SlideShare ist ein Scribd-Unternehmen logo
1 von 15
Downloaden Sie, um offline zu lesen
MECHANICAL	
  ENGINEERING	
  DESIGN	
  PROJECTS	
  
FINAL	
  STATUS	
  REPORT	
  
	
  
	
  
1	
  |	
  P a g e 	
  
	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
SUBMITTED	
  BY	
  
Senior	
  Design	
  Team	
  4	
  
Alyssa	
  Eng,	
  Cesar	
  Gutierrez,	
  Annie	
  Mroz	
  
May	
  6,	
  2013	
  
MECHANICAL	
  ENGINEERING	
  DESIGN	
  PROJECTS	
  
FINAL	
  STATUS	
  REPORT	
  
	
  
	
  
2	
  |	
  P a g e 	
  
	
  	
  
TABLE	
  OF	
  CONTENTS	
  
	
  
PROJECT	
  OVERVIEW	
  ...............................................................................................................................................................	
  3	
  
OVERALL	
  DESIGN	
  ....................................................................................................................................................................	
  3	
  
TESTING/PROTOTYPING	
  RESULTS	
  ..........................................................................................................................................	
  3	
  
PROPOSED	
  IMPROVEMENTS/LESSONS	
  LEARNED	
  ..................................................................................................................	
  3	
  
REQUIREMENTS	
  COMPLIANCE	
  ...............................................................................................................................................	
  3	
  
COST	
  .......................................................................................................................................................................................	
  4
	
  
MECHANICAL	
  ENGINEERING	
  DESIGN	
  PROJECTS	
  
FINAL	
  STATUS	
  REPORT	
  
	
  
	
  
3	
  |	
  P a g e 	
  
	
  	
  
PROJECT	
  OVERVIEW	
  
PROBLEM STATEMENT
Lack	
  of	
  access	
  to	
  water	
  presents	
  significant	
  barriers	
  to	
  growth	
  and	
  opportunity	
  in	
  developing	
  countries.	
  People	
  
who	
  live	
  in	
  rural	
  areas	
  often	
  have	
  to	
  spend	
  several	
  hours	
  each	
  day	
  collecting	
  water,	
  due	
  to	
  the	
  fact	
  that	
  their	
  water	
  
source	
  is	
  very	
  far	
  from	
  where	
  they	
  live	
  and	
  they	
  are	
  limited	
  to	
  what	
  they	
  can	
  physically	
  carry.	
  These	
  hours	
  spent	
  
collecting	
  water	
  take	
  away	
  time	
  from	
  work,	
  leisure,	
  and	
  study.	
  Current	
  solutions	
  to	
  the	
  problem	
  such	
  as	
  hand	
  
pumps	
  or	
  boreholes	
  are	
  typically	
  expensive,	
  complex,	
  and	
  fragile.	
  Water	
  access	
  without	
  electric	
  power	
  or	
  
expensive	
  water	
  infrastructure	
  could	
  be	
  an	
  optimal	
  solution	
  to	
  this	
  problem.	
  
HIGH LEVEL CONCEPT
To	
  address	
  these	
  issues,	
  our	
  project	
  simultaneously	
  solves	
  the	
  problem	
  of	
  lack	
  of	
  water	
  and	
  of	
  electrical	
  
infrastructure	
  by	
  providing	
  both	
  the	
  ability	
  to	
  move	
  water	
  and	
  charge	
  small	
  devices.	
  This	
  is	
  accomplished	
  with	
  a	
  
self-­‐contained	
  bike	
  system	
  in	
  which	
  the	
  user	
  provides	
  manual	
  power	
  to	
  both	
  applications	
  by	
  pedaling.	
  To	
  charge	
  
devices,	
  the	
  user	
  pedals	
  and	
  the	
  back	
  wheel	
  of	
  the	
  bicycle	
  turns	
  a	
  roller	
  via	
  friction	
  contact.	
  This	
  roller	
  is	
  connected	
  
to	
  a	
  generator	
  that	
  provides	
  electric	
  power	
  to	
  charge	
  a	
  battery	
  or	
  power	
  small	
  USB	
  devices.	
  To	
  move	
  water,	
  the	
  
bike	
  transmits	
  pedal	
  power	
  to	
  an	
  external	
  gear	
  via	
  an	
  extra	
  bike	
  chain,	
  and	
  this	
  extra	
  gear	
  powers	
  a	
  pump.	
  
REVISED PROJECT METRICS
Flow Rate 3 GPM
Pump Head 15 m
Generator Charge 12 Volt Battery
Charge cell phone or small appliances via
USB
Cost $20 - $100
Materials Incorporate recycled materials where
possible. Use as many recycled bike parts as
possible.
Additional Goals Portability, usability, ability to use any bike,
ease of set up
NOVELTY
After	
  much	
  research,	
  we	
  realized	
  that	
  bike-­‐water	
  projects	
  abound,	
  and	
  that	
  several	
  others	
  have	
  already	
  attempted	
  
this.	
  However,	
  our	
  product	
  is	
  different	
  than	
  existing	
  bike-­‐water	
  projects	
  in	
  several	
  ways.	
  The	
  main	
  differentiation	
  
between	
  our	
  project	
  and	
  others	
  is	
  that	
  the	
  bike	
  can	
  still	
  be	
  ridden	
  and	
  as	
  such,	
  the	
  entire	
  system	
  is	
  portable.	
  Any	
  
bike	
  can	
  easily	
  be	
  dropped	
  into	
  our	
  system	
  without	
  any	
  significant	
  modifications	
  and	
  that	
  bike	
  can	
  be	
  as	
  easily	
  
removed.	
  In	
  addition,	
  the	
  entire	
  product	
  is	
  inexpensive	
  and	
  made	
  primarily	
  from	
  recycled	
  bicycle	
  components.	
  	
  
MECHANICAL	
  ENGINEERING	
  DESIGN	
  PROJECTS	
  
FINAL	
  STATUS	
  REPORT	
  
	
  
	
  
4	
  |	
  P a g e 	
  
	
  	
  
OVERALL	
  DESIGN	
  
	
  As	
  mentioned	
  before,	
  the	
  goal	
  we	
  pursued	
  with	
  our	
  project	
  is	
  solving	
  the	
  problem	
  of	
  lack	
  of	
  access	
  to	
  water	
  in	
  
developing	
  countries,	
  as	
  well	
  as	
  providing	
  a	
  inexpensive	
  and	
  reliable	
  source	
  of	
  electrical	
  power	
  for	
  small	
  electronic	
  
devices	
  such	
  as	
  cellphones	
  or	
  LED	
  lights.	
  The	
  ultimate	
  purpose	
  being	
  to	
  improve	
  the	
  quality	
  of	
  life	
  of	
  people	
  
(specifically	
  kids)	
  in	
  developing	
  countries,	
  by	
  allowing	
  them	
  to	
  save	
  time	
  doing	
  chores	
  for	
  study	
  or	
  play.	
  	
  
To	
  accomplish	
  this,	
  we	
  designed	
  a	
  universal,	
  portable	
  power	
  providing	
  system	
  consisting	
  of	
  a	
  bike	
  stand	
  in	
  which	
  
you	
  can	
  drop	
  any	
  multi-­‐gear	
  bike.	
  This	
  stand	
  can	
  easily	
  be	
  attached	
  to	
  any	
  bike,	
  and	
  the	
  bike	
  does	
  not	
  require	
  any	
  
complex	
  modification.	
  The	
  only	
  modification	
  to	
  the	
  bike	
  consists	
  of	
  adding	
  a	
  second	
  chain	
  to	
  the	
  rear	
  gear.	
  This	
  is	
  
required	
  to	
  implement	
  the	
  double	
  chain	
  system	
  which	
  powers	
  the	
  water	
  pump.	
  This	
  task	
  can	
  be	
  done	
  in	
  less	
  than	
  
10	
  minutes	
  and	
  without	
  the	
  need	
  of	
  any	
  specialized	
  or	
  expensive	
  tools.	
  
Once	
  the	
  stand	
  is	
  attached	
  to	
  the	
  bike,	
  the	
  bike	
  can	
  be	
  ridden	
  as	
  usual	
  (so	
  the	
  entire	
  system	
  is	
  portable)	
  but	
  at	
  the	
  
same	
  time	
  has	
  the	
  capacity	
  of	
  pumping	
  water	
  and	
  generating	
  electricity.	
  The	
  setup	
  of	
  the	
  generator	
  system	
  takes	
  
no	
  longer	
  than	
  10	
  seconds,	
  and	
  the	
  setup	
  of	
  the	
  water	
  pump	
  takes	
  about	
  one	
  and	
  a	
  half	
  minutes.	
  
With	
  our	
  portable	
  power	
  providing	
  system	
  we	
  are	
  simultaneously	
  tackling	
  many	
  of	
  the	
  problems	
  mentioned	
  
before.	
  First	
  and	
  foremost,	
  we	
  hope	
  to	
  provide	
  people	
  with	
  more	
  convenient	
  access	
  to	
  water	
  and	
  electricity.	
  This	
  
will	
  give	
  people	
  the	
  opportunity	
  to	
  use	
  their	
  extra	
  time	
  for	
  work,	
  study	
  or	
  leisure.	
  Besides	
  this,	
  we	
  are	
  creating	
  
work	
  for	
  an	
  enterprising	
  entrepreneur,	
  not	
  only	
  for	
  the	
  owner	
  of	
  our	
  device	
  but	
  also	
  for	
  a	
  mechanic	
  or	
  welder	
  who	
  
can	
  build	
  and	
  sell	
  our	
  design.	
  We	
  envision	
  an	
  entrepreneur	
  in	
  Kenya	
  could	
  make	
  an	
  initial	
  investment	
  to	
  purchase	
  
or	
  fabricate	
  the	
  device	
  and	
  then	
  provide	
  a	
  service	
  for	
  his	
  fellow	
  villagers.	
  This	
  model	
  of	
  single	
  ownership	
  will	
  
ensure	
  that	
  the	
  device	
  and	
  all	
  its	
  subsystems	
  are	
  well	
  maintained.	
  Additionally,	
  we	
  hope	
  that	
  this	
  model	
  will	
  enable	
  
an	
  unemployed	
  villager	
  to	
  earn	
  additional	
  income.	
  	
  
If	
  the	
  concept	
  of	
  bike	
  power	
  were	
  to	
  become	
  a	
  business,	
  it	
  could	
  be	
  used	
  to	
  solve	
  a	
  number	
  of	
  problems	
  in	
  Kenya.	
  
With	
  the	
  help	
  of	
  our	
  advisor	
  Dr.	
  Jackson,	
  who	
  has	
  in-­‐field	
  experience,	
  we	
  learned	
  that	
  villagers	
  often	
  collect	
  
rainwater	
  but	
  have	
  no	
  way	
  of	
  pressurizing	
  it	
  for	
  sinks	
  and	
  faucets.	
  Our	
  product	
  could	
  easily	
  address	
  this	
  need	
  by	
  
pumping	
  water	
  from	
  a	
  ground-­‐level	
  rain	
  barrel	
  to	
  a	
  secondary	
  storage	
  container	
  5-­‐10	
  m	
  off	
  the	
  ground.	
  
These	
  issues	
  were	
  present	
  in	
  every	
  step	
  of	
  our	
  design	
  and	
  redesign	
  processes,	
  and	
  we	
  made	
  several	
  major	
  changes	
  
in	
  our	
  design	
  with	
  portability	
  and	
  simplicity	
  being	
  our	
  priorities	
  until	
  we	
  reached	
  the	
  final	
  optimal	
  solution.	
  To	
  
achieve	
  these	
  goals,	
  our	
  project	
  is	
  designed	
  to	
  be	
  easy	
  to	
  build	
  with	
  the	
  resources	
  available	
  in	
  Kenya.	
  For	
  this	
  
reason,	
  we	
  decided	
  to	
  use	
  as	
  many	
  old	
  bike	
  parts	
  as	
  possible,	
  since	
  bikes	
  are	
  very	
  common	
  there.	
  Welding	
  is	
  also	
  a	
  
common	
  resource	
  in	
  Kenya,	
  where	
  it	
  is	
  not	
  difficult	
  to	
  find	
  a	
  welder	
  in	
  any	
  village.	
  They	
  also	
  have	
  access	
  to	
  scrap	
  
metal	
  which	
  can	
  be	
  welded	
  together	
  to	
  construct	
  most	
  of	
  the	
  structures	
  required	
  by	
  our	
  design.	
  Although	
  we	
  aimed	
  
to	
  use	
  as	
  many	
  recycled	
  components	
  as	
  possible,	
  we	
  did	
  not	
  limit	
  ourselves	
  to	
  using	
  recycled	
  parts	
  when	
  it	
  was	
  
impractical	
  or	
  unnecessary.	
  
	
  	
  
	
  	
  
MECHANICAL	
  ENGINEERING	
  DESIGN	
  PROJECTS	
  
FINAL	
  STATUS	
  REPORT	
  
	
  
	
  
5	
  |	
  P a g e 	
  
	
  	
  
Detailed	
  Overview	
  	
  
Bike	
  stand:	
  The	
  stand	
  is	
  the	
  base	
  of	
  our	
  system.	
  It´s	
  main	
  purpose	
  is	
  holding	
  the	
  bike	
  stationary	
  while	
  the	
  user	
  
pumps	
  water.	
  It	
  flips	
  up	
  to	
  form	
  a	
  rack	
  when	
  the	
  bike	
  is	
  being	
  ridden	
  as	
  a	
  regular	
  bike.	
  It	
  is	
  also	
  the	
  support	
  for	
  the	
  
two	
  main	
  subsystems:	
  the	
  water	
  pump	
  and	
  the	
  electric	
  generator.	
  The	
  bike	
  stand	
  functions	
  as	
  follows:	
  
Although	
  our	
  first	
  idea	
  was	
  manufacturing	
  our	
  own	
  bike	
  stand	
  out	
  of	
  repurposed	
  metal	
  bars	
  obtained	
  from	
  an	
  old	
  
bicycle,	
  the	
  lack	
  of	
  access	
  to	
  welding	
  resources	
  and	
  the	
  delays	
  that	
  would	
  entail	
  by	
  having	
  it	
  welded	
  by	
  an	
  external	
  
source	
  were	
  prohibitive.	
  We	
  decided	
  instead	
  to	
  buy	
  the	
  bike	
  stand	
  to	
  save	
  time.	
  This	
  stand	
  is	
  originally	
  a	
  bike	
  
trainer	
  for	
  at-­‐home	
  cyclists.	
  This	
  triangular	
  structure	
  has	
  2	
  screws	
  on	
  the	
  top	
  corner	
  of	
  the	
  triangle.	
  These	
  screws	
  
attach	
  to	
  the	
  axle	
  of	
  the	
  rear	
  wheel	
  of	
  the	
  bike	
  lifting	
  the	
  rear	
  wheel	
  to	
  make	
  the	
  bike	
  stationary.	
  The	
  screws	
  allow	
  
the	
  stand	
  to	
  rotate	
  around	
  the	
  point	
  of	
  contact	
  with	
  the	
  bike.	
  We	
  took	
  advantage	
  of	
  this	
  feature	
  to	
  design	
  our	
  
system	
  in	
  such	
  a	
  way	
  that	
  the	
  stand	
  can	
  be	
  flipped	
  up	
  and	
  be	
  held	
  in	
  that	
  vertical	
  position	
  via	
  a	
  bungee	
  system.	
  By	
  
doing	
  this,	
  the	
  stand	
  that	
  originally	
  provided	
  a	
  stable	
  platform	
  to	
  hold	
  the	
  bike	
  now	
  provides	
  a	
  flat	
  surface	
  on	
  the	
  
back	
  of	
  the	
  bike,	
  similar	
  to	
  a	
  rack.	
  This	
  surface	
  can	
  be	
  used	
  to	
  accommodate	
  a	
  crate	
  in	
  which	
  the	
  user	
  can	
  carry	
  all	
  
the	
  tools	
  needed,	
  as	
  well	
  as	
  the	
  main	
  components	
  of	
  the	
  other	
  subsystems:	
  the	
  water	
  pump,	
  the	
  battery,	
  the	
  inlet	
  
and	
  outlet	
  hoses	
  that	
  will	
  be	
  connected	
  to	
  the	
  pump,	
  and	
  tools.	
  	
  
Rack	
  and	
  crate:	
  In	
  order	
  to	
  take	
  advantage	
  of	
  the	
  flat	
  surface	
  that	
  provides	
  the	
  stand	
  when	
  it	
  is	
  flipped	
  up,	
  we	
  
created	
  a	
  quick	
  release	
  system	
  to	
  accommodate	
  the	
  crate	
  in	
  a	
  secure	
  way.	
  To	
  do	
  so,	
  we	
  used	
  a	
  repurposed	
  the	
  seat	
  
stays	
  (piece	
  of	
  tubing	
  connecting	
  the	
  main	
  frame	
  to	
  the	
  rear	
  axle)	
  of	
  an	
  old	
  bike.	
  The	
  shape	
  of	
  this	
  part	
  makes	
  it	
  
ideal	
  to	
  mate	
  with	
  the	
  stand,	
  and	
  it	
  is	
  secured	
  in	
  place	
  via	
  a	
  bungee	
  cord	
  as	
  well	
  as	
  a	
  peg	
  and	
  slot	
  system.	
  The	
  
assembly	
  and	
  disassembly	
  of	
  this	
  system	
  takes	
  no	
  longer	
  than	
  10-­‐15	
  seconds,	
  and	
  its	
  utility	
  resides	
  in	
  its	
  ability	
  to	
  
carry	
  all	
  the	
  tools	
  and	
  components	
  in	
  an	
  easy	
  way,	
  keeping	
  the	
  bike	
  balanced	
  and	
  not	
  interfering	
  with	
  the	
  natural	
  
pedaling	
  motion.	
  To	
  absorb	
  the	
  vibration	
  that	
  may	
  be	
  caused	
  by	
  riding	
  the	
  bike	
  in	
  rural	
  areas,	
  all	
  the	
  contact	
  points	
  
are	
  cushioned	
  with	
  rubber.	
  This	
  also	
  increases	
  the	
  grip	
  between	
  removable	
  parts.	
  
Water	
  pump	
  subsystem:	
  The	
  purpose	
  of	
  this	
  subsystem	
  is	
  transmitting	
  the	
  power	
  from	
  the	
  pedals	
  to	
  a	
  secondary	
  
output	
  shaft	
  that	
  drives	
  the	
  water	
  pump.	
  After	
  several	
  iterations	
  and	
  redesign	
  steps,	
  we	
  decided	
  to	
  create	
  a	
  double	
  
chain	
  system	
  because	
  it	
  was	
  the	
  most	
  optimal	
  solution	
  that	
  fulfilled	
  our	
  requirements	
  of	
  efficiency,	
  portability	
  and	
  
simplicity.	
  
The	
  benefits	
  of	
  using	
  this	
  double	
  chain	
  design	
  are	
  as	
  follows:	
  
The	
  power	
  transmission	
  has	
  high	
  efficiency	
  in	
  chain	
  systems,	
  up	
  to	
  95%	
  in	
  well-­‐lubricated	
  and	
  tensioned	
  systems.	
  
The	
  design	
  is	
  robust	
  and	
  compact.	
  The	
  second	
  chain	
  is	
  permanently	
  attached	
  to	
  the	
  output	
  shaft,	
  even	
  when	
  the	
  
pump	
  is	
  not	
  connected	
  and	
  the	
  stand	
  is	
  flipped	
  up.	
  Thanks	
  to	
  this,	
  the	
  device	
  is	
  portable	
  and	
  the	
  setup	
  time	
  is	
  
drastically	
  reduced,	
  to	
  the	
  point	
  that	
  it	
  takes	
  no	
  more	
  than	
  1	
  minute	
  and	
  30	
  seconds	
  from	
  the	
  moment	
  the	
  user	
  
arrives	
  to	
  his	
  destination	
  riding	
  the	
  bike	
  until	
  the	
  moment	
  he	
  is	
  actually	
  pumping	
  water.	
  Since	
  the	
  output	
  shaft	
  is	
  
well	
  lubricated,	
  the	
  power	
  loss	
  due	
  to	
  friction	
  when	
  it	
  is	
  freewheeling	
  (with	
  the	
  pump	
  disconnected)	
  is	
  negligible.	
  
In	
  addition,	
  the	
  second	
  chain	
  can	
  be	
  obtained	
  from	
  and	
  old	
  bike.	
  The	
  output	
  shaft,	
  which	
  is	
  welded	
  into	
  the	
  stand,	
  is	
  
a	
  repurposed	
  bottom	
  bracket	
  (the	
  axle	
  that	
  the	
  pedals	
  rotate	
  on)	
  of	
  an	
  old	
  bike.	
  Custom-­‐made	
  couplers	
  attach	
  to	
  
both	
  sides	
  of	
  this	
  axle.	
  The	
  couplers	
  connect	
  the	
  water	
  pump	
  on	
  the	
  outer	
  side	
  and	
  the	
  extra	
  gear	
  system	
  on	
  the	
  
MECHANICAL	
  ENGINEERING	
  DESIGN	
  PROJECTS	
  
FINAL	
  STATUS	
  REPORT	
  
	
  
	
  
6	
  |	
  P a g e 	
  
	
  	
  
inner	
  side.	
  These	
  couplers	
  have	
  been	
  machined	
  with	
  a	
  tapered	
  hole	
  that	
  mates	
  perfectly	
  with	
  the	
  shape	
  of	
  the	
  axle	
  
from	
  the	
  old	
  bike	
  making	
  it	
  easy	
  to	
  attach	
  or	
  remove	
  them.	
  
The	
  quick	
  connection	
  of	
  the	
  pump	
  consists	
  of	
  a	
  setscrew	
  through	
  the	
  axle	
  of	
  the	
  pump	
  and	
  a	
  wing	
  nut.	
  In	
  order	
  to	
  
prevent	
  the	
  pump	
  from	
  freewheeling,	
  we	
  designed	
  a	
  small	
  stand	
  for	
  the	
  pump	
  that	
  sits	
  on	
  the	
  ground	
  and	
  
accommodates	
  the	
  circular	
  shape	
  of	
  the	
  pump.	
  
The	
  pump	
  is	
  a	
  positive	
  displacement	
  pump,	
  specifically	
  a	
  rotary	
  vane	
  pump.	
  We	
  chose	
  plastic	
  because	
  it	
  is	
  light,	
  
durable,	
  resistant	
  to	
  corrosion	
  and	
  inexpensive.	
  
The	
  tubing	
  is	
  the	
  same	
  for	
  the	
  inlet	
  and	
  the	
  outlet.	
  We	
  used	
  ¾”	
  	
  clear,	
  vinyl	
  tubing.	
  The	
  ¾”	
  hose	
  diameter	
  was	
  
chosen	
  based	
  on	
  the	
  results	
  of	
  our	
  Matlab	
  model	
  (implementing	
  the	
  Colebrook	
  equation	
  for	
  frictional	
  losses).	
  The	
  
model	
  predicts	
  the	
  pressure	
  lost	
  depending	
  on	
  the	
  flowrate,	
  distance	
  and	
  height	
  to	
  which	
  you	
  are	
  pumping.	
  
Another	
  important	
  parameter	
  that	
  was	
  taken	
  into	
  account	
  was	
  the	
  weight	
  of	
  the	
  hose.	
  The	
  inlet	
  tubing	
  is	
  15	
  feet	
  
long	
  and	
  the	
  outlet	
  is	
  90	
  feet.	
  Minimizing	
  weight	
  was	
  important	
  so	
  that	
  the	
  user	
  could	
  have	
  a	
  long	
  enough	
  hose	
  to	
  
make	
  it	
  useful	
  for	
  pumping	
  distances	
  but	
  at	
  the	
  same	
  time	
  practical	
  and	
  portable.	
  To	
  make	
  the	
  transportation	
  of	
  the	
  
hose	
  easier,	
  there	
  is	
  enough	
  clearance	
  between	
  the	
  crate	
  and	
  the	
  seat	
  of	
  the	
  bike	
  so	
  that	
  the	
  hose	
  can	
  be	
  coiled	
  
around	
  the	
  crate.	
  The	
  connection	
  between	
  the	
  pump	
  and	
  the	
  tubing	
  is	
  made	
  via	
  standard	
  gardening	
  hose	
  
connections.	
  
	
  A	
  check	
  valve	
  is	
  attached	
  to	
  the	
  outlet	
  of	
  the	
  pump	
  to	
  prevent	
  back	
  flow	
  allowing	
  the	
  user	
  to	
  take	
  a	
  break	
  without	
  
losing	
  pressure.	
   In	
  the	
  inlet	
  hose	
  we	
  attached	
  a	
  small	
  filter	
  to	
  prevent	
  debris	
  from	
  getting	
  into	
  the	
  pump,	
  
damaging	
  the	
  mechanism.	
  The	
  inlet	
  of	
  the	
  hose	
  is	
  weighted,	
  so	
  that	
  it	
  stays	
  submerged	
  preventing	
  dry-­‐running	
  of	
  
the	
  pump.	
  
On	
  the	
  other	
  side	
  of	
  the	
  output	
  shaft	
  we	
  have	
  an	
  extra	
  gear	
  system,	
  entirely	
  made	
  out	
  of	
  repurposed	
  bike	
  parts.	
  The	
  
main	
  part	
  is	
  the	
  rear	
  gear	
  hub,	
  which	
  is	
  screwed	
  to	
  the	
  coupler	
  mentioned	
  before.	
  This	
  rear	
  gear	
  hub	
  
accommodates	
  several	
  laser	
  cut	
  spacers	
  and	
  the	
  biggest	
  gear	
  of	
  an	
  old	
  bike	
  cassette.	
  The	
  spacers	
  allow	
  the	
  user	
  to	
  
place	
  the	
  gear	
  in	
  the	
  desired	
  position.	
  This	
  is	
  important	
  as	
  the	
  second	
  gear	
  needs	
  to	
  be	
  in	
  the	
  same	
  plane	
  as	
  the	
  
biggest	
  gear	
  of	
  the	
  cassette	
  of	
  the	
  main	
  bike	
  so	
  that	
  the	
  second	
  chain	
  is	
  aligned,	
  reducing	
  friction	
  and	
  consequently	
  
increasing	
  efficiency.	
  
The	
  second	
  chain	
  links	
  the	
  biggest	
  gear	
  of	
  the	
  cassette	
  of	
  the	
  bike	
  with	
  the	
  gear	
  on	
  the	
  output	
  shaft.	
  With	
  this	
  setup,	
  
the	
  gear	
  ratio	
  between	
  the	
  pedaling	
  motion	
  and	
  the	
  RPM	
  in	
  the	
  output	
  shaft,	
  and	
  consequently	
  in	
  the	
  pump	
  is	
  3/2	
  
(assuming	
  that	
  the	
  user	
  chooses	
  the	
  recommended	
  gear	
  ratio).	
  	
  The	
  placement	
  of	
  the	
  second	
  chain	
  is	
  such	
  that	
  
does	
  not	
  interfere	
  with	
  the	
  derailleur	
  of	
  the	
  bike,	
  so	
  the	
  user	
  can	
  still	
  switch	
  gears	
  as	
  desired,	
  except	
  for	
  the	
  biggest	
  
two	
  gears	
  in	
  the	
  cassette,	
  which	
  are	
  occupied	
  by	
  the	
  second	
  chain.	
  This	
  exception,	
  however,	
  is	
  not	
  a	
  big	
  
inconvenience	
  since	
  those	
  are	
  less-­‐commonly	
  used	
  gears.	
  
It	
  should	
  be	
  noted	
  that	
  although	
  the	
  primary	
  purpose	
  of	
  this	
  extra	
  axle	
  is	
  to	
  pump	
  water,	
  it	
  could	
  easily	
  be	
  used	
  for	
  
any	
  other	
  application	
  that	
  requires	
  rotary	
  motion,	
  such	
  as	
  a	
  grinding	
  mill	
  or	
  knife	
  sharpener.	
  
	
  	
  
MECHANICAL	
  ENGINEERING	
  DESIGN	
  PROJECTS	
  
FINAL	
  STATUS	
  REPORT	
  
	
  
	
  
7	
  |	
  P a g e 	
  
	
  	
  
Electric	
  generator	
  subsystem:	
  The	
  lack	
  of	
  electricity	
  inhibits	
  education	
  and	
  studying	
  for	
  young	
  people.	
  Children	
  
often	
  must	
  spend	
  most	
  of	
  their	
  daylight	
  hours	
  doing	
  chores	
  (such	
  as	
  collecting	
  water)	
  and	
  by	
  the	
  time	
  they	
  are	
  
done	
  with	
  their	
  work	
  it	
  is	
  already	
  dark	
  and	
  therefore	
  they	
  have	
  no	
  light	
  to	
  study	
  by.	
  For	
  this	
  reason,	
  we	
  added	
  a	
  
small	
  electrical	
  generator	
  to	
  our	
  project.	
  The	
  generator	
  is	
  powered	
  by	
  the	
  wheel	
  of	
  the	
  bike	
  in	
  a	
  roller-­‐fashion.	
  The	
  
generator	
  can	
  be	
  engaged	
  anytime,	
  not	
  only	
  when	
  riding	
  the	
  bike	
  from	
  one	
  place	
  to	
  the	
  other	
  but	
  also	
  when	
  the	
  
bike	
  is	
  stationary	
  or	
  while	
  pumping	
  water.	
  	
  It	
  can	
  be	
  connected	
  to	
  a	
  12V	
  battery	
  or	
  directly	
  to	
  any	
  electronic	
  device	
  
that	
  uses	
  a	
  USB	
  port.	
  This	
  way,	
  the	
  battery	
  can	
  be	
  used	
  to	
  power	
  LED	
  lights	
  or	
  to	
  charge	
  cellphones,	
  or	
  the	
  
cellphones	
  and	
  LED	
  lights	
  can	
  be	
  charged	
  directly.	
  The	
  user	
  can	
  decide	
  which	
  option	
  is	
  more	
  convenient	
  at	
  any	
  
time	
  and	
  change	
  from	
  one	
  to	
  the	
  other	
  by	
  flicking	
  a	
  switch.	
  
The	
  generator	
  is	
  supported	
  by	
  a	
  custom	
  aluminum	
  plate	
  which	
  is	
  screwed	
  into	
  the	
  back	
  of	
  the	
  bike	
  stand.	
  This	
  
plate	
  can	
  rotate	
  around	
  a	
  fixed	
  point	
  in	
  the	
  stand	
  until	
  the	
  generator	
  gets	
  in	
  contact	
  with	
  the	
  wheel,	
  and	
  it	
  can	
  be	
  
locked	
  in	
  place	
  by	
  adjusting	
  a	
  set	
  screw	
  with	
  a	
  wing	
  nut.	
  Power	
  is	
  transmitted	
  to	
  the	
  generator	
  in	
  a	
  roller-­‐fashion	
  
because	
  it	
  gives	
  the	
  user	
  a	
  high	
  gear	
  ratio,	
  which	
  in	
  turn	
  allows	
  the	
  user	
  to	
  easily	
  generate	
  a	
  high	
  RPM	
  in	
  the	
  
generator.	
  Consequently,	
  it	
  is	
  easy	
  for	
  the	
  user	
  to	
  generate	
  a	
  high	
  voltage	
  in	
  the	
  generator	
  even	
  while	
  pedaling	
  at	
  
slow	
  speeds.	
  	
  	
  	
  
Because	
  the	
  generator	
  is	
  AC,	
  we	
  designed	
  a	
  compact	
  circuit	
  that	
  rectifies	
  the	
  voltage	
  via	
  a	
  bridge	
  rectifier.	
  It	
  also	
  
allows	
  the	
  user	
  to	
  choose	
  between	
  “battery	
  mode”,	
  in	
  which	
  the	
  battery	
  can	
  be	
  directly	
  connected	
  to	
  power	
  and	
  
ground	
  outputs	
  or	
  “USB	
  mode”,	
  which	
  can	
  be	
  used	
  to	
  connect	
  any	
  USB	
  device.	
  Cell	
  phones	
  are	
  quite	
  common	
  in	
  
Kenya	
  but	
  charging	
  them	
  without	
  access	
  to	
  electricity	
  is	
  a	
  constant	
  struggle.	
  In	
  order	
  to	
  charge	
  their	
  phones,	
  
owners	
  typically	
  have	
  to	
  leave	
  their	
  village	
  and	
  walk	
  a	
  long	
  way	
  until	
  they	
  have	
  access	
  to	
  the	
  grid	
  or	
  to	
  a	
  diesel	
  
generator	
  where	
  they	
  can	
  pay	
  to	
  get	
  their	
  phone	
  charged.	
  The	
  entire	
  circuit	
  is	
  housed	
  in	
  a	
  small	
  box	
  which	
  remains	
  
attached	
  to	
  the	
  bike	
  stand	
  but	
  that	
  can	
  be	
  disengaged	
  at	
  any	
  time.	
  
The	
  whole	
  system	
  works	
  as	
  follows:	
  
Once	
  the	
  owner	
  of	
  the	
  bike	
  arrives	
  to	
  the	
  place	
  where	
  he	
  would	
  like	
  to	
  pump	
  water,	
  he	
  flips	
  down	
  the	
  stand	
  to	
  
make	
  the	
  bike	
  stationary	
  and	
  connects	
  the	
  water	
  pump	
  to	
  the	
  exterior	
  side	
  of	
  the	
  axle.	
  After	
  that,	
  he	
  has	
  to	
  connect	
  
the	
  inlet	
  and	
  outlet	
  hose	
  and	
  place	
  the	
  pump	
  stand	
  right	
  under	
  the	
  pump.	
  Then,	
  the	
  last	
  step	
  is	
  to	
  drop	
  the	
  inlet	
  
hose	
  into	
  the	
  water	
  source	
  and	
  the	
  outlet	
  hose	
  to	
  the	
  desired	
  storage	
  vessel.	
  After	
  that,	
  he	
  can	
  start	
  pedaling	
  to	
  
pump	
  water.	
  This	
  whole	
  process	
  shouldn´t	
  take	
  more	
  than	
  one	
  and	
  a	
  half	
  minutes.	
  
Also,	
  as	
  mentioned	
  before,	
  the	
  generator	
  can	
  be	
  engaged	
  at	
  any	
  time.	
  Since	
  the	
  amount	
  of	
  power	
  that	
  it	
  extracts	
  is	
  
not	
  very	
  great,	
  it	
  can	
  be	
  engaged	
  when	
  riding	
  the	
  bike	
  from	
  one	
  place	
  to	
  the	
  other,	
  taking	
  advantage	
  of	
  the	
  time	
  
spent	
  travelling.	
  Once	
  the	
  user	
  decides	
  to	
  start	
  pumping	
  water,	
  he	
  can	
  leave	
  the	
  generator	
  engaged	
  if	
  the	
  head	
  he	
  
wants	
  to	
  pump	
  to	
  is	
  not	
  too	
  high,	
  or	
  he	
  can	
  just	
  disengage	
  it	
  to	
  transmit	
  all	
  the	
  power	
  to	
  the	
  pump.	
  
Once	
  the	
  process	
  of	
  pumping	
  water	
  is	
  over,	
  the	
  packing	
  process	
  is	
  the	
  same	
  as	
  the	
  setup	
  process	
  but	
  in	
  the	
  opposite	
  
direction:	
  he	
  has	
  to	
  disconnect	
  the	
  hoses	
  and	
  the	
  pump,	
  flip	
  up	
  the	
  stand	
  and	
  secure	
  it	
  with	
  the	
  bungee	
  system	
  and	
  
place	
  the	
  rack	
  and	
  the	
  crate	
  on	
  top	
  of	
  it,	
  again	
  using	
  another	
  bungee	
  system.	
  To	
  conclude,	
  he	
  has	
  to	
  put	
  the	
  pump,	
  
the	
  pump	
  stand	
  and	
  the	
  hose	
  in	
  and	
  around	
  the	
  crate	
  respectively	
  and	
  he	
  is	
  ready	
  to	
  ride	
  his	
  bike	
  to	
  a	
  different	
  
location.	
  	
  
MECHANICAL	
  ENGINEERING	
  DESIGN	
  PROJECTS	
  
FINAL	
  STATUS	
  REPORT	
  
	
  
	
  
8	
  |	
  P a g e 	
  
	
  	
  
TESTING/PROTOTYPING	
  RESULTS	
  
Setup and Methods
Numerous	
  rounds	
  of	
  testing	
  were	
  conducted	
  both	
  to	
  test	
  component	
  integration	
  and	
  system	
  performance.	
  Pump	
  
testing	
  was	
  conducted	
  by	
  pedaling	
  the	
  bike	
  and	
  measuring	
  the	
  flow	
  rate	
  of	
  the	
  water	
  as	
  well	
  as	
  the	
  pressure	
  head	
  
generated.	
  Testing	
  was	
  done	
  at	
  a	
  gentle	
  power	
  input	
  to	
  simulate	
  the	
  ability	
  of	
  someone	
  pedaling	
  for	
  an	
  extended	
  
period.	
  We	
  tried	
  testing	
  with	
  two	
  different	
  pressure	
  gauges,	
  neither	
  of	
  which	
  provided	
  any	
  useful	
  measure	
  of	
  
pressure	
  head	
  within	
  the	
  system	
  because	
  of	
  constant	
  fluctuations.	
  As	
  such,	
  we	
  resorted	
  to	
  calculating	
  the	
  pressure	
  
head	
  based	
  on	
  pumping	
  to	
  different	
  vertical	
  heights.	
  This	
  is	
  not	
  truly	
  a	
  measure	
  of	
  the	
  pressure	
  built	
  up	
  in	
  the	
  
pump	
  as	
  it	
  doesn’t	
  account	
  for	
  frictional	
  losses	
  in	
  the	
  tubing,	
  but	
  it	
  provides	
  a	
  good	
  lower	
  bound	
  of	
  pump	
  
capabilities.	
  	
  
Testing	
  was	
  performed	
  in	
  Skirkanich,	
  with	
  the	
  bike	
  on	
  the	
  ground	
  floor	
  and	
  someone	
  on	
  a	
  different	
  floor	
  
measuring	
  the	
  flow	
  rate.	
  We	
  also	
  tested	
  outside	
  near	
  Penn	
  Park	
  to	
  simulate	
  what	
  it	
  would	
  be	
  like	
  to	
  actually	
  use	
  the	
  
bike	
  outdoors	
  up	
  a	
  more	
  sloping	
  hill.	
  We	
  set	
  up	
  the	
  bike	
  with	
  a	
  bucket	
  of	
  water	
  at	
  the	
  bottom	
  of	
  the	
  hill	
  and	
  again	
  
had	
  someone	
  at	
  the	
  top	
  measuring	
  flow	
  rate.	
  The	
  height	
  of	
  the	
  hill	
  was	
  about	
  15	
  feet	
  and	
  at	
  a	
  leisurely	
  pace	
  we	
  
achieved	
  a	
  flow	
  rate	
  of	
  about	
  4	
  GPM.	
  	
  
We	
  also	
  tested	
  the	
  electrical	
  components	
  of	
  our	
  product.	
  Current	
  and	
  voltage	
  output	
  from	
  the	
  generator	
  were	
  
tested	
  with	
  a	
  digital	
  multimeter	
  while	
  one	
  person	
  pedaled.	
  The	
  generator	
  was	
  also	
  tested	
  by	
  charging	
  a	
  cell	
  phone,	
  
both	
  while	
  stationary	
  and	
  riding.	
  Cell	
  phone	
  charge	
  time	
  was	
  measured	
  to	
  give	
  an	
  indication	
  of	
  generator	
  
performance.	
  
The	
  aspect	
  of	
  testing	
  that	
  we	
  struggled	
  the	
  most	
  with	
  was	
  that	
  we	
  couldn’t	
  measure	
  power	
  input.	
  There	
  was	
  no	
  
way	
  for	
  us	
  to	
  practically	
  measure	
  power	
  output	
  of	
  the	
  person	
  pedaling,	
  so	
  we	
  had	
  no	
  way	
  to	
  validate	
  our	
  model.	
  
The	
  best	
  we	
  could	
  do	
  were	
  smart	
  estimates.	
  However,	
  because	
  the	
  goal	
  of	
  our	
  project	
  was	
  to	
  pump	
  water	
  and	
  
generate	
  electricity,	
  most	
  of	
  our	
  testing	
  focused	
  on	
  simply	
  getting	
  the	
  system	
  to	
  work.	
  
Prototyping effect on design
Doing	
  a	
  lot	
  of	
  testing	
  early	
  on	
  was	
  key	
  in	
  ensuring	
  system	
  functionality.	
  Our	
  initial	
  tests	
  were	
  promising	
  (we	
  were	
  
able	
  to	
  pump	
  water	
  via	
  pedaling),	
  but	
  were	
  not	
  ideal.	
  As	
  of	
  the	
  submission	
  of	
  the	
  midterm	
  report,	
  our	
  design	
  made	
  
use	
  of	
  an	
  extra	
  gear	
  engaged	
  with	
  the	
  main	
  bike	
  chain.	
  This	
  required	
  a	
  lot	
  of	
  tension	
  to	
  be	
  added	
  to	
  the	
  derailleur	
  
(40-­‐60	
  lbs.)	
  which	
  was	
  more	
  than	
  was	
  practical	
  via	
  any	
  additional	
  tensioning	
  system.	
  All	
  of	
  the	
  designs	
  we	
  tested	
  
to	
  add	
  tension	
  to	
  the	
  chain	
  were	
  bulky	
  and	
  awkward.	
  We	
  also	
  noticed	
  after	
  testing	
  our	
  system	
  several	
  times	
  that	
  
applying	
  such	
  great	
  tension	
  to	
  our	
  derailleur	
  was	
  permanently	
  deforming	
  it,	
  and	
  we	
  nearly	
  broke	
  it.	
  Doing	
  a	
  lot	
  of	
  
testing	
  and	
  playing	
  around	
  with	
  different	
  ideas	
  for	
  power	
  transmission	
  led	
  us	
  to	
  the	
  double	
  chain	
  system.	
  	
  
At	
  some	
  point	
  in	
  all	
  of	
  our	
  design	
  iterations,	
  we	
  had	
  been	
  contemplating	
  the	
  double	
  chain	
  system,	
  but	
  had	
  
discounted	
  it.	
  We	
  were	
  doubtful	
  because	
  the	
  extra	
  chain	
  would	
  absorb	
  one	
  of	
  the	
  gears	
  rendering	
  it	
  unusable,	
  and	
  
we	
  were	
  worried	
  about	
  space	
  constraints.	
  We	
  were	
  also	
  concerned	
  that	
  a	
  double	
  chain	
  system	
  would	
  require	
  the	
  
user	
  to	
  remove	
  the	
  chain	
  with	
  every	
  setup	
  and	
  breakdown	
  of	
  the	
  pump.	
  Examining	
  the	
  bike,	
  we	
  realized	
  that	
  the	
  
double	
  chain	
  could	
  be	
  permanently	
  engaged	
  with	
  the	
  back	
  gear	
  to	
  prevent	
  this	
  issue.	
  Prototyping	
  confirmed	
  that	
  
MECHANICAL	
  ENGINEERING	
  DESIGN	
  PROJECTS	
  
FINAL	
  STATUS	
  REPORT	
  
	
  
	
  
9	
  |	
  P a g e 	
  
	
  	
  
this	
  designed	
  functioned	
  well	
  given	
  the	
  space	
  constraints	
  and	
  that	
  the	
  extra	
  chain	
  could	
  remain	
  on	
  the	
  back	
  gear	
  
without	
  problems.	
  	
  
Leaking	
  was	
  also	
  an	
  important	
  factor	
  in	
  our	
  testing,	
  and	
  we	
  experimented	
  with	
  thread	
  tape	
  and	
  sealant	
  as	
  well	
  as	
  
different	
  types	
  of	
  hose	
  connectors	
  to	
  see	
  which	
  ones	
  worked	
  the	
  best.	
  
Results of Testing
Our	
  final	
  round	
  of	
  testing	
  gave	
  us	
  the	
  following	
  results	
  for	
  our	
  pump:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
From	
  our	
  initial	
  generator	
  testing,	
  it	
  was	
  clear	
  that	
  we	
  could	
  easily	
  output	
  over	
  12	
  Volts.	
  We	
  even	
  found	
  that	
  we	
  
could	
  generate	
  voltages	
  larger	
  than	
  12	
  Volts	
  while	
  pedaling	
  at	
  an	
  easy	
  pace.	
  After	
  our	
  circuit	
  was	
  complete,	
  we	
  
tested	
  it	
  by	
  charging	
  a	
  cell	
  phone.	
  Our	
  generator	
  was	
  able	
  to	
  charge	
  a	
  cell	
  phone	
  from	
  0%	
  battery	
  to	
  20%	
  in	
  20	
  
minutes,	
  similar	
  to	
  charging	
  via	
  wall	
  outlet.	
  Additional	
  applications	
  such	
  as	
  a	
  bike	
  light	
  were	
  also	
  hooked	
  up	
  the	
  
USB	
  port	
  and	
  charged	
  easily.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Height	
  
(meters)	
  
Flow	
  Rate	
  
(GPM)	
  
4.70	
   6	
  
9.25	
   4	
  
13.25	
   2	
  
MECHANICAL	
  ENGINEERING	
  DESIGN	
  PROJECTS	
  
FINAL	
  STATUS	
  REPORT	
  
	
  
	
  
10	
  |	
  P a g e 	
  
	
  
PROPOSED	
  IMPROVEMENTS/LESSONS	
  LEARNED	
  
Along	
  the	
  process	
  of	
  designing	
  and	
  manufacturing	
  our	
  project	
  we	
  faced	
  different	
  problems	
  ranging	
  from	
  the	
  lack	
  of	
  
access	
  to	
  some	
  resources	
  (as	
  welding)	
  to	
  the	
  strict	
  constraints	
  in	
  terms	
  of	
  cost	
  and	
  materials.	
  Because	
  simplicity,	
  
reliability,	
  portability,	
  low	
  cost	
  and	
  manufacturability	
  in	
  developing	
  countries	
  were	
  our	
  main	
  goals,	
  we	
  struggled	
  to	
  
find	
  materials	
  and	
  components	
  that	
  met	
  these	
  requirements	
  while	
  still	
  being	
  useful	
  in	
  our	
  design.	
  One	
  of	
  the	
  
biggest	
  lessons	
  learnt	
  during	
  this	
  process	
  is	
  how	
  to	
  design	
  and	
  manufacture	
  what	
  we	
  had	
  in	
  our	
  minds	
  while	
  being	
  
subject	
  to	
  the	
  constraints	
  mentioned.	
  We	
  realized	
  that	
  the	
  easier	
  design	
  is	
  usually	
  the	
  better	
  one.	
  	
  
One	
  major	
  breakthrough	
  that	
  we	
  had	
  is	
  that	
  using	
  repurposed	
  parts	
  from	
  old	
  bicycles	
  was	
  an	
  optimal	
  solution	
  
balancing	
  practicality	
  and	
  our	
  initial	
  goals	
  of	
  using	
  all	
  recycled	
  material.	
  Bike	
  parts	
  are	
  cheap	
  and	
  easy	
  to	
  find	
  in	
  
developing	
  countries.	
  	
  They	
  are	
  universal	
  and	
  easy	
  to	
  understand	
  and	
  fix,	
  which	
  we	
  considered	
  really	
  important	
  to	
  
implement	
  our	
  system.	
  Besides	
  this,	
  using	
  bike	
  parts	
  that	
  are	
  already	
  manufactured	
  drastically	
  reduces	
  the	
  
complexity,	
  number	
  of	
  tools,	
  and	
  time	
  required	
  to	
  construct	
  the	
  system.	
  This	
  way,	
  the	
  whole	
  system	
  can	
  be	
  made	
  
by	
  a	
  welder	
  by	
  just	
  using	
  and	
  old	
  bike	
  (from	
  which	
  he	
  would	
  take	
  the	
  bottom	
  bracket,	
  the	
  chain,	
  the	
  rear	
  gear	
  hub,	
  
the	
  cassette	
  and	
  the	
  seat	
  stays).	
  The	
  frame	
  of	
  an	
  old	
  bike	
  or	
  scrap	
  metal	
  could	
  be	
  used	
  to	
  build	
  the	
  stand	
  instead	
  of	
  
having	
  to	
  buy	
  one.	
  
If	
  we	
  had	
  to	
  do	
  this	
  project	
  again,	
  we	
  would	
  make	
  several	
  changes.	
  Due	
  to	
  the	
  lack	
  of	
  access	
  to	
  welding	
  facilities,	
  we	
  
decided	
  to	
  buy	
  a	
  bike	
  stand.	
  Although	
  this	
  stand	
  works	
  well,	
  it	
  is	
  heavy	
  and	
  expensive.	
  The	
  stand	
  alone	
  was	
  as	
  
expensive	
  as	
  the	
  water	
  pump	
  and	
  the	
  generator	
  together,	
  and	
  it	
  represents	
  the	
  majority	
  of	
  the	
  extra	
  weight	
  added	
  
to	
  our	
  design.	
  Since	
  the	
  design	
  of	
  the	
  stand	
  is	
  really	
  simple,	
  we	
  are	
  confident	
  that	
  it	
  could	
  be	
  made	
  from	
  the	
  frame	
  
of	
  a	
  scrap	
  bike.	
  That	
  would	
  make	
  the	
  design	
  lighter	
  and	
  cheaper.	
  
Another	
  feature	
  that	
  we	
  would	
  like	
  to	
  change	
  for	
  a	
  second	
  iteration	
  is	
  the	
  integration	
  of	
  the	
  output	
  shaft.	
  In	
  our	
  
current	
  design,	
  the	
  shaft	
  is	
  welded	
  into	
  the	
  frame	
  in	
  a	
  fixed	
  position.	
  This	
  system	
  works	
  efficiently,	
  but	
  has	
  some	
  
drawbacks,	
  mainly	
  the	
  initial	
  setup	
  and	
  adjustment	
  of	
  the	
  second	
  chain.	
  Because	
  the	
  shaft	
  is	
  fixed	
  in	
  place	
  in	
  our	
  
current	
  design,	
  the	
  user	
  has	
  to	
  modify	
  the	
  length	
  of	
  the	
  second	
  chain	
  to	
  accommodate	
  whatever	
  extra	
  gear	
  he	
  uses.	
  
In	
  some	
  instances,	
  he	
  may	
  not	
  be	
  able	
  to	
  use	
  the	
  gear	
  size	
  he	
  wishes	
  because	
  chains	
  come	
  with	
  a	
  discrete	
  number	
  
of	
  links,	
  and	
  as	
  such	
  only	
  certain	
  size	
  gears	
  will	
  work.	
  Further,	
  although	
  this	
  is	
  a	
  setup	
  need	
  only	
  be	
  done	
  once	
  
(since	
  after	
  the	
  first	
  setup	
  the	
  chain	
  is	
  going	
  to	
  be	
  permanently	
  engaged),	
  this	
  process	
  could	
  be	
  made	
  easier.	
  We	
  
thought	
  that	
  having	
  the	
  output	
  shaft	
  mounted	
  in	
  a	
  rail	
  system	
  along	
  the	
  frame	
  of	
  the	
  stand	
  would	
  make	
  the	
  system	
  
more	
  user-­‐friendly.	
  It	
  would	
  not	
  only	
  make	
  this	
  initial	
  setup	
  easier	
  but	
  it	
  would	
  allow	
  the	
  user	
  to	
  change	
  the	
  gear	
  
on	
  the	
  shaft	
  fast	
  and	
  easily.	
  Although	
  the	
  current	
  gear	
  ratio	
  is	
  optimal	
  for	
  pumping	
  water,	
  the	
  user	
  may	
  be	
  
interested	
  in	
  a	
  having	
  broader	
  range	
  in	
  order	
  to	
  power	
  other	
  potential	
  functions.	
  
Other	
  improvements	
  that	
  could	
  be	
  proposed	
  for	
  a	
  second	
  iteration	
  of	
  this	
  project	
  are	
  the	
  implementation	
  of	
  a	
  
compact	
  water	
  filtration	
  system	
  or	
  a	
  hose	
  system	
  that	
  could	
  be	
  used	
  for	
  irrigation.	
  Last	
  but	
  not	
  least,	
  another	
  
improvement	
  that	
  would	
  like	
  to	
  propose	
  is	
  to	
  make	
  the	
  whole	
  electric	
  system	
  waterproof.	
  Although	
  we	
  know	
  that	
  
our	
  generator	
  is	
  water	
  resistant	
  (it	
  is	
  meant	
  to	
  be	
  used	
  for	
  outdoor	
  purposes	
  such	
  as	
  wind	
  turbines),	
  we	
  could	
  not	
  
verify	
  that	
  capability.	
  Further,	
  the	
  USB	
  port	
  and	
  the	
  connections	
  for	
  the	
  battery	
  are	
  exposed.	
  Although	
  the	
  whole	
  
electric	
  system	
  can	
  me	
  removed	
  easily	
  to	
  prevent	
  it	
  from	
  corrosion	
  in	
  the	
  case	
  of	
  rain,	
  we	
  think	
  that	
  is	
  necessary	
  to	
  
make	
  it	
  completely	
  waterproof	
  because	
  the	
  device	
  is	
  mainly	
  meant	
  for	
  outdoor	
  use.	
  
MECHANICAL	
  ENGINEERING	
  DESIGN	
  PROJECTS	
  
FINAL	
  STATUS	
  REPORT	
  
	
  
	
  
11	
  |	
  P a g e 	
  
	
  
In	
  terms	
  of	
  the	
  lessons	
  learnt,	
  apart	
  from	
  the	
  constrained	
  design	
  mentioned	
  before,	
  we	
  also	
  learnt	
  the	
  importance	
  
of	
  system	
  integration.	
  The	
  fact	
  of	
  having	
  different	
  subsystems	
  working	
  smoothly	
  and	
  perfectly	
  does	
  not	
  imply	
  that	
  
they	
  are	
  going	
  to	
  work	
  once	
  they	
  are	
  put	
  together.	
  That	
  was	
  one	
  of	
  the	
  main	
  challenges	
  we	
  faced	
  during	
  the	
  design	
  
of	
  the	
  double	
  chain	
  system.	
  Due	
  to	
  the	
  presence	
  of	
  the	
  derailleur	
  and	
  the	
  tight	
  space	
  between	
  the	
  bike	
  and	
  the	
  
stand	
  we	
  had	
  several	
  issues	
  with	
  parts	
  interfering	
  with	
  each	
  other,	
  which	
  made	
  us	
  make	
  several	
  redesigns	
  until	
  we	
  
found	
  the	
  final	
  solution.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
MECHANICAL	
  ENGINEERING	
  DESIGN	
  PROJECTS	
  
FINAL	
  STATUS	
  REPORT	
  
	
  
	
  
12	
  |	
  P a g e 	
  
	
  
REQUIREMENTS	
  COMPLIANCE	
  
Initial Goals:
Flow Rate 13 GPM
Pump Head 0.5 miles (horizontal)
Cost $20 - $100
Materials Entirely recycled or
scrap
Our	
  initial	
  goals	
  were	
  set	
  before	
  we	
  fully	
  understood	
  the	
  needs	
  of	
  people	
  in	
  developing	
  countries	
  and	
  the	
  limits	
  of	
  
human	
  abilities.	
  Because	
  of	
  this,	
  they	
  are	
  a	
  little	
  unrealistic.	
  They’ve	
  since	
  been	
  scaled	
  back	
  while	
  keeping	
  in	
  mind	
  
customer’s	
  needs.	
  Furthermore,	
  we	
  added	
  in	
  several	
  new	
  quantitative	
  and	
  qualitative	
  metrics.	
  
Revised Goals:
Flow Rate 3 GPM
Pump Head 15 m
Generator Charge 12 Volt Battery
Charge cell phone or small appliances via
USB
Cost $20 - $100
Materials Incorporate recycled materials where
possible. Use as many recycled bike parts as
possible.
Additional Goals Portability, usability, ability to use any bike,
ease of set up
As	
  our	
  design	
  went	
  through	
  several	
  iterations,	
  our	
  priorities	
  and	
  design	
  focus	
  changed.	
  We	
  abandoned	
  the	
  goal	
  of	
  
making	
  the	
  project	
  from	
  completely	
  recycled	
  materials	
  for	
  several	
  reasons.	
  Requiring	
  that	
  the	
  entire	
  project	
  be	
  
made	
  from	
  recycled	
  materials	
  came	
  to	
  be	
  viewed	
  as	
  an	
  impractical	
  and	
  unnecessary	
  constraint.	
  Instead,	
  we	
  
attempted	
  to	
  incorporate	
  recycled	
  materials,	
  especially	
  any	
  type	
  of	
  bike	
  part,	
  when	
  practical	
  and	
  feasible.	
  The	
  team	
  
decided	
  that	
  making	
  certain	
  components,	
  the	
  pump	
  for	
  instance,	
  out	
  of	
  recycled	
  material,	
  was	
  an	
  unnecessary	
  step	
  
as	
  pumps	
  are	
  manufactured	
  to	
  specific	
  tolerances	
  which	
  is	
  especially	
  important	
  given	
  concerns	
  with	
  sealing,	
  and	
  
manual	
  pumps	
  are	
  inexpensive	
  anyway.	
  Our	
  final	
  design	
  is	
  a	
  good	
  compromise	
  between	
  recycling	
  components,	
  
functionality,	
  and	
  cost.	
  	
  
MECHANICAL	
  ENGINEERING	
  DESIGN	
  PROJECTS	
  
FINAL	
  STATUS	
  REPORT	
  
	
  
	
  
13	
  |	
  P a g e 	
  
	
  
We	
  scaled	
  back	
  our	
  flowrate	
  goal	
  as	
  our	
  initial	
  estimate	
  of	
  13	
  GPM	
  was	
  probably	
  more	
  than	
  necessary	
  for	
  an	
  
average	
  village	
  and	
  not	
  practically	
  possible.	
  	
  Instead	
  of	
  focusing	
  on	
  horizontal	
  distances,	
  we	
  instead	
  used	
  vertical	
  
distances	
  as	
  our	
  metric	
  for	
  pressure	
  due	
  to	
  the	
  impracticality	
  of	
  testing	
  over	
  long	
  distances.	
  We	
  were	
  successfully	
  
able	
  to	
  pump	
  2	
  GPM	
  up	
  to	
  13.5	
  m.	
  Our	
  model	
  indicates	
  that	
  with	
  a	
  ¾”	
  diameter	
  pipe	
  about	
  15-­‐20%	
  of	
  pump	
  head	
  is	
  
lost	
  to	
  frictional	
  losses	
  (depending	
  of	
  course	
  on	
  flowrate).	
  Conservatively	
  estimating	
  that	
  15%	
  of	
  our	
  pump	
  head	
  
was	
  lost	
  to	
  friction,	
  13.5	
  m	
  of	
  vertical	
  head	
  would	
  give	
  a	
  total	
  pump	
  head	
  of	
  15.8	
  m.	
  	
  As	
  such,	
  we	
  accomplished	
  just	
  
under	
  our	
  revised	
  goal	
  of	
  3	
  GPM	
  and	
  a	
  little	
  bit	
  above	
  our	
  revised	
  goal	
  of	
  15	
  m	
  of	
  pump	
  head.	
  It	
  is	
  likely	
  that	
  we	
  
could	
  have	
  hit	
  the	
  3	
  GPM	
  at	
  15	
  m	
  metric	
  had	
  we	
  tested	
  our	
  system	
  with	
  a	
  greater	
  power	
  input.	
  
	
  Many	
  qualitative	
  goals	
  were	
  added	
  into	
  the	
  project	
  between	
  the	
  beginning	
  of	
  the	
  year	
  and	
  now	
  including:	
  
portability,	
  usability,	
  ability	
  to	
  use	
  any	
  bike,	
  and	
  ease	
  of	
  set	
  up.	
  We	
  feel	
  that	
  we	
  have	
  met	
  or	
  exceeded	
  all	
  of	
  these	
  
qualitative	
  goals	
  as	
  discussed	
  in	
  detail	
  in	
  the	
  previous	
  sections.	
  In	
  terms	
  of	
  cost,	
  should	
  our	
  product	
  be	
  
manufactured	
  at	
  scale	
  and	
  with	
  the	
  stand	
  made	
  from	
  scrap	
  metal	
  instead	
  of	
  purchased,	
  it	
  could	
  certainly	
  be	
  
manufactured	
  for	
  around	
  $100.	
  The	
  bulk	
  of	
  the	
  cost	
  is	
  due	
  to	
  the	
  pump	
  ($66)	
  and	
  the	
  generator	
  ($40).	
  The	
  addition	
  
of	
  the	
  generator,	
  which	
  was	
  not	
  part	
  of	
  the	
  design	
  with	
  the	
  initial	
  $20-­‐100	
  cost	
  estimate,	
  adds	
  a	
  lot	
  of	
  value	
  to	
  our	
  
product	
  even	
  though	
  it	
  is	
  a	
  major	
  cost	
  driver.	
  	
  
MECHANICAL	
  ENGINEERING	
  DESIGN	
  PROJECTS	
  
FINAL	
  STATUS	
  REPORT	
  
	
  
	
  
14	
  |	
  P a g e 	
  
	
  
COST	
  
In	
  terms	
  of	
  literal	
  expenses	
  throughout	
  the	
  entire	
  year,	
  we	
  spent	
  $814.84,	
  which	
  is	
  $81.16	
  under	
  our	
  allotted	
  $900	
  
budget.	
  However	
  in	
  terms	
  of	
  what	
  we	
  spent	
  that	
  was	
  actually	
  used	
  in	
  our	
  final	
  project,	
  it	
  comes	
  out	
  to	
  be	
  
significantly	
  cheaper.	
  The	
  actual	
  cost	
  of	
  everything	
  that	
  was	
  used	
  in	
  our	
  final	
  product	
  was	
  $448.	
  The	
  tubing	
  was	
  a	
  
large	
  part	
  of	
  this	
  cost	
  at	
  $180.	
  The	
  generator,	
  pump,	
  and	
  stand	
  amounted	
  to	
  $177.	
  The	
  extra	
  $41	
  came	
  from	
  
miscellaneous	
  expenses	
  like	
  screws,	
  bungee	
  cords,	
  nuts,	
  a	
  check	
  valve,	
  and	
  hose	
  connectors.	
  We	
  also	
  had	
  to	
  buy	
  a	
  
bike,	
  however	
  we	
  bought	
  a	
  used	
  one	
  at	
  Neighborhood	
  Bike	
  Works	
  for	
  only	
  $50.	
  	
  
	
   The	
  discrepancy	
  between	
  the	
  product	
  cost	
  and	
  the	
  total	
  cost	
  of	
  $914.84	
  comes	
  from	
  expenses	
  not	
  directly	
  
toward	
  the	
  final	
  product,	
  such	
  as	
  costs	
  associated	
  with	
  prototyping,	
  development,	
  and	
  testing	
  equipment.	
  The	
  costs	
  
associated	
  with	
  prototyping	
  and	
  development	
  were	
  for	
  items	
  that	
  were	
  ordered	
  but	
  ended	
  up	
  not	
  needing	
  due	
  to	
  
design	
  changes.	
  Our	
  first	
  pump,	
  which	
  was	
  made	
  of	
  cast	
  iron,	
  rusted	
  and	
  was	
  too	
  heavy,	
  so	
  we	
  ordered	
  a	
  second,	
  
plastic	
  pump	
  which	
  was	
  used	
  in	
  our	
  final	
  design.	
  We	
  also	
  ordered	
  two	
  generators	
  because	
  we	
  were	
  unsure	
  which	
  
model	
  would	
  work	
  best	
  and	
  wanted	
  to	
  avoid	
  delays	
  due	
  to	
  ordering	
  a	
  second	
  generator.	
  We	
  only	
  ended	
  up	
  using	
  
one,	
  however.	
  Miscellaneous	
  items	
  ordered	
  from	
  McMaster	
  in	
  the	
  beginning	
  of	
  the	
  year	
  when	
  we	
  wanted	
  to	
  make	
  
the	
  pump	
  ourselves	
  amounted	
  to	
  another	
  $150.	
  About	
  $40	
  was	
  spent	
  on	
  accessories	
  for	
  the	
  bike	
  such	
  as	
  a	
  12	
  Volt	
  
battery	
  and	
  a	
  bike	
  light.	
  Both	
  were	
  ordered	
  to	
  demonstrate	
  what	
  the	
  bike	
  was	
  capable	
  of	
  accomplishing.	
  
	
   The	
  remainder	
  of	
  the	
  costs	
  resulted	
  from	
  testing.	
  A	
  check	
  valve,	
  a	
  gate	
  valve,	
  a	
  pressure	
  gauge,	
  and	
  smaller	
  
amounts	
  of	
  tubing	
  were	
  purchased	
  for	
  testing.	
  Things	
  like	
  thread	
  sealant,	
  latex	
  tape,	
  various	
  types	
  of	
  hose	
  
connectors,	
  and	
  thread	
  connectors	
  were	
  also	
  used	
  for	
  testing.	
  We	
  really	
  used	
  these	
  items	
  primarily	
  in	
  testing,	
  so	
  
they	
  were	
  a	
  necessary	
  cost,	
  but	
  didn’t	
  actually	
  go	
  into	
  the	
  final	
  product.	
  This	
  combined	
  with	
  smaller	
  expenses	
  like	
  
tape,	
  spray	
  paint,	
  and	
  glue	
  made	
  up	
  for	
  the	
  rest	
  of	
  the	
  expenses.
MECHANICAL	
  ENGINEERING	
  DESIGN	
  PROJECTS	
  
FINAL	
  STATUS	
  REPORT	
  
	
  
	
  
15	
  |	
  P a g e 	
  
	
  
Summary	
  of	
  Expenses	
  
Items	
  Ordered	
  Through	
  the	
  Business	
  Office	
   Cost	
  
RAD	
  Cycle	
  Products	
  Indoor	
  Portable	
  Work	
  Out	
  Bicycle	
  Trainer	
   $75.18	
  	
  
Cast	
  Iron	
  Rotary	
  Drum	
  Pump,	
  10	
  GPM	
   $43.95	
  	
  
Plastic	
  Rotary	
  Polypropylene	
  Drum	
  Pump	
  For	
  Chemicals	
  #	
  4649-­‐99	
   $66.10	
  	
  
Small	
  Alternator,	
  Mini	
  Generator	
   $36.50	
  	
  
Small	
  	
  Alternator,	
  Mini	
  Generator	
  for	
  Wind	
  Turbine	
   $49.00	
  	
  
EPDM	
  O-­‐Ring	
  AS568A	
  Dash	
  Number	
  242,	
  packs	
  of	
  10	
   $6.29	
  	
  
Sheet	
  Gasket	
  Assortment	
  Includes	
  14	
  Sheets,	
  6"	
  X	
  6"	
   $24.26	
  	
  
High-­‐Strength	
  Adhesive/Sealant	
  Marine,	
  10.2-­‐Ounce	
  Cartridge,	
  Clear	
   $9.74	
  	
  
Zinc-­‐Plated	
  Steel	
  Bolts	
  with	
  Two	
  Hex	
  Nuts	
  and	
  Washers	
   $9.33	
  	
  
Machine	
  Screw	
  Hex	
  Nuts,	
  Zinc-­‐Plated	
  Steel	
   $1.21	
  	
  
3/4"	
  Air	
  and	
  Water	
  Hose,	
  Black	
  Hose	
   $17.70	
  	
  
Two	
  Male	
  Fittings	
  	
  for	
  3/4"	
  Air	
  and	
  Water	
  Hose,	
  Black	
  Hose	
   $16.24	
  	
  
Business	
  Office	
  Total	
   $355.50	
  	
  
	
   	
  
Reimbursements	
  
Home	
  Depot	
  	
   $46.00	
  	
  
Bike	
  and	
  Parts	
  	
   $60.00	
  	
  
Lowes	
  Mar	
  24	
  	
   $34.39	
  	
  
Home	
  Depot	
  Mar	
  31	
  	
   $9.66	
  	
  
Bike	
  Church	
  Mar	
  28	
  	
   $5.00	
  	
  
Radioshack	
  Mar	
  29	
  	
   $25.89	
  	
  
Lowes	
  Mar	
  31	
  	
   $198.22	
  	
  
Dr.	
  Jackson	
  Hardware	
  Store,	
  Swing	
  Check	
  Valve	
   $11.76	
  	
  
Monarch	
  Hardware	
  	
   $12.13	
  	
  
CVS	
  Pharmacy	
  	
   $4.85	
  	
  
CVS	
  Pharmacy	
  	
   $4.85	
  	
  
Radioshack	
  Apr	
  6	
  	
   $4.53	
  	
  
Radioshack	
  Apr	
  9	
  	
   $5.92	
  	
  
Hardware	
  Store	
  Apr	
  10	
  	
   $4.96	
  	
  
Hardware	
  Store	
  Apr	
  11	
   $6.47	
  	
  
Lowes	
  April	
  8	
  (Alyssa)	
   $26.04	
  	
  
Home	
  Depot	
  Apr	
  8	
  (Alyssa)	
   $2.67	
  	
  
Reimbursement	
  Total	
   $463.34	
  	
  
	
   	
  
Sum	
  of	
  Expenses	
   $818.84	
  	
  
Total	
  Budget	
   $900.00	
  
Difference	
   -­‐81.16	
  
	
  

Weitere ähnliche Inhalte

Was ist angesagt?

Mechanical Engineering project
Mechanical Engineering projectMechanical Engineering project
Mechanical Engineering project
Manpreet Singh
 
CEO -Presentation on Engineers day at KIIT
CEO -Presentation on Engineers day at KIITCEO -Presentation on Engineers day at KIIT
CEO -Presentation on Engineers day at KIIT
Anil Kumar Bohra
 

Was ist angesagt? (15)

Design engineering report
Design engineering reportDesign engineering report
Design engineering report
 
Design report
Design report Design report
Design report
 
Report (color 1,6,7,8,10)
Report (color 1,6,7,8,10)Report (color 1,6,7,8,10)
Report (color 1,6,7,8,10)
 
Design engineering 1-b report
Design engineering 1-b reportDesign engineering 1-b report
Design engineering 1-b report
 
DESIGN ENGINEERING - I on GAS - LIQUID
DESIGN ENGINEERING - I on GAS - LIQUIDDESIGN ENGINEERING - I on GAS - LIQUID
DESIGN ENGINEERING - I on GAS - LIQUID
 
Pedal Operated Bicycle Drain Cleaner
Pedal Operated Bicycle Drain CleanerPedal Operated Bicycle Drain Cleaner
Pedal Operated Bicycle Drain Cleaner
 
Mechanical Engineering project
Mechanical Engineering projectMechanical Engineering project
Mechanical Engineering project
 
Mobile chargers
Mobile chargersMobile chargers
Mobile chargers
 
IRJET - Borewell Rescue Equipment
IRJET -  	  Borewell Rescue EquipmentIRJET -  	  Borewell Rescue Equipment
IRJET - Borewell Rescue Equipment
 
Bandar lestari 3
Bandar lestari 3Bandar lestari 3
Bandar lestari 3
 
CEO -Presentation on Engineers day at KIIT
CEO -Presentation on Engineers day at KIITCEO -Presentation on Engineers day at KIIT
CEO -Presentation on Engineers day at KIIT
 
Air &wave
Air &waveAir &wave
Air &wave
 
Fy project black book
Fy project black bookFy project black book
Fy project black book
 
IRJET- Automated Solar Panel Cleaning System using IoT
IRJET- Automated Solar Panel Cleaning System using IoTIRJET- Automated Solar Panel Cleaning System using IoT
IRJET- Automated Solar Panel Cleaning System using IoT
 
Oilnesia forum geothermal business during covid19
Oilnesia forum geothermal business during covid19Oilnesia forum geothermal business during covid19
Oilnesia forum geothermal business during covid19
 

Andere mochten auch

H64CSA_1B_023799_Osama
H64CSA_1B_023799_OsamaH64CSA_1B_023799_Osama
H64CSA_1B_023799_Osama
Osama Azim
 
Dv project 1 b slide
Dv   project 1 b slideDv   project 1 b slide
Dv project 1 b slide
Anthony Chew
 

Andere mochten auch (18)

REPORT ON SOLAR TRACKING SYSTEM
REPORT ON SOLAR TRACKING SYSTEMREPORT ON SOLAR TRACKING SYSTEM
REPORT ON SOLAR TRACKING SYSTEM
 
De 1 (b)
De 1 (b)De 1 (b)
De 1 (b)
 
Design engineering 1 b
Design engineering 1 bDesign engineering 1 b
Design engineering 1 b
 
Report on design engineering
Report on design engineeringReport on design engineering
Report on design engineering
 
Scientix 6th SPNE Brussels 8 May 2015: KiiCS
Scientix 6th SPNE Brussels 8 May 2015: KiiCSScientix 6th SPNE Brussels 8 May 2015: KiiCS
Scientix 6th SPNE Brussels 8 May 2015: KiiCS
 
MehulF
MehulFMehulF
MehulF
 
Whrs final project
Whrs final projectWhrs final project
Whrs final project
 
H64CSA_1B_023799_Osama
H64CSA_1B_023799_OsamaH64CSA_1B_023799_Osama
H64CSA_1B_023799_Osama
 
Shopping Guide for Refrigerator
Shopping Guide for RefrigeratorShopping Guide for Refrigerator
Shopping Guide for Refrigerator
 
DE1(a) my report
DE1(a) my reportDE1(a) my report
DE1(a) my report
 
DE1b Report format
DE1b Report format DE1b Report format
DE1b Report format
 
Design engineering
Design engineeringDesign engineering
Design engineering
 
Introduction to section 1b
Introduction to section 1bIntroduction to section 1b
Introduction to section 1b
 
Dv project 1 b slide
Dv   project 1 b slideDv   project 1 b slide
Dv project 1 b slide
 
Lpg refrigerator.
Lpg refrigerator.Lpg refrigerator.
Lpg refrigerator.
 
Setting out of curve (Survey)
Setting out of curve (Survey)Setting out of curve (Survey)
Setting out of curve (Survey)
 
La Biotecnología - Felipe Rogers - 1° Medio B - Colegio Presidente Alessandri
La Biotecnología - Felipe Rogers - 1° Medio B - Colegio Presidente AlessandriLa Biotecnología - Felipe Rogers - 1° Medio B - Colegio Presidente Alessandri
La Biotecnología - Felipe Rogers - 1° Medio B - Colegio Presidente Alessandri
 
State of the Word 2011
State of the Word 2011State of the Word 2011
State of the Word 2011
 

Ähnlich wie Team04

Reverse Engineering Design
Reverse Engineering Design Reverse Engineering Design
Reverse Engineering Design
Alston Menezes
 
FYP. Automation Of Box Filling Machine Using PLC 2
FYP. Automation Of Box Filling Machine Using PLC 2FYP. Automation Of Box Filling Machine Using PLC 2
FYP. Automation Of Box Filling Machine Using PLC 2
HANAN BIN AHMED
 
GENERATION OF ELECTRICITY THROUGH SPEED BREAKER
GENERATION OF ELECTRICITY THROUGH SPEED BREAKERGENERATION OF ELECTRICITY THROUGH SPEED BREAKER
GENERATION OF ELECTRICITY THROUGH SPEED BREAKER
Samiullah Kakar
 
Sway Bassinet Descriptive Report
Sway Bassinet Descriptive ReportSway Bassinet Descriptive Report
Sway Bassinet Descriptive Report
Michelle Otutu
 

Ähnlich wie Team04 (20)

DESIGN AND FABRICATION OF FLYWHEEL DRIVEN BATTERY CHARGER
DESIGN AND FABRICATION OF FLYWHEEL DRIVEN BATTERY CHARGERDESIGN AND FABRICATION OF FLYWHEEL DRIVEN BATTERY CHARGER
DESIGN AND FABRICATION OF FLYWHEEL DRIVEN BATTERY CHARGER
 
DESIGN AND FABRICATION OF ROAD CLEANING AND SCRAP COLLECTING MACHINE
DESIGN AND FABRICATION OF ROAD CLEANING AND SCRAP COLLECTING MACHINEDESIGN AND FABRICATION OF ROAD CLEANING AND SCRAP COLLECTING MACHINE
DESIGN AND FABRICATION OF ROAD CLEANING AND SCRAP COLLECTING MACHINE
 
Pedal Powered Washing Machine
Pedal Powered Washing MachinePedal Powered Washing Machine
Pedal Powered Washing Machine
 
Reverse Engineering Design
Reverse Engineering Design Reverse Engineering Design
Reverse Engineering Design
 
PROJECT SEMINAR POHM
PROJECT SEMINAR POHMPROJECT SEMINAR POHM
PROJECT SEMINAR POHM
 
A synopysis report on pedal operated washing machine
A synopysis report on pedal operated washing machineA synopysis report on pedal operated washing machine
A synopysis report on pedal operated washing machine
 
the e- kit
the e- kitthe e- kit
the e- kit
 
Smart cycle proposal
Smart cycle proposalSmart cycle proposal
Smart cycle proposal
 
Design and Fabrication of a Portable, Remote Controlled, 360°rotating Robotic...
Design and Fabrication of a Portable, Remote Controlled, 360°rotating Robotic...Design and Fabrication of a Portable, Remote Controlled, 360°rotating Robotic...
Design and Fabrication of a Portable, Remote Controlled, 360°rotating Robotic...
 
FYP. Automation Of Box Filling Machine Using PLC 2
FYP. Automation Of Box Filling Machine Using PLC 2FYP. Automation Of Box Filling Machine Using PLC 2
FYP. Automation Of Box Filling Machine Using PLC 2
 
Project e-kit
Project e-kitProject e-kit
Project e-kit
 
Electrical bicycle using lead acid battery.
Electrical bicycle using lead acid battery.Electrical bicycle using lead acid battery.
Electrical bicycle using lead acid battery.
 
MULTIPURPOSE SOLAR SCREENING MACHINE WITH CONVEYOR
MULTIPURPOSE SOLAR SCREENING MACHINE WITH CONVEYORMULTIPURPOSE SOLAR SCREENING MACHINE WITH CONVEYOR
MULTIPURPOSE SOLAR SCREENING MACHINE WITH CONVEYOR
 
IRJET- Manufacturing of Human Powered Operated Washing Machine
IRJET- Manufacturing of Human Powered Operated Washing MachineIRJET- Manufacturing of Human Powered Operated Washing Machine
IRJET- Manufacturing of Human Powered Operated Washing Machine
 
: Power Generation by Footstep
: Power Generation by Footstep : Power Generation by Footstep
: Power Generation by Footstep
 
GENERATION OF ELECTRICITY THROUGH SPEED BREAKER
GENERATION OF ELECTRICITY THROUGH SPEED BREAKERGENERATION OF ELECTRICITY THROUGH SPEED BREAKER
GENERATION OF ELECTRICITY THROUGH SPEED BREAKER
 
Sway Bassinet Descriptive Report
Sway Bassinet Descriptive ReportSway Bassinet Descriptive Report
Sway Bassinet Descriptive Report
 
Solar based Pond Cleaning Machine
Solar based Pond Cleaning MachineSolar based Pond Cleaning Machine
Solar based Pond Cleaning Machine
 
IRJET- Experiment on Working Model of Self Balancing Vehicle
IRJET- Experiment on Working Model of Self Balancing VehicleIRJET- Experiment on Working Model of Self Balancing Vehicle
IRJET- Experiment on Working Model of Self Balancing Vehicle
 
Design & Analysis of foldable E-Bicycle
Design & Analysis of foldable E-BicycleDesign & Analysis of foldable E-Bicycle
Design & Analysis of foldable E-Bicycle
 

Team04

  • 1. MECHANICAL  ENGINEERING  DESIGN  PROJECTS   FINAL  STATUS  REPORT       1  |  P a g e                         SUBMITTED  BY   Senior  Design  Team  4   Alyssa  Eng,  Cesar  Gutierrez,  Annie  Mroz   May  6,  2013  
  • 2. MECHANICAL  ENGINEERING  DESIGN  PROJECTS   FINAL  STATUS  REPORT       2  |  P a g e       TABLE  OF  CONTENTS     PROJECT  OVERVIEW  ...............................................................................................................................................................  3   OVERALL  DESIGN  ....................................................................................................................................................................  3   TESTING/PROTOTYPING  RESULTS  ..........................................................................................................................................  3   PROPOSED  IMPROVEMENTS/LESSONS  LEARNED  ..................................................................................................................  3   REQUIREMENTS  COMPLIANCE  ...............................................................................................................................................  3   COST  .......................................................................................................................................................................................  4  
  • 3. MECHANICAL  ENGINEERING  DESIGN  PROJECTS   FINAL  STATUS  REPORT       3  |  P a g e       PROJECT  OVERVIEW   PROBLEM STATEMENT Lack  of  access  to  water  presents  significant  barriers  to  growth  and  opportunity  in  developing  countries.  People   who  live  in  rural  areas  often  have  to  spend  several  hours  each  day  collecting  water,  due  to  the  fact  that  their  water   source  is  very  far  from  where  they  live  and  they  are  limited  to  what  they  can  physically  carry.  These  hours  spent   collecting  water  take  away  time  from  work,  leisure,  and  study.  Current  solutions  to  the  problem  such  as  hand   pumps  or  boreholes  are  typically  expensive,  complex,  and  fragile.  Water  access  without  electric  power  or   expensive  water  infrastructure  could  be  an  optimal  solution  to  this  problem.   HIGH LEVEL CONCEPT To  address  these  issues,  our  project  simultaneously  solves  the  problem  of  lack  of  water  and  of  electrical   infrastructure  by  providing  both  the  ability  to  move  water  and  charge  small  devices.  This  is  accomplished  with  a   self-­‐contained  bike  system  in  which  the  user  provides  manual  power  to  both  applications  by  pedaling.  To  charge   devices,  the  user  pedals  and  the  back  wheel  of  the  bicycle  turns  a  roller  via  friction  contact.  This  roller  is  connected   to  a  generator  that  provides  electric  power  to  charge  a  battery  or  power  small  USB  devices.  To  move  water,  the   bike  transmits  pedal  power  to  an  external  gear  via  an  extra  bike  chain,  and  this  extra  gear  powers  a  pump.   REVISED PROJECT METRICS Flow Rate 3 GPM Pump Head 15 m Generator Charge 12 Volt Battery Charge cell phone or small appliances via USB Cost $20 - $100 Materials Incorporate recycled materials where possible. Use as many recycled bike parts as possible. Additional Goals Portability, usability, ability to use any bike, ease of set up NOVELTY After  much  research,  we  realized  that  bike-­‐water  projects  abound,  and  that  several  others  have  already  attempted   this.  However,  our  product  is  different  than  existing  bike-­‐water  projects  in  several  ways.  The  main  differentiation   between  our  project  and  others  is  that  the  bike  can  still  be  ridden  and  as  such,  the  entire  system  is  portable.  Any   bike  can  easily  be  dropped  into  our  system  without  any  significant  modifications  and  that  bike  can  be  as  easily   removed.  In  addition,  the  entire  product  is  inexpensive  and  made  primarily  from  recycled  bicycle  components.    
  • 4. MECHANICAL  ENGINEERING  DESIGN  PROJECTS   FINAL  STATUS  REPORT       4  |  P a g e       OVERALL  DESIGN    As  mentioned  before,  the  goal  we  pursued  with  our  project  is  solving  the  problem  of  lack  of  access  to  water  in   developing  countries,  as  well  as  providing  a  inexpensive  and  reliable  source  of  electrical  power  for  small  electronic   devices  such  as  cellphones  or  LED  lights.  The  ultimate  purpose  being  to  improve  the  quality  of  life  of  people   (specifically  kids)  in  developing  countries,  by  allowing  them  to  save  time  doing  chores  for  study  or  play.     To  accomplish  this,  we  designed  a  universal,  portable  power  providing  system  consisting  of  a  bike  stand  in  which   you  can  drop  any  multi-­‐gear  bike.  This  stand  can  easily  be  attached  to  any  bike,  and  the  bike  does  not  require  any   complex  modification.  The  only  modification  to  the  bike  consists  of  adding  a  second  chain  to  the  rear  gear.  This  is   required  to  implement  the  double  chain  system  which  powers  the  water  pump.  This  task  can  be  done  in  less  than   10  minutes  and  without  the  need  of  any  specialized  or  expensive  tools.   Once  the  stand  is  attached  to  the  bike,  the  bike  can  be  ridden  as  usual  (so  the  entire  system  is  portable)  but  at  the   same  time  has  the  capacity  of  pumping  water  and  generating  electricity.  The  setup  of  the  generator  system  takes   no  longer  than  10  seconds,  and  the  setup  of  the  water  pump  takes  about  one  and  a  half  minutes.   With  our  portable  power  providing  system  we  are  simultaneously  tackling  many  of  the  problems  mentioned   before.  First  and  foremost,  we  hope  to  provide  people  with  more  convenient  access  to  water  and  electricity.  This   will  give  people  the  opportunity  to  use  their  extra  time  for  work,  study  or  leisure.  Besides  this,  we  are  creating   work  for  an  enterprising  entrepreneur,  not  only  for  the  owner  of  our  device  but  also  for  a  mechanic  or  welder  who   can  build  and  sell  our  design.  We  envision  an  entrepreneur  in  Kenya  could  make  an  initial  investment  to  purchase   or  fabricate  the  device  and  then  provide  a  service  for  his  fellow  villagers.  This  model  of  single  ownership  will   ensure  that  the  device  and  all  its  subsystems  are  well  maintained.  Additionally,  we  hope  that  this  model  will  enable   an  unemployed  villager  to  earn  additional  income.     If  the  concept  of  bike  power  were  to  become  a  business,  it  could  be  used  to  solve  a  number  of  problems  in  Kenya.   With  the  help  of  our  advisor  Dr.  Jackson,  who  has  in-­‐field  experience,  we  learned  that  villagers  often  collect   rainwater  but  have  no  way  of  pressurizing  it  for  sinks  and  faucets.  Our  product  could  easily  address  this  need  by   pumping  water  from  a  ground-­‐level  rain  barrel  to  a  secondary  storage  container  5-­‐10  m  off  the  ground.   These  issues  were  present  in  every  step  of  our  design  and  redesign  processes,  and  we  made  several  major  changes   in  our  design  with  portability  and  simplicity  being  our  priorities  until  we  reached  the  final  optimal  solution.  To   achieve  these  goals,  our  project  is  designed  to  be  easy  to  build  with  the  resources  available  in  Kenya.  For  this   reason,  we  decided  to  use  as  many  old  bike  parts  as  possible,  since  bikes  are  very  common  there.  Welding  is  also  a   common  resource  in  Kenya,  where  it  is  not  difficult  to  find  a  welder  in  any  village.  They  also  have  access  to  scrap   metal  which  can  be  welded  together  to  construct  most  of  the  structures  required  by  our  design.  Although  we  aimed   to  use  as  many  recycled  components  as  possible,  we  did  not  limit  ourselves  to  using  recycled  parts  when  it  was   impractical  or  unnecessary.          
  • 5. MECHANICAL  ENGINEERING  DESIGN  PROJECTS   FINAL  STATUS  REPORT       5  |  P a g e       Detailed  Overview     Bike  stand:  The  stand  is  the  base  of  our  system.  It´s  main  purpose  is  holding  the  bike  stationary  while  the  user   pumps  water.  It  flips  up  to  form  a  rack  when  the  bike  is  being  ridden  as  a  regular  bike.  It  is  also  the  support  for  the   two  main  subsystems:  the  water  pump  and  the  electric  generator.  The  bike  stand  functions  as  follows:   Although  our  first  idea  was  manufacturing  our  own  bike  stand  out  of  repurposed  metal  bars  obtained  from  an  old   bicycle,  the  lack  of  access  to  welding  resources  and  the  delays  that  would  entail  by  having  it  welded  by  an  external   source  were  prohibitive.  We  decided  instead  to  buy  the  bike  stand  to  save  time.  This  stand  is  originally  a  bike   trainer  for  at-­‐home  cyclists.  This  triangular  structure  has  2  screws  on  the  top  corner  of  the  triangle.  These  screws   attach  to  the  axle  of  the  rear  wheel  of  the  bike  lifting  the  rear  wheel  to  make  the  bike  stationary.  The  screws  allow   the  stand  to  rotate  around  the  point  of  contact  with  the  bike.  We  took  advantage  of  this  feature  to  design  our   system  in  such  a  way  that  the  stand  can  be  flipped  up  and  be  held  in  that  vertical  position  via  a  bungee  system.  By   doing  this,  the  stand  that  originally  provided  a  stable  platform  to  hold  the  bike  now  provides  a  flat  surface  on  the   back  of  the  bike,  similar  to  a  rack.  This  surface  can  be  used  to  accommodate  a  crate  in  which  the  user  can  carry  all   the  tools  needed,  as  well  as  the  main  components  of  the  other  subsystems:  the  water  pump,  the  battery,  the  inlet   and  outlet  hoses  that  will  be  connected  to  the  pump,  and  tools.     Rack  and  crate:  In  order  to  take  advantage  of  the  flat  surface  that  provides  the  stand  when  it  is  flipped  up,  we   created  a  quick  release  system  to  accommodate  the  crate  in  a  secure  way.  To  do  so,  we  used  a  repurposed  the  seat   stays  (piece  of  tubing  connecting  the  main  frame  to  the  rear  axle)  of  an  old  bike.  The  shape  of  this  part  makes  it   ideal  to  mate  with  the  stand,  and  it  is  secured  in  place  via  a  bungee  cord  as  well  as  a  peg  and  slot  system.  The   assembly  and  disassembly  of  this  system  takes  no  longer  than  10-­‐15  seconds,  and  its  utility  resides  in  its  ability  to   carry  all  the  tools  and  components  in  an  easy  way,  keeping  the  bike  balanced  and  not  interfering  with  the  natural   pedaling  motion.  To  absorb  the  vibration  that  may  be  caused  by  riding  the  bike  in  rural  areas,  all  the  contact  points   are  cushioned  with  rubber.  This  also  increases  the  grip  between  removable  parts.   Water  pump  subsystem:  The  purpose  of  this  subsystem  is  transmitting  the  power  from  the  pedals  to  a  secondary   output  shaft  that  drives  the  water  pump.  After  several  iterations  and  redesign  steps,  we  decided  to  create  a  double   chain  system  because  it  was  the  most  optimal  solution  that  fulfilled  our  requirements  of  efficiency,  portability  and   simplicity.   The  benefits  of  using  this  double  chain  design  are  as  follows:   The  power  transmission  has  high  efficiency  in  chain  systems,  up  to  95%  in  well-­‐lubricated  and  tensioned  systems.   The  design  is  robust  and  compact.  The  second  chain  is  permanently  attached  to  the  output  shaft,  even  when  the   pump  is  not  connected  and  the  stand  is  flipped  up.  Thanks  to  this,  the  device  is  portable  and  the  setup  time  is   drastically  reduced,  to  the  point  that  it  takes  no  more  than  1  minute  and  30  seconds  from  the  moment  the  user   arrives  to  his  destination  riding  the  bike  until  the  moment  he  is  actually  pumping  water.  Since  the  output  shaft  is   well  lubricated,  the  power  loss  due  to  friction  when  it  is  freewheeling  (with  the  pump  disconnected)  is  negligible.   In  addition,  the  second  chain  can  be  obtained  from  and  old  bike.  The  output  shaft,  which  is  welded  into  the  stand,  is   a  repurposed  bottom  bracket  (the  axle  that  the  pedals  rotate  on)  of  an  old  bike.  Custom-­‐made  couplers  attach  to   both  sides  of  this  axle.  The  couplers  connect  the  water  pump  on  the  outer  side  and  the  extra  gear  system  on  the  
  • 6. MECHANICAL  ENGINEERING  DESIGN  PROJECTS   FINAL  STATUS  REPORT       6  |  P a g e       inner  side.  These  couplers  have  been  machined  with  a  tapered  hole  that  mates  perfectly  with  the  shape  of  the  axle   from  the  old  bike  making  it  easy  to  attach  or  remove  them.   The  quick  connection  of  the  pump  consists  of  a  setscrew  through  the  axle  of  the  pump  and  a  wing  nut.  In  order  to   prevent  the  pump  from  freewheeling,  we  designed  a  small  stand  for  the  pump  that  sits  on  the  ground  and   accommodates  the  circular  shape  of  the  pump.   The  pump  is  a  positive  displacement  pump,  specifically  a  rotary  vane  pump.  We  chose  plastic  because  it  is  light,   durable,  resistant  to  corrosion  and  inexpensive.   The  tubing  is  the  same  for  the  inlet  and  the  outlet.  We  used  ¾”    clear,  vinyl  tubing.  The  ¾”  hose  diameter  was   chosen  based  on  the  results  of  our  Matlab  model  (implementing  the  Colebrook  equation  for  frictional  losses).  The   model  predicts  the  pressure  lost  depending  on  the  flowrate,  distance  and  height  to  which  you  are  pumping.   Another  important  parameter  that  was  taken  into  account  was  the  weight  of  the  hose.  The  inlet  tubing  is  15  feet   long  and  the  outlet  is  90  feet.  Minimizing  weight  was  important  so  that  the  user  could  have  a  long  enough  hose  to   make  it  useful  for  pumping  distances  but  at  the  same  time  practical  and  portable.  To  make  the  transportation  of  the   hose  easier,  there  is  enough  clearance  between  the  crate  and  the  seat  of  the  bike  so  that  the  hose  can  be  coiled   around  the  crate.  The  connection  between  the  pump  and  the  tubing  is  made  via  standard  gardening  hose   connections.    A  check  valve  is  attached  to  the  outlet  of  the  pump  to  prevent  back  flow  allowing  the  user  to  take  a  break  without   losing  pressure.   In  the  inlet  hose  we  attached  a  small  filter  to  prevent  debris  from  getting  into  the  pump,   damaging  the  mechanism.  The  inlet  of  the  hose  is  weighted,  so  that  it  stays  submerged  preventing  dry-­‐running  of   the  pump.   On  the  other  side  of  the  output  shaft  we  have  an  extra  gear  system,  entirely  made  out  of  repurposed  bike  parts.  The   main  part  is  the  rear  gear  hub,  which  is  screwed  to  the  coupler  mentioned  before.  This  rear  gear  hub   accommodates  several  laser  cut  spacers  and  the  biggest  gear  of  an  old  bike  cassette.  The  spacers  allow  the  user  to   place  the  gear  in  the  desired  position.  This  is  important  as  the  second  gear  needs  to  be  in  the  same  plane  as  the   biggest  gear  of  the  cassette  of  the  main  bike  so  that  the  second  chain  is  aligned,  reducing  friction  and  consequently   increasing  efficiency.   The  second  chain  links  the  biggest  gear  of  the  cassette  of  the  bike  with  the  gear  on  the  output  shaft.  With  this  setup,   the  gear  ratio  between  the  pedaling  motion  and  the  RPM  in  the  output  shaft,  and  consequently  in  the  pump  is  3/2   (assuming  that  the  user  chooses  the  recommended  gear  ratio).    The  placement  of  the  second  chain  is  such  that   does  not  interfere  with  the  derailleur  of  the  bike,  so  the  user  can  still  switch  gears  as  desired,  except  for  the  biggest   two  gears  in  the  cassette,  which  are  occupied  by  the  second  chain.  This  exception,  however,  is  not  a  big   inconvenience  since  those  are  less-­‐commonly  used  gears.   It  should  be  noted  that  although  the  primary  purpose  of  this  extra  axle  is  to  pump  water,  it  could  easily  be  used  for   any  other  application  that  requires  rotary  motion,  such  as  a  grinding  mill  or  knife  sharpener.      
  • 7. MECHANICAL  ENGINEERING  DESIGN  PROJECTS   FINAL  STATUS  REPORT       7  |  P a g e       Electric  generator  subsystem:  The  lack  of  electricity  inhibits  education  and  studying  for  young  people.  Children   often  must  spend  most  of  their  daylight  hours  doing  chores  (such  as  collecting  water)  and  by  the  time  they  are   done  with  their  work  it  is  already  dark  and  therefore  they  have  no  light  to  study  by.  For  this  reason,  we  added  a   small  electrical  generator  to  our  project.  The  generator  is  powered  by  the  wheel  of  the  bike  in  a  roller-­‐fashion.  The   generator  can  be  engaged  anytime,  not  only  when  riding  the  bike  from  one  place  to  the  other  but  also  when  the   bike  is  stationary  or  while  pumping  water.    It  can  be  connected  to  a  12V  battery  or  directly  to  any  electronic  device   that  uses  a  USB  port.  This  way,  the  battery  can  be  used  to  power  LED  lights  or  to  charge  cellphones,  or  the   cellphones  and  LED  lights  can  be  charged  directly.  The  user  can  decide  which  option  is  more  convenient  at  any   time  and  change  from  one  to  the  other  by  flicking  a  switch.   The  generator  is  supported  by  a  custom  aluminum  plate  which  is  screwed  into  the  back  of  the  bike  stand.  This   plate  can  rotate  around  a  fixed  point  in  the  stand  until  the  generator  gets  in  contact  with  the  wheel,  and  it  can  be   locked  in  place  by  adjusting  a  set  screw  with  a  wing  nut.  Power  is  transmitted  to  the  generator  in  a  roller-­‐fashion   because  it  gives  the  user  a  high  gear  ratio,  which  in  turn  allows  the  user  to  easily  generate  a  high  RPM  in  the   generator.  Consequently,  it  is  easy  for  the  user  to  generate  a  high  voltage  in  the  generator  even  while  pedaling  at   slow  speeds.         Because  the  generator  is  AC,  we  designed  a  compact  circuit  that  rectifies  the  voltage  via  a  bridge  rectifier.  It  also   allows  the  user  to  choose  between  “battery  mode”,  in  which  the  battery  can  be  directly  connected  to  power  and   ground  outputs  or  “USB  mode”,  which  can  be  used  to  connect  any  USB  device.  Cell  phones  are  quite  common  in   Kenya  but  charging  them  without  access  to  electricity  is  a  constant  struggle.  In  order  to  charge  their  phones,   owners  typically  have  to  leave  their  village  and  walk  a  long  way  until  they  have  access  to  the  grid  or  to  a  diesel   generator  where  they  can  pay  to  get  their  phone  charged.  The  entire  circuit  is  housed  in  a  small  box  which  remains   attached  to  the  bike  stand  but  that  can  be  disengaged  at  any  time.   The  whole  system  works  as  follows:   Once  the  owner  of  the  bike  arrives  to  the  place  where  he  would  like  to  pump  water,  he  flips  down  the  stand  to   make  the  bike  stationary  and  connects  the  water  pump  to  the  exterior  side  of  the  axle.  After  that,  he  has  to  connect   the  inlet  and  outlet  hose  and  place  the  pump  stand  right  under  the  pump.  Then,  the  last  step  is  to  drop  the  inlet   hose  into  the  water  source  and  the  outlet  hose  to  the  desired  storage  vessel.  After  that,  he  can  start  pedaling  to   pump  water.  This  whole  process  shouldn´t  take  more  than  one  and  a  half  minutes.   Also,  as  mentioned  before,  the  generator  can  be  engaged  at  any  time.  Since  the  amount  of  power  that  it  extracts  is   not  very  great,  it  can  be  engaged  when  riding  the  bike  from  one  place  to  the  other,  taking  advantage  of  the  time   spent  travelling.  Once  the  user  decides  to  start  pumping  water,  he  can  leave  the  generator  engaged  if  the  head  he   wants  to  pump  to  is  not  too  high,  or  he  can  just  disengage  it  to  transmit  all  the  power  to  the  pump.   Once  the  process  of  pumping  water  is  over,  the  packing  process  is  the  same  as  the  setup  process  but  in  the  opposite   direction:  he  has  to  disconnect  the  hoses  and  the  pump,  flip  up  the  stand  and  secure  it  with  the  bungee  system  and   place  the  rack  and  the  crate  on  top  of  it,  again  using  another  bungee  system.  To  conclude,  he  has  to  put  the  pump,   the  pump  stand  and  the  hose  in  and  around  the  crate  respectively  and  he  is  ready  to  ride  his  bike  to  a  different   location.    
  • 8. MECHANICAL  ENGINEERING  DESIGN  PROJECTS   FINAL  STATUS  REPORT       8  |  P a g e       TESTING/PROTOTYPING  RESULTS   Setup and Methods Numerous  rounds  of  testing  were  conducted  both  to  test  component  integration  and  system  performance.  Pump   testing  was  conducted  by  pedaling  the  bike  and  measuring  the  flow  rate  of  the  water  as  well  as  the  pressure  head   generated.  Testing  was  done  at  a  gentle  power  input  to  simulate  the  ability  of  someone  pedaling  for  an  extended   period.  We  tried  testing  with  two  different  pressure  gauges,  neither  of  which  provided  any  useful  measure  of   pressure  head  within  the  system  because  of  constant  fluctuations.  As  such,  we  resorted  to  calculating  the  pressure   head  based  on  pumping  to  different  vertical  heights.  This  is  not  truly  a  measure  of  the  pressure  built  up  in  the   pump  as  it  doesn’t  account  for  frictional  losses  in  the  tubing,  but  it  provides  a  good  lower  bound  of  pump   capabilities.     Testing  was  performed  in  Skirkanich,  with  the  bike  on  the  ground  floor  and  someone  on  a  different  floor   measuring  the  flow  rate.  We  also  tested  outside  near  Penn  Park  to  simulate  what  it  would  be  like  to  actually  use  the   bike  outdoors  up  a  more  sloping  hill.  We  set  up  the  bike  with  a  bucket  of  water  at  the  bottom  of  the  hill  and  again   had  someone  at  the  top  measuring  flow  rate.  The  height  of  the  hill  was  about  15  feet  and  at  a  leisurely  pace  we   achieved  a  flow  rate  of  about  4  GPM.     We  also  tested  the  electrical  components  of  our  product.  Current  and  voltage  output  from  the  generator  were   tested  with  a  digital  multimeter  while  one  person  pedaled.  The  generator  was  also  tested  by  charging  a  cell  phone,   both  while  stationary  and  riding.  Cell  phone  charge  time  was  measured  to  give  an  indication  of  generator   performance.   The  aspect  of  testing  that  we  struggled  the  most  with  was  that  we  couldn’t  measure  power  input.  There  was  no   way  for  us  to  practically  measure  power  output  of  the  person  pedaling,  so  we  had  no  way  to  validate  our  model.   The  best  we  could  do  were  smart  estimates.  However,  because  the  goal  of  our  project  was  to  pump  water  and   generate  electricity,  most  of  our  testing  focused  on  simply  getting  the  system  to  work.   Prototyping effect on design Doing  a  lot  of  testing  early  on  was  key  in  ensuring  system  functionality.  Our  initial  tests  were  promising  (we  were   able  to  pump  water  via  pedaling),  but  were  not  ideal.  As  of  the  submission  of  the  midterm  report,  our  design  made   use  of  an  extra  gear  engaged  with  the  main  bike  chain.  This  required  a  lot  of  tension  to  be  added  to  the  derailleur   (40-­‐60  lbs.)  which  was  more  than  was  practical  via  any  additional  tensioning  system.  All  of  the  designs  we  tested   to  add  tension  to  the  chain  were  bulky  and  awkward.  We  also  noticed  after  testing  our  system  several  times  that   applying  such  great  tension  to  our  derailleur  was  permanently  deforming  it,  and  we  nearly  broke  it.  Doing  a  lot  of   testing  and  playing  around  with  different  ideas  for  power  transmission  led  us  to  the  double  chain  system.     At  some  point  in  all  of  our  design  iterations,  we  had  been  contemplating  the  double  chain  system,  but  had   discounted  it.  We  were  doubtful  because  the  extra  chain  would  absorb  one  of  the  gears  rendering  it  unusable,  and   we  were  worried  about  space  constraints.  We  were  also  concerned  that  a  double  chain  system  would  require  the   user  to  remove  the  chain  with  every  setup  and  breakdown  of  the  pump.  Examining  the  bike,  we  realized  that  the   double  chain  could  be  permanently  engaged  with  the  back  gear  to  prevent  this  issue.  Prototyping  confirmed  that  
  • 9. MECHANICAL  ENGINEERING  DESIGN  PROJECTS   FINAL  STATUS  REPORT       9  |  P a g e       this  designed  functioned  well  given  the  space  constraints  and  that  the  extra  chain  could  remain  on  the  back  gear   without  problems.     Leaking  was  also  an  important  factor  in  our  testing,  and  we  experimented  with  thread  tape  and  sealant  as  well  as   different  types  of  hose  connectors  to  see  which  ones  worked  the  best.   Results of Testing Our  final  round  of  testing  gave  us  the  following  results  for  our  pump:                 From  our  initial  generator  testing,  it  was  clear  that  we  could  easily  output  over  12  Volts.  We  even  found  that  we   could  generate  voltages  larger  than  12  Volts  while  pedaling  at  an  easy  pace.  After  our  circuit  was  complete,  we   tested  it  by  charging  a  cell  phone.  Our  generator  was  able  to  charge  a  cell  phone  from  0%  battery  to  20%  in  20   minutes,  similar  to  charging  via  wall  outlet.  Additional  applications  such  as  a  bike  light  were  also  hooked  up  the   USB  port  and  charged  easily.                   Height   (meters)   Flow  Rate   (GPM)   4.70   6   9.25   4   13.25   2  
  • 10. MECHANICAL  ENGINEERING  DESIGN  PROJECTS   FINAL  STATUS  REPORT       10  |  P a g e     PROPOSED  IMPROVEMENTS/LESSONS  LEARNED   Along  the  process  of  designing  and  manufacturing  our  project  we  faced  different  problems  ranging  from  the  lack  of   access  to  some  resources  (as  welding)  to  the  strict  constraints  in  terms  of  cost  and  materials.  Because  simplicity,   reliability,  portability,  low  cost  and  manufacturability  in  developing  countries  were  our  main  goals,  we  struggled  to   find  materials  and  components  that  met  these  requirements  while  still  being  useful  in  our  design.  One  of  the   biggest  lessons  learnt  during  this  process  is  how  to  design  and  manufacture  what  we  had  in  our  minds  while  being   subject  to  the  constraints  mentioned.  We  realized  that  the  easier  design  is  usually  the  better  one.     One  major  breakthrough  that  we  had  is  that  using  repurposed  parts  from  old  bicycles  was  an  optimal  solution   balancing  practicality  and  our  initial  goals  of  using  all  recycled  material.  Bike  parts  are  cheap  and  easy  to  find  in   developing  countries.    They  are  universal  and  easy  to  understand  and  fix,  which  we  considered  really  important  to   implement  our  system.  Besides  this,  using  bike  parts  that  are  already  manufactured  drastically  reduces  the   complexity,  number  of  tools,  and  time  required  to  construct  the  system.  This  way,  the  whole  system  can  be  made   by  a  welder  by  just  using  and  old  bike  (from  which  he  would  take  the  bottom  bracket,  the  chain,  the  rear  gear  hub,   the  cassette  and  the  seat  stays).  The  frame  of  an  old  bike  or  scrap  metal  could  be  used  to  build  the  stand  instead  of   having  to  buy  one.   If  we  had  to  do  this  project  again,  we  would  make  several  changes.  Due  to  the  lack  of  access  to  welding  facilities,  we   decided  to  buy  a  bike  stand.  Although  this  stand  works  well,  it  is  heavy  and  expensive.  The  stand  alone  was  as   expensive  as  the  water  pump  and  the  generator  together,  and  it  represents  the  majority  of  the  extra  weight  added   to  our  design.  Since  the  design  of  the  stand  is  really  simple,  we  are  confident  that  it  could  be  made  from  the  frame   of  a  scrap  bike.  That  would  make  the  design  lighter  and  cheaper.   Another  feature  that  we  would  like  to  change  for  a  second  iteration  is  the  integration  of  the  output  shaft.  In  our   current  design,  the  shaft  is  welded  into  the  frame  in  a  fixed  position.  This  system  works  efficiently,  but  has  some   drawbacks,  mainly  the  initial  setup  and  adjustment  of  the  second  chain.  Because  the  shaft  is  fixed  in  place  in  our   current  design,  the  user  has  to  modify  the  length  of  the  second  chain  to  accommodate  whatever  extra  gear  he  uses.   In  some  instances,  he  may  not  be  able  to  use  the  gear  size  he  wishes  because  chains  come  with  a  discrete  number   of  links,  and  as  such  only  certain  size  gears  will  work.  Further,  although  this  is  a  setup  need  only  be  done  once   (since  after  the  first  setup  the  chain  is  going  to  be  permanently  engaged),  this  process  could  be  made  easier.  We   thought  that  having  the  output  shaft  mounted  in  a  rail  system  along  the  frame  of  the  stand  would  make  the  system   more  user-­‐friendly.  It  would  not  only  make  this  initial  setup  easier  but  it  would  allow  the  user  to  change  the  gear   on  the  shaft  fast  and  easily.  Although  the  current  gear  ratio  is  optimal  for  pumping  water,  the  user  may  be   interested  in  a  having  broader  range  in  order  to  power  other  potential  functions.   Other  improvements  that  could  be  proposed  for  a  second  iteration  of  this  project  are  the  implementation  of  a   compact  water  filtration  system  or  a  hose  system  that  could  be  used  for  irrigation.  Last  but  not  least,  another   improvement  that  would  like  to  propose  is  to  make  the  whole  electric  system  waterproof.  Although  we  know  that   our  generator  is  water  resistant  (it  is  meant  to  be  used  for  outdoor  purposes  such  as  wind  turbines),  we  could  not   verify  that  capability.  Further,  the  USB  port  and  the  connections  for  the  battery  are  exposed.  Although  the  whole   electric  system  can  me  removed  easily  to  prevent  it  from  corrosion  in  the  case  of  rain,  we  think  that  is  necessary  to   make  it  completely  waterproof  because  the  device  is  mainly  meant  for  outdoor  use.  
  • 11. MECHANICAL  ENGINEERING  DESIGN  PROJECTS   FINAL  STATUS  REPORT       11  |  P a g e     In  terms  of  the  lessons  learnt,  apart  from  the  constrained  design  mentioned  before,  we  also  learnt  the  importance   of  system  integration.  The  fact  of  having  different  subsystems  working  smoothly  and  perfectly  does  not  imply  that   they  are  going  to  work  once  they  are  put  together.  That  was  one  of  the  main  challenges  we  faced  during  the  design   of  the  double  chain  system.  Due  to  the  presence  of  the  derailleur  and  the  tight  space  between  the  bike  and  the   stand  we  had  several  issues  with  parts  interfering  with  each  other,  which  made  us  make  several  redesigns  until  we   found  the  final  solution.                                          
  • 12. MECHANICAL  ENGINEERING  DESIGN  PROJECTS   FINAL  STATUS  REPORT       12  |  P a g e     REQUIREMENTS  COMPLIANCE   Initial Goals: Flow Rate 13 GPM Pump Head 0.5 miles (horizontal) Cost $20 - $100 Materials Entirely recycled or scrap Our  initial  goals  were  set  before  we  fully  understood  the  needs  of  people  in  developing  countries  and  the  limits  of   human  abilities.  Because  of  this,  they  are  a  little  unrealistic.  They’ve  since  been  scaled  back  while  keeping  in  mind   customer’s  needs.  Furthermore,  we  added  in  several  new  quantitative  and  qualitative  metrics.   Revised Goals: Flow Rate 3 GPM Pump Head 15 m Generator Charge 12 Volt Battery Charge cell phone or small appliances via USB Cost $20 - $100 Materials Incorporate recycled materials where possible. Use as many recycled bike parts as possible. Additional Goals Portability, usability, ability to use any bike, ease of set up As  our  design  went  through  several  iterations,  our  priorities  and  design  focus  changed.  We  abandoned  the  goal  of   making  the  project  from  completely  recycled  materials  for  several  reasons.  Requiring  that  the  entire  project  be   made  from  recycled  materials  came  to  be  viewed  as  an  impractical  and  unnecessary  constraint.  Instead,  we   attempted  to  incorporate  recycled  materials,  especially  any  type  of  bike  part,  when  practical  and  feasible.  The  team   decided  that  making  certain  components,  the  pump  for  instance,  out  of  recycled  material,  was  an  unnecessary  step   as  pumps  are  manufactured  to  specific  tolerances  which  is  especially  important  given  concerns  with  sealing,  and   manual  pumps  are  inexpensive  anyway.  Our  final  design  is  a  good  compromise  between  recycling  components,   functionality,  and  cost.    
  • 13. MECHANICAL  ENGINEERING  DESIGN  PROJECTS   FINAL  STATUS  REPORT       13  |  P a g e     We  scaled  back  our  flowrate  goal  as  our  initial  estimate  of  13  GPM  was  probably  more  than  necessary  for  an   average  village  and  not  practically  possible.    Instead  of  focusing  on  horizontal  distances,  we  instead  used  vertical   distances  as  our  metric  for  pressure  due  to  the  impracticality  of  testing  over  long  distances.  We  were  successfully   able  to  pump  2  GPM  up  to  13.5  m.  Our  model  indicates  that  with  a  ¾”  diameter  pipe  about  15-­‐20%  of  pump  head  is   lost  to  frictional  losses  (depending  of  course  on  flowrate).  Conservatively  estimating  that  15%  of  our  pump  head   was  lost  to  friction,  13.5  m  of  vertical  head  would  give  a  total  pump  head  of  15.8  m.    As  such,  we  accomplished  just   under  our  revised  goal  of  3  GPM  and  a  little  bit  above  our  revised  goal  of  15  m  of  pump  head.  It  is  likely  that  we   could  have  hit  the  3  GPM  at  15  m  metric  had  we  tested  our  system  with  a  greater  power  input.    Many  qualitative  goals  were  added  into  the  project  between  the  beginning  of  the  year  and  now  including:   portability,  usability,  ability  to  use  any  bike,  and  ease  of  set  up.  We  feel  that  we  have  met  or  exceeded  all  of  these   qualitative  goals  as  discussed  in  detail  in  the  previous  sections.  In  terms  of  cost,  should  our  product  be   manufactured  at  scale  and  with  the  stand  made  from  scrap  metal  instead  of  purchased,  it  could  certainly  be   manufactured  for  around  $100.  The  bulk  of  the  cost  is  due  to  the  pump  ($66)  and  the  generator  ($40).  The  addition   of  the  generator,  which  was  not  part  of  the  design  with  the  initial  $20-­‐100  cost  estimate,  adds  a  lot  of  value  to  our   product  even  though  it  is  a  major  cost  driver.    
  • 14. MECHANICAL  ENGINEERING  DESIGN  PROJECTS   FINAL  STATUS  REPORT       14  |  P a g e     COST   In  terms  of  literal  expenses  throughout  the  entire  year,  we  spent  $814.84,  which  is  $81.16  under  our  allotted  $900   budget.  However  in  terms  of  what  we  spent  that  was  actually  used  in  our  final  project,  it  comes  out  to  be   significantly  cheaper.  The  actual  cost  of  everything  that  was  used  in  our  final  product  was  $448.  The  tubing  was  a   large  part  of  this  cost  at  $180.  The  generator,  pump,  and  stand  amounted  to  $177.  The  extra  $41  came  from   miscellaneous  expenses  like  screws,  bungee  cords,  nuts,  a  check  valve,  and  hose  connectors.  We  also  had  to  buy  a   bike,  however  we  bought  a  used  one  at  Neighborhood  Bike  Works  for  only  $50.       The  discrepancy  between  the  product  cost  and  the  total  cost  of  $914.84  comes  from  expenses  not  directly   toward  the  final  product,  such  as  costs  associated  with  prototyping,  development,  and  testing  equipment.  The  costs   associated  with  prototyping  and  development  were  for  items  that  were  ordered  but  ended  up  not  needing  due  to   design  changes.  Our  first  pump,  which  was  made  of  cast  iron,  rusted  and  was  too  heavy,  so  we  ordered  a  second,   plastic  pump  which  was  used  in  our  final  design.  We  also  ordered  two  generators  because  we  were  unsure  which   model  would  work  best  and  wanted  to  avoid  delays  due  to  ordering  a  second  generator.  We  only  ended  up  using   one,  however.  Miscellaneous  items  ordered  from  McMaster  in  the  beginning  of  the  year  when  we  wanted  to  make   the  pump  ourselves  amounted  to  another  $150.  About  $40  was  spent  on  accessories  for  the  bike  such  as  a  12  Volt   battery  and  a  bike  light.  Both  were  ordered  to  demonstrate  what  the  bike  was  capable  of  accomplishing.     The  remainder  of  the  costs  resulted  from  testing.  A  check  valve,  a  gate  valve,  a  pressure  gauge,  and  smaller   amounts  of  tubing  were  purchased  for  testing.  Things  like  thread  sealant,  latex  tape,  various  types  of  hose   connectors,  and  thread  connectors  were  also  used  for  testing.  We  really  used  these  items  primarily  in  testing,  so   they  were  a  necessary  cost,  but  didn’t  actually  go  into  the  final  product.  This  combined  with  smaller  expenses  like   tape,  spray  paint,  and  glue  made  up  for  the  rest  of  the  expenses.
  • 15. MECHANICAL  ENGINEERING  DESIGN  PROJECTS   FINAL  STATUS  REPORT       15  |  P a g e     Summary  of  Expenses   Items  Ordered  Through  the  Business  Office   Cost   RAD  Cycle  Products  Indoor  Portable  Work  Out  Bicycle  Trainer   $75.18     Cast  Iron  Rotary  Drum  Pump,  10  GPM   $43.95     Plastic  Rotary  Polypropylene  Drum  Pump  For  Chemicals  #  4649-­‐99   $66.10     Small  Alternator,  Mini  Generator   $36.50     Small    Alternator,  Mini  Generator  for  Wind  Turbine   $49.00     EPDM  O-­‐Ring  AS568A  Dash  Number  242,  packs  of  10   $6.29     Sheet  Gasket  Assortment  Includes  14  Sheets,  6"  X  6"   $24.26     High-­‐Strength  Adhesive/Sealant  Marine,  10.2-­‐Ounce  Cartridge,  Clear   $9.74     Zinc-­‐Plated  Steel  Bolts  with  Two  Hex  Nuts  and  Washers   $9.33     Machine  Screw  Hex  Nuts,  Zinc-­‐Plated  Steel   $1.21     3/4"  Air  and  Water  Hose,  Black  Hose   $17.70     Two  Male  Fittings    for  3/4"  Air  and  Water  Hose,  Black  Hose   $16.24     Business  Office  Total   $355.50         Reimbursements   Home  Depot     $46.00     Bike  and  Parts     $60.00     Lowes  Mar  24     $34.39     Home  Depot  Mar  31     $9.66     Bike  Church  Mar  28     $5.00     Radioshack  Mar  29     $25.89     Lowes  Mar  31     $198.22     Dr.  Jackson  Hardware  Store,  Swing  Check  Valve   $11.76     Monarch  Hardware     $12.13     CVS  Pharmacy     $4.85     CVS  Pharmacy     $4.85     Radioshack  Apr  6     $4.53     Radioshack  Apr  9     $5.92     Hardware  Store  Apr  10     $4.96     Hardware  Store  Apr  11   $6.47     Lowes  April  8  (Alyssa)   $26.04     Home  Depot  Apr  8  (Alyssa)   $2.67     Reimbursement  Total   $463.34         Sum  of  Expenses   $818.84     Total  Budget   $900.00   Difference   -­‐81.16