SlideShare ist ein Scribd-Unternehmen logo
1 von 30
Downloaden Sie, um offline zu lesen
Novel approaches to
optomechanical transduction
Ondřej Černotík
Max Planck Institute for the Science of Light, Erlangen, Germany
Leibniz University Hannover, Germany
Aarhus University, 18 April 2018
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ 2
• Quantum gates and processors
L. DiCarlo et al., Nature 460, 240 (2009); ibid. 467, 574 (2010); A. Fedorov et al.,
Nature 481, 170 (2011)
• Quantum simulations
A. Houck et al., Nature Physics 8, 292 (2012); R. Barends et al., Nature Commun.
6, 7654 (2015); Y. Salathé et al., PRX 5, 021027 (2015)
• Quantum error correction
A. Córcoles et al., Nature Commun. 6, 6979
(2015); J. Kelly et al., Nature 519, 66 (2015);
D. Ristè et al., Nature Commun. 6, 6983 (2015)
• Quantum networks
Quantum communication, distributed
quantum computing, …
Schoelkopf group, Yale
Superconducting circuits are among the
best candidates for quantum computers.
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
Various systems can serve as an interface
between microwaves and light.
3
J. Bochmann et al., Nature Phys. 9, 712 (2013)
R. Andrews et al., Nature Phys. 10, 321 (2014)
T. Bagci et al., Nature 507, 81 (2014)
K.C. Balram et al., Nature Photon. 10, 346 (2016)
A. Okada et al., arXiv:1705.04593
K. Takeda et al., arXiv:1706.00532
Mechanical oscillators
Electrooptics
A. Rueda et al., Optica 3, 597 (2016)
Magnons
R. Hisatomi et al., PRB 93, 174427 (2016)
C. O’Brien et al., PRL 113, 063603 (2014)
Spins/spin ensembles
Novel approaches to optomechanical
transduction
Entanglement generation
-
Optomechanical transduction
Spatially adiabatic conversion
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
Optomechanical interaction is due to
radiation pressure.
5
Cavity frequency:
!c(ˆx) ⇡ !c(0) +
d!c
dx
ˆx
Coupling strength: g0 =
d!c
dx
xzpf =
!c
L
xzpf
Hamiltonian:
ˆH = ~!c(ˆx)ˆa†
ˆa + ~!m
ˆb†ˆb
ˆH = ~!cˆa†
ˆa + ~!m
ˆb†ˆb + ~g0ˆa†
ˆa(ˆb + ˆb†
)
ˆx = xzpf (ˆb + ˆb†
), xzpf =
r
~
2m!m
ˆa
ˆx
!m
!c
M. Aspelmeyer, T. Kippenberg, and
F. Marquardt, RMP 86, 1391 (2014)
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
Strong coupling can be achieved by
suitable driving.
6
Optomechanical coupling is weak
Solution: strong optical drive ˆa ! ↵ + ˆa, g0 ! g = g0↵
Interaction Hamiltonian ˆHint ⇡ ~g(ˆa + ˆa†
)(ˆb + ˆb†
)
g0 ⌧ 
M. Aspelmeyer, T. Kippenberg, and
F. Marquardt, RMP 86, 1391 (2014)
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
Driving frequency is an important control
parameter.
7
M. Aspelmeyer, T. Kippenberg, and
F. Marquardt, RMP 86, 1391 (2014)
!m
Red-detuned drive:
State swapˆHint = ~g(ˆa†ˆb + ˆb†
ˆa)
!L = !c !m
!
!c!L
 < !m
!m
Blue-detuned drive:
Squeezing
!L = !c + !m
ˆHint = ~g(ˆaˆb + ˆa†ˆb†
)
!!c !L
 < !m
Resonant drive:
Position readout
!L = !c
ˆHint = ~g(ˆa + ˆa†
)(ˆb + ˆb†
)
!
!c = !L

Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
Optomechanical interaction can be
observed in various systems.
8
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
Mechanical oscillators are good
transducers for microwaves and light.
9
R. Andrews et al., Nature Phys. 10, 321 (2014)
g2
g1
ˆa1
ˆa2
ˆb
ˆa2,in ˆa2,out
ˆa1,outˆa1,in
ˆH = g1(ˆa†
1
ˆb + ˆb†
ˆa1) + g2(ˆa†
2
ˆb + ˆb†
ˆa2)
ˆa1
ˆa2 ˆb
ˆa1,in/out
ˆa2,in/out
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
Mechanical oscillators are good
transducers for microwaves and light.
10
R. Andrews et al., Nature Phys. 10, 321 (2014)
g2
g1
ˆa1
ˆa2
ˆb
ˆa2,in ˆa2,out
ˆa1,outˆa1,in
ˆH = g1(ˆa†
1
ˆb + ˆb†
ˆa1) + g2(ˆa†
2
ˆb + ˆb†
ˆa2)
dtˆa(t) = Aˆa(t) + Bˆain(t)
ˆaout(t) = Cˆa(t) + Dˆain(t)
ˆaout(!) = S(!)ˆain(!) = [D C(A + i!1)B]ˆain(!)
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
Mechanical oscillators are good
transducers for microwaves and light.
11
R. Andrews et al., Nature Phys. 10, 321 (2014)
g2
g1
ˆa1
ˆa2
ˆb
ˆa2,in ˆa2,out
ˆa1,outˆa1,in
ˆH = g1(ˆa†
1
ˆb + ˆb†
ˆa1) + g2(ˆa†
2
ˆb + ˆb†
ˆa2)
g2
1
1
=
g2
2
2
Impedance matching
i ⌧ !mResolved-sideband regime
Strong cooperativity Ci =
4g2
i
i ¯n
1
/
g2
1
1
=
g2
2
2
⌧ i
OC and K. Hammerer, PRA 94, 012340 (2016)ˇ
Measurement-induced entanglement of
superconducting qubits
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
We can measure qubits using dispersive
interaction with fields.
13
Dispersive coupling ˆHint = ˆzˆa†
ˆa
|0i
|1i
D. Ristè et al., PRL 109, 050507 (2012)
amplitude
phase
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
We can measure qubits using dispersive
interaction with fields.
14
C. Hutchison et al., Canadian J. Phys. 87, 225 (2009)
N. Roch et al., PRL 112, 170501 (2014)
Dispersive coupling ˆHint = ˆzˆa†
ˆa
|11i
|00i
|01i + |10i
| 0i = (|0i + |1i)(|0i + |1i)
amplitude
phase
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
D[ ˆO]ˆ⇢ = ˆOˆ⇢ ˆO† 1
2
( ˆO† ˆOˆ⇢ + ˆ⇢ ˆO† ˆO)
H[ ˆO]ˆ⇢ = ( ˆO h ˆOi)ˆ⇢ + ˆ⇢( ˆO†
h ˆO†
i)
ˆH =
2X
j=1
ˆj
z(ˆbj + ˆb†
j) + !m
ˆb†
j
ˆbj + g(ˆaj + ˆa†
j)(ˆbj + ˆb†
j)
+ i

2
(ˆa1ˆa†
2 ˆa2ˆa†
1)
dˆ⇢ = i[ ˆH, ˆ⇢]dt + Lq ˆ⇢dt +
2X
j=1
{(¯n + 1)D[ˆbj] + ¯nD[ˆb†
j]}ˆ⇢dt
+ D[ˆa1 ˆa2]ˆ⇢dt +
p
H[i(ˆa1 ˆa2)]ˆ⇢dW
Extension to room temperature is possible
with optomechanical transducers.
15
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
ˆa
ˆb
g
Optomechanical transducer can act as a
force sensor.
16
F = ~ /(
p
2xzpf )
Sensitivity: S2
F (!) = x2
zpf /8g2 2
m(!)
Measurement time: ⌧meas =
S2
F (!)
F2
=
!2
m
16 2g2
⌧ T1,2
ˆH = ˆz(ˆb + ˆb†
) + !m
ˆb†ˆb + g(ˆa + ˆa†
)(ˆb + ˆb†
)
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
The thermal mechanical bath affects the
qubit.
17
Dephasing rate: mech = S2
f (!) =
2 2
!2
m
¯n
⌧meas <
1
mech
! C =
4g2
 ¯n
>
1
2
ˆa
ˆb
g
¯n
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
Gaussian systems can be adiabatically
eliminated from conditional dynamics.
18
OC, D.V. Vasilyev, and K. Hammerer,
PRA 92, 012124 (2015)
ˇ
ˆHint = ˆsT
ˆr
operatorsˆrˆs
state descriptionx,ˆ⇢
System Transducer
...
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
meas = 16
2
g2
!2
m
, mech =
2
!2
m
(2¯n + 1)
dˆ⇢q =
2X
j=1

1
T1
D[ˆj
] +
✓
1
T2
+ mech
◆
D[ˆj
z] ˆ⇢qdt
+ measD[ˆ1
z + ˆ2
z]ˆ⇢qdt +
p
measH[ˆ1
z + ˆ2
z]ˆ⇢qdW
We can obtain an effective equation for
the qubits.
19
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
Optical losses introduce additional
dephasing.
20
(1 ⌧) measD[ˆ1
z]ˆ⇢q
p
⌘ measH[ˆ1
z + ˆ2
z]ˆ⇢q
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
Entanglement generation is possible with
existing technology.
21
G. Anetsberger et al., Nature Phys. 5, 909 (2009)
J. Pirkkalainen et al., Nat. Commun. 6, 6981 (2015)
OC and K. Hammerer, PRA 94, 012340 (2016)ˇ
= 2⇡ ⇥ 5.8 MHz
g = 2⇡ ⇥ 900 kHz
 = 2⇡ ⇥ 39MHz
!m = 2⇡ ⇥ 8.7 MHz
Qm = 5 ⇥ 104
T = 20 mK
¯n = 48
T1,2 = 20 µs
C = 10
!m
Qm
⌘
0.2
1.0
OC, S. Mahmoodian, and K. Hammerer, arXiv:1707.03339ˇ
Spatially adiabatic frequency conversion
in optomechanical arrays
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ 23
g1
g2
L. Tian, PRL 108, 153604 (2012)
Y.-D. Wang and A.A. Clerk, PRL 108,
153603 (2012)
Efficient transduction is possible using
adiabatic state transfer.
ˆ
ˆ
ˆ ˆH(t) = g1(t)(ˆc†
1
ˆb + ˆb†
ˆc1) + g2(t)(ˆc†
2
ˆb + ˆb†
ˆc2)
=
q
g2
1(t) + g2
2(t)[ ˆd†
1(t)ˆb + ˆb† ˆd1(t)]
ˆd1(t) =
1
p
g2
1 + g2
2
[g1(t)ˆc1 + g2(t)ˆc2]
ˆd2(t) =
1
p
g2
1 + g2
2
[g2(t)ˆc1 g1(t)ˆc2]
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ 24
Efficient transduction is possible using
adiabatic state transfer.
G1
G2
ˆ
ˆ
ˆ
ˆH = vi
Z
dzˆa†
i (z)@zˆai(z) +
Z
dzGi(z)ˆa†
i (z)ˆb(z) + H.c.
ˆd1(z) =
1
p
G2
1 + G2
2
[G1(z)ˆa1 + G2(z)ˆa2]
ˆd2(z) =
1
p
G2
1 + G2
2
[G2(z)ˆa1 G1(z)ˆa2]
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
ˆa(z+
j , !) = Sj(!)ˆa(zj , !)
ˆa(L, !) =
NY
j=1
Sj(!)ˆa(0, !)
25
Adiabatic conversion can be
approximated in a transducer array.
ˆc1
ˆc2
ˆb
ˆ
ˆ
dˆci
dt
=
i
2
ˆci igi
ˆb +
p
iˆai(zj )
dˆb
dt
=
2
ˆb ig1ˆc1 ig2ˆc2 +
p ˆbin
ˆai(z+
j ) =
p
iˆci ˆai(zj )
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
Conversion bandwidth can be increased
by increasing the array size.
26
Conversion probability off resonance
p1 / g1g2/!3
⌧ 1
pN = Np1 / g1g2N/!3
1 transducer
transducersN
! =
4
p
2
3
g1g2N
!1/3
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
Conversion bandwidth can be increased
by increasing the array size.
27
p1 / g1g2/!3
⌧ 1
pN = Np1 / g1g2N/!3
1 transducer
transducersN
! =
4
p
2
3
g1g2N
!1/3
10
50
200
N = 1
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
Added noise is reduced by increasing the
array size.
28
Single transducer ˆa(z+
j , !) = Sj(!)ˆa(zj , !) + Vj(!) ˆfj
Output spectrum S2
out(!) / S2
in(!) +
1
C
, C =
4g2
 ¯n
Many transducers S2
out(!) / S2
in(!) +
N
C
Dark mode ˆd2(z+
j , !) / ˆd2(zj , !) +
1
N
Vj(!) ˆfj
Total noise S2
add(!) /
1
CN
Collective cooperativity Ccoll =
4g2
N
 ¯n
> 1
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
Efficient conversion is possible in
presence of optical losses.
29
Propagation loss Backscattering
RL
⌘
⌘ = 0.05
0.01
0.2
0.001
L/R = 0
0.1
0.5
0.9
Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ
Optomechanical transducers present a
promising route to frequency conversion.
30
Arbitrary input
Small bandwidth
OC, S. Mahmoodian, and K. Hammerer, arXiv:1707.03339ˇ
Large bandwidth, noise resilient
Arbitrary signals
OC and K. Hammerer, PRA 94, 012340 (2016)ˇ
Entanglement generation
Builds on existing experiments
System Transducer
...
OC, D.V. Vasilyev, and K. Hammerer, PRA 92, 012124 (2015)ˇ
Gaussian transducers under continuous measurement
General recipe for adiabatic elimination

Weitere ähnliche Inhalte

Was ist angesagt?

Quantum dot lasers
Quantum dot lasersQuantum dot lasers
Quantum dot lasers
Bise Mond
 
Quantum mechanics a brief
Quantum mechanics a briefQuantum mechanics a brief
Quantum mechanics a brief
Chaitanya Areti
 

Was ist angesagt? (20)

Quinck's method
Quinck's methodQuinck's method
Quinck's method
 
MCQ on Planck constant.pdf
MCQ on Planck constant.pdfMCQ on Planck constant.pdf
MCQ on Planck constant.pdf
 
Classical mechanics vs quantum mechanics
Classical mechanics vs quantum mechanicsClassical mechanics vs quantum mechanics
Classical mechanics vs quantum mechanics
 
density of states
density of statesdensity of states
density of states
 
Band theory of solids
Band theory of solidsBand theory of solids
Band theory of solids
 
Lecture7
Lecture7Lecture7
Lecture7
 
Quantum dot lasers
Quantum dot lasersQuantum dot lasers
Quantum dot lasers
 
Mathematical Formulation of Quantum Mechanics
Mathematical Formulation of Quantum Mechanics Mathematical Formulation of Quantum Mechanics
Mathematical Formulation of Quantum Mechanics
 
Unit 2
Unit 2Unit 2
Unit 2
 
UCSD NANO106 - 01 - Introduction to Crystallography
UCSD NANO106 - 01 - Introduction to CrystallographyUCSD NANO106 - 01 - Introduction to Crystallography
UCSD NANO106 - 01 - Introduction to Crystallography
 
UCSD NANO106 - 06 - Plane and Space Groups
UCSD NANO106 - 06 - Plane and Space GroupsUCSD NANO106 - 06 - Plane and Space Groups
UCSD NANO106 - 06 - Plane and Space Groups
 
Heterostructures, HBTs and Thyristors : Exploring the "different"
Heterostructures, HBTs and Thyristors : Exploring the "different"Heterostructures, HBTs and Thyristors : Exploring the "different"
Heterostructures, HBTs and Thyristors : Exploring the "different"
 
Chapter2 - Linear Time-Invariant System
Chapter2 - Linear Time-Invariant SystemChapter2 - Linear Time-Invariant System
Chapter2 - Linear Time-Invariant System
 
Fundamentals of Finite Difference Methods
Fundamentals of Finite Difference MethodsFundamentals of Finite Difference Methods
Fundamentals of Finite Difference Methods
 
Ep 5512 lecture-02
Ep 5512 lecture-02Ep 5512 lecture-02
Ep 5512 lecture-02
 
Optical Properties of Solids
Optical Properties of SolidsOptical Properties of Solids
Optical Properties of Solids
 
Quantum mechanics a brief
Quantum mechanics a briefQuantum mechanics a brief
Quantum mechanics a brief
 
Time Independent Perturbation Theory, 1st order correction, 2nd order correction
Time Independent Perturbation Theory, 1st order correction, 2nd order correctionTime Independent Perturbation Theory, 1st order correction, 2nd order correction
Time Independent Perturbation Theory, 1st order correction, 2nd order correction
 
Phonons lecture
Phonons lecturePhonons lecture
Phonons lecture
 
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
 

Ähnlich wie Novel approaches to optomechanical transduction

Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...
Ondrej Cernotik
 
Quantum force sensing with optomechanical transducers
Quantum force sensing with optomechanical transducersQuantum force sensing with optomechanical transducers
Quantum force sensing with optomechanical transducers
Ondrej Cernotik
 

Ähnlich wie Novel approaches to optomechanical transduction (20)

Novel approaches to optomechanical transduction
Novel approaches to optomechanical transductionNovel approaches to optomechanical transduction
Novel approaches to optomechanical transduction
 
Novel approaches to optomechanical transduction
Novel approaches to optomechanical transductionNovel approaches to optomechanical transduction
Novel approaches to optomechanical transduction
 
Measurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersMeasurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducers
 
Quantum networks with superconducting circuits and optomechanical transducers
Quantum networks with superconducting circuits and optomechanical transducersQuantum networks with superconducting circuits and optomechanical transducers
Quantum networks with superconducting circuits and optomechanical transducers
 
Hybrid quantum systems
Hybrid quantum systemsHybrid quantum systems
Hybrid quantum systems
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...
 
Quantum force sensing with optomechanical transducers
Quantum force sensing with optomechanical transducersQuantum force sensing with optomechanical transducers
Quantum force sensing with optomechanical transducers
 
Interference effects in cavity optomechanics with hybridized membranes
Interference effects in cavity optomechanics with hybridized membranesInterference effects in cavity optomechanics with hybridized membranes
Interference effects in cavity optomechanics with hybridized membranes
 
Light induced real-time dynamics for electrons
Light induced real-time dynamics for electronsLight induced real-time dynamics for electrons
Light induced real-time dynamics for electrons
 
From unconventional to extreme to functional materials.
From unconventional to extreme to functional materials.From unconventional to extreme to functional materials.
From unconventional to extreme to functional materials.
 
Gaussian control and readout of levitated nanoparticles via coherent scattering
Gaussian control and readout of levitated nanoparticles via coherent scatteringGaussian control and readout of levitated nanoparticles via coherent scattering
Gaussian control and readout of levitated nanoparticles via coherent scattering
 
Non linear electron dynamics in solids
Non linear electron dynamics in solidsNon linear electron dynamics in solids
Non linear electron dynamics in solids
 
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCDNucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
 
Role of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materialsRole of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materials
 
Such stuff as dreams are made on: a computational tale of optimal transport a...
Such stuff as dreams are made on: a computational tale of optimal transport a...Such stuff as dreams are made on: a computational tale of optimal transport a...
Such stuff as dreams are made on: a computational tale of optimal transport a...
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...
 
Electron-phonon coupling a Yambo overview
Electron-phonon coupling  a Yambo overviewElectron-phonon coupling  a Yambo overview
Electron-phonon coupling a Yambo overview
 
FDTD Presentation
FDTD PresentationFDTD Presentation
FDTD Presentation
 
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
 

Mehr von Ondrej Cernotik

Transformations of continuous-variable entangled states of light
Transformations of continuous-variable entangled states of lightTransformations of continuous-variable entangled states of light
Transformations of continuous-variable entangled states of light
Ondrej Cernotik
 
Improved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesImproved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologies
Ondrej Cernotik
 
Improved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesImproved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologies
Ondrej Cernotik
 
Spatially adiabatic frequency conversion in opto-electro-mechanical arrays
Spatially adiabatic frequency conversion in opto-electro-mechanical arraysSpatially adiabatic frequency conversion in opto-electro-mechanical arrays
Spatially adiabatic frequency conversion in opto-electro-mechanical arrays
Ondrej Cernotik
 
Interference effects in doped cavity optomechanics
Interference effects in doped cavity optomechanicsInterference effects in doped cavity optomechanics
Interference effects in doped cavity optomechanics
Ondrej Cernotik
 

Mehr von Ondrej Cernotik (13)

Ancilla-error-transparent swap tests in circuit quantum electrodynamics
Ancilla-error-transparent swap tests in circuit quantum electrodynamicsAncilla-error-transparent swap tests in circuit quantum electrodynamics
Ancilla-error-transparent swap tests in circuit quantum electrodynamics
 
Microwave entanglement created using swap tests with biased noise
Microwave entanglement created using swap tests with biased noiseMicrowave entanglement created using swap tests with biased noise
Microwave entanglement created using swap tests with biased noise
 
Controlling the motion of levitated particles by coherent scattering
Controlling the motion of levitated particles by coherent scatteringControlling the motion of levitated particles by coherent scattering
Controlling the motion of levitated particles by coherent scattering
 
Transformations of continuous-variable entangled states of light
Transformations of continuous-variable entangled states of lightTransformations of continuous-variable entangled states of light
Transformations of continuous-variable entangled states of light
 
Improved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesImproved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologies
 
Improved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesImproved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologies
 
Entangling distant superconducting qubits using nanomechanical transducers
Entangling distant superconducting qubits using nanomechanical transducersEntangling distant superconducting qubits using nanomechanical transducers
Entangling distant superconducting qubits using nanomechanical transducers
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...
 
Displacement-enhanced continuous-variable entanglement concentration
Displacement-enhanced continuous-variable entanglement concentrationDisplacement-enhanced continuous-variable entanglement concentration
Displacement-enhanced continuous-variable entanglement concentration
 
Spatially adiabatic frequency conversion in opto-electro-mechanical arrays
Spatially adiabatic frequency conversion in opto-electro-mechanical arraysSpatially adiabatic frequency conversion in opto-electro-mechanical arrays
Spatially adiabatic frequency conversion in opto-electro-mechanical arrays
 
Cavity optomechanics with variable polarizability mirrors
Cavity optomechanics with variable polarizability mirrorsCavity optomechanics with variable polarizability mirrors
Cavity optomechanics with variable polarizability mirrors
 
Interference effects in doped cavity optomechanics
Interference effects in doped cavity optomechanicsInterference effects in doped cavity optomechanics
Interference effects in doped cavity optomechanics
 
Motional Gaussian states and gates for a levitating particle
Motional Gaussian states and gates for a levitating particleMotional Gaussian states and gates for a levitating particle
Motional Gaussian states and gates for a levitating particle
 

Kürzlich hochgeladen

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
ssuserdda66b
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Kürzlich hochgeladen (20)

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 

Novel approaches to optomechanical transduction

  • 1. Novel approaches to optomechanical transduction Ondřej Černotík Max Planck Institute for the Science of Light, Erlangen, Germany Leibniz University Hannover, Germany Aarhus University, 18 April 2018
  • 2. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ 2 • Quantum gates and processors L. DiCarlo et al., Nature 460, 240 (2009); ibid. 467, 574 (2010); A. Fedorov et al., Nature 481, 170 (2011) • Quantum simulations A. Houck et al., Nature Physics 8, 292 (2012); R. Barends et al., Nature Commun. 6, 7654 (2015); Y. Salathé et al., PRX 5, 021027 (2015) • Quantum error correction A. Córcoles et al., Nature Commun. 6, 6979 (2015); J. Kelly et al., Nature 519, 66 (2015); D. Ristè et al., Nature Commun. 6, 6983 (2015) • Quantum networks Quantum communication, distributed quantum computing, … Schoelkopf group, Yale Superconducting circuits are among the best candidates for quantum computers.
  • 3. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ Various systems can serve as an interface between microwaves and light. 3 J. Bochmann et al., Nature Phys. 9, 712 (2013) R. Andrews et al., Nature Phys. 10, 321 (2014) T. Bagci et al., Nature 507, 81 (2014) K.C. Balram et al., Nature Photon. 10, 346 (2016) A. Okada et al., arXiv:1705.04593 K. Takeda et al., arXiv:1706.00532 Mechanical oscillators Electrooptics A. Rueda et al., Optica 3, 597 (2016) Magnons R. Hisatomi et al., PRB 93, 174427 (2016) C. O’Brien et al., PRL 113, 063603 (2014) Spins/spin ensembles
  • 4. Novel approaches to optomechanical transduction Entanglement generation - Optomechanical transduction Spatially adiabatic conversion
  • 5. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ Optomechanical interaction is due to radiation pressure. 5 Cavity frequency: !c(ˆx) ⇡ !c(0) + d!c dx ˆx Coupling strength: g0 = d!c dx xzpf = !c L xzpf Hamiltonian: ˆH = ~!c(ˆx)ˆa† ˆa + ~!m ˆb†ˆb ˆH = ~!cˆa† ˆa + ~!m ˆb†ˆb + ~g0ˆa† ˆa(ˆb + ˆb† ) ˆx = xzpf (ˆb + ˆb† ), xzpf = r ~ 2m!m ˆa ˆx !m !c M. Aspelmeyer, T. Kippenberg, and F. Marquardt, RMP 86, 1391 (2014)
  • 6. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ Strong coupling can be achieved by suitable driving. 6 Optomechanical coupling is weak Solution: strong optical drive ˆa ! ↵ + ˆa, g0 ! g = g0↵ Interaction Hamiltonian ˆHint ⇡ ~g(ˆa + ˆa† )(ˆb + ˆb† ) g0 ⌧  M. Aspelmeyer, T. Kippenberg, and F. Marquardt, RMP 86, 1391 (2014)
  • 7. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ Driving frequency is an important control parameter. 7 M. Aspelmeyer, T. Kippenberg, and F. Marquardt, RMP 86, 1391 (2014) !m Red-detuned drive: State swapˆHint = ~g(ˆa†ˆb + ˆb† ˆa) !L = !c !m ! !c!L  < !m !m Blue-detuned drive: Squeezing !L = !c + !m ˆHint = ~g(ˆaˆb + ˆa†ˆb† ) !!c !L  < !m Resonant drive: Position readout !L = !c ˆHint = ~g(ˆa + ˆa† )(ˆb + ˆb† ) ! !c = !L 
  • 8. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ Optomechanical interaction can be observed in various systems. 8
  • 9. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ Mechanical oscillators are good transducers for microwaves and light. 9 R. Andrews et al., Nature Phys. 10, 321 (2014) g2 g1 ˆa1 ˆa2 ˆb ˆa2,in ˆa2,out ˆa1,outˆa1,in ˆH = g1(ˆa† 1 ˆb + ˆb† ˆa1) + g2(ˆa† 2 ˆb + ˆb† ˆa2) ˆa1 ˆa2 ˆb ˆa1,in/out ˆa2,in/out
  • 10. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ Mechanical oscillators are good transducers for microwaves and light. 10 R. Andrews et al., Nature Phys. 10, 321 (2014) g2 g1 ˆa1 ˆa2 ˆb ˆa2,in ˆa2,out ˆa1,outˆa1,in ˆH = g1(ˆa† 1 ˆb + ˆb† ˆa1) + g2(ˆa† 2 ˆb + ˆb† ˆa2) dtˆa(t) = Aˆa(t) + Bˆain(t) ˆaout(t) = Cˆa(t) + Dˆain(t) ˆaout(!) = S(!)ˆain(!) = [D C(A + i!1)B]ˆain(!)
  • 11. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ Mechanical oscillators are good transducers for microwaves and light. 11 R. Andrews et al., Nature Phys. 10, 321 (2014) g2 g1 ˆa1 ˆa2 ˆb ˆa2,in ˆa2,out ˆa1,outˆa1,in ˆH = g1(ˆa† 1 ˆb + ˆb† ˆa1) + g2(ˆa† 2 ˆb + ˆb† ˆa2) g2 1 1 = g2 2 2 Impedance matching i ⌧ !mResolved-sideband regime Strong cooperativity Ci = 4g2 i i ¯n 1 / g2 1 1 = g2 2 2 ⌧ i
  • 12. OC and K. Hammerer, PRA 94, 012340 (2016)ˇ Measurement-induced entanglement of superconducting qubits
  • 13. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ We can measure qubits using dispersive interaction with fields. 13 Dispersive coupling ˆHint = ˆzˆa† ˆa |0i |1i D. Ristè et al., PRL 109, 050507 (2012) amplitude phase
  • 14. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ We can measure qubits using dispersive interaction with fields. 14 C. Hutchison et al., Canadian J. Phys. 87, 225 (2009) N. Roch et al., PRL 112, 170501 (2014) Dispersive coupling ˆHint = ˆzˆa† ˆa |11i |00i |01i + |10i | 0i = (|0i + |1i)(|0i + |1i) amplitude phase
  • 15. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ D[ ˆO]ˆ⇢ = ˆOˆ⇢ ˆO† 1 2 ( ˆO† ˆOˆ⇢ + ˆ⇢ ˆO† ˆO) H[ ˆO]ˆ⇢ = ( ˆO h ˆOi)ˆ⇢ + ˆ⇢( ˆO† h ˆO† i) ˆH = 2X j=1 ˆj z(ˆbj + ˆb† j) + !m ˆb† j ˆbj + g(ˆaj + ˆa† j)(ˆbj + ˆb† j) + i  2 (ˆa1ˆa† 2 ˆa2ˆa† 1) dˆ⇢ = i[ ˆH, ˆ⇢]dt + Lq ˆ⇢dt + 2X j=1 {(¯n + 1)D[ˆbj] + ¯nD[ˆb† j]}ˆ⇢dt + D[ˆa1 ˆa2]ˆ⇢dt + p H[i(ˆa1 ˆa2)]ˆ⇢dW Extension to room temperature is possible with optomechanical transducers. 15
  • 16. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ ˆa ˆb g Optomechanical transducer can act as a force sensor. 16 F = ~ /( p 2xzpf ) Sensitivity: S2 F (!) = x2 zpf /8g2 2 m(!) Measurement time: ⌧meas = S2 F (!) F2 = !2 m 16 2g2 ⌧ T1,2 ˆH = ˆz(ˆb + ˆb† ) + !m ˆb†ˆb + g(ˆa + ˆa† )(ˆb + ˆb† )
  • 17. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ The thermal mechanical bath affects the qubit. 17 Dephasing rate: mech = S2 f (!) = 2 2 !2 m ¯n ⌧meas < 1 mech ! C = 4g2  ¯n > 1 2 ˆa ˆb g ¯n
  • 18. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ Gaussian systems can be adiabatically eliminated from conditional dynamics. 18 OC, D.V. Vasilyev, and K. Hammerer, PRA 92, 012124 (2015) ˇ ˆHint = ˆsT ˆr operatorsˆrˆs state descriptionx,ˆ⇢ System Transducer ...
  • 19. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ meas = 16 2 g2 !2 m , mech = 2 !2 m (2¯n + 1) dˆ⇢q = 2X j=1  1 T1 D[ˆj ] + ✓ 1 T2 + mech ◆ D[ˆj z] ˆ⇢qdt + measD[ˆ1 z + ˆ2 z]ˆ⇢qdt + p measH[ˆ1 z + ˆ2 z]ˆ⇢qdW We can obtain an effective equation for the qubits. 19
  • 20. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ Optical losses introduce additional dephasing. 20 (1 ⌧) measD[ˆ1 z]ˆ⇢q p ⌘ measH[ˆ1 z + ˆ2 z]ˆ⇢q
  • 21. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ Entanglement generation is possible with existing technology. 21 G. Anetsberger et al., Nature Phys. 5, 909 (2009) J. Pirkkalainen et al., Nat. Commun. 6, 6981 (2015) OC and K. Hammerer, PRA 94, 012340 (2016)ˇ = 2⇡ ⇥ 5.8 MHz g = 2⇡ ⇥ 900 kHz  = 2⇡ ⇥ 39MHz !m = 2⇡ ⇥ 8.7 MHz Qm = 5 ⇥ 104 T = 20 mK ¯n = 48 T1,2 = 20 µs C = 10 !m Qm ⌘ 0.2 1.0
  • 22. OC, S. Mahmoodian, and K. Hammerer, arXiv:1707.03339ˇ Spatially adiabatic frequency conversion in optomechanical arrays
  • 23. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ 23 g1 g2 L. Tian, PRL 108, 153604 (2012) Y.-D. Wang and A.A. Clerk, PRL 108, 153603 (2012) Efficient transduction is possible using adiabatic state transfer. ˆ ˆ ˆ ˆH(t) = g1(t)(ˆc† 1 ˆb + ˆb† ˆc1) + g2(t)(ˆc† 2 ˆb + ˆb† ˆc2) = q g2 1(t) + g2 2(t)[ ˆd† 1(t)ˆb + ˆb† ˆd1(t)] ˆd1(t) = 1 p g2 1 + g2 2 [g1(t)ˆc1 + g2(t)ˆc2] ˆd2(t) = 1 p g2 1 + g2 2 [g2(t)ˆc1 g1(t)ˆc2]
  • 24. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ 24 Efficient transduction is possible using adiabatic state transfer. G1 G2 ˆ ˆ ˆ ˆH = vi Z dzˆa† i (z)@zˆai(z) + Z dzGi(z)ˆa† i (z)ˆb(z) + H.c. ˆd1(z) = 1 p G2 1 + G2 2 [G1(z)ˆa1 + G2(z)ˆa2] ˆd2(z) = 1 p G2 1 + G2 2 [G2(z)ˆa1 G1(z)ˆa2]
  • 25. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ ˆa(z+ j , !) = Sj(!)ˆa(zj , !) ˆa(L, !) = NY j=1 Sj(!)ˆa(0, !) 25 Adiabatic conversion can be approximated in a transducer array. ˆc1 ˆc2 ˆb ˆ ˆ dˆci dt = i 2 ˆci igi ˆb + p iˆai(zj ) dˆb dt = 2 ˆb ig1ˆc1 ig2ˆc2 + p ˆbin ˆai(z+ j ) = p iˆci ˆai(zj )
  • 26. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ Conversion bandwidth can be increased by increasing the array size. 26 Conversion probability off resonance p1 / g1g2/!3 ⌧ 1 pN = Np1 / g1g2N/!3 1 transducer transducersN ! = 4 p 2 3 g1g2N !1/3
  • 27. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ Conversion bandwidth can be increased by increasing the array size. 27 p1 / g1g2/!3 ⌧ 1 pN = Np1 / g1g2N/!3 1 transducer transducersN ! = 4 p 2 3 g1g2N !1/3 10 50 200 N = 1
  • 28. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ Added noise is reduced by increasing the array size. 28 Single transducer ˆa(z+ j , !) = Sj(!)ˆa(zj , !) + Vj(!) ˆfj Output spectrum S2 out(!) / S2 in(!) + 1 C , C = 4g2  ¯n Many transducers S2 out(!) / S2 in(!) + N C Dark mode ˆd2(z+ j , !) / ˆd2(zj , !) + 1 N Vj(!) ˆfj Total noise S2 add(!) / 1 CN Collective cooperativity Ccoll = 4g2 N  ¯n > 1
  • 29. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ Efficient conversion is possible in presence of optical losses. 29 Propagation loss Backscattering RL ⌘ ⌘ = 0.05 0.01 0.2 0.001 L/R = 0 0.1 0.5 0.9
  • 30. Ondrej Cernotík (MPL Erlangen): Novel approaches to optomechanical transductionˇˇ Optomechanical transducers present a promising route to frequency conversion. 30 Arbitrary input Small bandwidth OC, S. Mahmoodian, and K. Hammerer, arXiv:1707.03339ˇ Large bandwidth, noise resilient Arbitrary signals OC and K. Hammerer, PRA 94, 012340 (2016)ˇ Entanglement generation Builds on existing experiments System Transducer ... OC, D.V. Vasilyev, and K. Hammerer, PRA 92, 012124 (2015)ˇ Gaussian transducers under continuous measurement General recipe for adiabatic elimination