SlideShare ist ein Scribd-Unternehmen logo
1 von 42
Downloaden Sie, um offline zu lesen
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Transformations of Continuous-Variable Entangled
States of Light
Ondˇrej ˇCernot´ık
Department of Optics, Palack´y University Olomouc, Czech Republic
Niels Bohr Institute, July 2013
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Outline
1 Motivation
2 Enhancing entanglement concentration by coherent displacements
3 Symmetrization of multipartite states by local Gaussian operations
4 Conclusions
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Outline
1 Motivation
2 Enhancing entanglement concentration by coherent displacements
3 Symmetrization of multipartite states by local Gaussian operations
4 Conclusions
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Gaussian States
Wigner Function
W (x) =
1
2π
√
det γ
exp −
1
2
(x − ¯x)T
γ−1
(x − ¯x)
Mathematical description
in phase space.
Feasible using linear
optics, squeezers and
homodyne detection.1
1
S. L. Braunstein and P. van Loock, RMP 77, 513, C. Weedbrook et al.,
RMP 84, 621
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Quantum Entanglement
Important resource in quantum information processing.
Applications of Entanglement
Quantum teleportation,
Quantum key distribution,
Quantum dense coding,
One-way quantum computing,
Quantum metrology,. . .
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Bipartite and Multipartite Entanglement
Bipartite Entanglement
Relatively easy identification and quantification.
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Bipartite and Multipartite Entanglement
Bipartite Entanglement
Relatively easy identification and quantification.
Multipartite Entanglement
Complexity grows with number of parties. (Tripartite Gaussian
entanglement – 5 entanglement classesa).
Problematic quantification.
Applications: one-way quantum computingb, quantum
networksc.
a
G. Giedke et al., PRA 64, 052303
b
N. C. Menicucci et al., PRL 97, 110501
c
P. van Loock and S. L. Braunstein, PRL 84, 3482
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Outline
1 Motivation
2 Enhancing entanglement concentration by coherent displacements
3 Symmetrization of multipartite states by local Gaussian operations
4 Conclusions
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Why Entanglement Concentration?
Distribution of entangled states is subject to losses and
decoherence.
State degradation can be probabilistically eliminated using
local operations and classical communication.
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Entanglement Concentration and CV Systems
Non-Gaussianity Required
Gaussian states → non-Gaussian operations.a
Non-Gaussian states → Gaussian operations.b
a
J. Eisert et al., PRL 89, 137903, J. Fiur´aˇsek, PRL 89, 137904
b
R. Dong et al., Nat. Phys. 4, 919, B. Haage et al., Nat. Phys. 4, 915
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Photon Subtraction
Unbalanced beam splitter
and single-photon
detection.1
Can be improved by local
Gaussian operations.2
BS
APD
1
H. Takahashi et al., Nat. Photon. 4, 178
2
J. Fiur´aˇsek, PRA 84, 012335, S. L. Zhang and P. van Loock, PRA 84,
062309
Motivation Entanglement concentration Gaussian symmetrization Conclusions
The Protocol
ˆD(α) ˆD(−α)
ˆF = ˆa + α
Motivation Entanglement concentration Gaussian symmetrization Conclusions
The Protocol
ˆD(α) ˆD(−α)
ˆF = ˆa + α
ˆa + α
ˆF1 = ˆa + α
Motivation Entanglement concentration Gaussian symmetrization Conclusions
The Protocol
ˆD(α) ˆD(−α)
ˆF = ˆa + α
ˆa + α
ˆF1 = ˆa + α
ˆa + α ˆb + β
ˆF2 = (ˆa + α) ⊗ (ˆb + β)
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Input State
Single-mode squeezed vacuum split on a beam splitter.
|ψin =
4
1 − λ2
∞
n=0
2n
k=0
λn
2nn!
(2n)!t2n−krk
k!(2n − k)!
|2n − k, k
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Weak Input Squeezing
Zero- and two-photon contributions,
|ψin ≈ |00 + λrt|11 +
λ
√
2
(t2
|20 + r2
|02 ).
Destructive quantum interference leads to enhancement of
entanglement.
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Weak Input Squeezing
Single-Mode Subtraction
|ψ1 = λt(t|10 + r|01 ) + α|ψin
Zero displacement is optimal.
0.0
0.2
0.4
0.6
0.8
1.0
E
-0.05 0.0 0.05
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Weak Input Squeezing
Two-Mode Subtraction
|ψ2 = (λrt + αβ)|00 + λ(αr + βt)(t|10 + r|01 ) +
+
λ
√
2
αβ(t2
|20 +
√
2rt|11 + r2
|02 )
-0.15
0.0
0.15
-0.15 0.0 0.15
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Weak Input Squeezing
Two-Mode Subtraction
|ψ2 = (λrt + αβ)|00 + λ(αr + βt)(t|10 + r|01 ) +
+
λ
√
2
αβ(t2
|20 +
√
2rt|11 + r2
|02 )
Vacuum term elimination,
αβ = −λrt.
|ψ2 =
√
2rt|11 +t2|20 +r2|02
-0.15
0.0
0.15
-0.15 0.0 0.15
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Weak Input Squeezing
Two-Mode Subtraction
|ψ2 = (λrt + αβ)|00 + λ(αr + βt)(t|10 + r|01 ) +
+
λ
√
2
αβ(t2
|20 +
√
2rt|11 + r2
|02 )
Vacuum term elimination,
αβ = −λrt.
Single-photon contributions,
α =
√
λt, β =
√
λr.
|ψ2 =
√
2rt|11 +t2|20 +r2|02 0.8
1.0
1.2
1.4
1.6
E
0.0 0.05 0.1 0.15
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Arbitrary Squeezing
A Realistic Scenario
Experimental Realization
Stronger squeezing.
On-off detectors for photon subtraction with limited efficiency.
Finite transmittance of tap-off beam splitters.
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Arbitrary Squeezing
A Realistic Scenario
Experimental Realization
Stronger squeezing.
On-off detectors for photon subtraction with limited efficiency.
Finite transmittance of tap-off beam splitters.
Higher photon numbers, mixed output state, more complicated
filtering operation.
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Arbitrary Squeezing
Results
0.0
0.2
0.4
0.6
0.8
1.0
1.2
EN
-0.5 0.0 0.5
0.9
1.0
1.1
1.2
EN
0.0 0.1 0.2 0.3 0.4
10
-7
10
-6
10
-5
10
-4
10
-3
10
-2
P1
0.0 0.1 0.2 0.3 0.4
-1.0
-0.5
0.0
0.5
1.0
-1.0 -0.5 0.0 0.5 1.0
1.3
1.4
1.5
EN
0.0 0.1 0.2 0.3 0.4
10
-14
10
-12
10
-10
10
-8
10
-6
10
-4
10
-2
P2
0.0 0.1 0.2 0.3 0.4
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Arbitrary Squeezing
Results
Conclusions
Single-mode subtraction optimal without displacements.
Two-mode subtraction gives more output entanglement; the
success probability is smaller.
a
O. ˇCernot´ık and J. Fiur´aˇsek, PRA 86, 052339
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Arbitrary Squeezing
Results
Conclusions
Single-mode subtraction optimal without displacements.
Two-mode subtraction gives more output entanglement; the
success probability is smaller.
a
O. ˇCernot´ık and J. Fiur´aˇsek, PRA 86, 052339
Extensions
Losses limit usability of the protocol.
No Gaussian entanglement at the output.
b
A. Tipsmark et al., Opt. Exp. 21, 6670
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Outline
1 Motivation
2 Enhancing entanglement concentration by coherent displacements
3 Symmetrization of multipartite states by local Gaussian operations
4 Conclusions
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Symmetrization of Multipartite Gaussian States
Equalization of quadrature correlations.








n 0 c 0 c 0
0 n 0 −d 0 −d
c 0 n 0 c 0
0 −d 0 n 0 −d
c 0 c 0 n 0
0 −d 0 −d 0 n








→








n′ 0 c′ 0 c′ 0
0 n′ 0 −c′ 0 −c′
c′ 0 n′ 0 c′ 0
0 −c′ 0 n′ 0 −c′
c′ 0 c′ 0 n′ 0
0 −c′ 0 −c′ 0 n′








Generalization of protocols for bipartite Gaussian states.1
1
J. Fiur´aˇsek, PRA 86, 032317
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Equivalent State Preparation
N
1 2
. . .
rN , nN
1:12:1(N − 1):1
r1, n1 r1, n1 r1, n1r1, n1
BS1 BSN−2 BSN−1BS2
(N − 2):1
N − 2 N − 1
Simplified analysis – working with two separable modes.
Similarity to experimental realizations of quantum networks.1
1
T. Aoki et al., PRL 91, 080404, H. Yonezawa et al., Nature 431, 430
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Equivalent State Preparation
N
1 2
. . .
rN , nN
1:12:1(N − 1):1
r1, n1 r1, n1 r1, n1r1, n1
BS1 BSN−2 BSN−1BS2
(N − 2):1
N − 2 N − 1
n =
1
N
[nNe2rN
+ (N − 1)n1e2r1
]
c =
1
N
(nNe2rn
− n1e2r1
)
d =
1
N
(n1e−2r1
− nNe−2rN
)
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Assisted Quantum Teleportation
Entanglement
characterization – assisted
teleportation fidelity.1
F = 1√
(n−c+1)(n−d+1−2d2/n)
More general
transformations
(n, c, d) → (n′, c′, kc′).
A
B
C
in
(qin − qA)/
√
2
(pin + pA)/
√
2
1
P. van Loock and S.L. Braunstein, PRL 84, 3482
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Strategies
Correlated Noise Addition
ργNS γN S
γN
S
Adding correlated noise γN.
Squeezing S.
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Strategies
Quantum Non-Demolition Interaction
ρgdAS g dB S
g
dC
S
QND interaction g, measurement on ancillas and
displacement d.
Squeezing S.
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Results for Tripartite States
Noise Addition
0.45
0.5
0.55
0.6
0.65
F
0.45 0.5 0.55 0.6 0.65 0.7 0.75
k
QND Interaction
0.4
0.45
0.5
0.55
F
0.3 0.4 0.5 0.6 0.7
k
Both strategies work best for noisy states.
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Outlook
More general class of transformations,
(n1, n2, c, d) → (n′, k1n′, c′, k2c′).
Formalism of complex symplectic matrices for
purity-preserving Gaussian quantum filters.1
1
J. Fiur´aˇsek, PRA 87, 052301
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Outline
1 Motivation
2 Enhancing entanglement concentration by coherent displacements
3 Symmetrization of multipartite states by local Gaussian operations
4 Conclusions
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Entanglement Concentration
Value of Squeezing
Weak squeezing: Destructive quantum interference.
Arbitrary squeezing: Realistic experimental scenario.
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Entanglement Concentration
Value of Squeezing
Weak squeezing: Destructive quantum interference.
Arbitrary squeezing: Realistic experimental scenario.
Strategies
Single-mode photon subtraction optimal without
displacements.
Local displacements can improve two-mode subtraction.
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Entanglement Concentration
Value of Squeezing
Weak squeezing: Destructive quantum interference.
Arbitrary squeezing: Realistic experimental scenario.
Strategies
Single-mode photon subtraction optimal without
displacements.
Local displacements can improve two-mode subtraction.
Structure of the entanglement.
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Symmetrization of multipartite Gaussian states
Tools
Equivalent state preparation for analyzing protocols.
Assisted teleportation fidelity for state characterization.
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Symmetrization of multipartite Gaussian states
Tools
Equivalent state preparation for analyzing protocols.
Assisted teleportation fidelity for state characterization.
Strategies
Correlated noise addition: More sensitive to imperfections
(narrow peak).
QND interaction: More challenging experimentally (use of
atomic ensemblesa, linear optical emulationb).
Each strategy optimal for different types of states.
a
K. Hammerer et al., RMP 82, 1041
b
R. Filip et al., PRA 71, 042308
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Symmetrization of multipartite Gaussian states
Tools
Equivalent state preparation for analyzing protocols.
Assisted teleportation fidelity for state characterization.
Strategies
Correlated noise addition: More sensitive to imperfections
(narrow peak).
QND interaction: More challenging experimentally (use of
atomic ensemblesa, linear optical emulationb).
Each strategy optimal for different types of states.
a
K. Hammerer et al., RMP 82, 1041
b
R. Filip et al., PRA 71, 042308
Possible extensions of the protocol.
Motivation Entanglement concentration Gaussian symmetrization Conclusions
Credits
Jarom´ır Fiur´aˇsek
Radim Filip
Financial support:
Thank you for your attention!

Weitere ähnliche Inhalte

Was ist angesagt?

The gw method in quantum chemistry
The gw method in quantum chemistryThe gw method in quantum chemistry
The gw method in quantum chemistryMichiel van Setten
 
Dynamic magnification factor-A Re-evaluation
Dynamic magnification factor-A Re-evaluationDynamic magnification factor-A Re-evaluation
Dynamic magnification factor-A Re-evaluationSayan Batabyal
 
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...Claudio Attaccalite
 
Detection of unknown signal
Detection of unknown signalDetection of unknown signal
Detection of unknown signalsumitf1
 
[KHBM] Application of network analysis based on cortical thickness to obsessi...
[KHBM] Application of network analysis based on cortical thickness to obsessi...[KHBM] Application of network analysis based on cortical thickness to obsessi...
[KHBM] Application of network analysis based on cortical thickness to obsessi...Seung-Goo Kim
 
Non-interacting and interacting Graphene in a strong uniform magnetic field
Non-interacting and interacting Graphene in a strong uniform magnetic fieldNon-interacting and interacting Graphene in a strong uniform magnetic field
Non-interacting and interacting Graphene in a strong uniform magnetic fieldAnkurDas60
 
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis Lake Como School of Advanced Studies
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phaseClaudio Attaccalite
 
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...Anax Fotopoulos
 
Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusSEENET-MTP
 
Phase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsPhase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsDaniel Wheeler
 
Decomposition and Denoising for moment sequences using convex optimization
Decomposition and Denoising for moment sequences using convex optimizationDecomposition and Denoising for moment sequences using convex optimization
Decomposition and Denoising for moment sequences using convex optimizationBadri Narayan Bhaskar
 

Was ist angesagt? (20)

NANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFTNANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFT
 
Real Time Spectroscopy
Real Time SpectroscopyReal Time Spectroscopy
Real Time Spectroscopy
 
The gw method in quantum chemistry
The gw method in quantum chemistryThe gw method in quantum chemistry
The gw method in quantum chemistry
 
NANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
NANO266 - Lecture 3 - Beyond the Hartree-Fock ApproximationNANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
NANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
 
Dynamic magnification factor-A Re-evaluation
Dynamic magnification factor-A Re-evaluationDynamic magnification factor-A Re-evaluation
Dynamic magnification factor-A Re-evaluation
 
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
 
Detection of unknown signal
Detection of unknown signalDetection of unknown signal
Detection of unknown signal
 
Approximations in DFT
Approximations in DFTApproximations in DFT
Approximations in DFT
 
[KHBM] Application of network analysis based on cortical thickness to obsessi...
[KHBM] Application of network analysis based on cortical thickness to obsessi...[KHBM] Application of network analysis based on cortical thickness to obsessi...
[KHBM] Application of network analysis based on cortical thickness to obsessi...
 
Non-interacting and interacting Graphene in a strong uniform magnetic field
Non-interacting and interacting Graphene in a strong uniform magnetic fieldNon-interacting and interacting Graphene in a strong uniform magnetic field
Non-interacting and interacting Graphene in a strong uniform magnetic field
 
MARM_chiral
MARM_chiralMARM_chiral
MARM_chiral
 
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
 
Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phase
 
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
 
Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present status
 
1 s2.0-s0022460 x00931079-main
1 s2.0-s0022460 x00931079-main1 s2.0-s0022460 x00931079-main
1 s2.0-s0022460 x00931079-main
 
Serie de dyson
Serie de dysonSerie de dyson
Serie de dyson
 
Phase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsPhase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methods
 
Decomposition and Denoising for moment sequences using convex optimization
Decomposition and Denoising for moment sequences using convex optimizationDecomposition and Denoising for moment sequences using convex optimization
Decomposition and Denoising for moment sequences using convex optimization
 

Ähnlich wie Transformations of continuous-variable entangled states of light

Bayesian adaptive optimal estimation using a sieve prior
Bayesian adaptive optimal estimation using a sieve priorBayesian adaptive optimal estimation using a sieve prior
Bayesian adaptive optimal estimation using a sieve priorJulyan Arbel
 
Basics Nuclear Physics concepts
Basics Nuclear Physics conceptsBasics Nuclear Physics concepts
Basics Nuclear Physics conceptsMuhammad IrfaN
 
Parity-Violating and Parity-Conserving Asymmetries in ep and eN Scattering in...
Parity-Violating and Parity-Conserving Asymmetries in ep and eN Scattering in...Parity-Violating and Parity-Conserving Asymmetries in ep and eN Scattering in...
Parity-Violating and Parity-Conserving Asymmetries in ep and eN Scattering in...Wouter Deconinck
 
ABC with Wasserstein distances
ABC with Wasserstein distancesABC with Wasserstein distances
ABC with Wasserstein distancesChristian Robert
 
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rulesJAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning ruleshirokazutanaka
 
Introducing Zap Q-Learning
Introducing Zap Q-Learning   Introducing Zap Q-Learning
Introducing Zap Q-Learning Sean Meyn
 
ABC based on Wasserstein distances
ABC based on Wasserstein distancesABC based on Wasserstein distances
ABC based on Wasserstein distancesChristian Robert
 
Bayesian modelling and computation for Raman spectroscopy
Bayesian modelling and computation for Raman spectroscopyBayesian modelling and computation for Raman spectroscopy
Bayesian modelling and computation for Raman spectroscopyMatt Moores
 
Relativistic theory of spin relaxation mechanisms in the Landau-Lifshitz equa...
Relativistic theory of spin relaxation mechanisms in the Landau-Lifshitz equa...Relativistic theory of spin relaxation mechanisms in the Landau-Lifshitz equa...
Relativistic theory of spin relaxation mechanisms in the Landau-Lifshitz equa...Ritwik Mondal
 
DPPs everywhere: repulsive point processes for Monte Carlo integration, signa...
DPPs everywhere: repulsive point processes for Monte Carlo integration, signa...DPPs everywhere: repulsive point processes for Monte Carlo integration, signa...
DPPs everywhere: repulsive point processes for Monte Carlo integration, signa...Advanced-Concepts-Team
 
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...Alberto Maspero
 
Inference in generative models using the Wasserstein distance [[INI]
Inference in generative models using the Wasserstein distance [[INI]Inference in generative models using the Wasserstein distance [[INI]
Inference in generative models using the Wasserstein distance [[INI]Christian Robert
 
Dynamic response of structures with uncertain properties
Dynamic response of structures with uncertain propertiesDynamic response of structures with uncertain properties
Dynamic response of structures with uncertain propertiesUniversity of Glasgow
 
Robust Super-Resolution by minimizing a Gaussian-weighted L2 error norm
Robust Super-Resolution by minimizing a Gaussian-weighted L2 error normRobust Super-Resolution by minimizing a Gaussian-weighted L2 error norm
Robust Super-Resolution by minimizing a Gaussian-weighted L2 error normTuan Q. Pham
 
slides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceslides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceArthur Charpentier
 
Canonical analysis
Canonical analysisCanonical analysis
Canonical analysis緯鈞 沈
 

Ähnlich wie Transformations of continuous-variable entangled states of light (20)

Bayesian adaptive optimal estimation using a sieve prior
Bayesian adaptive optimal estimation using a sieve priorBayesian adaptive optimal estimation using a sieve prior
Bayesian adaptive optimal estimation using a sieve prior
 
Basics Nuclear Physics concepts
Basics Nuclear Physics conceptsBasics Nuclear Physics concepts
Basics Nuclear Physics concepts
 
Parity-Violating and Parity-Conserving Asymmetries in ep and eN Scattering in...
Parity-Violating and Parity-Conserving Asymmetries in ep and eN Scattering in...Parity-Violating and Parity-Conserving Asymmetries in ep and eN Scattering in...
Parity-Violating and Parity-Conserving Asymmetries in ep and eN Scattering in...
 
180Q_final
180Q_final180Q_final
180Q_final
 
ABC with Wasserstein distances
ABC with Wasserstein distancesABC with Wasserstein distances
ABC with Wasserstein distances
 
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rulesJAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
 
Introducing Zap Q-Learning
Introducing Zap Q-Learning   Introducing Zap Q-Learning
Introducing Zap Q-Learning
 
ABC based on Wasserstein distances
ABC based on Wasserstein distancesABC based on Wasserstein distances
ABC based on Wasserstein distances
 
Bayesian modelling and computation for Raman spectroscopy
Bayesian modelling and computation for Raman spectroscopyBayesian modelling and computation for Raman spectroscopy
Bayesian modelling and computation for Raman spectroscopy
 
Relativistic theory of spin relaxation mechanisms in the Landau-Lifshitz equa...
Relativistic theory of spin relaxation mechanisms in the Landau-Lifshitz equa...Relativistic theory of spin relaxation mechanisms in the Landau-Lifshitz equa...
Relativistic theory of spin relaxation mechanisms in the Landau-Lifshitz equa...
 
DPPs everywhere: repulsive point processes for Monte Carlo integration, signa...
DPPs everywhere: repulsive point processes for Monte Carlo integration, signa...DPPs everywhere: repulsive point processes for Monte Carlo integration, signa...
DPPs everywhere: repulsive point processes for Monte Carlo integration, signa...
 
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...
Birkhoff coordinates for the Toda Lattice in the limit of infinitely many par...
 
Lecture 3 sapienza 2017
Lecture 3 sapienza 2017Lecture 3 sapienza 2017
Lecture 3 sapienza 2017
 
Inference in generative models using the Wasserstein distance [[INI]
Inference in generative models using the Wasserstein distance [[INI]Inference in generative models using the Wasserstein distance [[INI]
Inference in generative models using the Wasserstein distance [[INI]
 
Dynamic response of structures with uncertain properties
Dynamic response of structures with uncertain propertiesDynamic response of structures with uncertain properties
Dynamic response of structures with uncertain properties
 
Robust Super-Resolution by minimizing a Gaussian-weighted L2 error norm
Robust Super-Resolution by minimizing a Gaussian-weighted L2 error normRobust Super-Resolution by minimizing a Gaussian-weighted L2 error norm
Robust Super-Resolution by minimizing a Gaussian-weighted L2 error norm
 
report
reportreport
report
 
slides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceslides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial science
 
Canonical analysis
Canonical analysisCanonical analysis
Canonical analysis
 
0504006v1
0504006v10504006v1
0504006v1
 

Mehr von Ondrej Cernotik

Ancilla-error-transparent swap tests in circuit quantum electrodynamics
Ancilla-error-transparent swap tests in circuit quantum electrodynamicsAncilla-error-transparent swap tests in circuit quantum electrodynamics
Ancilla-error-transparent swap tests in circuit quantum electrodynamicsOndrej Cernotik
 
Gaussian control and readout of levitated nanoparticles via coherent scattering
Gaussian control and readout of levitated nanoparticles via coherent scatteringGaussian control and readout of levitated nanoparticles via coherent scattering
Gaussian control and readout of levitated nanoparticles via coherent scatteringOndrej Cernotik
 
Microwave entanglement created using swap tests with biased noise
Microwave entanglement created using swap tests with biased noiseMicrowave entanglement created using swap tests with biased noise
Microwave entanglement created using swap tests with biased noiseOndrej Cernotik
 
Controlling the motion of levitated particles by coherent scattering
Controlling the motion of levitated particles by coherent scatteringControlling the motion of levitated particles by coherent scattering
Controlling the motion of levitated particles by coherent scatteringOndrej Cernotik
 
Measurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersMeasurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersOndrej Cernotik
 
Quantum force sensing with optomechanical transducers
Quantum force sensing with optomechanical transducersQuantum force sensing with optomechanical transducers
Quantum force sensing with optomechanical transducersOndrej Cernotik
 
Quantum networks with superconducting circuits and optomechanical transducers
Quantum networks with superconducting circuits and optomechanical transducersQuantum networks with superconducting circuits and optomechanical transducers
Quantum networks with superconducting circuits and optomechanical transducersOndrej Cernotik
 
Novel approaches to optomechanical transduction
Novel approaches to optomechanical transductionNovel approaches to optomechanical transduction
Novel approaches to optomechanical transductionOndrej Cernotik
 
Improved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesImproved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesOndrej Cernotik
 
Improved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesImproved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesOndrej Cernotik
 
Entangling distant superconducting qubits using nanomechanical transducers
Entangling distant superconducting qubits using nanomechanical transducersEntangling distant superconducting qubits using nanomechanical transducers
Entangling distant superconducting qubits using nanomechanical transducersOndrej Cernotik
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Ondrej Cernotik
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Ondrej Cernotik
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Ondrej Cernotik
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Ondrej Cernotik
 
Novel approaches to optomechanical transduction
Novel approaches to optomechanical transductionNovel approaches to optomechanical transduction
Novel approaches to optomechanical transductionOndrej Cernotik
 
Interference effects in cavity optomechanics with hybridized membranes
Interference effects in cavity optomechanics with hybridized membranesInterference effects in cavity optomechanics with hybridized membranes
Interference effects in cavity optomechanics with hybridized membranesOndrej Cernotik
 
Displacement-enhanced continuous-variable entanglement concentration
Displacement-enhanced continuous-variable entanglement concentrationDisplacement-enhanced continuous-variable entanglement concentration
Displacement-enhanced continuous-variable entanglement concentrationOndrej Cernotik
 
Spatially adiabatic frequency conversion in opto-electro-mechanical arrays
Spatially adiabatic frequency conversion in opto-electro-mechanical arraysSpatially adiabatic frequency conversion in opto-electro-mechanical arrays
Spatially adiabatic frequency conversion in opto-electro-mechanical arraysOndrej Cernotik
 

Mehr von Ondrej Cernotik (20)

Ancilla-error-transparent swap tests in circuit quantum electrodynamics
Ancilla-error-transparent swap tests in circuit quantum electrodynamicsAncilla-error-transparent swap tests in circuit quantum electrodynamics
Ancilla-error-transparent swap tests in circuit quantum electrodynamics
 
Gaussian control and readout of levitated nanoparticles via coherent scattering
Gaussian control and readout of levitated nanoparticles via coherent scatteringGaussian control and readout of levitated nanoparticles via coherent scattering
Gaussian control and readout of levitated nanoparticles via coherent scattering
 
Microwave entanglement created using swap tests with biased noise
Microwave entanglement created using swap tests with biased noiseMicrowave entanglement created using swap tests with biased noise
Microwave entanglement created using swap tests with biased noise
 
Controlling the motion of levitated particles by coherent scattering
Controlling the motion of levitated particles by coherent scatteringControlling the motion of levitated particles by coherent scattering
Controlling the motion of levitated particles by coherent scattering
 
Hybrid quantum systems
Hybrid quantum systemsHybrid quantum systems
Hybrid quantum systems
 
Measurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersMeasurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducers
 
Quantum force sensing with optomechanical transducers
Quantum force sensing with optomechanical transducersQuantum force sensing with optomechanical transducers
Quantum force sensing with optomechanical transducers
 
Quantum networks with superconducting circuits and optomechanical transducers
Quantum networks with superconducting circuits and optomechanical transducersQuantum networks with superconducting circuits and optomechanical transducers
Quantum networks with superconducting circuits and optomechanical transducers
 
Novel approaches to optomechanical transduction
Novel approaches to optomechanical transductionNovel approaches to optomechanical transduction
Novel approaches to optomechanical transduction
 
Improved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesImproved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologies
 
Improved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesImproved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologies
 
Entangling distant superconducting qubits using nanomechanical transducers
Entangling distant superconducting qubits using nanomechanical transducersEntangling distant superconducting qubits using nanomechanical transducers
Entangling distant superconducting qubits using nanomechanical transducers
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...
 
Novel approaches to optomechanical transduction
Novel approaches to optomechanical transductionNovel approaches to optomechanical transduction
Novel approaches to optomechanical transduction
 
Interference effects in cavity optomechanics with hybridized membranes
Interference effects in cavity optomechanics with hybridized membranesInterference effects in cavity optomechanics with hybridized membranes
Interference effects in cavity optomechanics with hybridized membranes
 
Displacement-enhanced continuous-variable entanglement concentration
Displacement-enhanced continuous-variable entanglement concentrationDisplacement-enhanced continuous-variable entanglement concentration
Displacement-enhanced continuous-variable entanglement concentration
 
Spatially adiabatic frequency conversion in opto-electro-mechanical arrays
Spatially adiabatic frequency conversion in opto-electro-mechanical arraysSpatially adiabatic frequency conversion in opto-electro-mechanical arrays
Spatially adiabatic frequency conversion in opto-electro-mechanical arrays
 

Kürzlich hochgeladen

Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 

Kürzlich hochgeladen (20)

Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 

Transformations of continuous-variable entangled states of light

  • 1. Motivation Entanglement concentration Gaussian symmetrization Conclusions Transformations of Continuous-Variable Entangled States of Light Ondˇrej ˇCernot´ık Department of Optics, Palack´y University Olomouc, Czech Republic Niels Bohr Institute, July 2013
  • 2. Motivation Entanglement concentration Gaussian symmetrization Conclusions Outline 1 Motivation 2 Enhancing entanglement concentration by coherent displacements 3 Symmetrization of multipartite states by local Gaussian operations 4 Conclusions
  • 3. Motivation Entanglement concentration Gaussian symmetrization Conclusions Outline 1 Motivation 2 Enhancing entanglement concentration by coherent displacements 3 Symmetrization of multipartite states by local Gaussian operations 4 Conclusions
  • 4. Motivation Entanglement concentration Gaussian symmetrization Conclusions Gaussian States Wigner Function W (x) = 1 2π √ det γ exp − 1 2 (x − ¯x)T γ−1 (x − ¯x) Mathematical description in phase space. Feasible using linear optics, squeezers and homodyne detection.1 1 S. L. Braunstein and P. van Loock, RMP 77, 513, C. Weedbrook et al., RMP 84, 621
  • 5. Motivation Entanglement concentration Gaussian symmetrization Conclusions Quantum Entanglement Important resource in quantum information processing. Applications of Entanglement Quantum teleportation, Quantum key distribution, Quantum dense coding, One-way quantum computing, Quantum metrology,. . .
  • 6. Motivation Entanglement concentration Gaussian symmetrization Conclusions Bipartite and Multipartite Entanglement Bipartite Entanglement Relatively easy identification and quantification.
  • 7. Motivation Entanglement concentration Gaussian symmetrization Conclusions Bipartite and Multipartite Entanglement Bipartite Entanglement Relatively easy identification and quantification. Multipartite Entanglement Complexity grows with number of parties. (Tripartite Gaussian entanglement – 5 entanglement classesa). Problematic quantification. Applications: one-way quantum computingb, quantum networksc. a G. Giedke et al., PRA 64, 052303 b N. C. Menicucci et al., PRL 97, 110501 c P. van Loock and S. L. Braunstein, PRL 84, 3482
  • 8. Motivation Entanglement concentration Gaussian symmetrization Conclusions Outline 1 Motivation 2 Enhancing entanglement concentration by coherent displacements 3 Symmetrization of multipartite states by local Gaussian operations 4 Conclusions
  • 9. Motivation Entanglement concentration Gaussian symmetrization Conclusions Why Entanglement Concentration? Distribution of entangled states is subject to losses and decoherence. State degradation can be probabilistically eliminated using local operations and classical communication.
  • 10. Motivation Entanglement concentration Gaussian symmetrization Conclusions Entanglement Concentration and CV Systems Non-Gaussianity Required Gaussian states → non-Gaussian operations.a Non-Gaussian states → Gaussian operations.b a J. Eisert et al., PRL 89, 137903, J. Fiur´aˇsek, PRL 89, 137904 b R. Dong et al., Nat. Phys. 4, 919, B. Haage et al., Nat. Phys. 4, 915
  • 11. Motivation Entanglement concentration Gaussian symmetrization Conclusions Photon Subtraction Unbalanced beam splitter and single-photon detection.1 Can be improved by local Gaussian operations.2 BS APD 1 H. Takahashi et al., Nat. Photon. 4, 178 2 J. Fiur´aˇsek, PRA 84, 012335, S. L. Zhang and P. van Loock, PRA 84, 062309
  • 12. Motivation Entanglement concentration Gaussian symmetrization Conclusions The Protocol ˆD(α) ˆD(−α) ˆF = ˆa + α
  • 13. Motivation Entanglement concentration Gaussian symmetrization Conclusions The Protocol ˆD(α) ˆD(−α) ˆF = ˆa + α ˆa + α ˆF1 = ˆa + α
  • 14. Motivation Entanglement concentration Gaussian symmetrization Conclusions The Protocol ˆD(α) ˆD(−α) ˆF = ˆa + α ˆa + α ˆF1 = ˆa + α ˆa + α ˆb + β ˆF2 = (ˆa + α) ⊗ (ˆb + β)
  • 15. Motivation Entanglement concentration Gaussian symmetrization Conclusions Input State Single-mode squeezed vacuum split on a beam splitter. |ψin = 4 1 − λ2 ∞ n=0 2n k=0 λn 2nn! (2n)!t2n−krk k!(2n − k)! |2n − k, k
  • 16. Motivation Entanglement concentration Gaussian symmetrization Conclusions Weak Input Squeezing Zero- and two-photon contributions, |ψin ≈ |00 + λrt|11 + λ √ 2 (t2 |20 + r2 |02 ). Destructive quantum interference leads to enhancement of entanglement.
  • 17. Motivation Entanglement concentration Gaussian symmetrization Conclusions Weak Input Squeezing Single-Mode Subtraction |ψ1 = λt(t|10 + r|01 ) + α|ψin Zero displacement is optimal. 0.0 0.2 0.4 0.6 0.8 1.0 E -0.05 0.0 0.05
  • 18. Motivation Entanglement concentration Gaussian symmetrization Conclusions Weak Input Squeezing Two-Mode Subtraction |ψ2 = (λrt + αβ)|00 + λ(αr + βt)(t|10 + r|01 ) + + λ √ 2 αβ(t2 |20 + √ 2rt|11 + r2 |02 ) -0.15 0.0 0.15 -0.15 0.0 0.15
  • 19. Motivation Entanglement concentration Gaussian symmetrization Conclusions Weak Input Squeezing Two-Mode Subtraction |ψ2 = (λrt + αβ)|00 + λ(αr + βt)(t|10 + r|01 ) + + λ √ 2 αβ(t2 |20 + √ 2rt|11 + r2 |02 ) Vacuum term elimination, αβ = −λrt. |ψ2 = √ 2rt|11 +t2|20 +r2|02 -0.15 0.0 0.15 -0.15 0.0 0.15
  • 20. Motivation Entanglement concentration Gaussian symmetrization Conclusions Weak Input Squeezing Two-Mode Subtraction |ψ2 = (λrt + αβ)|00 + λ(αr + βt)(t|10 + r|01 ) + + λ √ 2 αβ(t2 |20 + √ 2rt|11 + r2 |02 ) Vacuum term elimination, αβ = −λrt. Single-photon contributions, α = √ λt, β = √ λr. |ψ2 = √ 2rt|11 +t2|20 +r2|02 0.8 1.0 1.2 1.4 1.6 E 0.0 0.05 0.1 0.15
  • 21. Motivation Entanglement concentration Gaussian symmetrization Conclusions Arbitrary Squeezing A Realistic Scenario Experimental Realization Stronger squeezing. On-off detectors for photon subtraction with limited efficiency. Finite transmittance of tap-off beam splitters.
  • 22. Motivation Entanglement concentration Gaussian symmetrization Conclusions Arbitrary Squeezing A Realistic Scenario Experimental Realization Stronger squeezing. On-off detectors for photon subtraction with limited efficiency. Finite transmittance of tap-off beam splitters. Higher photon numbers, mixed output state, more complicated filtering operation.
  • 23. Motivation Entanglement concentration Gaussian symmetrization Conclusions Arbitrary Squeezing Results 0.0 0.2 0.4 0.6 0.8 1.0 1.2 EN -0.5 0.0 0.5 0.9 1.0 1.1 1.2 EN 0.0 0.1 0.2 0.3 0.4 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 P1 0.0 0.1 0.2 0.3 0.4 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 1.3 1.4 1.5 EN 0.0 0.1 0.2 0.3 0.4 10 -14 10 -12 10 -10 10 -8 10 -6 10 -4 10 -2 P2 0.0 0.1 0.2 0.3 0.4
  • 24. Motivation Entanglement concentration Gaussian symmetrization Conclusions Arbitrary Squeezing Results Conclusions Single-mode subtraction optimal without displacements. Two-mode subtraction gives more output entanglement; the success probability is smaller. a O. ˇCernot´ık and J. Fiur´aˇsek, PRA 86, 052339
  • 25. Motivation Entanglement concentration Gaussian symmetrization Conclusions Arbitrary Squeezing Results Conclusions Single-mode subtraction optimal without displacements. Two-mode subtraction gives more output entanglement; the success probability is smaller. a O. ˇCernot´ık and J. Fiur´aˇsek, PRA 86, 052339 Extensions Losses limit usability of the protocol. No Gaussian entanglement at the output. b A. Tipsmark et al., Opt. Exp. 21, 6670
  • 26. Motivation Entanglement concentration Gaussian symmetrization Conclusions Outline 1 Motivation 2 Enhancing entanglement concentration by coherent displacements 3 Symmetrization of multipartite states by local Gaussian operations 4 Conclusions
  • 27. Motivation Entanglement concentration Gaussian symmetrization Conclusions Symmetrization of Multipartite Gaussian States Equalization of quadrature correlations.         n 0 c 0 c 0 0 n 0 −d 0 −d c 0 n 0 c 0 0 −d 0 n 0 −d c 0 c 0 n 0 0 −d 0 −d 0 n         →         n′ 0 c′ 0 c′ 0 0 n′ 0 −c′ 0 −c′ c′ 0 n′ 0 c′ 0 0 −c′ 0 n′ 0 −c′ c′ 0 c′ 0 n′ 0 0 −c′ 0 −c′ 0 n′         Generalization of protocols for bipartite Gaussian states.1 1 J. Fiur´aˇsek, PRA 86, 032317
  • 28. Motivation Entanglement concentration Gaussian symmetrization Conclusions Equivalent State Preparation N 1 2 . . . rN , nN 1:12:1(N − 1):1 r1, n1 r1, n1 r1, n1r1, n1 BS1 BSN−2 BSN−1BS2 (N − 2):1 N − 2 N − 1 Simplified analysis – working with two separable modes. Similarity to experimental realizations of quantum networks.1 1 T. Aoki et al., PRL 91, 080404, H. Yonezawa et al., Nature 431, 430
  • 29. Motivation Entanglement concentration Gaussian symmetrization Conclusions Equivalent State Preparation N 1 2 . . . rN , nN 1:12:1(N − 1):1 r1, n1 r1, n1 r1, n1r1, n1 BS1 BSN−2 BSN−1BS2 (N − 2):1 N − 2 N − 1 n = 1 N [nNe2rN + (N − 1)n1e2r1 ] c = 1 N (nNe2rn − n1e2r1 ) d = 1 N (n1e−2r1 − nNe−2rN )
  • 30. Motivation Entanglement concentration Gaussian symmetrization Conclusions Assisted Quantum Teleportation Entanglement characterization – assisted teleportation fidelity.1 F = 1√ (n−c+1)(n−d+1−2d2/n) More general transformations (n, c, d) → (n′, c′, kc′). A B C in (qin − qA)/ √ 2 (pin + pA)/ √ 2 1 P. van Loock and S.L. Braunstein, PRL 84, 3482
  • 31. Motivation Entanglement concentration Gaussian symmetrization Conclusions Strategies Correlated Noise Addition ργNS γN S γN S Adding correlated noise γN. Squeezing S.
  • 32. Motivation Entanglement concentration Gaussian symmetrization Conclusions Strategies Quantum Non-Demolition Interaction ρgdAS g dB S g dC S QND interaction g, measurement on ancillas and displacement d. Squeezing S.
  • 33. Motivation Entanglement concentration Gaussian symmetrization Conclusions Results for Tripartite States Noise Addition 0.45 0.5 0.55 0.6 0.65 F 0.45 0.5 0.55 0.6 0.65 0.7 0.75 k QND Interaction 0.4 0.45 0.5 0.55 F 0.3 0.4 0.5 0.6 0.7 k Both strategies work best for noisy states.
  • 34. Motivation Entanglement concentration Gaussian symmetrization Conclusions Outlook More general class of transformations, (n1, n2, c, d) → (n′, k1n′, c′, k2c′). Formalism of complex symplectic matrices for purity-preserving Gaussian quantum filters.1 1 J. Fiur´aˇsek, PRA 87, 052301
  • 35. Motivation Entanglement concentration Gaussian symmetrization Conclusions Outline 1 Motivation 2 Enhancing entanglement concentration by coherent displacements 3 Symmetrization of multipartite states by local Gaussian operations 4 Conclusions
  • 36. Motivation Entanglement concentration Gaussian symmetrization Conclusions Entanglement Concentration Value of Squeezing Weak squeezing: Destructive quantum interference. Arbitrary squeezing: Realistic experimental scenario.
  • 37. Motivation Entanglement concentration Gaussian symmetrization Conclusions Entanglement Concentration Value of Squeezing Weak squeezing: Destructive quantum interference. Arbitrary squeezing: Realistic experimental scenario. Strategies Single-mode photon subtraction optimal without displacements. Local displacements can improve two-mode subtraction.
  • 38. Motivation Entanglement concentration Gaussian symmetrization Conclusions Entanglement Concentration Value of Squeezing Weak squeezing: Destructive quantum interference. Arbitrary squeezing: Realistic experimental scenario. Strategies Single-mode photon subtraction optimal without displacements. Local displacements can improve two-mode subtraction. Structure of the entanglement.
  • 39. Motivation Entanglement concentration Gaussian symmetrization Conclusions Symmetrization of multipartite Gaussian states Tools Equivalent state preparation for analyzing protocols. Assisted teleportation fidelity for state characterization.
  • 40. Motivation Entanglement concentration Gaussian symmetrization Conclusions Symmetrization of multipartite Gaussian states Tools Equivalent state preparation for analyzing protocols. Assisted teleportation fidelity for state characterization. Strategies Correlated noise addition: More sensitive to imperfections (narrow peak). QND interaction: More challenging experimentally (use of atomic ensemblesa, linear optical emulationb). Each strategy optimal for different types of states. a K. Hammerer et al., RMP 82, 1041 b R. Filip et al., PRA 71, 042308
  • 41. Motivation Entanglement concentration Gaussian symmetrization Conclusions Symmetrization of multipartite Gaussian states Tools Equivalent state preparation for analyzing protocols. Assisted teleportation fidelity for state characterization. Strategies Correlated noise addition: More sensitive to imperfections (narrow peak). QND interaction: More challenging experimentally (use of atomic ensemblesa, linear optical emulationb). Each strategy optimal for different types of states. a K. Hammerer et al., RMP 82, 1041 b R. Filip et al., PRA 71, 042308 Possible extensions of the protocol.
  • 42. Motivation Entanglement concentration Gaussian symmetrization Conclusions Credits Jarom´ır Fiur´aˇsek Radim Filip Financial support: Thank you for your attention!