0.3321 0.0074 0.001 0.0388
4 3.5/0.5 605.141 3.1271 1.3323 0.5235 0.5667 0.0249 0.001 0.0158
4 3/1 603.992 2.859 1.104 0.788 0.7781 0.037 0.001 0
4 2.5/1.5 607.881 2.5544 0.9082 1.093 0.9722 0.0374 0.001 0
4 2/2 608.611 2.2333 0.7292 1.4143 1.1507 0.0375 0.001 0
4 1.5/2.5 606.334 1.8976 0.5645 1.7502 1.3141 0.0378 0.001 0
4 1/3 601.561 1.5467 0.4154 2.1011 1.4632 0.0378 0.001 0
4 0.5/3.5 593.788 1.1805 0.282 2.467 1.598 0.0375 0.001 0
4 0/4 581.206 0.7982 0.1647 2.8489 1.7169 0.0371 0.001 0
Process TNP’s with Heat Exchanger at GaCR = 4
GaCR
CCBR/
HCBR
TNP
oC
Syngas
(moles)
Syngas
Ratio
% CO2
Conversion
4 4/0 615.714 1.9228 0.208776 15.9225
4 3.5/0.5 605.141 1.899 0.425355 10.65429
4 3/1 603.992 1.8821 0.704801 4.7
4 2.5/1.5 607.881 1.8804 1.070469 -2.176
4 2/2 608.611 1.8799 1.578031 -11.665
4 1.5/2.5 606.334 1.8786 2.327901 -26.5067
4 1/3 601.561 1.8786 3.522388 -54.67
4 0.5/3.5 593.788 1.88 5.666667 -136.1
4 0/4 581.206 1.8816 10.42441 -
Process TNP’s with Heat Exchanger at GaCR = 4
Process TNP’s with Heat Exchanger
550
570
590
610
630
650
670
690
710
730
750
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
TNP(oC)
HCBR
TNP's
GaCR 1
GaCR 2
GaCR 3
GaCR 4
3. Gasifying Agent: Both - Trends
 Syngas decreased with increase in HCBR
 Syngas ratio increased with increase in HCBR
 % CO2 conversion and Reaction enthalpy at P-TNP’s
decreased with increase in HCBR
Process TNP’s with Heat Exchanger
1.8
1.82
1.84
1.86
1.88
1.9
1.92
1.94
1.96
1.98
2
0 0.5 1 1.5 2 2.5 3 3.5 4
syngas(moles)
HCBR
Syngas
GaCR 1
GaCR 2
GaCR 3
GaCR 4
Process TNP’s with Heat Exchanger
0
2
4
6
8
10
12
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
syngasratio
HCBR
Syngas ratio
GaCR 1
GaCR 2
GaCR 3
GaCR 4
Process TNP’s with Heat Exchanger
-160
-140
-120
-100
-80
-60
-40
-20
0
20
40
0 0.5 1 1.5 2 2.5 3 3.5 4
%CO2Conversion
HCBR
% CO2
GaCR 2
GaCR 3
GaCR 4
Process TNP’s with Heat Exchanger
-60
-50
-40
-30
-20
-10
0
10
0.5 1 1.5 2 2.5 3 3.5 4
Enthalpy(KJ)
HCBR
Reaction Enthalpy at P-TNP
GaCR 1
GaCR 2
GaCR 3
GaCR 4
Conclusions
 Sandeep et. al. varied SBR (Steam to Biomass Ratio) from
0.75 to 2.7. The hydrogen yield is found to be 104 g/kg of
biomass at SBR of 2.7. Significant enhancement in H2 yield
is observed at higher SBR compared with lower range SBR
REF: Sandeep, K., Dasappa, S., Oxy–steam gasification of
biomass for hydrogen rich syngas production using
downdraft reactor configuration
International Journal of Energy Research – 2013
 In our study, for SBR = 3, hydrogen yield is found to be
130.45g/kg of biomass
Conclusions
 Exothermal regions were obtained in the biomass
gasification with no oxygen in the input stream
 Biomass Gasification can be done auto thermally even
without any input of external oxygen or air
 Inbuilt oxygen content in biomass is large enough to carry
out the gasification process
 The product gas for some of the feed conditions can be
used for Fischer Tropsch process in petroleum industries
GaCR
CCBR/
HCBR
Syngas
(moles)
without HE
Syngas
Ratio
without HE
Syngas
(moles)
with HE
Syngas
Ratio
with HE
1 0/1 - - 1.905 1.806423
2 1.5/0.5 0.822 1.216828 - -
2 1/1 0.6785 2.931054 1.9021 1.072682
2 0.5/1.5 - - 1.8972 1.923267
3 2.5/0.5 0.587 1.269037 - -
3 1.5/1.5 - - 1.8895 1.328978
3 1/2 - - 1.8874 2.116064
4 2.5/1.5 - - 1.8804 1.070469
4 2/2 - - 1.8799 1.578031
4 1.5/2.5 - - 1.8786 2.327901
Syngas Ratio between 1 to 3
For Fischer Tropsch
THANK YOU

Weitere ähnliche Inhalte

Was ist angesagt?

Was ist angesagt? (20)

Pptfbc
PptfbcPptfbc
Pptfbc
 
Gasifier.ppt
Gasifier.pptGasifier.ppt
Gasifier.ppt
 
Thermo chemical conversion
Thermo chemical conversionThermo chemical conversion
Thermo chemical conversion
 
Biomass Pyrolysis
Biomass PyrolysisBiomass Pyrolysis
Biomass Pyrolysis
 
Production of Syngas from biomass and its purification
Production of Syngas from biomass and its purificationProduction of Syngas from biomass and its purification
Production of Syngas from biomass and its purification
 
Biomass Gasifier
Biomass GasifierBiomass Gasifier
Biomass Gasifier
 
Gasifiers
GasifiersGasifiers
Gasifiers
 
Improved Cook Stove (ICS)
Improved Cook Stove (ICS)Improved Cook Stove (ICS)
Improved Cook Stove (ICS)
 
BIOMASS as renewable energy resource
BIOMASS as renewable energy resourceBIOMASS as renewable energy resource
BIOMASS as renewable energy resource
 
Gasification and gasifier
Gasification and gasifierGasification and gasifier
Gasification and gasifier
 
Pyrolysis ppt
Pyrolysis pptPyrolysis ppt
Pyrolysis ppt
 
WASTE TO ENERGY PRESENTATION
WASTE TO ENERGY PRESENTATIONWASTE TO ENERGY PRESENTATION
WASTE TO ENERGY PRESENTATION
 
Biomass Gasification
Biomass GasificationBiomass Gasification
Biomass Gasification
 
Thermochemical
ThermochemicalThermochemical
Thermochemical
 
22. BIOMASS GASIFICATION.ppt
22. BIOMASS GASIFICATION.ppt22. BIOMASS GASIFICATION.ppt
22. BIOMASS GASIFICATION.ppt
 
Waste to energy
Waste to energyWaste to energy
Waste to energy
 
Bio gas
Bio gasBio gas
Bio gas
 
Downdraft biomass gasification: experimental investigation and aspen plus sim...
Downdraft biomass gasification: experimental investigation and aspen plus sim...Downdraft biomass gasification: experimental investigation and aspen plus sim...
Downdraft biomass gasification: experimental investigation and aspen plus sim...
 
Biogas From Anaerobic Digestion
Biogas From Anaerobic DigestionBiogas From Anaerobic Digestion
Biogas From Anaerobic Digestion
 
PRESSURIZED FLUIDIZED BED COMBUSTION BOILER
PRESSURIZED FLUIDIZED BED COMBUSTION BOILERPRESSURIZED FLUIDIZED BED COMBUSTION BOILER
PRESSURIZED FLUIDIZED BED COMBUSTION BOILER
 

Ähnlich wie Biomass Gasification presentation

Thesis Defense
Thesis DefenseThesis Defense
Thesis DefenseYijiang Wu
 
Hydrogen production by a thermally integrated ATR based fuel processor
Hydrogen production by a thermally integrated ATR based fuel processorHydrogen production by a thermally integrated ATR based fuel processor
Hydrogen production by a thermally integrated ATR based fuel processorAntonio Ricca
 
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...Microbial catalysis of syngas fermentation into biofuels precursors - An expe...
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...Pratap Jung Rai
 
GHGT 11-poster-QIAN XIE
GHGT 11-poster-QIAN XIEGHGT 11-poster-QIAN XIE
GHGT 11-poster-QIAN XIEQian Xie
 
Pawan CO2 REDUCTION PPT
Pawan CO2 REDUCTION PPTPawan CO2 REDUCTION PPT
Pawan CO2 REDUCTION PPTPawan Kumar
 
Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)
Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)
Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)chin2014
 
Modification & Application of Borate Zirconia Catalyst
Modification & Application of Borate Zirconia CatalystModification & Application of Borate Zirconia Catalyst
Modification & Application of Borate Zirconia CatalystRanjeet Kumar
 
Swtichgrass for bio-oil production LSAMP Hurtadop
Swtichgrass for bio-oil production LSAMP HurtadopSwtichgrass for bio-oil production LSAMP Hurtadop
Swtichgrass for bio-oil production LSAMP HurtadopMark P. Hurtado, PhD
 
Packed Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed Gas
Packed Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed GasPacked Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed Gas
Packed Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed Gasijsrd.com
 
Condition Monitoring of electrical machine
Condition Monitoring of electrical machine Condition Monitoring of electrical machine
Condition Monitoring of electrical machine Molla Morshad
 
Modelling and Simulation systems PRESENTATION.pptx
Modelling and Simulation systems PRESENTATION.pptxModelling and Simulation systems PRESENTATION.pptx
Modelling and Simulation systems PRESENTATION.pptx1ds20ch022
 
Lignin-depolymerization-aromatic monomers-solid acid-heterogeneous catalyst-A...
Lignin-depolymerization-aromatic monomers-solid acid-heterogeneous catalyst-A...Lignin-depolymerization-aromatic monomers-solid acid-heterogeneous catalyst-A...
Lignin-depolymerization-aromatic monomers-solid acid-heterogeneous catalyst-A...Deepa A K
 
Design and optimization of kemira leonard process for formic acid production
Design and optimization of kemira leonard process for formic acid productionDesign and optimization of kemira leonard process for formic acid production
Design and optimization of kemira leonard process for formic acid productionSanjanaSingh153
 
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...IJRESJOURNAL
 
Prediction of Hydrogen Production from Imperata cylindrica Using Stoichiometr...
Prediction of Hydrogen Production from Imperata cylindrica Using Stoichiometr...Prediction of Hydrogen Production from Imperata cylindrica Using Stoichiometr...
Prediction of Hydrogen Production from Imperata cylindrica Using Stoichiometr...Bemgba Nyakuma
 

Ähnlich wie Biomass Gasification presentation (20)

Thesis Defense
Thesis DefenseThesis Defense
Thesis Defense
 
Hydrogen production by a thermally integrated ATR based fuel processor
Hydrogen production by a thermally integrated ATR based fuel processorHydrogen production by a thermally integrated ATR based fuel processor
Hydrogen production by a thermally integrated ATR based fuel processor
 
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...Microbial catalysis of syngas fermentation into biofuels precursors - An expe...
Microbial catalysis of syngas fermentation into biofuels precursors - An expe...
 
GHGT 11-poster-QIAN XIE
GHGT 11-poster-QIAN XIEGHGT 11-poster-QIAN XIE
GHGT 11-poster-QIAN XIE
 
Pawan CO2 REDUCTION PPT
Pawan CO2 REDUCTION PPTPawan CO2 REDUCTION PPT
Pawan CO2 REDUCTION PPT
 
Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)
Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)
Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)
 
Ash correlations on hhv
Ash correlations on hhvAsh correlations on hhv
Ash correlations on hhv
 
Modification & Application of Borate Zirconia Catalyst
Modification & Application of Borate Zirconia CatalystModification & Application of Borate Zirconia Catalyst
Modification & Application of Borate Zirconia Catalyst
 
Swtichgrass for bio-oil production LSAMP Hurtadop
Swtichgrass for bio-oil production LSAMP HurtadopSwtichgrass for bio-oil production LSAMP Hurtadop
Swtichgrass for bio-oil production LSAMP Hurtadop
 
Packed Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed Gas
Packed Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed GasPacked Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed Gas
Packed Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed Gas
 
Condition Monitoring of electrical machine
Condition Monitoring of electrical machine Condition Monitoring of electrical machine
Condition Monitoring of electrical machine
 
Modelling and Simulation systems PRESENTATION.pptx
Modelling and Simulation systems PRESENTATION.pptxModelling and Simulation systems PRESENTATION.pptx
Modelling and Simulation systems PRESENTATION.pptx
 
Snehesh-Presentation-PDF
Snehesh-Presentation-PDFSnehesh-Presentation-PDF
Snehesh-Presentation-PDF
 
APR of sorbitol viva
APR of sorbitol vivaAPR of sorbitol viva
APR of sorbitol viva
 
30 ppd
30 ppd30 ppd
30 ppd
 
Lignin-depolymerization-aromatic monomers-solid acid-heterogeneous catalyst-A...
Lignin-depolymerization-aromatic monomers-solid acid-heterogeneous catalyst-A...Lignin-depolymerization-aromatic monomers-solid acid-heterogeneous catalyst-A...
Lignin-depolymerization-aromatic monomers-solid acid-heterogeneous catalyst-A...
 
Design and optimization of kemira leonard process for formic acid production
Design and optimization of kemira leonard process for formic acid productionDesign and optimization of kemira leonard process for formic acid production
Design and optimization of kemira leonard process for formic acid production
 
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
 
212 aparna
212 aparna212 aparna
212 aparna
 
Prediction of Hydrogen Production from Imperata cylindrica Using Stoichiometr...
Prediction of Hydrogen Production from Imperata cylindrica Using Stoichiometr...Prediction of Hydrogen Production from Imperata cylindrica Using Stoichiometr...
Prediction of Hydrogen Production from Imperata cylindrica Using Stoichiometr...
 

Biomass Gasification presentation

  • 1. Group Members: Pritish Shardul Mohit Meena Guide: Mr. Ganesh Kale, Senior Scientist, NCL, Pune
  • 2. Introduction  Gasification is a process that converts organic or fossil based carbonaceous materials mainly into carbon monoxide, hydrogen and carbon dioxide  Today there is a huge demand for fuel because of the increasing population. Biomass is renewable resource and is available very easily. It is the third among the primary energy sources after coal and oil  The gasification of biomass allows the production of a synthesis gas or “syngas”, consisting primarily of H2, CO, CH4, CO2 and N2, which further has a variety of uses
  • 3. Introduction  A thermodynamic analysis of the process of biomass gasification was conducted to find the Thermoneutral Points (TNP’s) for different gasifying agents for different compositions of the input streams to the gasifier  Reaction TNP’s (R-TNP’s), Process TNP’s (P-TNP’s) with and without Heat Exchanger were calculated and product gas compositions at TNP’s were analysed for syngas production, syngas ratio, %CO2 conversion and heat utilities during the course of this study
  • 4. Introduction  It is assumed that the exit products of the coal gasifier are in thermodynamic equilibrium.  HSC Chemistry software is well known software that uses the Gibbs free energy minimization algorithm to find the equilibrium product composition from a feed mixture and has been used in gasification studies earlier [Kumabe K, Hanaoka T, Fujimoto S, Minowa T, Sakanishi K. Co-gasification of woody biomass and coal with air and steam. Fuel 2007;86:684–9.]  We have also used HSC Chemistry 5.11 for our calculations
  • 5. Literature Survey  We downloaded many abstracts and shortlisted around 80 relevant abstracts  We sorted out the shortlisted abstracts in the following divisions - Thermodynamic Analysis - Experimental - Modelling - Reviews - Theoretical
  • 6. Biomass Selection  We chose Rice husk as the biomass to be gasified. Composition by weight: 47.8% C, 5.1% H, 38.9% O, 0.1% N (Ref : Jenkins, B.M. & Ebeling, J.M, Correlation of physical & chemical properties of terrestrial biomass with conversion, symposium, Energy from biomass & waste, Pg no-371)  Weight for 1 mole of rice husk is calculated to be 25.105 grams  We calculated the compositions in moles for one mole of carbon in biomass as follows, For 1 mole carbon, 0.6402 moles of H2, 0.3052 moles O2, 0.0008 moles N2  Temperature range considered in this study is 500-1000 °C
  • 7. Methodology PART A : R-TNP Analysis  For a particular feed condition, we calculated the output composition of the reactor using 'Equilibrium Compositions' module of HSC Chemistry 5.11 at temperatures ranging from 500 to 1000 °C, with intervals of 50 °C and constant pressure of 1 bar  Using those compositions and 'Reaction Equations' module of HSC Chemistry 5.11, we calculated the reaction enthalpy at respective temperatures
  • 8. Methodology (cont.) PART A : R-TNP Analysis  By plotting the graph of Enthalpy vs. Temperature we calculated the R-TNP's of the reaction  We calculated the product gas compositions at the R-TNP's and analysed the parameters: Syngas, Syngas Ratio, %CO2 Conversion, Heat utility (without HE), Reduced Heat Utility (with HE)
  • 9. 1. Gasifying Agent: CO2  We defined the parameter CCBR (CO2 to Carbon in biomass molar ratio)  We varied CCBR in the input of the gasifier. Values of CCBR are: 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5  From the graphs of enthalpy change vs. temperature for all the CCBR, we found that thermoneutral points (TNP’s) can be obtained for all the CCBR considered except 0 and 0.5 Thermoneutral temperature decreased with increase of CCBR
  • 10. Reaction TNP’s -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 500 550 600 650 700 750 800 850 900 950 1000 Enthalpy(KJ) Temp (oC) Reaction Enthalpy CCBR 5 CCBR 4 CCBR 3 CCBR 2.5 CCBR 2 CCBR 1.5 CCBR 1 CCBR 0.5 CCBR 0
  • 11. Reaction TNP’s 550 570 590 610 630 650 670 690 710 730 750 1 1.5 2 2.5 3 3.5 4 4.5 5 TNP(oC) CCBR TNP’S
  • 12. CCBR R-TNP oC CO2(g) moles CO(g) moles H2O(g) moles H2(g) moles CH4(g) moles N2(g) moles C moles 1 728.4831 0.4989 1.4924 0.1203 0.5024 0.0087 0.0008 0 1.5 688.1006 0.9606 1.518 0.1707 0.4495 0.0099 0.0008 0.0115 2 665.2904 1.4324 1.538 0.2076 0.4136 0.0095 0.0008 0.0202 2.5 648.5094 1.9114 1.5512 0.236 0.3861 0.0089 0.0008 0.0285 3 635.3741 2.3938 1.5636 0.2588 0.3645 0.0084 0.0008 0.0342 4 615.2267 3.3678 1.5809 0.2939 0.3315 0.0074 0.0008 0.0439 5 600 4.3489 1.5921 0.3202 0.3066 0.0066 0.0008 0.0524 Reaction TNP’s
  • 13. CCBR R-TNP oC Syngas (moles) Syngas Ratio % CO2 Conversion 1 728.4831 1.99482 0.336652 50.115 1.5 688.1006 1.96747 0.296094 35.9573 2 665.2904 1.95162 0.268934 28.38 2.5 648.5094 1.93733 0.248923 23.544 3 635.3741 1.92809 0.233109 20.2067 4 615.2267 1.91235 0.209659 15.805 5 600 1.8987 0.192576 13.022 Reaction TNP’s
  • 14. Gasifying Agent: CO2 - Trends  Syngas, Syngas Ratio and % CO2 conversion decreased with increase in CCBR  Heat utility (without HE) increased linearly with increase in CCBR  However, Heat utility (with HE) decreased then remained constant with the increase of CCBR
  • 15. Reaction TNP’s 1.88 1.9 1.92 1.94 1.96 1.98 2 1 1.5 2 2.5 3 3.5 4 4.5 5 Syngas(moles) CCBR Syngas
  • 16. Reaction TNP’s 0.15 0.2 0.25 0.3 0.35 1 1.5 2 2.5 3 3.5 4 4.5 5 SyngasRatio CCBR Syngas Ratio
  • 17. Reaction TNP’s 0 10 20 30 40 50 60 1 1.5 2 2.5 3 3.5 4 4.5 5 %CO2Conv. CCBR % CO2 Conversion
  • 18. Configuration (Heat Utility) without Heat Exchanger
  • 19. Heat Utility at Reaction TNP’s 60 80 100 120 140 160 180 1 1.5 2 2.5 3 3.5 4 4.5 5 Heatutility(KJ) CCBR Heat Utility (without HE)
  • 20. Configuration (Reduced Heat Utility) with Heat Exchanger
  • 21. Heat Utility at Reaction TNP’s 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Heatutility(KJ) CCBR Reduced Heat utility (with HE)
  • 22. 2. Gasifying Agent: H2O  We defined the parameter HCBR (H2O to Carbon in biomass molar ratio)  We varied HCBR in the in the input of the gasifier. Values of HCBR are: 0, 1, 2, 3, 4  From the graphs of enthalpy change vs. temperature for all the HCBR, we found that no thermoneutral points can be obtained for any of the HCBR considered
  • 23. Reaction TNP’s -160 -140 -120 -100 -80 -60 -40 -20 0 500 550 600 650 700 750 800 850 900 950 1000 Enthalpy(KJ) Temp (oC) Reaction Enthalpy HCBR 0 HCBR 1 HCBR 2 HCBR 3 HCBR 4
  • 24. 3. Gasifying Agent: CO2 & H2O  We defined the parameter GaCR (Gasifying Agents to Carbon in Biomass molar ratio)  We varied GaCR from 1 to 4 in the input of gasifier and considered different combinations of CCBR and HCBR for each GaCR  For GaCR = 1, R-TNP’s were obtained only for 1/0  For GaCR = 2, P-TNP’s were obtained only for 2/0  For GaCR = 3, P-TNP’s were obtained for 3/0, 2.5/0.5  For GaCR = 4, P-TNP’s were obtained for all combinations which had CCBR greater than or equal to 3
  • 25. Reaction TNP’s at GaCR = 1 -160 -140 -120 -100 -80 -60 -40 -20 0 20 500 550 600 650 700 750 800 850 900 950 1000 Enthalpy(KJ) Temp (oC) Reaction Enthalpy 1/0 0.5/0.5 0/1.0
  • 26. Reaction TNP’s at GaCR = 2 -140 -120 -100 -80 -60 -40 -20 0 20 500 550 600 650 700 750 800 850 900 950 1000 Enthalpy(KJ) Temp (oC) Reaction Enthalpy 2/0 1.5/0.5 1.0/1.0 0.5/1.5 0.0/2.0
  • 27. Reaction TNP’s at GaCR = 3 -140 -120 -100 -80 -60 -40 -20 0 20 500 550 600 650 700 750 800 850 900 950 1000 Enthalpy(KJ) Temp (oC) Reaction Enthalpy 3/0 2.5/0.5 2.0/1.0 1.5/1.5 1.0/2.0 0.5/2.5 0.0/3.0
  • 28. Reaction TNP’s at GaCR = 4 -140 -120 -100 -80 -60 -40 -20 0 20 500 550 600 650 700 750 800 850 900 950 1000 Enthalpy(KJ) Temp (oC) Reaction Enthalpy 4/0 3.75/0.25 3.5/0.5 3.25/0.75 3.0/1.0 2.5/1.5 2.0/2.0 1.5/2.5 1.0/3.0 0.5/3.5 0.0/4.0
  • 29. GaCR CCBR/ HCBR TNP oC CO2(g) moles CO(g) moles H2O(g) moles H2(g) moles CH4(g) moles N2(g) moles C moles 1 1/0 728.483 0.4989 1.4924 0.1203 0.5024 0.0087 0.001 0 2 2/0 665.290 1.4324 1.538 0.2076 0.4136 0.0095 0.001 0.0201 3 3/0 635.374 2.3938 1.5636 0.2588 0.3645 0.0084 0.001 0.0342 3 2.5/0.5 718.730 2.0504 1.4485 0.5612 0.5767 0.0011 0.001 0 4 4/0 615.227 3.3678 1.5809 0.2940 0.3315 0.0074 0.001 0.0439 4 3.75/0.25 612.965 3.2257 1.5054 0.4032 0.4577 0.0145 0.001 0.0044 4 3.5/0.5 647.993 3.0412 1.4533 0.5743 0.5547 0.0055 0.001 0 4 3.25/0.75 728.611 2.8031 1.4465 0.8077 0.5816 0.0004 0.001 0 4 3/1 858.285 2.5239 1.4761 1.0865 0.5537 0.00001 0.001 0 Reaction TNP’s
  • 30. GaCR CCBR/ HCBR TNP oC Syngas (moles) Syngas Ratio % CO2 Conversion 1 1/0 728.483 1.99482 0.336652 50.115 2 2/0 665.290 1.95162 0.268934 28.38 3 3/0 635.374 1.92809 0.233109 20.20667 3 2.5/0.5 718.730 2.0252 0.398136 17.984 4 4/0 615.227 1.91235 0.209659 15.805 4 3.75/0.25 612.965 1.96314 0.304065 13.98133 4 3.5/0.5 647.993 2.00804 0.381711 13.10857 4 3.25/0.75 728.611 2.02811 0.402081 13.75077 4 3/1 858.285 2.0298 0.37511 15.87 Reaction TNP’s
  • 31. GaCR = 4 - Trends  R-TNP first slightly decreased with HCBR then increased  Syngas increased (from 1.9124 to 2.0298 moles per moles of Biomass) with increase in HCBR  Syngas ratio showed a maxima (of 0.403) at HCBR = 0.714  % CO2 conversion first decreased then increased with increase in HCBR  Heat utility (with HE) increased with increase in HCBR  However, Heat utility (without HE) first decreased slightly and the increased with increase in HCBR
  • 32. Reaction TNP’s at GaCR = 4 600 650 700 750 800 850 900 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 TNP(oC) HCBR TNP
  • 33. Reaction TNP’s at GaCR = 4 1.9 1.92 1.94 1.96 1.98 2 2.02 2.04 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Syngas(moles) HCBR Syngas
  • 34. Reaction TNP’s at GaCR = 4 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 syngasRatio HCBR Syngas Ratio
  • 35. Reaction TNP’s at GaCR = 4 10 11 12 13 14 15 16 17 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 %CO2Conversion HCBR % CO2 conversion
  • 36. Reaction TNP’s at GaCR = 4 18 20 22 24 26 28 30 32 34 36 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 HeatUtility(KJ) HCBR Reduced Heat Utility (with HE)
  • 37. Reaction TNP’s at GaCR = 4 250 270 290 310 330 350 370 390 410 430 450 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 HeatUtility HCBR Heat Utility (without HE)
  • 38. Methodology PART B: Process TNP Analysis (without HE)  We calculated the Biomass preheating value for temperatures between 500 to 1000 °C, with intervals of 50 °C. Cp value of Rice husk was taken as 2.094 J/gK [Kaupp (1984)]  We then calculated the preheating value of gasifying agents (CO2 and H2O) for respective temperatures. Cp value of CO2 and H2O was taken from Perry's Chemical Engineers' Handbook 7e  We then calculated the Process enthalpy (without Heat Exchanger) as the sum of Reaction enthalpy, Biomass preheating and Gasifying Agents preheating (Figure 1)
  • 39. Configuration (Heat Utility) without Heat Exchanger
  • 40. Methodology (cont.) PART B: Process TNP Analysis (without HE)  We plotted the graph of Process enthalpy without heat exchanger vs. Temperature and calculated the P-TNP's without HE  We calculated the product gas compositions at the P-TNP's and analysed the parameters: Syngas, Syngas Ratio, %CO2 Conversion, Reaction Enthalpy at P-TNP's
  • 41. 1. Gasifying Agent: CO2  We varied CCBR in the input of gasifier from 0 to 5  From the graphs of enthalpy change vs. temperature for all the CCBR, we found that TNP’s can be obtained for all the CCBR except 0 and 5
  • 42. Process TNP’s without Heat Exchanger -150 -100 -50 0 50 100 150 200 250 300 350 500 550 600 650 700 750 800 850 900 950 1000 Enthalpy(KJ) Temp oC Process Enthalpy (without HE) CCBR 0 CCBR 0.5 CCBR 1 CCBR 1.5 CCBR 2 CCBR 2.5 CCBR 3 CCBR 4 CCBR 5
  • 43. CCBR TNP oC CO2(g) moles CO(g) moles H2O(g) moles H2(g) moles CH4(g) moles N2(g) moles C moles 0.5 714.931 0.3081 0.8768 0.1171 0.4927 0.0151 0.001 0.3 1 655.605 0.7993 0.8063 0.205 0.4024 0.0163 0.001 0.3781 1.5 619.546 1.3119 0.7202 0.266 0.3426 0.0157 0.001 0.4522 2 591.731 1.832 0.6327 0.3134 0.297 0.0148 0.001 0.5205 2.5 568.257 2.3542 0.5492 0.3524 0.2597 0.0139 0.001 0.5827 3 547.193 2.8771 0.4697 0.386 0.2278 0.0131 0.001 0.64 4 509.452 3.9189 0.3303 0.442 0.1748 0.0116 0.001 0.7393 Process TNP’s without Heat Exchanger
  • 44. CCBR TNP oC Syngas (moles) Syngas Ratio % CO2 Conversion 0.5 714.931 1.3695 0.56193 38.38 1 655.605 1.2087 0.49907 20.07 1.5 619.546 1.0628 0.475701 12.54 2 591.731 0.9297 0.469417 8.4 2.5 568.257 0.8089 0.47287 5.832 3 547.193 0.6975 0.48499 4.0966 4 509.452 0.5051 0.529216 2.0275 Process TNP’s without Heat Exchanger
  • 45. Gasifying Agent: CO2 - Trends  P-TNP’s, Syngas and %CO2 conversion decreased with increase in CCBR  Syngas Ratio showed a minima (of 0.469) at CCBR =2.056  Reaction Enthalpy at P-TNP’s was calculated and it showed a decrease with increase in CCBR
  • 46. Process TNP’s without Heat Exchanger 500 550 600 650 700 750 0.5 1 1.5 2 2.5 3 3.5 4 TNP(oC) CCBR P- TNP
  • 47. Process TNP’s without Heat Exchanger 0.4 0.6 0.8 1 1.2 1.4 0.5 1 1.5 2 2.5 3 3.5 4 Syngas(moles) CCBR Syngas
  • 48. Process TNP’s without Heat Exchanger 0.4 0.45 0.5 0.55 0.6 0.5 1 1.5 2 2.5 3 3.5 4 SyngasRatio CCBR Syngas Ratio
  • 49. Process TNP’s without Heat Exchanger 0 5 10 15 20 25 30 35 40 45 0.5 1 1.5 2 2.5 3 3.5 4 %CO2conversion CCBR %CO2 conversion
  • 50. Process TNP’s without Heat Exchanger -120 -110 -100 -90 -80 -70 -60 -50 0.5 1 1.5 2 2.5 3 3.5 4 Enthalpy(KJ) CCBR Reaction Enthalpy at P-TNP's
  • 51. 2. Gasifying Agent: H2O  We varied HCBR from 0 to 4 in the input of gasifier  From the graphs of enthalpy change vs. temperature for all the HCBR, we found that TNP can be obtained only for HCBR = 1, in the range of 500-1000 °C HCBR TNP oC CO2(g) moles CO(g) moles H2O(g) moles H2(g) moles CH4(g) moles N2(g) moles C moles Syngas moles Syngas Ratio % CO2 Conv. 1 580.012 0.4341 0.2164 0.5254 0.7704 0.1721 0.001 0.1775 0.9868 3.56 47.46
  • 52. Process TNP’s without Heat Exchanger -200 -100 0 100 200 300 400 500 550 600 650 700 750 800 850 900 950 1000 Enthalpy(KJ) Temp C Process Enthalpy (without HE) HCBR 0 HCBR 1 HCBR 2 HCBR 3 HCBR 4
  • 53. 3. Gasifying Agent: CO2 & H2O  We varied GaCR from 1 to 4 in the input of gasifier  For GaCR = 1, P-TNP’s were obtained for all the combinations of CCBR and HCBR considered  For GaCR = 2, P-TNP’s were obtained for three combinations 2/0, 1.5/0.5, 1/1  For GaCR = 3, P-TNP’s were obtained for two combinations 3/0, 2.5/0.5  For GaCR =4, only 1 P-TNP was obtained for 4/0
  • 54. Process TNP’s at GaCR = 1 -100 -50 0 50 100 150 500 550 600 650 700 750 800 850 900 950 1000 Enthalpy(KJ) Temp oC Process Enthalpy (without HE) 1/0 0.5/0.5 0/1
  • 55. Process TNP’s at GaCR = 2 -100 -50 0 50 100 150 200 500 550 600 650 700 750 800 850 900 950 1000 Enthalpy(KJ) Temp oC Process Enthalpy (without HE) 2/0 1.5/0.5 1.0/1.0 0.5/1.5 0.0/2.0
  • 56. Process TNP’s at GaCR = 3 -50 0 50 100 150 200 250 300 500 550 600 650 700 750 800 850 900 950 1000 Enthalpy(KJ) Temp oC Process Enthalpy (without HE) 3/0 2.5/0.5 2.0/1.0 1.5/1.5 1.0/2.0 0.5/2.5 0.0/3.0
  • 57. Process TNP’s at GaCR = 4 -50 0 50 100 150 200 250 300 350 400 500 550 600 650 700 750 800 850 900 950 1000 Enthalpy(KJ) Temp oC Process Enthalpy (without HE) 4/0 3.75/0.25 3.5/0.5 3.25/0.75 3.0/1.0 2.5/1.5 2.0/2.0 1.5/2.5 1.0/3.0 0.0/4.0
  • 58. GaCR CCBR/ HCBR TNP oC CO2(g) moles CO(g) moles H2O(g) moles H2(g) moles CH4(g) moles N2(g) moles C moles 1 1/0 655.605 0.7993 0.8063 0.205 0.4024 0.0163 0.001 0.3781 1 0.5/0.5 623.6980 0.6311 0.4779 0.3699 0.6428 0.0636 0.0010 0.3274 1 0/1 580.012 0.4341 0.2164 0.5254 0.7704 0.1721 0.001 0.1775 2 2/0 591.731 1.832 0.6327 0.3134 0.297 0.0148 0.001 0.5205 2 1.5/0.5 560.256 1.5802 0.3708 0.5787 0.4512 0.0551 0.001 0.4938 2 1/1 518.773 1.2883 0.1726 0.8608 0.5059 0.1366 0.001 0.4025 3 3/0 547.193 2.8771 0.4697 0.386 0.2278 0.0131 0.001 0.64 3 2.5/0.5 514.018 2.5669 0.2587 0.7174 0.3283 0.0471 0.001 0.6272 4 4/0 509.452 3.9189 0.3303 0.442 0.1748 0.0116 0.001 0.7393 Process TNP’s without Heat Exchanger
  • 59. GaCR CCBR/ HCBR TNP oC Syngas (moles) Syngas Ratio % CO2 Conversion 1 1/0 655.605 1.2087 0.49907 20.07 1 0.5/0.5 623.6980 1.1207 1.345051 -26.22 1 0/1 580.012 0.9868 3.560074 - 2 2/0 591.731 0.9297 0.469417 8.4 2 1.5/0.5 560.256 0.822 1.216828 -5.34667 2 1/1 518.773 0.6785 2.931054 -28.83 3 3/0 547.193 0.6975 0.48499 4.096667 3 2.5/0.5 514.018 0.587 1.269037 -2.676 4 4/0 509.452 0.5051 0.529216 2.0275 Process TNP’s without Heat Exchanger
  • 60. Gasifying Agent: Both -Trends  P-TNP’s and Syngas production decreased with increase in HCBR for both GaCR 1 and 2  Syngas ratio showed an increase with increase in HCBR for both the GaCR  Reaction enthalpy at P-TNP’s decreased with increase in HCBR
  • 61. Process TNP’s without HE at GaCR = 1 & 2 500 520 540 560 580 600 620 640 660 680 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 TNP(oC) HCBR P- TNP's GaCR 1 GaCR 2
  • 62. Process TNP’s without HE at GaCR = 1 & 2 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 syngas(moles) HCBR Syngas GaCR 1 GaCR 2
  • 63. Process TNP’s without HE at GaCR = 1 & 2 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 SyngasRatio HCBR Syngas ratio GaCR 1 GaCR 2
  • 64. Process TNP’s without HE at GaCR = 1 & 2 -120 -100 -80 -60 -40 -20 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Enthalpy(KJ) HCBR Reaction Enthalpy at P-TNP's GaCR 1 GaCR 2
  • 65. Methodology PART C: Process TNP Analysis (with HE)  We calculated the Product Gas Cooling Energy released at respective temperature. Product gas consisted of CO2(g), CO(g), C, H2O(g), H2(g), CH4(g) and N2(g). Cp values of all the components were taken from Perry's Chemical Engineers' Handbook 7e  We then calculated the Process enthalpy (with Heat Exchanger) as the sum of Reaction enthalpy, Biomass preheating, Gasifying Agents preheating + Product Gas Cooling (Figure 2)
  • 66. Configuration (Reduced Heat Utility) with Heat Exchanger
  • 67. Methodology (cont.) PART C: Process TNP Analysis (with HE)  We plotted the graph of Process enthalpy with heat exchanger vs. Temperature and calculated the P-TNP's with HE  We calculated the product gas compositions at the P-TNP's and analysed the parameters: Syngas, Syngas Ratio, %CO2 Conversion, Reaction Enthalpy at P-TNP's
  • 68. 1. Gasifying Agent: CO2  We varied CCBR in the input of gasifier from 0 to 5  From the graphs of enthalpy change vs. temperature for all the CCBR, we found that TNP’s can be obtained for all the CCBR except 0
  • 69. Process TNP’s with Heat Exchanger -150 -130 -110 -90 -70 -50 -30 -10 10 30 50 500 550 600 650 700 750 800 850 900 950 1000 Enthalpy(KJ) Temp oC Process Enthalpy (with HE) CCBR 0 CCBR 0.5 CCBR 1 CCBR 1.5 CCBR 2 CCBR 2.5 CCBR 3 CCBR 4 CCBR 5
  • 70. CCBR TNP oC CO2(g) moles CO(g) moles H2O(g) moles H2(g) moles CH4(g) moles N2(g) moles C moles 0.5 812.239 0.1006 1.3665 0.0423 0.5838 0.0069 0.001 0.026 1 720.674 0.5193 1.4481 0.1234 0.4965 0.0101 0.001 0.0226 1.5 686.357 0.9715 1.494 0.173 0.4469 0.01 0.001 0.0245 2 664.59 1.4374 1.5267 0.2086 0.4124 0.0095 0.001 0.0264 2.5 648.385 1.9124 1.549 0.2362 0.3859 0.0089 0.001 0.0297 3 635.522 2.3926 1.5663 0.2585 0.3647 0.0084 0.001 0.0327 4 615.714 3.3631 1.5907 0.2931 0.3321 0.0074 0.001 0.0388 5 600.67 4.3423 1.6063 0.3191 0.3077 0.0066 0.001 0.0448 Process TNP’s with Heat Exchanger
  • 71. CCBR TNP oC Syngas (moles) Syngas Ratio % CO2 Conversion 0.5 812.239 1.9503 0.427223 79.88 1 720.674 1.9446 0.342863 48.07 1.5 686.357 1.9409 0.29913 35.2333 2 664.59 1.9391 0.270125 28.13 2.5 648.385 1.9349 0.249128 23.504 3 635.522 1.931 0.232842 20.2466 4 615.714 1.9228 0.208776 15.9225 5 600.67 1.914 0.191558 13.154 Process TNP’s with Heat Exchanger
  • 72. Gasifying Agent: CO2 - Trends  P-TNP’s, Syngas production, Syngas ratio and % CO2 conversion decreased with increase in HCBR  Reaction enthalpy at R-TNP’s increased and went from exothermic region to endothermic region  Reaction enthalpy for CCBR = 2.68 was zero. Thus, R-TNP and P-TNP is same for CCBR 2.68
  • 73. Process TNP’s with Heat Exchanger 550 600 650 700 750 800 850 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 TNP(oC) CCBR TNP
  • 74. Process TNP’s with Heat Exchanger 1.91 1.915 1.92 1.925 1.93 1.935 1.94 1.945 1.95 1.955 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Syngas(moles) CCBR Syngas
  • 75. Process TNP’s with Heat Exchanger 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 SyngasRatio CCBR Syngas Ratio
  • 76. Process TNP’s with Heat Exchanger 0 10 20 30 40 50 60 70 80 90 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 %CO2conversion CCBR %CO2 conversion
  • 77. Process TNP’s with Heat Exchanger -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Enthalpy(KJ) CCBR Reaction Enthalpy at P-TNP's
  • 78. 2. Gasifying Agent: H2O  We varied HCBR in the input of gasifier from 0 to 4  From the graphs of enthalpy change vs. temperature for all the HCBR, we found that TNP’s can be obtained for all the HCBR except 0
  • 79. Process TNP’s with Heat Exchanger -150 -100 -50 0 50 100 500 550 600 650 700 750 800 850 900 950 1000 Enthalpy(KJ) Temp oC Process Enthalpy (with HE) HCBR 0 HCBR 1 HCBR 2 HCBR 3 HCBR 4
  • 80. HCBR TNP oC CO2(g) moles CO(g) moles H2O(g) moles H2(g) moles CH4(g) moles N2(g) moles C moles 1 713.0330 0.2900 0.6788 0.3513 1.2262 0.0313 0.0010 0.0000 2 651.626 0.5681 0.3973 1.0765 1.4943 0.0346 0.001 0 3 611.497 0.7161 0.2478 1.9301 1.6375 0.0362 0.001 0 4 581.206 0.7982 0.1647 2.8489 1.7169 0.0371 0.001 0 Process TNP’s with Heat Exchanger HCBR TNP oC Syngas (moles) Syngas Ratio % CO2 Conversion 1 713.0330 1.905 1.806423 71 2 651.626 1.8916 3.761138 71.595 3 611.497 1.8853 6.608152 76.13 4 581.206 1.8816 10.42441 80.045
  • 81. Gasifying Agent: H2O - Trends  P-TNP’s and Syngas Production decreased with increase in HCBR  Syngas ratio and % CO2 Conversion increased with increase in HCBR  Reaction enthalpy at P-TNP’s decreased with increase in HCBR
  • 82. Process TNP’s with Heat Exchanger 550.000 570.000 590.000 610.000 630.000 650.000 670.000 690.000 710.000 730.000 1 1.5 2 2.5 3 3.5 4 P-TNP(C) CCBR P-TNP’s
  • 83. Process TNP’s with Heat Exchanger 1.88 1.885 1.89 1.895 1.9 1.905 1.91 1 1.5 2 2.5 3 3.5 4 Syngas(moles) CCBR Syngas
  • 84. Process TNP’s with Heat Exchanger 0 2 4 6 8 10 12 1 1.5 2 2.5 3 3.5 4 SyngasRatio CCBR Syngas Ratio
  • 85. Process TNP’s with Heat Exchanger 70 71 72 73 74 75 76 77 78 79 80 81 1 1.5 2 2.5 3 3.5 4 %CO2conversion CCBR %CO2 conversion
  • 86. Process TNP’s with Heat Exchanger -60 -55 -50 -45 -40 -35 -30 1 1.5 2 2.5 3 3.5 4 Enthalpy(KJ) CCBR Reaction Enthalpy at P-TNP's
  • 87. 3. Gasifying Agent: CO2 & H2O  We varied GaCR from 1 to 4 in the input of gasifier  For all the GaCR, P-TNP’s were obtained for all the combinations of CCBR and HCBR considered
  • 88. Process TNP’s GaCR = 1 -160 -140 -120 -100 -80 -60 -40 -20 0 20 500 550 600 650 700 750 800 850 900 950 1000 Enthalpy(KJ) Temp oC Process Enthalpy (with HE) 2/0 1.5/0.5 0.0/1.0
  • 89. GaCR CCBR/ HCBR TNP oC CO2(g) moles CO(g) moles H2O(g) moles H2(g) moles CH4(g) moles N2(g) moles C moles 1 1/0 720.674 0.5193 1.4481 0.1234 0.4965 0.0101 0.001 0.0226 1 0.5/0.5 709.568 0.4155 1.0557 0.2234 0.8589 0.0288 0.001 0 1 0/1 713.0330 0.2900 0.6788 0.3513 1.2262 0.0313 0.0010 0.0000 Process TNP’s with Heat Exchanger at GaCR = 1 GaCR CCBR/ HCBR TNP oC Syngas (moles) Syngas Ratio % CO2 Conversion 1 1/0 720.674 1.9446 0.342863 48.07 1 0.5/0.5 709.568 1.9146 0.813583 16.9 1 0/1 713.0330 1.905 1.806423 -
  • 90. Process TNP’s at GaCR = 2 -160 -140 -120 -100 -80 -60 -40 -20 0 20 500 550 600 650 700 750 800 850 900 950 1000 Enthalpy(KJ) Temp oC Process Enthalpy (with HE) 2/0 1.5/0.5 1.0/1.0 0.5/1.5 0.0/2.0
  • 91. GaCR CCBR/ HCBR TNP oC CO2(g) moles CO(g) moles H2O(g) moles H2(g) moles CH4(g) moles N2(g) moles C moles 2 2/0 664.59 1.4374 1.5267 0.2086 0.4124 0.0095 0.001 0.0264 2 1.5/0.5 652.73 1.2654 1.2043 0.375 0.7044 0.0303 0.001 0 2 1/1 659.959 1.0503 0.9177 0.5917 0.9844 0.032 0.001 0 2 0.5/1.5 659.844 0.8178 0.649 0.8254 1.2482 0.0332 0.001 0 2 0/2 651.626 0.5681 0.3973 1.0765 1.4943 0.0346 0.001 0 Process TNP’s with Heat Exchanger at GaCR = 2 GaCR CCBR/ HCBR TNP oC Syngas (moles) Syngas Ratio % CO2 Conversion 2 2/0 664.59 1.9391 0.270125 28.13 2 1.5/0.5 652.73 1.9087 0.584904 15.64 2 1/1 659.959 1.9021 1.072682 -5.03 2 0.5/1.5 659.844 1.8972 1.923267 -63.56 2 0/2 651.626 1.8916 3.761138 -
  • 92. Process TNP’s at GaCR = 3 -160 -140 -120 -100 -80 -60 -40 -20 0 20 500 550 600 650 700 750 800 850 900 950 1000 Enthalpy(KJ) Temp oC Process Enthalpy (with HE) 3/0 2.5/0.5 2.0/1.0 1.5/1.5 1.0/2.0 0.5/2.5 0.0/3.0
  • 93. GaCR CCBR/ HCBR TNP oC CO2(g) moles CO(g) moles H2O(g) moles H2(g) moles CH4(g) moles N2(g) moles C moles 3 3/0 635.522 2.3926 1.5663 0.2585 0.3647 0.0084 0.001 0.0327 3 2.5/0.5 623.346 2.184 1.2807 0.4612 0.6217 0.0286 0.001 0.0067 3 2/1 627.597 1.9311 1.0347 0.7131 0.8585 0.0342 0.001 0 3 1.5/1.5 630.18 1.6536 0.8113 0.9915 1.0782 0.0351 0.001 0 3 1/2 628.676 1.3587 0.6057 1.287 1.2817 0.0357 0.001 0 3 0.5/2.5 622.846 1.0468 0.4171 1.5993 1.4685 0.0361 0.001 0 3 0/3 611.497 0.7161 0.2478 1.9301 1.6375 0.0362 0.001 0 Process TNP’s with Heat Exchanger at GaCR = 3
  • 94. GaCR CCBR/ HCBR TNP oC Syngas (moles) Syngas Ratio % CO2 Conversion 3 3/0 635.522 1.931 0.232842 20.24667 3 2.5/0.5 623.346 1.9024 0.485438 12.64 3 2/1 627.597 1.8932 0.829709 3.445 3 1.5/1.5 630.18 1.8895 1.328978 -10.24 3 1/2 628.676 1.8874 2.116064 -35.87 3 0.5/2.5 622.846 1.8856 3.520738 -109.36 3 0/3 611.497 1.8853 6.608152 - Process TNP’s with Heat Exchanger at GaCR = 3
  • 95. Process TNP’s at GaCR = 4 -140 -120 -100 -80 -60 -40 -20 0 20 500 550 600 650 700 750 800 850 900 950 1000 Enthalpy(KJ) Temp oC Process Enthalpy (with HE) 4/0 3.75/0.25 3.5/0.5 3.25/0.75 3.0/1.0 2.5/1.5 2.0/2.0 1.5/2.5 1.0/3.0 0.5/3.5 0.0/4.0
  • 96. GaCR CCBR/ HCBR TNP oC CO2(g) moles CO(g) moles H2O(g) moles H2(g) moles CH4(g) moles N2(g) moles C moles 4 4/0 615.714 3.3631 1.5907 0.2931 0.3321 0.0074 0.001 0.0388 4 3.5/0.5 605.141 3.1271 1.3323 0.5235 0.5667 0.0249 0.001 0.0158 4 3/1 603.992 2.859 1.104 0.788 0.7781 0.037 0.001 0 4 2.5/1.5 607.881 2.5544 0.9082 1.093 0.9722 0.0374 0.001 0 4 2/2 608.611 2.2333 0.7292 1.4143 1.1507 0.0375 0.001 0 4 1.5/2.5 606.334 1.8976 0.5645 1.7502 1.3141 0.0378 0.001 0 4 1/3 601.561 1.5467 0.4154 2.1011 1.4632 0.0378 0.001 0 4 0.5/3.5 593.788 1.1805 0.282 2.467 1.598 0.0375 0.001 0 4 0/4 581.206 0.7982 0.1647 2.8489 1.7169 0.0371 0.001 0 Process TNP’s with Heat Exchanger at GaCR = 4
  • 97. GaCR CCBR/ HCBR TNP oC Syngas (moles) Syngas Ratio % CO2 Conversion 4 4/0 615.714 1.9228 0.208776 15.9225 4 3.5/0.5 605.141 1.899 0.425355 10.65429 4 3/1 603.992 1.8821 0.704801 4.7 4 2.5/1.5 607.881 1.8804 1.070469 -2.176 4 2/2 608.611 1.8799 1.578031 -11.665 4 1.5/2.5 606.334 1.8786 2.327901 -26.5067 4 1/3 601.561 1.8786 3.522388 -54.67 4 0.5/3.5 593.788 1.88 5.666667 -136.1 4 0/4 581.206 1.8816 10.42441 - Process TNP’s with Heat Exchanger at GaCR = 4
  • 98. Process TNP’s with Heat Exchanger 550 570 590 610 630 650 670 690 710 730 750 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 TNP(oC) HCBR TNP's GaCR 1 GaCR 2 GaCR 3 GaCR 4
  • 99. 3. Gasifying Agent: Both - Trends  Syngas decreased with increase in HCBR  Syngas ratio increased with increase in HCBR  % CO2 conversion and Reaction enthalpy at P-TNP’s decreased with increase in HCBR
  • 100. Process TNP’s with Heat Exchanger 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2 0 0.5 1 1.5 2 2.5 3 3.5 4 syngas(moles) HCBR Syngas GaCR 1 GaCR 2 GaCR 3 GaCR 4
  • 101. Process TNP’s with Heat Exchanger 0 2 4 6 8 10 12 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 syngasratio HCBR Syngas ratio GaCR 1 GaCR 2 GaCR 3 GaCR 4
  • 102. Process TNP’s with Heat Exchanger -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 0 0.5 1 1.5 2 2.5 3 3.5 4 %CO2Conversion HCBR % CO2 GaCR 2 GaCR 3 GaCR 4
  • 103. Process TNP’s with Heat Exchanger -60 -50 -40 -30 -20 -10 0 10 0.5 1 1.5 2 2.5 3 3.5 4 Enthalpy(KJ) HCBR Reaction Enthalpy at P-TNP GaCR 1 GaCR 2 GaCR 3 GaCR 4
  • 104. Conclusions  Sandeep et. al. varied SBR (Steam to Biomass Ratio) from 0.75 to 2.7. The hydrogen yield is found to be 104 g/kg of biomass at SBR of 2.7. Significant enhancement in H2 yield is observed at higher SBR compared with lower range SBR REF: Sandeep, K., Dasappa, S., Oxy–steam gasification of biomass for hydrogen rich syngas production using downdraft reactor configuration International Journal of Energy Research – 2013  In our study, for SBR = 3, hydrogen yield is found to be 130.45g/kg of biomass
  • 105. Conclusions  Exothermal regions were obtained in the biomass gasification with no oxygen in the input stream  Biomass Gasification can be done auto thermally even without any input of external oxygen or air  Inbuilt oxygen content in biomass is large enough to carry out the gasification process  The product gas for some of the feed conditions can be used for Fischer Tropsch process in petroleum industries
  • 106. GaCR CCBR/ HCBR Syngas (moles) without HE Syngas Ratio without HE Syngas (moles) with HE Syngas Ratio with HE 1 0/1 - - 1.905 1.806423 2 1.5/0.5 0.822 1.216828 - - 2 1/1 0.6785 2.931054 1.9021 1.072682 2 0.5/1.5 - - 1.8972 1.923267 3 2.5/0.5 0.587 1.269037 - - 3 1.5/1.5 - - 1.8895 1.328978 3 1/2 - - 1.8874 2.116064 4 2.5/1.5 - - 1.8804 1.070469 4 2/2 - - 1.8799 1.578031 4 1.5/2.5 - - 1.8786 2.327901 Syngas Ratio between 1 to 3 For Fischer Tropsch