SlideShare ist ein Scribd-Unternehmen logo
1 von 50
1
Prof. David R. Jackson
Dept. of ECE
Notes 6
ECE 5317-6351
Microwave Engineering
Fall 2019
Waveguiding Structures
Part 1: General Theory
Adapted from notes by
Prof. Jeffery T. Williams
2
In general terms, a waveguiding system is a system that confines
electromagnetic energy and channels it from one point to another.
(This is opposed to a wireless system that uses antennas.)
Examples
– Coax
– Twin lead (twisted pair)
– Printed circuit lines (e.g. microstrip)
– Parallel plate waveguide
– Rectangular waveguide
– Circular waveguide
Waveguide Introduction
Note: In microwave engineering, the term “waveguide” is often used to mean
rectangular or circular waveguide (i.e., a hollow pipe of metal).
Waveguides
– Optical fiber (dielectric waveguide)
Transmission Lines
3
General Notation for Waveguiding Systems
Assume ejt time dependence and homogeneous source-free materials.
Assume wave propagation in the  z direction:
z
jk z
z
e e


     
ˆ
, , , , z
jk z
t z
E x y z e x y z e x y e
 
 
 
     
ˆ
, , , , z
jk z
t z
H x y z h x y z h x y e
 
 
 
, z
j k j
    
   
Transverse (x,y)
components
c j

 

 
   
 
tan c
d
c






Note: Lower case letters denote 2-D fields (the z term is suppressed).
j
  
 
 
c c c
j
  
 
 
z
jk
 
z
c

C
Example of waveguiding system (a waveguide)
4
Helmholtz Equation
E j H

  
 
 
 
 
2
c
E j H
j j E J
j j E E
j j E
k E

 
  
 
   
  
 
 

v
E


 
H j E J

   0
H
 
c j

 

 
   
 
Recall:
2 2
c
k  
 (complex)
where
5
Helmholtz Equation
Vector Laplacian definition:  
2
E E E
    
     
2 2 2 2
ˆ ˆ ˆ
x y z
E x E y E z E
      
where
2
E k E
 
  2 2
2 2
2 2
v
v
E E k E
E k E
E k E




    
 
   
 
 
 
     
 
6
2 2 v
E k E


 
    
 
Next, we examine the term on the right-hand side.
Helmholtz Equation (cont.)
So far we have:
7
   
 
0
0
0
0
c
c
c
v
H j E
H j E
j E
E
D




 
    
  
  
  
 
To do this, start with Ampere’s law:
In the time-harmonic (sinusoidal) steady
state, there can never be any volume
charge density inside of a linear,
homogeneous, isotropic, source-free
region that obeys Ohm’s law.
Helmholtz Equation (cont.)
8
Vector Helmholtz equation
2 2
0
E k E
  
Hence, we have
Helmholtz Equation (cont.)
9
 
 
   
    
    
2
2 2
c
c
c
c
H j E E
H j E
H j E
H j E
H j j H
H H j j H
H k H
 
 


 
 
   
   
  
    
    
      
  
Similarly, for the magnetic field, we have
H j E J

  
Helmholtz Equation (cont.)
c j

 

 
   
 
Recall:
10
2 2
0
H k H
  
Hence, we have
Helmholtz Equation (cont.)
Vector Helmholtz equation
11
2 2
0
H k H
  
Summary
2 2
0
E k E
  
These equations are valid for a source-free, homogeneous, isotropic,
linear material.
Vector Helmholtz equation
Helmholtz Equation (cont.)
12
2 2
0
z z
H k H
  
From the property of the vector Laplacian, we have
2 2
0
z z
E k E
  
Recall:
Scalar Helmholtz equation
Helmholtz Equation (cont.)
     
2 2 2 2
ˆ ˆ ˆ
x y z
E x E y E z E
      
13
Assume a guided wave with a field variation F(z) in the z direction of the
form
  z
jk z
F z e

Field Representation
Then all four of the transverse (x and y) field components can be
expressed in terms of the two longitudinal ones:
 
,
z z
E H
(This is a property of any guided wave.)
14
Assume a source-free region with a variation z
jk z
e
E j H

  
1) z
z y x
E
jk E j H
y


  

2) z
z x y
E
jk E j H
x


  

3) y x
z
E E
j H
x y

 
  
 
4) z
z y c x
H
jk H j E
y


 

5) z
z x c y
H
jk H j E
x


 

6) y x
z
H H
j E
x y

 
 
 
Field Representation: Proof
c
H j E

 
Take (x,y,z) components
15
Combining 1) and 5):
2
2
2 2
2
1
( )
1
c
z z
z z x x
c
z z z z
x
c c
z z
c z z x
z z
x c z
c
k
E H
jk jk H j H
y j x
E k H k
j H
y x j
E H
j jk k k H
y x
E H
H j jk
k y x



 


 
 
 
    
  
 
 
 
 
 
   
 
   
 
  
 
 
 
   
 
 
2 2
c z
k k k
 
Cutoff wavenumber
(real number, as discussed later)
Field Representation: Proof (cont.)
A similar derivation holds for the other three transverse field components.
16
2
2
2
2
z z
x c z
c
z z
y c z
c
z z
x z
c
z z
y z
c
E H
j
H k
k y x
E H
j
H k
k x y
E H
j
E k
k x y
E H
j
E k
k y x




 
 
  
 
 
 
 

 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
Summary of Results
These equations give the transverse
field components in terms of the
longitudinal components, Ez and Hz.
Field Representation (cont.)
2 2
c
k  

2 2
c z
k k k
 
17
Therefore, we only need to solve the Helmholtz equations for the
longitudinal field components (Ez and Hz).
2 2
0
z z
H k H
  
2 2
0
z z
E k E
  
Field Representation (cont.)
, , ,
x y x y
E E H H
From table
18
Types of guided waves:
Types of Waveguiding Systems
 TEMz: Ez = 0, Hz = 0
 TMz: Ez  0, Hz = 0
 TEz: Ez = 0, Hz  0
 Hybrid: Ez  0, Hz  0
Microstrip
h
w
r
TEMz
TMz , TEz
Hybrid Hybrid
 
0
R 
 
PEC
19
Waveguides
Two types of modes: TEz , TMz
 We assume that the boundary is PEC.
 We assume that the inside is filled with a homogenous isotropic linear
material (could be air)
An example of a
waveguide
(rectangular waveguide)
20
Transverse Electric (TEz) Waves
0
z
E
 
In general, Ex, Ey, Hx, Hy, Hz  0
To find the TEz field solutions (away from any sources), solve
2 2
( ) 0
z
k H
  
2 2 2
2
2 2 2
0
z
k H
x y z
 
  
   
 
  
 
The electric field is “transverse” (perpendicular) to z.
or
21
Recall that the field solutions we seek are assumed to
vary as   z
jk z
F z e

( , , ) ( , )
jk z
z
z z
H x y z h x y e
 
 
2
2 2
2 2
2 2
, 0
z
c
z
k
k k h x y
x y
 
 
 
    
 
 
 
 
2 2 2
c z
k k k
 
 
2 2
2
2 2
, 0
c z
k h x y
x y
 
 
   
 
 
 
2 2 2
2
2 2 2
0
z
k H
x y z
 
  
   
 
  
 
Transverse Electric (TEz) Waves (cont.)
   
2 2
2
2 2
, ,
z c z
h x y k h x y
x y
 
 
   
 
 
 
22
We need to solve the eigenvalue problem subject to the appropriate boundary conditions.
Transverse Electric (TEz) Waves (cont.)
   
2 2
2
2 2
, ,
z c z
h x y k h x y
x y
 
 
  
 
 
 
(2D Eigenvalue problem)
 
2
,
z
c
h x y
k


 
  
eigenfunction
eigenvalue
(A proof of this may be found in the ECE 6340 notes.)
For this type of eigenvalue problem, the eigenvalue is always real.
   
2 2
2 2
, ,
x y x y
x y
 
 
 
 
 
 
 
Change notation
23
Transverse Electric (TEz) Waves (cont.)
   
2 2
2
2 2
, ,
z c z
h x y k h x y
x y
 
 
  
 
 
 
z
c

C
Hence, TEz modes exist inside of a waveguide (conducting pipe).
c

C
 
,
z
h x y
PEC
0
z
h
n



Neumann boundary condition
A solution to the eigenvalue problem can always be found for a PEC boundary
(proof omitted).
Neumann boundary condition
(see below)
24
Once the solution for Hz is obtained, we use
2 2
2 2
z z z
x x
c c
z z z
y y
c c
jk H j H
H E
k x k y
jk H j H
H E
k y k x


  
 
 
 
 
 
TE wave impedance
TE
z
Z
k


y
x
y x z
E
E
H H k

 
For a wave propagating in the positive z direction (top sign):
y
x
y x z
E
E
H H k

  
Transverse Electric (TEz) Waves (cont.)
For a wave propagating in the negative z direction (bottom sign):
25
For a wave propagating in the positive z direction, we also have:
 
ˆ ˆ
ˆ
ˆ ˆ
ˆ
1
ˆ
( )
t x y
t TE y x
TE t
t t
TE
z e ye xe
z e Z yh xh
Z h
h z e
Z
  
   

  
     
ˆ ˆ
, , ,
t x y
e x y xe x y ye x y
 
Similarly, for a wave propagating in the negative z direction,
1
ˆ
( )
t t
TE
h z e
Z
  
Transverse Electric (TEz) Waves (cont.)
x TE y
y TE x
e Z h
e Z h

 
Recall:
26
Summarizing both cases, we have
+ sign: wave propagating in the + z direction
- sign: wave propagating in the - z direction
   
 
1
ˆ
, ,
t t
TE
h x y z e x y
Z
  
Transverse Electric (TEz) Waves (cont.)
27
0
z
H
 
Transverse Magnetic (TMz) Waves
In general, Ex, Ey, Ez ,Hx, Hy  0
To find the TEz field solutions (away from any sources), solve
2 2
( ) 0
z
k E
  
2 2 2
2
2 2 2
0
z
k E
x y z
 
  
   
 
  
 
or
The magnetic field is “transverse” (perpendicular) to z.
28
 
2 2
2
2 2
, 0
c z
k e x y
x y
 
 
   
 
 
 
 
2
2 2
2 2
2 2
, 0
z
c
z
k
k k e x y
x y
 
 
 
    
 
 
 
 
2 2 2
c z
k k k
 
Transverse Magnetic (TMz) Waves (cont.)
   
2 2
2
2 2
, ,
z c z
e x y k e x y
x y
 
 
   
 
 
 
2 2 2
2
2 2 2
0
z
k E
x y z
 
  
   
 
  
 
Recall that the field solutions we seek are assumed to
vary as
( , , ) ( , )
jk z
z
z z
E x y z e x y e
 
  z
jk z
F z e

29
We need to solve the eigenvalue problem subject to the appropriate boundary conditions.
Transverse Electric (TEz) Waves (cont.)
   
2 2
2
2 2
, ,
z c z
e x y k e x y
x y
 
 
  
 
 
 
(Eigenvalue problem)
 
2
,
z
c
e x y
k

 
eigenfunction
eigenvalue
(A proof of this may be found in the ECE 6340 notes.)
For this type of eigenvalue problem, the eigenvalue is always real.
30
Transverse Magnetic (TMz) Waves (cont.)
   
2 2
2
2 2
, ,
z c z
e x y k e x y
x y
 
 
  
 
 
 
A solution to the eigenvalue problem can always be found for a PEC boundary
(proof omitted).
z
c

C
c

C
 
,
z
e x y
PEC
0
z
e 
Dirichlet boundary condition
Hence, TMz modes exist inside of a waveguide (conducting pipe).
Dirichlet boundary condition
(see below)
31
2 2
2 2
c z z z
x x
c c
c z z z
y y
c c
j E jk E
H E
k y k x
j E jk E
H E
k x k y


 
 
 
 
  
 
TM wave impedance
z
TM
c
k
Z


y
x z
y x c
E
E k
H H 
 
y
x z
y x c
E
E k
H H 
  
Once the solution for Ez is obtained, we use
For a wave propagating in the positive z direction (top sign):
For a wave propagating in the negative z direction (bottom sign):
Transverse Magnetic (TMz) Waves (cont.)
32
For a wave propagating in the positive z direction, we also have:
 
ˆ ˆ
ˆ
ˆ ˆ
ˆ
1
ˆ
( )
t x y
t TM y x
TM t
t t
TM
z e ye xe
z e Z yh xh
Z h
h z e
Z
  
   

  
     
ˆ ˆ
, , ,
t x y
e x y xe x y ye x y
 
Similarly, for a wave propagating in the negative z direction,
1
ˆ
( )
t t
TM
h z e
Z
  
Transverse Magnetic (TMz) Waves (cont.)
x TM y
y TM x
e Z h
e Z h

 
Recall :
33
Summarizing both cases, we have
+ sign: wave propagating in the + z direction
- sign: wave propagating in the - z direction
   
 
1
ˆ
, ,
t t
TM
h x y z e x y
Z
  
Transverse Magnetic (TMz) Waves (cont.)
34
Transverse ElectroMagnetic (TEM) Waves
0, 0
z z
E H
  
From the previous table for the transverse field components, all of
them are equal to zero if Ez and Hz are both zero.
Unless 2
0
c
k 
For TEM waves 2 2 2
0
c z
k k k
  
z c
k k  
 
In general, Ex, Ey, Hx, Hy  0
Hence, we have
2
2
2
2
z z
x c z
c
z z
y c z
c
z z
x z
c
z z
y z
c
E H
j
H k
k y x
E H
j
H k
k x y
E H
j
E k
k x y
E H
j
E k
k y x




 
 
  
 
 
 
 

 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
35
Transverse ElectroMagnetic (TEM) Waves (cont.)
     
, , , ,
z
jk z jkz
t
H x y z h x y e h x y e
 
 
ˆ
s
J n H
 
From EM boundary conditions, we have:
 
 
ˆ , jkz
s t
J n h x y e
 
so
n̂
t
h
x
y
ˆ
s sz
J z J

The current flows purely in the z direction.
36
In a linear, isotropic, homogeneous source-free region,
0
E
 
 
 
 
     
 
 
0
, 0
, , 0
, 0
z
z z
t
jk z
t t
jk z jk z
t t t
t t
E
e x y e
e e x y e x y e
e x y
  
   
     
   
ˆ ˆ
t x y
x y
 
  
 
In rectangular coordinates, we have
Notation:
0
y
x z
E
E E
x y z

 
  
  
 
 
, 0
t t
e x y
  
Transverse ElectroMagnetic (TEM) Waves (cont.)
Hence, we have
37
Also, for the TEMz mode, we have from Faraday’s law (taking the z
component):
   
ˆ ˆ 0
z
z E z j H j H
 
       
0
y x
E E
x y
 
 
 
 
 
, 0
t t
e x y
  
0
y x
e e
x y
 
 
 
ˆ ˆ
t x y
x y
 
  
 
Note:
Using the formula for the z component of the curl
of E, we have:
Hence
Transverse ElectroMagnetic (TEM) Waves (cont.)
Hence, we have:
     
ˆ ˆ
, , ,
t x y
e x y xe x y ye x y
 
  ˆ
, y x
t t
e e
e x y z
x y

 

   
 
 
 
38
 
 
, 0
t t
e x y
  
   
, ,
t t
e x y x y
  
 
 
, 0
t t
e x y
    
 
, 0
t t x y
    
 
2
, 0
t x y
  
Hence
Transverse ElectroMagnetic (TEM) Waves (cont.)
39
 
2
, 0
x y
  
Since the potential function that describes the electric field in the cross-
sectional plane is two dimensional, we can drop the “t” subscript if we wish:
Boundary Conditions:
 
 
,
,
a
b
a
b
x y
x y
  
  
conductor " "
conductor " "
This is enough to make the potential function unique.
Hence, the potential function is the same for DC as it is for a high-
frequency microwave signal.
Transverse ElectroMagnetic (TEM) Waves (cont.)
The field of a TEM mode does not change shape with frequency:
it has the same shape as a DC field.
 
2
, 0
x y
  
a b
PEC conductors
40
Notes:
 A TEMz mode has an electric field that has exactly the same shape as
a static (DC) field. (A similar proof holds for the magnetic field.)
 This implies that the C and L for the TEMz mode on a transmission
line are independent of frequency.
 This also implies that the voltage drop between the two conductors of
a transmission line carrying a TEMz mode is path independent.
 A TEMz mode requires two or more conductors: a static electric field
cannot exist inside of a waveguide (hollow metal pipe) due to the
Faraday cage effect.
Transverse ElectroMagnetic (TEM) Waves (cont.)
41
For a TEM mode, both wave impedances are the same:
Transverse ElectroMagnetic (TEM) Waves (cont.)
c
z
TM
c c c c
k k
Z
  

   
    
TE
z c
c
Z
k k
   


 
    
Note:  is complex for lossy media.
z
k k

Recall:
42
TEM Solution Process
A) Solve Laplace’s equation subject to appropriate B.C.s.:
B) Find the transverse electric field:
C) Find the total electric field:
D) Find the magnetic field:
 
2
, 0
x y
  
 
1
ˆ ;
H z E z

    propagating
   
, ,
t
e x y x y
 
   
, , , ,
z
jk z
t z
E x y z e x y e k k
 
Note: The only frequency dependence is in the wavenumber kz = k.
43
Note on Lossy Transmission Line
 A TEM mode can have an arbitrary amount of dielectric loss.
 A TEM mode cannot have conductor loss.
J E


Inside conductors:
 
I z
+ + + + + + +
- - - - - - - - - -
 
V z
z z
J E

In practice, a small conductor loss will not change the shape of the fields
too much, and the mode is approximately TEM.
If there is conductor loss,
there must be an Ez field.
44
If there is only dielectric loss (an exact TEM mode):
  
R j L G j C
  
  
 
0 0 1 tan
c
r r d
jk
j
j j

 
     


 
0 0
r r
LC    

 
z z
jk jk k k
   
  
j L G j C
  
 
      
2
0 0 1 tan
r r d
j L G j C j
       
   
Equate real and imaginary parts
    
2
0 0 tan
r r d
L G
      

Note on Lossy Transmission Line (cont.)
 
: r r
 
Note denotes real
45
tan d
G
C



From these two equations we have:
0 0
r r
LC    

0 0
r r
LC    

    
     
2
0 0
2
0 0 0 0 0 0
2
0 0
tan
tan tan tan
r r d
r r d r r d r r d
r r
L G
G
C LC LC
      
               
     

   
Equations for a TEM mode:
Note:
These formulas were assumed
previously in Notes 3.
Note on Lossy Transmission Line (cont.)
46
This general formula accounts for both dielectric and conductor loss:
  
R j L G j C
  
  
Dielectric loss
Conductor loss
When R is present the mode is not exactly TEM, but we usually ignore this.
Note on Lossy Transmission Line (cont.)
47
Summary
TEM Mode:
 
0 0 1 tan
z r rc r r d
k k k k j
    
   
0
z z
E H
 
   
 
1
ˆ
, ,
t t
h x y z e x y

 
 
1 tan
rc r d
j
  
 
0
0
0
376.7303



  
0
r
c rc
 
 
 
 
48
  
z
jk R j L G j C
  
   
Summary (cont.)
Transmission line mode (approximate TEM mode):
tan d
G
C



0 0
r r
LC    

0
lossless L
Z
C

 
0 0 0
0 0 0
/
tan
lossless
r r
lossless
r r
d
L Z
C Z
G C
R R
   
   
 




ˆ
s sz
J z J

 The mode requires two conductors.
 The mode is purely TEM only when R = 0.
49
Summary (cont.)
TEz Mode:
2 2
z c
k k k
 
0, 0
z z
E H
 
   
 
1
ˆ
, ,
t t
TE
h x y z e x y
Z
 
 
0 0 1 tan
r rc r r d
k k k j
    
  
kc = real number (depends on geometry and mode number)
   
2 2
, ,
t z c z
h x y k h x y
  
TE
z
Z
k


 The mode can exist inside of a single pipe (waveguide).
50
TMz Mode:
2 2
z c
k k k
 
0, 0
z z
H E
 
   
 
1
ˆ
, ,
t t
TM
h x y z e x y
Z
 
 
0 0 1 tan
r rc r r d
k k k j
    
  
kc = real number (depends on geometry and mode number)
   
2 2
, ,
t z c z
e x y k e x y
  
z
TM
k
Z


Summary (cont.)
 The mode can exist inside a single pipe (waveguide).

Weitere ähnliche Inhalte

Ähnlich wie Waveguiding Structures Part 1 (General Theory).pptx

Ähnlich wie Waveguiding Structures Part 1 (General Theory).pptx (20)

Lect2.ppt
Lect2.pptLect2.ppt
Lect2.ppt
 
Waveguiding Structures Part 3 (Parallel Plates).pptx
Waveguiding Structures Part 3 (Parallel Plates).pptxWaveguiding Structures Part 3 (Parallel Plates).pptx
Waveguiding Structures Part 3 (Parallel Plates).pptx
 
Transmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxTransmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptx
 
emtl
emtlemtl
emtl
 
Chapter 3 wave_optics
Chapter 3 wave_opticsChapter 3 wave_optics
Chapter 3 wave_optics
 
Hydrogen spectrum analysis by simulation
Hydrogen spectrum analysis by simulationHydrogen spectrum analysis by simulation
Hydrogen spectrum analysis by simulation
 
Torsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSTorsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMS
 
Microwave waveguides 1st 1
Microwave waveguides 1st 1Microwave waveguides 1st 1
Microwave waveguides 1st 1
 
Microwave PPT.ppt
Microwave PPT.pptMicrowave PPT.ppt
Microwave PPT.ppt
 
Preparatory_Notes_Exam2.ppt
Preparatory_Notes_Exam2.pptPreparatory_Notes_Exam2.ppt
Preparatory_Notes_Exam2.ppt
 
s3-Ellipsometry.ppt
s3-Ellipsometry.ppts3-Ellipsometry.ppt
s3-Ellipsometry.ppt
 
Welcome to the presentation.pptx
Welcome to the presentation.pptxWelcome to the presentation.pptx
Welcome to the presentation.pptx
 
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
 
Berans qm overview
Berans qm overviewBerans qm overview
Berans qm overview
 
Lecture15_Hall_effect.pdf
Lecture15_Hall_effect.pdfLecture15_Hall_effect.pdf
Lecture15_Hall_effect.pdf
 
transmission-line-and-waveguide-ppt
transmission-line-and-waveguide-ppttransmission-line-and-waveguide-ppt
transmission-line-and-waveguide-ppt
 
Basic potential step and sweep methods
Basic potential step and sweep methodsBasic potential step and sweep methods
Basic potential step and sweep methods
 
On Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace TransformOn Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace Transform
 
481 lecture10
481 lecture10481 lecture10
481 lecture10
 
481 lecture10
481 lecture10481 lecture10
481 lecture10
 

Kürzlich hochgeladen

VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
rknatarajan
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
Tonystark477637
 

Kürzlich hochgeladen (20)

Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 

Waveguiding Structures Part 1 (General Theory).pptx

  • 1. 1 Prof. David R. Jackson Dept. of ECE Notes 6 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding Structures Part 1: General Theory Adapted from notes by Prof. Jeffery T. Williams
  • 2. 2 In general terms, a waveguiding system is a system that confines electromagnetic energy and channels it from one point to another. (This is opposed to a wireless system that uses antennas.) Examples – Coax – Twin lead (twisted pair) – Printed circuit lines (e.g. microstrip) – Parallel plate waveguide – Rectangular waveguide – Circular waveguide Waveguide Introduction Note: In microwave engineering, the term “waveguide” is often used to mean rectangular or circular waveguide (i.e., a hollow pipe of metal). Waveguides – Optical fiber (dielectric waveguide) Transmission Lines
  • 3. 3 General Notation for Waveguiding Systems Assume ejt time dependence and homogeneous source-free materials. Assume wave propagation in the  z direction: z jk z z e e         ˆ , , , , z jk z t z E x y z e x y z e x y e             ˆ , , , , z jk z t z H x y z h x y z h x y e       , z j k j          Transverse (x,y) components c j             tan c d c       Note: Lower case letters denote 2-D fields (the z term is suppressed). j        c c c j        z jk   z c  C Example of waveguiding system (a waveguide)
  • 4. 4 Helmholtz Equation E j H             2 c E j H j j E J j j E E j j E k E                     v E     H j E J     0 H   c j             Recall: 2 2 c k    (complex) where
  • 5. 5 Helmholtz Equation Vector Laplacian definition:   2 E E E            2 2 2 2 ˆ ˆ ˆ x y z E x E y E z E        where 2 E k E     2 2 2 2 2 2 v v E E k E E k E E k E                             
  • 6. 6 2 2 v E k E            Next, we examine the term on the right-hand side. Helmholtz Equation (cont.) So far we have:
  • 7. 7       0 0 0 0 c c c v H j E H j E j E E D                       To do this, start with Ampere’s law: In the time-harmonic (sinusoidal) steady state, there can never be any volume charge density inside of a linear, homogeneous, isotropic, source-free region that obeys Ohm’s law. Helmholtz Equation (cont.)
  • 8. 8 Vector Helmholtz equation 2 2 0 E k E    Hence, we have Helmholtz Equation (cont.)
  • 9. 9                   2 2 2 c c c c H j E E H j E H j E H j E H j j H H H j j H H k H                                          Similarly, for the magnetic field, we have H j E J     Helmholtz Equation (cont.) c j             Recall:
  • 10. 10 2 2 0 H k H    Hence, we have Helmholtz Equation (cont.) Vector Helmholtz equation
  • 11. 11 2 2 0 H k H    Summary 2 2 0 E k E    These equations are valid for a source-free, homogeneous, isotropic, linear material. Vector Helmholtz equation Helmholtz Equation (cont.)
  • 12. 12 2 2 0 z z H k H    From the property of the vector Laplacian, we have 2 2 0 z z E k E    Recall: Scalar Helmholtz equation Helmholtz Equation (cont.)       2 2 2 2 ˆ ˆ ˆ x y z E x E y E z E       
  • 13. 13 Assume a guided wave with a field variation F(z) in the z direction of the form   z jk z F z e  Field Representation Then all four of the transverse (x and y) field components can be expressed in terms of the two longitudinal ones:   , z z E H (This is a property of any guided wave.)
  • 14. 14 Assume a source-free region with a variation z jk z e E j H     1) z z y x E jk E j H y       2) z z x y E jk E j H x       3) y x z E E j H x y         4) z z y c x H jk H j E y      5) z z x c y H jk H j E x      6) y x z H H j E x y        Field Representation: Proof c H j E    Take (x,y,z) components
  • 15. 15 Combining 1) and 5): 2 2 2 2 2 1 ( ) 1 c z z z z x x c z z z z x c c z z c z z x z z x c z c k E H jk jk H j H y j x E k H k j H y x j E H j jk k k H y x E H H j jk k y x                                                             2 2 c z k k k   Cutoff wavenumber (real number, as discussed later) Field Representation: Proof (cont.) A similar derivation holds for the other three transverse field components.
  • 16. 16 2 2 2 2 z z x c z c z z y c z c z z x z c z z y z c E H j H k k y x E H j H k k x y E H j E k k x y E H j E k k y x                                                       Summary of Results These equations give the transverse field components in terms of the longitudinal components, Ez and Hz. Field Representation (cont.) 2 2 c k    2 2 c z k k k  
  • 17. 17 Therefore, we only need to solve the Helmholtz equations for the longitudinal field components (Ez and Hz). 2 2 0 z z H k H    2 2 0 z z E k E    Field Representation (cont.) , , , x y x y E E H H From table
  • 18. 18 Types of guided waves: Types of Waveguiding Systems  TEMz: Ez = 0, Hz = 0  TMz: Ez  0, Hz = 0  TEz: Ez = 0, Hz  0  Hybrid: Ez  0, Hz  0 Microstrip h w r TEMz TMz , TEz Hybrid Hybrid   0 R    PEC
  • 19. 19 Waveguides Two types of modes: TEz , TMz  We assume that the boundary is PEC.  We assume that the inside is filled with a homogenous isotropic linear material (could be air) An example of a waveguide (rectangular waveguide)
  • 20. 20 Transverse Electric (TEz) Waves 0 z E   In general, Ex, Ey, Hx, Hy, Hz  0 To find the TEz field solutions (away from any sources), solve 2 2 ( ) 0 z k H    2 2 2 2 2 2 2 0 z k H x y z                 The electric field is “transverse” (perpendicular) to z. or
  • 21. 21 Recall that the field solutions we seek are assumed to vary as   z jk z F z e  ( , , ) ( , ) jk z z z z H x y z h x y e     2 2 2 2 2 2 2 , 0 z c z k k k h x y x y                    2 2 2 c z k k k     2 2 2 2 2 , 0 c z k h x y x y               2 2 2 2 2 2 2 0 z k H x y z                 Transverse Electric (TEz) Waves (cont.)     2 2 2 2 2 , , z c z h x y k h x y x y              
  • 22. 22 We need to solve the eigenvalue problem subject to the appropriate boundary conditions. Transverse Electric (TEz) Waves (cont.)     2 2 2 2 2 , , z c z h x y k h x y x y              (2D Eigenvalue problem)   2 , z c h x y k        eigenfunction eigenvalue (A proof of this may be found in the ECE 6340 notes.) For this type of eigenvalue problem, the eigenvalue is always real.     2 2 2 2 , , x y x y x y               Change notation
  • 23. 23 Transverse Electric (TEz) Waves (cont.)     2 2 2 2 2 , , z c z h x y k h x y x y              z c  C Hence, TEz modes exist inside of a waveguide (conducting pipe). c  C   , z h x y PEC 0 z h n    Neumann boundary condition A solution to the eigenvalue problem can always be found for a PEC boundary (proof omitted). Neumann boundary condition (see below)
  • 24. 24 Once the solution for Hz is obtained, we use 2 2 2 2 z z z x x c c z z z y y c c jk H j H H E k x k y jk H j H H E k y k x                TE wave impedance TE z Z k   y x y x z E E H H k    For a wave propagating in the positive z direction (top sign): y x y x z E E H H k     Transverse Electric (TEz) Waves (cont.) For a wave propagating in the negative z direction (bottom sign):
  • 25. 25 For a wave propagating in the positive z direction, we also have:   ˆ ˆ ˆ ˆ ˆ ˆ 1 ˆ ( ) t x y t TE y x TE t t t TE z e ye xe z e Z yh xh Z h h z e Z                  ˆ ˆ , , , t x y e x y xe x y ye x y   Similarly, for a wave propagating in the negative z direction, 1 ˆ ( ) t t TE h z e Z    Transverse Electric (TEz) Waves (cont.) x TE y y TE x e Z h e Z h    Recall:
  • 26. 26 Summarizing both cases, we have + sign: wave propagating in the + z direction - sign: wave propagating in the - z direction       1 ˆ , , t t TE h x y z e x y Z    Transverse Electric (TEz) Waves (cont.)
  • 27. 27 0 z H   Transverse Magnetic (TMz) Waves In general, Ex, Ey, Ez ,Hx, Hy  0 To find the TEz field solutions (away from any sources), solve 2 2 ( ) 0 z k E    2 2 2 2 2 2 2 0 z k E x y z                 or The magnetic field is “transverse” (perpendicular) to z.
  • 28. 28   2 2 2 2 2 , 0 c z k e x y x y                 2 2 2 2 2 2 2 , 0 z c z k k k e x y x y                    2 2 2 c z k k k   Transverse Magnetic (TMz) Waves (cont.)     2 2 2 2 2 , , z c z e x y k e x y x y               2 2 2 2 2 2 2 0 z k E x y z                 Recall that the field solutions we seek are assumed to vary as ( , , ) ( , ) jk z z z z E x y z e x y e     z jk z F z e 
  • 29. 29 We need to solve the eigenvalue problem subject to the appropriate boundary conditions. Transverse Electric (TEz) Waves (cont.)     2 2 2 2 2 , , z c z e x y k e x y x y              (Eigenvalue problem)   2 , z c e x y k    eigenfunction eigenvalue (A proof of this may be found in the ECE 6340 notes.) For this type of eigenvalue problem, the eigenvalue is always real.
  • 30. 30 Transverse Magnetic (TMz) Waves (cont.)     2 2 2 2 2 , , z c z e x y k e x y x y              A solution to the eigenvalue problem can always be found for a PEC boundary (proof omitted). z c  C c  C   , z e x y PEC 0 z e  Dirichlet boundary condition Hence, TMz modes exist inside of a waveguide (conducting pipe). Dirichlet boundary condition (see below)
  • 31. 31 2 2 2 2 c z z z x x c c c z z z y y c c j E jk E H E k y k x j E jk E H E k x k y                TM wave impedance z TM c k Z   y x z y x c E E k H H    y x z y x c E E k H H     Once the solution for Ez is obtained, we use For a wave propagating in the positive z direction (top sign): For a wave propagating in the negative z direction (bottom sign): Transverse Magnetic (TMz) Waves (cont.)
  • 32. 32 For a wave propagating in the positive z direction, we also have:   ˆ ˆ ˆ ˆ ˆ ˆ 1 ˆ ( ) t x y t TM y x TM t t t TM z e ye xe z e Z yh xh Z h h z e Z                  ˆ ˆ , , , t x y e x y xe x y ye x y   Similarly, for a wave propagating in the negative z direction, 1 ˆ ( ) t t TM h z e Z    Transverse Magnetic (TMz) Waves (cont.) x TM y y TM x e Z h e Z h    Recall :
  • 33. 33 Summarizing both cases, we have + sign: wave propagating in the + z direction - sign: wave propagating in the - z direction       1 ˆ , , t t TM h x y z e x y Z    Transverse Magnetic (TMz) Waves (cont.)
  • 34. 34 Transverse ElectroMagnetic (TEM) Waves 0, 0 z z E H    From the previous table for the transverse field components, all of them are equal to zero if Ez and Hz are both zero. Unless 2 0 c k  For TEM waves 2 2 2 0 c z k k k    z c k k     In general, Ex, Ey, Hx, Hy  0 Hence, we have 2 2 2 2 z z x c z c z z y c z c z z x z c z z y z c E H j H k k y x E H j H k k x y E H j E k k x y E H j E k k y x                                                      
  • 35. 35 Transverse ElectroMagnetic (TEM) Waves (cont.)       , , , , z jk z jkz t H x y z h x y e h x y e     ˆ s J n H   From EM boundary conditions, we have:     ˆ , jkz s t J n h x y e   so n̂ t h x y ˆ s sz J z J  The current flows purely in the z direction.
  • 36. 36 In a linear, isotropic, homogeneous source-free region, 0 E                   0 , 0 , , 0 , 0 z z z t jk z t t jk z jk z t t t t t E e x y e e e x y e x y e e x y                  ˆ ˆ t x y x y        In rectangular coordinates, we have Notation: 0 y x z E E E x y z              , 0 t t e x y    Transverse ElectroMagnetic (TEM) Waves (cont.) Hence, we have
  • 37. 37 Also, for the TEMz mode, we have from Faraday’s law (taking the z component):     ˆ ˆ 0 z z E z j H j H           0 y x E E x y           , 0 t t e x y    0 y x e e x y       ˆ ˆ t x y x y        Note: Using the formula for the z component of the curl of E, we have: Hence Transverse ElectroMagnetic (TEM) Waves (cont.) Hence, we have:       ˆ ˆ , , , t x y e x y xe x y ye x y     ˆ , y x t t e e e x y z x y              
  • 38. 38     , 0 t t e x y        , , t t e x y x y        , 0 t t e x y        , 0 t t x y        2 , 0 t x y    Hence Transverse ElectroMagnetic (TEM) Waves (cont.)
  • 39. 39   2 , 0 x y    Since the potential function that describes the electric field in the cross- sectional plane is two dimensional, we can drop the “t” subscript if we wish: Boundary Conditions:     , , a b a b x y x y       conductor " " conductor " " This is enough to make the potential function unique. Hence, the potential function is the same for DC as it is for a high- frequency microwave signal. Transverse ElectroMagnetic (TEM) Waves (cont.) The field of a TEM mode does not change shape with frequency: it has the same shape as a DC field.   2 , 0 x y    a b PEC conductors
  • 40. 40 Notes:  A TEMz mode has an electric field that has exactly the same shape as a static (DC) field. (A similar proof holds for the magnetic field.)  This implies that the C and L for the TEMz mode on a transmission line are independent of frequency.  This also implies that the voltage drop between the two conductors of a transmission line carrying a TEMz mode is path independent.  A TEMz mode requires two or more conductors: a static electric field cannot exist inside of a waveguide (hollow metal pipe) due to the Faraday cage effect. Transverse ElectroMagnetic (TEM) Waves (cont.)
  • 41. 41 For a TEM mode, both wave impedances are the same: Transverse ElectroMagnetic (TEM) Waves (cont.) c z TM c c c c k k Z              TE z c c Z k k              Note:  is complex for lossy media. z k k  Recall:
  • 42. 42 TEM Solution Process A) Solve Laplace’s equation subject to appropriate B.C.s.: B) Find the transverse electric field: C) Find the total electric field: D) Find the magnetic field:   2 , 0 x y      1 ˆ ; H z E z      propagating     , , t e x y x y       , , , , z jk z t z E x y z e x y e k k   Note: The only frequency dependence is in the wavenumber kz = k.
  • 43. 43 Note on Lossy Transmission Line  A TEM mode can have an arbitrary amount of dielectric loss.  A TEM mode cannot have conductor loss. J E   Inside conductors:   I z + + + + + + + - - - - - - - - - -   V z z z J E  In practice, a small conductor loss will not change the shape of the fields too much, and the mode is approximately TEM. If there is conductor loss, there must be an Ez field.
  • 44. 44 If there is only dielectric loss (an exact TEM mode):    R j L G j C         0 0 1 tan c r r d jk j j j              0 0 r r LC        z z jk jk k k        j L G j C             2 0 0 1 tan r r d j L G j C j             Equate real and imaginary parts      2 0 0 tan r r d L G         Note on Lossy Transmission Line (cont.)   : r r   Note denotes real
  • 45. 45 tan d G C    From these two equations we have: 0 0 r r LC      0 0 r r LC                 2 0 0 2 0 0 0 0 0 0 2 0 0 tan tan tan tan r r d r r d r r d r r d r r L G G C LC LC                                   Equations for a TEM mode: Note: These formulas were assumed previously in Notes 3. Note on Lossy Transmission Line (cont.)
  • 46. 46 This general formula accounts for both dielectric and conductor loss:    R j L G j C       Dielectric loss Conductor loss When R is present the mode is not exactly TEM, but we usually ignore this. Note on Lossy Transmission Line (cont.)
  • 47. 47 Summary TEM Mode:   0 0 1 tan z r rc r r d k k k k j          0 z z E H         1 ˆ , , t t h x y z e x y      1 tan rc r d j      0 0 0 376.7303       0 r c rc        
  • 48. 48    z jk R j L G j C        Summary (cont.) Transmission line mode (approximate TEM mode): tan d G C    0 0 r r LC      0 lossless L Z C    0 0 0 0 0 0 / tan lossless r r lossless r r d L Z C Z G C R R               ˆ s sz J z J   The mode requires two conductors.  The mode is purely TEM only when R = 0.
  • 49. 49 Summary (cont.) TEz Mode: 2 2 z c k k k   0, 0 z z E H         1 ˆ , , t t TE h x y z e x y Z     0 0 1 tan r rc r r d k k k j         kc = real number (depends on geometry and mode number)     2 2 , , t z c z h x y k h x y    TE z Z k    The mode can exist inside of a single pipe (waveguide).
  • 50. 50 TMz Mode: 2 2 z c k k k   0, 0 z z H E         1 ˆ , , t t TM h x y z e x y Z     0 0 1 tan r rc r r d k k k j         kc = real number (depends on geometry and mode number)     2 2 , , t z c z e x y k e x y    z TM k Z   Summary (cont.)  The mode can exist inside a single pipe (waveguide).