SlideShare ist ein Scribd-Unternehmen logo
1 von 79
Downloaden Sie, um offline zu lesen
Climate Neutrality for
     Urban Districts in Europe
                          Edinburgh Expert Workshop
                                                  14th-15th March 2013




   Expert Workshop
Preparation Material




This project is funded by the European Regional Development Fund through the INTERREG IVC
WELCOME TO THE EXPERT WORKSHOP IN
EDINBURGH
We are happy to welcome you to the Expert Workshop in Edinburgh. This event is
part of the INTERREG IVC project CLUE (Climate Neutral Urban Districts in
Europe); a project where regions, cities and universities across Europe exchange
experiences and develop methods concerning policymaking. This workshop
focuses on methods and tools for indicators, benchmarking and scenario regarding
climate neutrality for urban districts.

This material hopes to aid you in your preparations before the workshop as well as
be a guiding document during the event. Included is related background reading
for each of the three sessions that the workshop will consist of but also practical
information as venue and transportation information and the latest agenda. We
hope that this document will provide all the information needed.

Session 2 of this event will consist of three thematic workshops (breakout
sessions) running in parallel. This means that the workshop participants will be
divided into three groups. For this to run as smoothly as possible we ask you to
choose which one of the groups you would like to join. The three themes are;

     Indicators for following up and evaluate climate neutrality actions
     Benchmarking; accounting procedures, audit tools for calculations of
      carbon footprints.
     Scenario methods for planning and development of climate neutrality

Please announce which group you would like to join to Louise Årman at
larman@kth.se. We would be grateful if you could give us this indication at the
latest on Friday March 8th. We will do our best to meet all of your requests
concerning choice of group but we cannot guarantee that we can meet you first
choice due to restricted number of places in each group.

We also hope that you as a participating expert will contribute with 5-10 minutes
presentation of experiences within you groups theme. You can use power-point, but it
is not necessary, it is more important that you could present you or your city´s
experiences of work. Included in the material for session 2 you can find guiding
questions that we hope can facilitate and be an inspiration in the preparation of a
presentation.

Looking forward to meet all of you in Edinburgh for an exciting event and warmly
welcome to the Expert Workshop!

On behalf of the university group in the CLUE project




FEL! INGEN TEXT MED ANGIVET FORMAT I DOKUMENTET.




  This project is funded by the European Regional Development Fund through the INTERREG IVC
  programme
VENUE AND TRANSPORT INFORMATION
The Edinburgh Workshop will be held in The Edinburgh Suite in New Craig, the
main building on Edinburgh Napier University’s Craighouse Campus, Craighouse
Road, Edinburgh EH10 5LG.

Craighouse is located in the south west of the city. It is served by two buses: the
number 23 which runs every 10 minutes; and the number 41 which runs every 30
minutes. Both buses drive up into the campus itself.

Taxis are the easiest option and can be either booked in advance or hailed on the
street. The two largest firms are Central (0131 2292468) and City Cabs (0131 228
1211). If you have any questions or need assistance with travel arrangements in
Edinburgh please contact Fiona Campbell at fh.campbell@napier.ac.uk.

AGENDA
DAY 1, MARCH 14TH, 08.30-17.00

08.30-09.00: Coffee

09.00-09.30: Welcome to the Expert Workshop
Presentation of general outline and practical information

09.30-11.00: Session 1: What do we mean with Climate Neutrality on
an Urban District Level?
    Definitions, science, technology, models and tools for policy making, with
      references e.g. to Clinton Climate Initiative and Stockholm Royal Seaport
      (Industrial Ecology, KTH)
    Q&A

11.00-11.45: Session 2: Introduction to the Thematic Workshops
Introduction to the thematic workshops, aims, outline and preface to each theme.

12.00-13.00: Lunch

13.00-15.00 Parallel Thematic Workshops
During the afternoon of the first day three parallel thematic workshops will be
held on experiences and methods:
     Indicators for following up and evaluate climate neutrality actions
     Benchmarking; accounting procedures, audit tools for calculations of
       carbon footprints.
     Scenario methods for planning and development of climate neutrality
       actions.




FEL! INGEN TEXT MED ANGIVET FORMAT I DOKUMENTET.




  This project is funded by the European Regional Development Fund through the INTERREG IVC
  programme
15.00-15.30 Coffee

15.30-16.30: Summery of the Day
    Summary of the parallel workgroups presented by the moderator of each
      group
    Common discussion and Q&A

16.30-17.30: Session 3: Introduction to the Scenario Wor kshop Next
Day

20.00- Conference Dinner

DAY 2, MARCH 15TH, 08.30-14.00

08.30-09.00: Coffee

09.00-12.00: Simulated Scenario Workshop
This last part of the workshop will demonstrate how scenario methods might be
used in city planning and stakeholder participation. This will be a simulated
stakeholder scenario workshop. Participants will get instructions before and some
might be invited to present scenarios regarding an imaginary European city.
The workshop will consider future energy consumption scenarios and focus on
dilemmas regarding climate neutral urban areas. Important dilemmas are for
example:
     Focus on reduced energy consumption or on supplying renewable energy
     Focus on more population density to prevent urban sprawl and increase
        infrastructure efficiency, or more green areas and urban gardens?

After this simulated workshop, it will be discussed to what degree this approach
meets requirements of various participants.
The University of Delft is responsible for this workshop and background
documents.


12.00-13.00: Ending Plenary Session
    Feedback of scenario building exercises
    Next steps and creation of a carbon neutrality network
    Summary of the workshop

13.00-14.00: Lunch




FEL! INGEN TEXT MED ANGIVET FORMAT I DOKUMENTET.




  This project is funded by the European Regional Development Fund through the INTERREG IVC
  programme
Session 1 - Climate Urban Neutrality
                                   Content

Johansson et. al. (submitted). Creating a Climate Positive Urban District – A
Case Study of Stockholm Royal Seaport. Submitted to Journal of Energy Policy

Johansson et. al. (submitted). Climate Positive Urban Districts – Methodological
Considerations. Using Findings Based on the Case of Stockholm Royal Seaport.
                      Submitted to Journal of Energy Policy
Submitted	
  article	
  –	
  Journal	
  of	
  Energy	
  Policy	
  	
  
Do	
  not	
  copy	
  or	
  redistribute!	
  

	
  
Creating	
  a	
  Climate	
  Positive	
  Urban	
  District	
  	
  
–	
  A	
  Case	
  Study	
  of	
  Stockholm	
  Royal	
  Seaport	
  	
  
	
  
Stefan	
  Johansson*,	
  PhD	
  Candidate,	
  sjindeco@kth.se	
  	
  Tel:	
  +46	
  8	
  790	
  87	
  61	
  
Hossein	
  Shahrokni,	
  PhD	
  Candidate,	
  hosseins@kth.se	
  Tel:	
  +46	
  8	
  790	
  87	
  05	
  
Anna	
  Rúna	
  Kristinsdóttir,	
  Research	
  Engineer,	
  arkr@kth.se	
  Tel:	
  +46	
  8	
  790	
  87	
  05	
  
Nils	
  Brandt,	
  Associate	
  Professor,	
  nilsb@kth.se	
  Tel:	
  +46	
  8	
  790	
  87	
  59	
  
	
  
*Corresponding	
  author	
  
	
  
KTH,	
  Royal	
  Institute	
  of	
  Technology	
  
School	
  of	
  Industrial	
  Engineering	
  and	
  Management	
  
Division	
  of	
  Industrial	
  Ecology	
  	
  
Teknikringen	
  34	
  
SE-­‐100	
  44	
  Stockholm,	
  Sweden	
  
	
  
	
  
Abstract:	
  This	
  paper	
  describes	
  the	
  findings	
  of	
  a	
  case	
  study	
  on	
  the	
  possibility	
  to	
  
create	
   a	
   climate	
   positive	
   urban	
   district,	
   the	
   Stockholm	
   Royal	
   Seaport	
   (SRS).	
   SRS	
  
is	
  being	
  developed	
  with	
  the	
  explicit	
  goal	
  of	
  becoming	
  climate	
  positive	
  and	
  in	
  the	
  
paper	
   we	
   study	
   SRS’s	
   emissions	
   of	
   greenhouse	
   gases	
   (GHG)	
   and	
   tries	
   to	
  
determine	
   this	
   possibility.	
   To	
   support	
   our	
   findings	
   we	
   define	
   the	
   concept	
   of	
   a	
  
climate	
  positive	
  urban	
  district,	
  SRS’s	
  scope	
  of	
  emissions	
  and	
  system	
  boundaries,	
  
in	
   order	
   to	
   create	
   a	
   baseline	
   of	
   the	
   urban	
   district’s	
   GHG	
   emissions.	
   Finally	
   we	
  
discuss	
   SRS’s	
   process	
   of	
   trying	
   to	
   become	
   a	
   climate	
   positive	
   urban	
   district,	
   both	
  
in	
   terms	
   of	
   considerations	
   that	
   have	
   been	
   made	
   regarding	
   scopes,	
   boundaries	
  
and	
  data	
  as	
  well	
  as	
  SRS’s	
  relation	
  to	
  the	
  City	
  of	
  Stockholm.	
  	
  	
  
	
  
Key	
  words:	
  	
  
Climate	
  positive	
  urban	
  districts	
  
Stockholm	
  Royal	
  Seaport	
  	
  
Case	
  study	
  
	
  
	
  
	
  
	
  	
  
	
  	
  


     1. Introduction	
  
By	
   2007,	
   more	
   than	
   half	
   the	
   world’s	
   population	
   was	
   living	
   in	
   urban	
   areas	
  
(United	
   Nations,	
   2007).	
   Cities	
   are	
   becoming	
   one	
   of	
   the	
   key	
   leverage	
   points	
   for	
  
climate	
  change,	
  since	
  they	
  are	
  recognised	
  as	
  being	
  one	
  of	
  the	
  major	
  emitters	
  of	
  
greenhouse	
   gases	
   (GHG),	
   while	
   also	
   being	
   the	
   ideal	
   platform	
   to	
   cut	
   emissions	
  
(Grimm	
  et	
  al.,	
  2008;	
  International	
  Energy	
  Agency,	
  2008).	
  In	
  Stockholm,	
  Sweden,	
  
a	
  new	
  urban	
  district	
  called	
  Stockholm	
  Royal	
  Seaport	
  (SRS)	
  is	
  being	
  developed,	
  
with	
   the	
   explicit	
   goal	
   of	
   achieving	
   climate	
   positive	
   status.	
   The	
   Clinton	
  


                                                                                                                                	
   1	
  
Submitted	
  article	
  –	
  Journal	
  of	
  Energy	
  Policy	
  	
  
Do	
  not	
  copy	
  or	
  redistribute!	
  
Foundation’s	
   Clinton	
   Climate	
   Initiative	
   (CCI)	
   developed	
   the	
   conceptual	
  
framework	
   for	
   climate	
   positive	
   urban	
   districts,	
   the	
   Climate	
   Positive	
   Program,	
  
and	
   SRS	
   is	
   one	
   of	
   16	
   participating	
   projects	
   in	
   different	
   regions	
   around	
   the	
  
world.	
  The	
  framework	
  focuses	
  on	
  low	
  energy	
  use,	
  a	
  high	
  degree	
  of	
  renewables,	
  
local	
   on-­‐site	
   energy	
   production	
   and	
   influencing	
   nearby	
   districts/communities	
  
towards	
  low	
  carbon	
  emissions	
  (CCI,	
  2011).	
  This	
  paper	
  examines	
  the	
  concept	
  of	
  
a	
   climate	
   positive	
   urban	
   district	
   by	
   applying	
   the	
   CCI	
   framework	
   to	
   SRS,	
   while	
  
still	
   maintaining	
   the	
   possibility	
   to	
   compare	
   SRS	
   to	
   the	
   City	
   of	
   Stockholm	
   by	
  
using	
   the	
   same	
   methodology	
   concerning	
   local	
   data	
   and	
   system	
   boundaries	
   as	
  
the	
  City.	
  	
  It	
  also	
  compares	
  the	
  urban	
  district	
  in	
  general	
  and	
  its	
  GHG	
  emissions	
  to	
  
the	
  rest	
  of	
  the	
  city	
  and	
  tries	
  to	
  draw	
  conclusions	
  from	
  the	
  findings.	
  	
  
	
  
The	
  paper	
  begins	
  by	
  describing	
  the	
  SRS	
  urban	
  district,	
  its	
  characteristics	
  and	
  its	
  
relation	
  to	
  the	
  City	
  of	
  Stockholm	
  in	
  terms	
  of	
  climate-­‐related	
  goals	
  and	
  then	
  goes	
  
on	
   to	
   describe	
   SRS’s	
   process	
   to	
   become	
   a	
   climate	
   positive	
   urban	
   district.	
   The	
  
aims	
   and	
   objectives	
   of	
   the	
   case	
   study	
   are	
   then	
   presented,	
   beginning	
   with	
   an	
  
examination	
   of	
   the	
   definition	
   of	
   a	
   climate	
   positive	
   urban	
   district,	
   scopes	
   of	
  
emissions	
   and	
   system	
   boundaries	
   and	
   then	
   describing	
   the	
   calculated	
   GHG	
  
emissions	
   of	
   the	
   urban	
   district.	
   Next,	
   the	
   baseline	
   emissions	
   are	
   compared	
  
against	
  the	
  magnitudes	
  of	
  a	
  few	
  possible	
  actions	
  to	
  reduce	
  the	
  urban	
  district’s	
  
GHG	
   emissions.	
   Finally,	
   there	
   is	
   a	
   concluding	
   discussion	
   on	
   the	
   concept	
   of	
   a	
  
climate	
   positive	
   urban	
   district,	
   its	
   GHG	
   emissions	
   and	
   the	
   generality	
   of	
   the	
  
results.	
  


       2. Background	
  	
  	
  
Characteristics	
  of	
  the	
  SRS	
  area	
  –	
  Present	
  and	
  Future	
  Infrastructure	
  
The	
  area	
  where	
  SRS	
  is	
  being	
  built	
  is	
  a	
  brownfield	
  site	
  currently	
  being	
  used	
  for	
  
housing,	
   gas	
   utilities,	
   a	
   combined	
   heat	
   and	
   power	
   plant	
   and	
   a	
   harbour.	
   It	
   serves	
  
as	
   a	
   thoroughfare	
   for	
   traffic	
   to	
   the	
   harbour	
   and	
   to	
   the	
   island	
   of	
   Lidingö	
  
(population	
  42	
  000	
  in	
  2009;	
  Lidingö	
  stad,	
  2011).	
  SRS	
  also	
  occupies	
  a	
  wedge	
  of	
  
the	
   National	
   City	
   Park	
   in	
   central	
   Stockholm	
   (City	
   of	
   Stockholm,	
   2011).	
   The	
  
current	
   thoroughfare	
   will	
   be	
   expanded	
   in	
   an	
   effort	
   to	
   build	
   a	
   partial	
   beltway	
  
around	
  Stockholm.	
  By	
  the	
  time	
  the	
  development	
  is	
  completed,	
  a	
  total	
  of	
  10,000	
  
apartments	
   housing	
   19	
   000	
   residents	
   will	
   have	
   been	
   built,	
   along	
   with	
   a	
   large	
  
non-­‐residential	
   area	
   containing	
   workspaces	
   for	
   30	
   000	
   workers,	
   commercial	
  
spaces	
  and	
  a	
  shopping	
  mall.	
  The	
  SRS	
  project	
  is	
  expected	
  to	
  achieve	
  full	
  build-­‐out	
  
in	
   2030,	
   but	
   the	
   first	
   residents	
   will	
   be	
   moving	
   in	
   later	
   this	
   year.	
   The	
   planned	
  
land	
  uses	
  are	
  summarised	
  by	
  area	
  in	
  Table	
  1.	
  
	
  
	
  
Table	
  1.	
  Built	
  areas	
  of	
  Stockholm	
  Royal	
  Seaport	
  by	
  type	
  at	
  full	
  build-­‐out	
  

                                                                                  Planned	
  area	
  [m2]	
  at	
  full	
  build-­‐out	
  
Land	
  use	
  by	
  type	
  
Multifamily	
  housing	
                                                                                                     1,143,400	
  
Office	
  space	
                                                                                                              712,330	
  
Commercial	
  space	
                                                                                                           84,015	
  
Schools	
                                                                                                                        9,500	
  


                                                                                                                                       	
   2	
  
Submitted	
  article	
  –	
  Journal	
  of	
  Energy	
  Policy	
  	
  
Do	
  not	
  copy	
  or	
  redistribute!	
  
Source:	
  Johansson	
  et	
  al.	
  (2012b).	
  

SRS	
  in	
  Relation	
  to	
  the	
  City	
  of	
  Stockholm	
  and	
  its	
  Climate	
  Goals	
  
SRS	
   is	
   located	
   near	
   central	
   Stockholm	
   (3	
   km	
   from	
   the	
   city	
   centre),	
   with	
   easy	
  
access	
  to	
  public	
  transportation,	
  walking	
  and	
  cycle	
  trails.	
  The	
  area	
  is	
  to	
  become	
  
Stockholm’s	
   second	
   so-­‐called	
   eco-­‐district,	
   with	
   a	
   strong	
   ‘green	
   profile’	
  
formulated	
   in	
   a	
   environmental	
   programme	
   for	
   the	
   district	
   (City	
   of	
   Stockholm,	
  
2012).	
  The	
  first	
  eco-­‐district,	
  Hammaby	
  Sjöstad	
  (Hammarby	
  Sea	
  City),	
  attempted	
  
to	
   be	
   an	
   area	
   that	
   was	
   “twice	
   as	
   good”	
   from	
   an	
   environmental	
   perspective	
   as	
  
other	
  areas	
  being	
  built	
  at	
  the	
  time	
  (mid-­‐1990s)	
  (Pandis	
  &	
  Brandt,	
  2009).	
  	
  
	
  
SRS	
  has	
  two	
  goals	
  with	
  regard	
  to	
  climate	
  change	
  and	
  GHG	
  emissions	
  by	
  the	
  time	
  
build-­‐out	
   is	
   completed	
   in	
   2030,	
   namely	
   to	
   have	
   developed	
   a	
   climate	
   positive	
  
urban	
   district	
   and	
   to	
   have	
   become	
   a	
   fossil-­‐fuel	
   free	
   urban	
   district	
   (City	
   of	
  
Stockholm,	
  2010b).	
  As	
  a	
  comparison,	
  the	
  City	
  of	
  Stockholm’s	
  goals	
  are	
  to	
  limit	
  
GHG	
  emissions	
  to	
  3.0	
  ton	
  carbon	
  dioxide	
  equivalents	
  (CO2e)	
  per	
  capita1	
  by	
  the	
  
year	
  2015	
  and	
  to	
  become	
  a	
  fossil-­‐fuel	
  free	
  city	
  by	
  2050	
  (Stockholm,	
  2010a).	
  	
  
	
  
Since	
  SRS	
  is	
  part	
  of	
  the	
  City	
  of	
  Stockholm,	
  we	
  deemed	
  it	
  appropriate	
  to	
  base	
  our	
  
study	
   on	
   earlier	
   experiences	
   from	
   the	
   City	
   and	
   to	
   use	
   the	
   same	
   system	
  
boundaries	
   and	
   methods	
   for	
   quantifying	
   GHG	
   emissions	
   as	
   the	
   rest	
   of	
   the	
   City	
  
whenever	
   possible.	
   This	
   approach	
   also	
   enabled	
   us	
   to	
   make	
   comparisons	
   and	
  
benchmark	
   between	
   SRS	
   and	
   the	
   surrounding	
   City	
   of	
   Stockholm.	
   Like	
   many	
  
cities	
   (Kramers	
   et	
   al.,	
   2012),	
   Stockholm	
   has	
   traditionally	
   focused	
   on	
   direct	
  
emissions	
   within	
   its	
   geographical	
   boundary	
   while	
   excluding	
   emissions	
   from	
  
sources	
   such	
   as	
   long	
   distance	
   travel,	
   construction	
   and	
   consumption.	
   A	
  
noteworthy	
   feature	
   of	
   the	
   City	
   of	
   Stockholm	
   is	
   that	
   no	
   waste	
   treatment	
   takes	
  
place	
  within	
  its	
  geographical	
  boundary	
  and	
  therefore	
  the	
  only	
  waste	
  emissions	
  
included	
  are	
  those	
  from	
  collection,	
  transportation	
  and	
  incineration	
  of	
  waste	
  in	
  
the	
  district-­‐heating	
  grid	
  (City	
  of	
  Stockholm,	
  2010a).	
  	
  


          3. Aims	
  and	
  Objectives	
  
The	
   main	
   aims	
   of	
   the	
   study	
   were	
   to	
   study	
   the	
   GHG	
   emissions	
   of	
   SRS	
   in	
   a	
  
transparent	
  way	
  and	
  to	
  determine	
  its	
  possibilities	
  to	
  become	
  a	
  climate	
  positive	
  
urban	
   district.	
   To	
   achieve	
   this	
   aim,	
   the	
   following	
   specific	
   objectives	
   were	
  
formulated:	
  
	
  
     • Define	
  the	
  concept	
  of	
  a	
  climate	
  positive	
  urban	
  district	
  	
  
     • Describe	
  SRS’s	
  scope	
  of	
  emissions,	
  system	
  boundaries	
  and	
  data	
  	
  
     • Calculate	
  SRS’s	
  baseline	
  emissions	
  
     • Calculate	
   the	
   magnitudes	
   of	
   a	
   few	
   potential	
   actions	
   to	
   cut	
   SRS’s	
   GHG	
  
          emissions	
  
     • Discuss	
   the	
   results	
   obtained	
   in	
   terms	
   of	
   magnitude	
   of	
   GHG	
   emissions,	
  
          SRS’s	
   possibility	
   to	
   become	
   climate	
   positive	
   and	
   the	
   relationship	
  


	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  By	
  capita,	
  the	
  city	
  and	
  we	
  use	
  the	
  number	
  of	
  residents	
  living	
  in	
  an	
  enclosed	
  

area,	
  either	
  the	
  City	
  of	
  Stockholm	
  or	
  the	
  SRS	
  urban	
  district.	
  	
  

                                                                                                                                                                                                                                   	
   3	
  
Submitted	
  article	
  –	
  Journal	
  of	
  Energy	
  Policy	
  	
  
Do	
  not	
  copy	
  or	
  redistribute!	
  
           between	
  GHG	
  emissions	
  from	
  SRS	
  compared	
  with	
  those	
  from	
  the	
  rest	
  of	
  
           the	
  City	
  of	
  Stockholm.	
  
	
  
This	
  paper	
  describes	
  the	
  findings	
  of	
  our	
  case	
  study	
  on	
  SRS’s	
  progress	
  towards	
  
becoming	
  a	
  climate	
  positive	
  urban	
  district.	
  	
  


     4. The	
  Concept	
  of	
  a	
  Climate	
  Positive	
  Urban	
  District	
  	
  
A	
  number	
  of	
  different	
  terminologies	
  and/or	
  concepts	
  are	
  used	
  when	
  discussing	
  
GHG	
   emissions	
   in	
   urban	
   settings.	
   Most	
   are	
   intuitively	
   understandable	
   in	
   a	
  
general	
   sense	
   (carbon-­‐neutral,	
   zero	
   carbon,	
   etc.)	
   but	
   when	
   examined	
   in	
   closer	
  
detail	
   they	
   are	
   quite	
   diverse	
   and	
   formal	
   definitions	
   and	
   related	
   standards	
  
currently	
   do	
   not	
   exist	
   (Murray	
   &	
   Dey,	
   2009)	
   or	
   are	
   vague,	
   creating	
   the	
  
possibility	
   of	
   significant	
   confusion	
   and	
   uncertainty.	
   The	
   lack	
   of	
   standards	
   also	
  
makes	
   comparison	
   and	
   benchmarking	
   between	
   cities/urban	
   districts	
   etc.	
  
difficult	
  or	
  impossible.	
  	
  

The	
  Definition	
  of	
  a	
  Climate	
  Positive	
  Urban	
  District	
  Used	
  by	
  SRS	
  
Kennedy	
   &	
   Sgouridis	
   (2011)	
   review	
   a	
   number	
   of	
   different	
   low	
   GHG	
   concepts.	
  
According	
   to	
   their	
   definition,	
   a	
   carbon-­‐neutral	
   district	
   is	
   one	
   where	
   direct	
  
emissions	
  (also	
  referred	
  to	
  as	
  scope	
  1)	
  and	
  important	
  indirect	
  emissions	
  (also	
  
referred	
  to	
  as	
  scope	
  2	
  and	
  3)	
  are	
  in	
  balance/equal	
  to	
  reductions,	
  sequestrations,	
  
sinks	
   and	
   offsets.	
   A	
   climate	
   positive	
   district	
   can	
   be	
   defined	
   as	
   one	
   where	
  
emissions	
  are	
  less	
  than	
  the	
  sum	
  of	
  reductions,	
  sequestrations,	
  sinks	
  and	
  offsets,	
  
or	
   where	
   reductions,	
   sequestrations,	
   sinks	
   and	
   offsets	
   outweigh	
   emissions.	
  
However,	
  in	
  the	
  case	
  of	
  SRS,	
  we	
  were	
  unable	
  to	
  identify	
  any	
  significant	
  sinks	
  or	
  
sequestrations.	
  	
  
SRS’s	
   Process	
   of	
   Becoming	
   a	
   Climate	
   Positive	
   Urban	
   District	
   According	
   to	
  
CCI	
  
There	
   are	
   two	
   main	
   phases	
   in	
   SRS’s	
   process	
   to	
   become	
   a	
   climate	
   positive	
   urban	
  
district	
  based	
  on	
  the	
  methodology	
  supplied	
  by	
  CCI	
  (Figure	
  1)	
  (CCI,	
  2011).	
  The	
  
first	
  step	
  of	
  the	
  process	
  is	
  to	
  create	
  a	
  GHG	
  emissions	
  baseline	
  for	
  the	
  SRS	
  area.	
  
This	
   baseline	
   serves	
   as	
   the	
   basis	
   for	
   the	
   next	
   phase,	
   which	
   is	
   to	
   develop	
   a	
  
roadmap	
   of	
   actions	
   that	
   will	
   lead	
   to	
   a	
   climate	
   positive	
   outcome.	
   The	
   roadmap	
  
includes	
  actions	
  which	
  focus	
  on	
  energy	
  efficiency	
  measures,	
  fuel	
  switching	
  from	
  
fossil	
   fuels	
   to	
   renewables	
   and	
   local	
   energy	
   generation.	
   The	
   roadmap	
   actions	
   are	
  
constrained	
   to	
   those	
   directly	
   applied	
   within	
   SRS’s	
   geographical	
   boundary.	
  
Figure	
  1	
  illustrates	
  the	
  process	
  being	
  used	
  by	
  SRS	
  to	
  become	
  climate	
  positive.	
  	
  




                                                                                                                                	
   4	
  
Submitted	
  article	
  –	
  Journal	
  of	
  Energy	
  Policy	
  	
  
Do	
  not	
  copy	
  or	
  redistribute!	
  
	
  




                                                                                                                                                          	
  
	
  
Figure	
  1.	
  Summary	
  of	
  the	
  process	
  by	
  which	
  Stockholm	
  Royal	
  Seaport	
  is	
  striving	
  to	
  become	
  a	
  climate	
  
positive	
  urban	
  district.	
  	
  



       5. The	
  GHG	
  Baseline	
  for	
  SRS	
  –	
  Scopes	
  and	
  Boundaries	
  
In	
  the	
  GHG	
  baseline	
  for	
  SRS,	
  the	
  concept	
  we	
  used	
  for	
  setting	
  the	
  boundaries	
  was	
  
that	
   initially	
   developed	
   for	
   the	
   GHG	
   Protocol	
   by	
   World	
   Resources	
   Institute	
  
(WRI)	
   and	
   the	
   World	
   Business	
   Council	
   for	
   Sustainable	
   Development	
   (WBCSD)	
  
(Rangathan	
  et	
  al.,	
  2004;	
  Kennedy	
  &	
  Sgouridis,	
  2011).	
  The	
  scopes	
  are	
  defined	
  as:	
  
	
  
Scope	
  1	
  –	
  Includes	
  direct	
  emissions	
  such	
  as	
  emissions	
  from	
  heating,	
  cooling	
  and	
  
transportation.	
  
Scope	
   2	
   –	
   Core	
   external	
   emissions	
   such	
   as	
   waste	
   treatment	
   and	
   electricity	
  
generation.	
  
Scope	
   3	
   –	
   Non-­‐core	
   emissions	
   such	
   as	
   emissions	
   from	
   consumption	
   not	
  
included	
  in	
  scope	
  1	
  or	
  2	
  and	
  other	
  emissions	
  not	
  connected	
  to	
  the	
  geographical	
  
area	
  such	
  as	
  long	
  distance	
  travel.	
  	
  
	
  
When	
  defining	
  what	
  is	
  included	
  in	
  the	
  scopes,	
  the	
  district’s	
  system	
  boundaries	
  
also	
  need to be defined.	
  There	
  are	
  four	
  system	
  boundaries	
  to	
  take	
  into	
  account,	
  
geographical,	
   	
   activity,	
   temporal	
   and	
   life	
   cycle	
   system	
   boundaries.	
   To	
   determine	
  
the	
   emissions	
   included	
   within	
   the	
   boundaries,	
   SRS	
   focuses	
   on	
   emissions	
   related	
  
to	
   activities	
   directly	
   related	
   to	
   the	
   geographical	
   area,	
   much	
   like	
   the	
   City	
   of	
  
Stockholm	
   itself	
   does	
   when	
   calculating	
   emissions	
   for	
   the	
   entire	
   city	
   (City	
   of	
  
Stockholm,	
  2010).	
  	
  

The	
  Geographical	
  Boundary	
  
The	
   SRS’s	
   geographical	
   system	
   boundary	
   is	
   defined	
   as	
   the	
   perimeter	
   that	
  
encloses	
  the	
  236	
  hectares	
  of	
  project	
  area	
  (City	
  of	
  Stockholm,	
  2012).	
  Emissions	
  
associated	
   with	
   activities	
   related	
   to	
   the	
   district	
   and	
   emitted	
   inside	
   the	
  


                                                                                                                                             	
   5	
  
Submitted	
  article	
  –	
  Journal	
  of	
  Energy	
  Policy	
  	
  
Do	
  not	
  copy	
  or	
  redistribute!	
  
geographical	
   boundary	
   are	
   accounted	
   for,	
   while	
   emissions	
   not	
   associated	
   with	
  
the	
  district	
  are	
  excluded.	
  This	
  excludes,	
  among	
  other	
  activities,	
  emissions	
  from	
  
the	
   combined	
   heat	
   and	
   power	
   plant	
   not	
   related	
   to	
   buildings	
   in	
   SRS,	
   since	
   it	
  
supplies	
   a	
   far	
   greater	
   area	
   than	
   SRS	
   with	
   heating,	
   cooling	
   and	
   electricity.	
   If	
   a	
  
strict	
  geographical	
  perspective	
  had	
  been	
  implemented,	
  all	
  of	
  the	
  emissions	
  from	
  
the	
  power	
  plant	
  would	
  have	
  been	
  included,	
  despite	
  the	
  fact	
  that	
  most	
  emissions	
  
were	
  generated	
  by	
  energy	
  use	
  elsewhere.	
  	
                     	
  

The	
  Activity	
  Boundary	
  
The	
   activity	
   boundary	
   determines	
   which	
   activities	
   are	
   included	
   and	
   excluded	
  
from	
  the	
  baseline.	
  As	
  stated	
  previously,	
  we	
  deemed	
  it	
  appropriate	
  to	
  include	
  the	
  
same	
   activities	
   as	
   the	
   City	
   of	
   Stockholm	
   does	
   when	
   calculating	
   its	
   GHG	
  
emissions	
  (City	
  of	
  Stockholm,	
  2010a).	
  This	
  means	
  that	
  emissions	
  from	
  heating,	
  
cooling,	
   electricity	
   and	
   transportation	
   are	
   included,	
   while	
   emissions	
   from	
   the	
  
construction	
   of	
   infrastructure,	
   consumption	
   and	
   long	
   distance	
   travel	
   are	
  
excluded.	
   A	
   main	
   difference	
   from	
   the	
   City	
   of	
   Stockholm’s	
   traditional	
   way	
   of	
  
calculating	
  emissions	
  is	
  that	
  we	
  include	
  life	
  cycle	
  emissions	
  from	
  the	
  treatment	
  
of	
  waste	
  in	
  the	
  baseline,	
  since	
  the	
  waste	
  is	
  generated	
  by	
  activities	
  taking	
  place	
  
within	
   the	
   geographical	
   boundary	
   despite	
   treatment	
   taking	
   place	
   outside	
   it.	
  
Traditionally,	
   the	
   City	
   of	
   Stockholm	
   has	
   only	
   included	
   waste	
   emissions	
  
stemming	
  from	
  transportation	
  and	
  waste	
  incineration.	
  The	
  rationale	
  behind	
  this	
  
is	
  that	
  household	
  and	
  food	
  waste,	
  which	
  represents	
  the	
  majority	
  of	
  the	
  waste,	
  is	
  
transported	
   for	
   incineration	
   in	
   the	
   local	
   district	
   heating	
   system,	
   whereas	
   the	
  
treatment	
   plant	
   for	
   the	
   other	
   waste	
   is	
   located	
   outside	
   the	
   city	
   boundary.	
  
However,	
  we	
  believed	
  that	
  its	
  emissions	
  should	
  be	
  included.	
  	
  

The	
  Temporal	
  Boundary	
  	
  
The	
   temporal	
   boundary	
   for	
   SRS	
   is	
   set	
   to	
   start	
   at	
   complete	
   build-­‐out	
   in	
   2030	
  
(also	
   called	
   operational	
   emissions).	
   Therefore	
   emissions	
   from	
   building	
   and	
  
infrastructure	
  construction	
  are	
  excluded.	
  The	
  emissions	
  are	
  measured	
  as	
  annual	
  
emissions,	
   either	
   as	
   ton	
   CO2e	
   per	
   year	
   or	
   as	
   ton	
   CO2e/capita	
   and	
   year.	
   The	
  
temporal	
  boundary	
  also	
  has	
  a	
  significant	
  effect	
  on	
  the	
  baseline.	
  Since	
  SRS	
  will	
  be	
  
built	
   over	
   an	
   extended	
   period	
   of	
   time,	
   almost	
   20	
   years,	
   the	
   baseline	
   will	
   be	
   a	
  
moving	
   target	
   as	
   the	
   technology	
   and	
   other	
   drivers	
   (for	
   instance	
   travel	
  
behaviour)	
   advance	
   throughout	
   the	
   development	
   process.	
   Current	
   trends	
   with	
  
more	
   energy-­‐efficient	
   buildings	
   and	
   vehicles	
   and	
   a	
   shift	
   to	
   more	
   vehicles	
  
running	
  on	
  renewable	
  fuels	
  are	
  likely	
  to	
  continue	
  (Trafikverket,	
  2011),	
  but	
  can	
  
be	
  (partially)	
  offset	
  by	
  increased	
  use.	
  To	
  counter	
  this	
  potential	
  uncertainty,	
  we	
  
decided	
  to	
  use	
  2010	
  as	
  a	
  base	
  year	
  of	
  reference	
  in	
  the	
  baseline.	
  The	
  base	
  year	
  is	
  
used	
   to	
   set	
   the	
   composition	
   of	
   energy	
   sources,	
   vehicle	
   fleet,	
   waste	
   generation,	
  
emission	
  factors	
  of	
  district	
  heating	
  and	
  electricity	
  and	
  so	
  forth.	
  No	
  changes	
  over	
  
time	
   are	
   taken	
   into	
   account	
   for	
   the	
   baseline,	
   which	
   has	
   been	
   found	
   to	
   be	
   the	
  
most	
  conservative	
  approach.	
  

The	
  Life	
  Cycle	
  Boundary	
  
The	
   City	
   of	
   Stockholm	
   uses	
   life	
   cycle-­‐based	
   emission	
   factors	
   for	
   all	
   fuels	
   and	
  
energy	
   carriers	
   used	
   in	
   mobile	
   and	
   stationary	
   combustion,	
   using	
   the	
   best	
  
available	
  data	
  for	
  each	
  energy	
  source	
  and	
  presenting	
  all	
  data	
  used,	
  calculations	
  
and	
  assumptions	
  in	
  a	
  transparent	
  way	
  (Johansson	
  et	
  al.,	
  2012b).	
  The	
  life	
  cycle	
  



                                                                                                                                   	
   6	
  
Submitted	
  article	
  –	
  Journal	
  of	
  Energy	
  Policy	
  	
  
Do	
  not	
  copy	
  or	
  redistribute!	
  
data	
  include	
  emissions	
  of	
  carbon	
  dioxide,	
  methane	
  and	
  nitrous	
  oxide,	
  accounted	
  
as	
  CO2e.	
  	
  
	
  
Summary	
  of	
  SRS’s	
  Scopes	
  and	
  Boundaries	
  	
  
Using	
   the	
   scopes	
   of	
   emissions	
   together	
   with	
   the	
   system	
   boundaries	
   we	
   were	
  
able	
   to	
   decide	
   which	
   emissions	
   are	
   included	
   in	
   the	
   baseline	
   and	
   which	
   are	
  
excluded.	
  For	
  each	
  emission	
  category,	
  the	
  principle	
  of	
  activities	
  directly	
  related	
  
to	
   the	
   geographical	
   area	
   is	
   used.	
   However,	
   within	
   each	
   emissions	
   category	
  
important	
  choices	
  had	
  to	
  been	
  made,	
  as	
  described	
  below.	
  	
  
Energy	
  
The	
   emissions	
   from	
   energy	
   include	
   emissions	
   from	
   energy	
   use	
   in	
   the	
   area	
  
(buildings,	
   infrastructure)	
   and	
   emission	
   reductions	
   from	
   local	
   energy	
  
generation	
  (more	
  about	
  this	
  in	
  the	
  results	
  of	
  the	
  SRS	
  baseline).	
  The	
  principle	
  of	
  
only	
   including	
   activities	
   directly	
   related	
   to	
   the	
   SRS	
   district	
   were	
   used	
   to	
   limit	
  
the	
   emissions	
   from	
   the	
   combined	
   heat	
   and	
   power	
   plant	
   located	
   in	
   the	
   area	
   to	
  
emissions	
   from	
   building	
   energy	
   use	
   (heating,	
   cooling,	
   electricity)	
   in	
   the	
   area,	
  
instead	
   of	
   accounting	
   for	
   all	
   of	
   the	
   emissions,	
   since	
   the	
   majority	
   of	
   these	
   stem	
  
from	
  energy	
  use	
  in	
  the	
  City	
  of	
  Stockholm.	
  	
  
Transportation	
  
The	
   transportation	
   emissions	
   include	
   emissions	
   from	
   people	
   and	
   activities	
  
directly	
   connected	
   with	
   the	
   urban	
   district.	
   This	
   means	
   that	
   transportation	
  
emissions	
  from	
  residents’	
  private	
  and	
  commuting	
  trips	
  are	
  included,	
  while	
  their	
  
business	
  trips	
  are	
  excluded	
  since	
  it	
  was	
  assumed	
  that	
  they	
  do	
  not	
  work	
  locally.	
  
For	
   workers,	
   the	
   emissions	
   from	
   personal	
   trips	
   and	
   commuting	
   are	
   excluded,	
  
since	
   they	
   were	
   assumed	
   not	
   to	
   live	
   in	
   SRS,	
   while	
   emissions	
   from	
   business	
   trips	
  
are	
  included,	
  since	
  the	
  companies	
  are	
  located	
  within	
  SRS.	
  	
  
Waste	
  
The	
  emissions	
  from	
  waste	
  include	
  emissions	
  from	
  the	
  waste	
  collection	
  process,	
  
transportation	
  and	
  the	
  treatment	
  of	
  waste.	
  	
  
Excluded	
  emissions	
  
The	
   emissions	
   from	
   consumption	
   are	
   excluded,	
   since	
   almost	
   none	
   of	
   the	
   GHG	
  
emissions	
   from	
   the	
   production	
   of	
   the	
   goods	
   consumed	
   take	
   place	
   inside	
   SRS,	
  
with	
  the	
  exception	
  of	
  energy	
  use	
  and	
  emissions	
  from	
  waste.	
  	
  
Long	
   distance	
   travel	
   by	
   modes	
   such	
   as	
   air,	
   bus,	
   ferry	
   and	
   train	
   are	
   excluded,	
  
since	
  they	
  do	
  not	
  take	
  place	
  within	
  the	
  geographical	
  area.	
  	
  
Emissions	
   from	
   societal	
   functions	
   that	
   a	
   person	
   living	
   in	
   SRS	
   (might)	
   need,	
   such	
  
as	
  hospitals,	
  sport	
  centres,	
  public	
  administration,	
  etc.	
  are	
  excluded,	
  since	
  these	
  
activities	
  do	
  not	
  take	
  place	
  within	
  SRS.	
  	
  
	
  
The	
   included	
   and	
   excluded	
   emissions	
   in	
   the	
   GHG	
   emissions	
   baseline	
   for	
   SRS	
   are	
  
summarised	
  in	
  Table	
  2.	
  	
  
	
  
Table	
  2.	
  Summary	
  of	
  included	
  and	
  excluded	
  GHG	
  emissions	
  in	
  the	
  Stockholm	
  Royal	
  Seaport	
  
baseline	
  

Included	
  emissions	
                                Comments	
  
Energy	
                                               -­‐Emissions	
   related	
   to	
   heating,	
   cooling	
   and	
  
                                                       electricity	
  directly	
  linked	
  to	
  activities	
  within	
  the	
  
                                                       geographical	
  boundary	
  of	
  SRS.	
  	
  


                                                                                                                                    	
   7	
  
Submitted	
  article	
  –	
  Journal	
  of	
  Energy	
  Policy	
  	
  
Do	
  not	
  copy	
  or	
  redistribute!	
  
                                                  -­‐Emission	
   reductions	
   from	
   local	
   energy	
  
                                                  production	
   directly	
   related	
   to	
   the	
   geographical	
  
                                                  boundary	
  of	
  SRS.	
  
                                                  -­‐Energy	
   used	
   in	
   infrastructure	
   such	
   as	
   road	
  
                                                  maintenance,	
  traffic	
  lights,	
  etc.	
  	
  
Transportation	
                                  Emissions	
   related	
   to	
   transportation	
   stemming	
  
                                                  from	
   activities	
   directly	
   related	
   to	
   the	
  
                                                  geographical	
  area	
  of	
  SRS:	
  	
  
                                                       - Private	
  trips	
  (residents)	
  
                                                       - Commuting	
  trips	
  (residents)	
  
                                                       - Business	
  trips	
  (workers)	
  
                                                       - Goods	
  and	
  services	
  
Waste	
                                           Emissions	
   and	
   emissions	
   reductions	
   from	
   the	
  
                                                  collection,	
  transport	
  and	
  treatment	
  of	
  waste.	
  
            	
  
Excluded	
  emissions	
                           Comments	
  
Consumption	
                                     The	
   only	
   emissions	
   from	
   consumption	
   included	
  
                                                  are	
   direct	
   energy	
   use	
   and/or	
   emissions	
   from	
  
                                                  waste.	
  	
  
Long	
  distance	
  travel	
  
                                                  Air	
  travel,	
  long	
  distance	
  bus,	
  ferry,	
  train	
  
Emissions	
   from	
   societal	
                       - Hospitals	
  
functions	
   not	
   located	
   within	
              - Sport	
  centres	
  
SRS	
                                                   - Public	
  administration	
  	
  
                                                        …	
  
Construction	
                                                	
  
	
  


       6. Results:	
  The	
  GHG	
  baseline	
  of	
  SRS	
  –	
  Emissions	
  and	
  
          Calculations	
  
Calculations	
  of	
  the	
  yearly	
  GHG	
  emissions	
  in	
  the	
  baseline	
  were	
  divided	
  into	
  three	
  
main	
  emissions	
  categories:	
  energy,	
  transportation	
  and	
  waste.	
  For	
  instance,	
  the	
  
energy	
   emissions	
   category	
   includes	
   energy	
   in	
   buildings,	
   infrastructure,	
   water	
  
and	
   locally	
   generated	
   energy.	
   For	
   each	
   emissions	
   category,	
   the	
   data	
   used	
   are	
  
described	
  below	
  together	
  with	
  any	
  assumptions	
  made.	
  To	
  determine	
  what	
  data	
  
to	
  use	
  in	
  the	
  baseline,	
  we	
  adopted	
  the	
  following	
  data	
  hierarchy:	
  	
  
	
  
       1. Where	
  local	
  SRS-­‐specific	
  data	
  are	
  available,	
  these	
  are	
  primarily	
  used.	
  For	
  
              instance	
   projected	
   heating	
   and	
   hot	
   water	
   demand	
   [kWh/m2	
   and	
   year]	
  
              for	
  buildings.	
  	
  
       2. Where	
   SRS-­‐specific	
   data	
   are	
   unavailable,	
   data	
   for	
   the	
   City	
   of	
   Stockholm	
  
              or	
   greater	
   Stockholm	
   are	
   used,	
   for	
   instance	
   composition	
   of	
   the	
   vehicle	
  
              fleet	
   [%	
   gasoline	
   cars,	
   %	
   biogas	
   cars,	
   etc.],	
   and	
   emissions	
   from	
   the	
  
              Stockholm	
  district	
  heating	
  mix	
  [g	
  CO2e/kWh].	
  
       3. Where	
   data	
   specific	
   for	
   Stockholm	
   are	
   unavailable,	
   data	
   for	
   Sweden	
   or	
  
              the	
   Nordic	
   countries	
   are	
   used,	
   for	
   instance	
   GHG	
   emissions	
   from	
   waste	
  
              management	
  by	
  fractions	
  of	
  waste	
  in	
  Sweden	
  [g	
  CO2e/ton	
  waste].	
  


                                                                                                                           	
   8	
  
Submitted	
  article	
  –	
  Journal	
  of	
  Energy	
  Policy	
  	
  
Do	
  not	
  copy	
  or	
  redistribute!	
  
	
  
All	
  calculations	
  made	
  are	
  using	
  the	
  same	
  basic	
  formula:	
  
	
  
                                Activity	
  *	
  Emission	
  Factor	
  =	
  Emissions	
  
                                                            	
  
Examples	
   of	
   activities	
   are	
   annual	
   energy	
   use	
   [kWh	
   of	
   a	
   fuel	
   or	
   energy	
  
carrier/year],	
   annual	
   person	
   kilometres	
   (PKM)	
   travelled	
   [PKM	
   of	
   a	
   mode	
   of	
  
transportation/year]	
   and	
   annual	
   waste	
   generated	
   [ton	
   per	
   waste	
   fraction	
   and	
  
year].	
   The	
   emission	
   factors	
   are	
   coupled	
   with	
   the	
   respective	
   activities.	
   In	
   the	
  
example	
   above,	
   emissions	
   from	
   energy	
   use	
   are	
   expressed	
   as	
   [g	
   CO2e/kWh	
   of	
  
fuel	
  or	
  energy	
  carrier],	
  those	
  from	
  transportation	
  as	
  [g	
  CO2e/PKM	
  of	
  the	
  mode	
  
of	
  transportation	
  used]	
  and	
  those	
  from	
  waste	
  as	
  [g	
  CO2e/ton	
  of	
  waste	
  fraction	
  
and	
  treatment	
  method].	
  	
  

Energy	
  
The	
   emissions	
   related	
   to	
   energy	
   in	
   the	
   baseline	
   include	
   emissions	
   from	
   heating,	
  
cooling	
   and	
   electricity	
   used	
   in	
   buildings,	
   emissions	
   from	
   energy	
   used	
   in	
   the	
  
infrastructure	
  (street	
  lights,	
  traffic	
  lights,	
  road	
  maintenance,	
  snow	
  clearing,	
  etc.)	
  
and	
   emissions	
   from	
   supplying	
   the	
   district	
   with	
   water.	
   Also	
   included	
   in	
   the	
  
energy	
   part	
   of	
   the	
   baseline	
   are	
   emissions	
   reductions	
   from	
   locally	
   generated	
  
energy,	
  such	
  as	
  biogas	
  from	
  wastewater	
  sludge.	
  	
  

Buildings	
  
The	
   buildings	
   in	
   the	
   SRS	
   are	
   divided	
   into	
   four	
   categories,	
   multifamily	
   housing,	
  
offices,	
   commercial	
   space	
   and	
   schools.	
   The	
   emissions	
   included	
   come	
   from	
  
heating,	
   cooling	
   and	
   electricity,	
   with	
   electricity	
   end-­‐uses	
   tracked	
   separately	
  
(elevators,	
  pumps,	
  ventilation,	
  etc.).	
  	
  

Data	
  used	
  and	
  calculations:	
  	
  
The	
   data	
   used	
   in	
   the	
   baseline	
   are	
   based	
   on	
   the	
   assumption	
   that	
   the	
   projected	
  
(simulated)	
  energy	
  use	
  for	
  the	
  buildings	
  in	
  the	
  first	
  construction	
  phase	
  (2012-­‐
2014)	
  will	
  be	
  representative	
  for	
  the	
  entire	
  district.	
  The	
  emissions	
  factors	
  used	
  
are	
   three-­‐year	
   mean	
   values	
   for	
   the	
   Stockholm	
   district	
   heating	
   mix	
   and	
   the	
  
Nordic	
   electricity	
   system	
   (Johansson	
   et	
   al.,	
   2012b).	
   The	
   reason	
   for	
   using	
   the	
  
three-­‐year	
   mean	
   instead	
   of	
   only	
   using	
   the	
   base	
   year	
   (2010)	
   emissions	
   was	
   to	
  
eliminate	
   the	
   seasonal	
   variations	
   of	
   hot	
   and	
   cold	
   years,	
   which	
   affect	
   the	
  
emissions	
  factors.	
  	
  
	
  
For	
   each	
   type	
   of	
   building,	
   the	
   projected	
   energy	
   used	
   is	
   calculated.	
   In	
   the	
   first	
  
build	
   phase	
   strict	
   energy	
   requirements	
   on	
   energy	
   use	
   in	
   buildings	
   had	
   yet	
   to	
   be	
  
implemented	
  but	
  simulations	
  have	
  demonstrated	
  that	
  the	
  projected	
  energy	
  use	
  
is	
   roughly	
   25%	
   lower	
   than	
   specified	
   in	
   the	
   current	
   Swedish	
   building	
   codes	
  
(Boverket,	
   2011).	
   Total	
   energy	
   use	
   and	
   emissions	
   are	
   therefore	
   calculated	
  
according	
  to	
  Table	
  3.	
  	
  
Table	
  3.	
  Projected	
  energy	
  use	
  and	
  emissions	
  from	
  different	
  types	
  of	
  buildings	
  in	
  the	
  baseline	
  

Energy	
  by	
  type/Buildings	
  by	
  type	
   Residential	
   Offices	
   Commercial	
   Schools	
  
Heating	
  and	
  cooling	
                                     	
          	
          	
              	
  
Heating	
  [kWh/m2,	
  year]	
                          42.5	
         35	
         25	
           55	
  
Hot	
  water	
  [kWh/m2,	
  year]	
                       25	
             2	
        2	
          10	
  


                                                                                                                                              	
   9	
  
Submitted	
  article	
  –	
  Journal	
  of	
  Energy	
  Policy	
  	
  
Do	
  not	
  copy	
  or	
  redistribute!	
  
Cooling	
  [kWh/m2,	
  year]	
                                                      0	
          20	
                          35	
                           0	
  
Surface	
  area	
  [m2]	
                                               1,143,400	
   712,330	
                            84,015	
                      9,500	
  
Total	
  energy	
  use	
  [GWh/year]	
                                           77.2	
         40.6	
                         5.2	
                        0.6	
  
Emissions	
  factor	
  [g	
  CO2e/kWh]	
                                                           98.45	
  
Total	
  emissions	
  [ton	
  CO2e/year]	
                                 7	
  598.3	
   3	
  997.4	
                        512.8	
                      60.8	
  
          	
                                                                         	
             	
                             	
                          	
  
Electricity	
                                                                             	
                 	
                           	
                      	
  
Building	
  electricity	
  [kWh/m2,	
  year]	
                 15	
        25	
                                                    20	
                      15	
  
Residential/commercial	
   electricity	
                       30	
        50	
                                                    80	
                      35	
  
[kWh/m2,	
  year]	
  
Surface	
  area	
  [m2]	
                               1,143,400	
   712,330	
                                            84,015	
                      9,500	
  
Total	
  energy	
  use	
  [GWh/year]	
                        51.5	
      53.4	
                                               8.4	
                      0.48	
  
Emission	
  factor	
  [g	
  CO2e/kWh]	
                                      69.73	
  
Total	
  emissions	
  [ton	
  CO2e/year]	
                 3,587.8	
   3,725.3	
                                             585.8	
                       33.1	
  
           	
                                                     	
          	
                                                  	
                           	
  
Total	
   emissions	
   (heating,	
   cooling	
   &	
    11,186.1	
   7,722.7	
                                            1,098.6	
                       93.9	
  
electricity)	
   by	
   building	
   type	
  	
  
[ton	
  CO2e/year]	
  
Total	
  building	
  emissions	
  [ton	
  CO2e/year]	
                                                                                               20,301.3	
  
Source:	
  Johansson	
  et	
  al.	
  (2012b).	
  

Infrastructure,	
  Water	
  and	
  Locally	
  Generated	
  Energy	
  
The	
   emissions	
   from	
   infrastructure	
   in	
   SRS	
   include	
   emissions	
   from	
   electricity	
  
used	
   in	
   streetlights,	
   traffic	
   lights,	
   non-­‐building	
   related	
   electricity	
   (pumps,	
  
fountains,	
   etc.)	
   as	
   well	
   as	
   mainly	
   diesel	
   fuel	
   used	
   in	
   the	
   operation	
   of	
   road	
  
infrastructure	
   (road	
   maintenance,	
   snow	
   cleaning,	
   gritting,	
   etc.)	
   (Table	
   4).	
   The	
  
emissions	
   from	
   water	
   include	
   emissions	
   from	
   the	
   electricity	
   used	
   to	
   collect,	
  
treat	
  and	
  distribute	
  water	
  to	
  and	
  from	
  SRS.	
  	
  
In	
   the	
   baseline	
   there	
   is	
   not	
   much	
   local	
   energy	
   production,	
   but	
   wastewater	
  
sludge	
   from	
   the	
   urban	
   development	
   is	
   collected	
   and	
   used	
   to	
   generate	
   biogas.	
   In	
  
the	
  baseline	
  scenario	
  the	
  biogas	
  is	
  then	
  upgraded	
  and	
  used	
  to	
  replace	
  gasoline	
  
in	
  cars,	
  thus	
  reducing	
  baseline	
  emissions	
  (Johansson	
  et	
  al.,	
  2012b).	
  	
  
Data	
  used	
  and	
  calculations:	
  	
  
The	
   data	
   regarding	
   electricity	
   use	
   in	
   infrastructure	
   were	
   developed	
   using	
   the	
  
master	
  plans	
  for	
  SRS.	
  The	
  data	
  for	
  road	
  maintenance	
  are	
  based	
  on	
  figures	
  from	
  
the	
  City	
  of	
  Stockholm	
  (Fahlberg	
  et	
  al.,	
  2007),	
  assuming	
  that	
  SRS	
  infrastructure	
  
will	
  require	
  the	
  same	
  amount	
  of	
  maintenance	
  as	
  the	
  rest	
  of	
  the	
  City.	
  	
  
Water	
  use	
  is	
  based	
  on	
  technology	
  currently	
  in	
  use	
  in	
  Hammarby	
  Sjöstad	
  (Pandis	
  
&	
  Brandt,	
  2009)	
  and	
  that	
  will	
  be	
  implemented	
  in	
  SRS,	
  while	
  the	
  energy	
  use	
  for	
  
collection,	
   treatment	
   and	
   distribution	
   is	
   based	
   on	
   figures	
   for	
   the	
   City	
   of	
  
Stockholm	
  (Stockholm	
  Vatten,	
  2010).	
  	
  
The	
   amount	
   of	
   biogas	
   generated	
   by	
   wastewater	
   sludge	
   was	
   estimated	
   and	
   the	
  
full	
  amount	
  assumed	
  to	
  replace	
  gasoline	
  in	
  cars.	
  	
  
	
  
Table	
  4.	
  Projected	
  energy	
  use	
  and	
  emissions	
  from	
  infrastructure,	
  water	
  and	
  locally	
  generated	
  
energy	
  in	
  Stockholm	
  Royal	
  Seaport	
  

Activity	
                                          Annual	
   energy	
   Emissions	
                                   Emissions	
  	
  
                                                    use	
  [kWh/year]	
   factor	
  	
                                  [ton	
  CO2e/year]	
  


                                                                                                                                       	
   10	
  
Submitted	
  article	
  –	
  Journal	
  of	
  Energy	
  Policy	
  	
  
Do	
  not	
  copy	
  or	
  redistribute!	
  
                                                                                [g	
  CO2e/kWh]	
  
Infrastructure	
                                               	
                                       	
                                      	
  
-­‐	
   Electricity	
   in	
   street	
   lights,	
     756,000	
                                  69.73	
                                  52.7	
  
traffic	
  lights,	
  etc.	
  
-­‐	
  Road	
  maintenance	
  	
                      7,670,300	
                                279.31	
                             2,142.4	
  
Water	
  	
                                                    	
                                      	
                                    	
  
-­‐	
   Collection,	
   treatment,	
                  1,862,595	
                                 69.73	
                               129.9	
  
distribution	
                                                 	
  
Locally	
  generated	
  energy	
                               	
                                            	
                                    	
  
-­‐	
       Generated	
                 biogas	
      2,300,000	
                                -­‐	
  586.6	
                        -­‐	
  557.7	
  
replacing	
  E5	
  Petrol	
  
Total	
  emissions	
  [ton	
  CO2e/year]	
                                                                                          1,767.3	
  
Source:	
  Johansson	
  et	
  al.	
  (2012b).	
  

Transportation	
  
In	
   the	
   baseline,	
   transportation	
   emissions	
   are	
   divided	
   into	
   four	
   categories,	
  
private	
   trips,	
   commuting	
   trips,	
   business	
   trips	
   and	
   the	
   transportation	
   of	
   goods	
  
and	
  services	
  to	
  the	
  area.	
  The	
  transportation	
  emissions	
  highlight	
  the	
  problem	
  of	
  
measuring	
   emissions	
   on	
   the	
   urban	
   district	
   level	
   in	
   comparison	
   with	
   the	
   city	
  
level.	
  If	
  a	
  strict	
  geographical	
  perspective	
  is	
  employed	
  only	
  emissions	
  within	
  that	
  
area	
  are	
  addressed.	
  This	
  might	
  lead	
  to	
  sub-­‐optimisation	
  by	
  clouding	
  significant	
  
actions	
  that	
  could	
  improve	
  the	
  whole	
  transportation	
  system,	
  collaborating	
  with	
  
the	
  right	
  stakeholders	
  (public	
  transportation	
  companies,	
  car	
  sharing	
  companies,	
  
mobility	
   management,	
   etc.),	
   as	
   well	
   as	
   only	
   accounting	
   for	
   a	
   fraction	
   of	
   the	
  
transportation	
   emissions	
   that	
   the	
   district	
   actually	
   generates.	
   For	
   instance,	
   the	
  
new	
   thoroughfare	
   is	
   likely	
   to	
   include	
   significant	
   amounts	
   of	
   traffic	
   from	
   the	
  
island	
   of	
   Lidingö,	
   combined	
   with	
   transportation	
   from	
   the	
   harbour,	
   both	
   of	
  
which	
  are	
  mostly	
  unrelated	
  to	
  the	
  urban	
  district.	
  This	
  raises	
  the	
  question	
  of	
  who	
  
should	
   be	
   responsible	
   for	
   them	
   and	
   where	
   the	
   reduction	
   strategies	
   should	
   be	
  
implemented.	
   The	
   accounting	
   method	
   used	
   accounts	
   for	
   commuting	
   emissions	
  
to	
  where	
  the	
  commuter	
  lives.	
  That	
  accounting	
  method	
  skews	
  planned	
  efforts	
  by	
  
SRS	
   to	
   be	
   a	
   working	
   centre	
   with	
   more	
   than	
   twice	
   as	
   many	
   workspaces	
   as	
  
residential	
   spaces.	
   Therefore	
   significant	
   emissions	
   from	
   worker	
   commutes	
   are	
  
excluded,	
   despite	
   the	
   fact	
   that	
   that	
   most	
   “Smart	
   Growth”	
   transportation	
  
measures	
   can	
   readily	
   be	
   undertaken	
   on	
   the	
   district	
   level	
   to	
   minimise	
   them.	
  
These	
  include	
  mixed	
  use	
  planning,	
  increased	
  density,	
  increased	
  walkability	
  and	
  
easy	
   cycling	
   access,	
   limited	
   parking	
   spaces	
   and	
   increased	
   parking	
   fees,	
   and	
   so	
  
forth	
  (City	
  of	
  Stockholm,	
  2012).	
  	
  
	
  
Based	
   on	
   this,	
   the	
   baseline	
   transportation	
   emissions	
   include	
   emissions	
   from	
  
residents’	
   private	
   and	
   commuting	
   trips,	
   workers’	
   business	
   trips	
   and	
   emissions	
  
from	
  the	
  transportation	
  of	
  goods	
  and	
  services	
  delivered	
  to	
  and	
  from	
  the	
  urban	
  
district	
  (Table	
  5).	
  	
  

Data	
  used	
  and	
  calculations:	
  	
  
All	
  activity	
  data	
  regarding	
  resident	
  and	
  worker	
  trips	
  were	
  developed	
  using	
  two	
  
transportation	
   studies,	
   one	
   focusing	
   on	
   the	
   inner	
   City	
   of	
   Stockholm	
   (USK,	
   2006)	
  
and	
   one	
   focusing	
   on	
   Stockholm	
   as	
   a	
   whole	
   (Rytterbro	
   et	
   al.,	
   2011).	
   The	
   total	
  
projected	
  travel	
  demand	
  was	
  calculated.	
  Transportation	
  emissions	
  from	
  goods	
  



                                                                                                                             	
   11	
  
Submitted	
  article	
  –	
  Journal	
  of	
  Energy	
  Policy	
  	
  
Do	
  not	
  copy	
  or	
  redistribute!	
  
and	
   services	
   were	
   estimated	
   using	
   Stockholm-­‐specific	
   data	
   (Fahlberg	
   et	
   al.,	
  
2007).	
  
	
  
Table	
  5.	
  Projected	
  emissions	
  and	
  travel	
  behaviour	
  of	
  residents	
  and	
  workers	
  in	
  Stockholm	
  Royal	
  
Seaport	
  2010	
  

Mode	
                      of	
   Residents	
  	
   Workers	
       Emissions	
            Total	
   emissions	
  
transportation	
                   [PKM/year]	
   [PKM/year]	
   factor	
  	
               [ton	
  CO2e/year]	
  
                                                                     [g	
  CO2e/PKM]	
  
Car	
  -­‐	
  biogas	
                  920,046	
        780,696	
                 0.02	
                   0.03	
  
Car	
  –	
  E85	
                     6,584,892	
      5,587,546	
               76.78	
                  934.60	
  
Car	
  –	
  Gasoline	
  E5	
         36,045,366	
   30,585,942	
                170.81	
               11,381.30	
  
Car	
  –	
  Diesel	
  RME5	
         12,109,452	
   10,275,357	
                166.04	
                3,716.80	
  
Car	
  –	
  Electric	
                    2,418	
          2,052	
               11.56	
                    0.05	
  
Car	
  –	
  Hybrid	
                    885,626	
        751,489	
              136.65	
                  223.70	
  
Local	
  bus	
                       11,003,413	
      1,184,771	
                 4.13	
                  50.30	
  
Local	
  train	
                     27,907,469	
      1,777,157	
                 0.05	
                   1.50	
  
Long	
  distance	
  bus	
             7,187,855	
           0,00	
               32.00	
                  230.00	
  
Long	
  distance	
  train	
          24,284,576	
      7,108,628	
                 0.13	
                   4.10	
  
Physically	
  active	
               18,703,695	
      1,184,771	
                 0.00	
                      0	
  
Total	
  residential	
  emissions	
                                                                     9,074.23	
  
Total	
  worker	
  emissions	
  	
                                                                      7,468.15	
  
Goods	
  and	
  services	
                                                                              3,289.26	
  
Transportation	
  totals	
                                                                             19,831.7	
  
Source:	
  Johansson	
  et	
  al.	
  (2012b).	
  

Waste	
  
Each	
   waste	
   fraction	
   includes	
   emissions	
   from	
   collecting,	
   transporting	
   and	
  
treating	
   each	
   fraction,	
   as	
   well	
   as	
   emissions	
   reductions	
   from	
   recycling	
   compared	
  
with	
   using	
   virgin	
   materials	
   (Table	
   6).	
   The	
   waste	
   emissions	
   exclude	
   the	
  
upstream	
   lifecycle	
   emissions	
   of	
   production	
   and	
   transporting	
   the	
   respective	
  
goods	
   before	
   they	
   are	
   disposed	
   of	
   as	
   waste.	
   This	
   merits	
   a	
   discussion	
   about	
  
consumption	
   that	
   is	
   outside	
   the	
   scope	
   of	
   this	
   paper,	
   but	
   it	
   should	
   at	
   least	
   be	
  
noted	
   that	
   this	
   exclusion	
   leads	
   to	
   the	
   paradox	
   that	
   the	
   more	
   food	
   and	
   goods	
  
consumed	
   within	
   SRS,	
   the	
   lower	
   their	
   emissions.	
   This	
   is	
   because	
   the	
   waste	
  
generated	
   is	
   combusted	
   in	
   the	
   district	
   heating	
   system,	
   which	
   leads	
   to	
   lower	
  
district	
   heating	
   emissions	
   compared	
   with	
   using	
   fossil	
   fuels.	
   Each	
   emissions	
  
factor	
  is	
  based	
  on	
  waste	
  treatment	
  in	
  Sweden,	
  since	
  SRS-­‐specific	
  or	
  Stockholm-­‐
specific	
  data	
  are	
  not	
  available	
  at	
  this	
  time.	
  	
  

Data	
  used	
  and	
  calculations:	
  	
  
The	
  waste	
  streams	
  in	
  the	
  urban	
  development	
  were	
  projected	
  using	
  data	
  for	
  the	
  
City	
   of	
   Stockholm	
   combined	
   with	
   the	
   possibility	
   to	
   collect	
   household	
   waste,	
  
combustibles,	
  newspapers	
  and	
  paper	
  beside	
  or	
  within	
  the	
  buildings	
  themselves.	
  
Table	
  6.	
  Emissions	
  from	
  waste	
  in	
  the	
  baseline	
  for	
  Stockholm	
  Royal	
  Seaport	
  	
  

Waste	
  fraction	
               Ton	
             Emissions	
              factor	
  	
   Annual	
   emissions	
  
                                  waste/year	
   [ton	
  CO2e/ton	
  waste	
  ]	
   [ton	
  CO2e/year]	
  
Mixed	
   municipal	
   solid	
           7,574	
   All	
  municipal	
  solid	
  waste	
  is	
  used	
  in	
  the	
  City	
  of	
  
waste	
                                             Stockholm’s	
  district	
  heating	
  network	
  and	
  
                                                    emissions	
  are	
  therefore	
  attributed	
  there	
  


                                                                                                                                      	
   12	
  
Submitted	
  article	
  –	
  Journal	
  of	
  Energy	
  Policy	
  	
  
Do	
  not	
  copy	
  or	
  redistribute!	
  
Gardening	
  waste	
                              122	
                                                -­‐0.4	
                                    -­‐48.8	
  
Bulk	
  waste	
                             3,168	
                                                    -­‐0.1	
                                 -­‐316.8	
  
Sorted	
  waste	
                                    	
                                                      	
                                            	
  
-­‐	
  Glass	
                                    718	
                                             -­‐0.04	
                                      -­‐28.7	
  
-­‐	
  Paper	
                              2,537	
                                                 -­‐0.18	
                                   -­‐456.7	
  
-­‐	
  Metal	
                                    109	
                                             -­‐0.61	
                                      -­‐66.5	
  
-­‐	
  Newspapers	
                               896	
                                             -­‐0.18	
                                   -­‐161.3	
  
-­‐	
  Plastics	
                                 800	
                                                1.52	
                                      1	
  216	
  
-­‐	
  Electronics	
                              329	
                                             -­‐0.05	
                                      -­‐16.5	
  
-­‐	
  Hazardous	
  waste	
                        49	
                                                -­‐0.3	
                                    -­‐14.7	
  
Waste	
  totals	
                                    	
                                                      	
                                         106	
  
Source:	
  Johansson	
  et	
  al.	
  (2012b).	
  

Baseline	
  Results	
  	
  
The	
  baseline	
  emissions	
  in	
  the	
  different	
  categories	
  discussed	
  above	
  are	
  
summarised	
  in	
  Table	
  7.	
  	
  
Table	
  7.	
  Summary	
  of	
  baseline	
  emissions	
  for	
  SRS	
  

Emission	
  Categories	
                   Ton	
  CO2e/year	
                                     Ton	
  CO2e/capita	
  
Energy	
                                                                                     	
                                      	
  
-­‐Heating	
  &	
  cooling	
                                               12,169.3	
                                          0.64	
  
-­‐Electricity	
                                                                        7,932	
                                0.42	
  
-­‐Water	
  &	
  infrastructure	
                                                       2,325	
                                0.12	
  
-­‐Locally	
  produced	
  energy	
                                               -­‐	
  557.7	
                             -­‐0.03	
  
Transportation	
  	
                                                                         	
                                      	
  
-­‐Residents	
  	
                                                              9,074.2	
                                      0.48	
  
-­‐Workers	
                                                                    7,468.1	
                                      0.39	
  
-­‐	
  Goods	
  &	
  services	
                                                 3,289.2	
                                      0.17	
  
Waste	
                                                                                   106	
                                0.01	
  
Baseline	
  totals	
                                                      41,806.1	
                                          2.20	
  
Source:	
  Johansson	
  et	
  al.	
  (2012b).	
  
	
  
The	
   baseline	
   emissions	
   of	
   2.2	
   ton	
   CO2e/capita	
   are	
   low	
   compared	
   with	
   the	
  
emissions	
   from	
   the	
   average	
   person	
   living	
   in	
   Stockholm,	
   which	
   in	
   2010	
   were	
  
roughly	
   3.2	
   ton	
   CO2e/capita	
   (City	
   of	
   Stockholm,	
   2010a).	
   At	
   first	
   glance,	
  
emissions	
  from	
  the	
  SRS	
  area	
  are	
  significantly	
  lower,	
  due	
  in	
  part	
  to	
  some	
  of	
  the	
  
emission	
   factors	
   having	
   been	
   updated	
   since	
   the	
   City	
   of	
   Stockholm’s	
   last	
  
calculation	
   in	
   2010,	
   lowering	
   SRS’s	
   emissions.	
   However,	
   the	
   major	
   reason	
   for	
  
the	
   lower	
   emissions	
   for	
   SRS	
   is	
   that	
   not	
   all	
   emissions	
   are	
   included	
   due	
   to	
   the	
  
choice	
  of	
  focusing	
  on	
  activities	
  directly	
  related	
  to	
  SRS’s	
  geographical	
  area.	
  When	
  
moving	
   from	
   the	
   city	
   level	
   to	
   the	
   urban	
   district	
   level,	
   an	
   additional	
   ‘layer’	
   of	
  
emissions	
  is	
  added,	
  namely	
  those	
  that	
  take	
  place	
  within	
  the	
  city	
  but	
  not	
  within	
  
the	
   specific	
   urban	
   district	
   representing	
   these	
   emissions,	
   which	
   can	
   have	
   a	
  
significant	
   impact	
   on	
   total	
   emissions.	
   For	
   example,	
   in	
   the	
   case	
   of	
   SRS,	
   many	
  
societal	
   functions	
   that	
   a	
   resident	
   uses	
   regularly,	
   such	
   as	
   hospitals,	
   libraries,	
  
sports	
  centres,	
  etc.,	
  are	
  not	
  included	
  in	
  the	
  geographical	
  area.	
  That	
  means	
  that	
  
the	
   urban	
   district’s	
   emissions	
   are	
   too	
   low	
   compared	
   with	
   the	
   total	
   city	
  
emissions.	
   On	
   the	
   other	
   hand,	
   two	
   of	
   the	
   main	
   sources	
   of	
   emissions	
   in	
  
Stockholm	
  are	
  located	
  in	
  the	
  SRS	
  area,	
  since	
  it	
  includes	
  the	
  combined	
  heat	
  and	
  
power	
   plant	
   and	
   the	
   harbour.	
   There	
   is	
   also	
   the	
   question	
   of	
   the	
   thoroughfare,	
  


                                                                                                                                  	
   13	
  
Submitted	
  article	
  –	
  Journal	
  of	
  Energy	
  Policy	
  	
  
Do	
  not	
  copy	
  or	
  redistribute!	
  
since	
   most	
   of	
   the	
   traffic	
   it	
   carries	
   is	
   not	
   related	
   to	
   the	
   SRS	
   district	
   itself.	
   The	
  
emissions	
  from	
  these	
  sources	
  are	
  instead	
  scaled	
  to	
  proportion	
  of	
  the	
  residents,	
  
so	
   that	
   every	
   person	
   in	
   Stockholm	
   gets	
   an	
   equal	
   share.	
   If	
   emissions	
   from	
  
activities	
  not	
  included	
  in	
  the	
  geographical	
  baseline	
  but	
  connected	
  to	
  the	
  City	
  of	
  
Stockholm	
   were	
   to	
   be	
   included	
   in	
   the	
   calculations,	
   such	
   as	
   emissions	
   from	
  
hospitals,	
   sports	
   centres,	
   public	
   offices	
   and	
   so	
   forth,	
   the	
   annual	
   emissions	
   of	
   a	
  
resident	
  in	
  SRS	
  would	
  increase	
  by	
  at	
  least	
  0.5	
  ton	
  CO2e	
  per	
  capita	
  (Fahlberg	
  et	
  
al.,	
  2007).	
  


      7. Magnitude	
  Study	
  of	
  Possible	
  Roadmap	
  Actions	
  	
  
Once	
   the	
   baseline	
   has	
   been	
   clearly	
   defined,	
   the	
   next	
   step	
   in	
   the	
   process	
   is	
   to	
  
develop	
   roadmap	
   actions.	
   They	
   can	
   be	
   divided	
   into	
   three	
   categories;	
   energy	
  
efficiency	
   measures,	
   fuel	
   switching	
   and	
   behaviour	
   changes	
   that	
   lead	
   to	
   either	
  
fuel	
  switching	
  or	
  energy	
  efficiency.	
  In	
  order	
  to	
  discuss	
  the	
  magnitude	
  of	
  effect	
  of	
  
possible	
  road	
  mapping	
  actions,	
  here	
  we	
  calculated	
  the	
  emission	
  reductions	
  for	
  a	
  
few	
   simple	
   examples.	
   These	
   actions	
   represent	
   interpretations	
   of	
   SRS’s	
   overall	
  
environmental	
  programme	
  and	
  the	
  environmental	
  requirements	
  for	
  the	
  second	
  
build	
   phase	
   of	
   SRS.	
   Note	
   that	
   the	
   actions	
   only	
   represent	
   magnitudes	
   of	
  
emissions	
   reductions,	
   and	
   no	
   decisions	
   to	
   implement	
   them	
   in	
   any	
   way	
   have	
  
been	
   made	
   by	
   the	
   stakeholders	
   involved.	
   Note	
   also	
   that	
   no	
   consideration	
   has	
  
been	
   given	
   so	
   far	
   to	
   the	
   effect	
   that	
   different	
   actions	
   have	
   on	
   each	
   other.	
   The	
  
following	
  actions	
  were	
  identified	
  for	
  study	
  (Johansson	
  et	
  al.,	
  2012a):	
  
     • Solar	
  photo	
  voltaics	
  (PV)	
  -­‐	
  Solar	
  PV	
  should	
  generate	
  at	
  least	
  30%	
  of	
  the	
  
          building	
  electricity	
  used	
  for	
  lifts,	
  ventilation,	
  pumps,	
  etc.	
  	
  
     • Phase	
  2	
  Energy	
  demands	
  –	
  In	
  the	
  second	
  build	
  phase	
  of	
  SRS,	
  an	
  energy	
  
          target	
   is	
   to	
   reduce	
   the	
   total	
   energy	
   use	
   excluding	
   household	
   and	
  
          commercial	
   electricity	
   to	
   55	
   kWh/m2	
   and	
   year.	
   This	
   would	
   then	
   serve	
   as	
  
          a	
  limit	
  for	
  future	
  build	
  phases.	
  	
  	
  
     • Residential	
   travel	
   –	
   One	
   goal	
   is	
   that	
   residents	
   should	
   be	
   able	
   to	
   travel	
  
          using	
  low	
  CO2e	
  vehicles.	
  In	
  the	
  magnitude	
  of	
  reductions	
  calculated	
  here,	
  
          50%	
  of	
  transportation	
  by	
  gasoline	
  car	
  is	
  shifted	
  to	
  either	
  electric	
  car	
  or	
  
          hybrid	
  car	
  (gasoline	
  &	
  electricity).	
  	
  
The	
  calculated	
  emissions	
  reductions	
  are	
  summarised	
  in	
  Table	
  8.	
  	
  
	
  
Table	
  8	
  Magnitude	
  of	
  emissions	
  reduction	
  effect	
  of	
  possible	
  road	
  mapping	
  actions	
  

                                                                 Emissions	
                          Per	
  capita	
  emissions	
  
Possible	
  roadmapping	
  action	
                              reduction	
  	
                      reduction	
  	
  
                                                                 [ton	
  CO2e/year]	
                 [ton	
  CO2e/cap,	
  
                                                                                                      year]	
  
Solar	
  PV	
  –	
  30	
  %	
  of	
  building	
                                               438	
                         0.02	
  
electricity	
  
Phase	
  2	
  Energy	
  demands	
                                                          3,095	
                                        0.16	
  
Residents	
  travel:	
  Gasoline	
  à	
                                                   2,870	
                                        0.15	
  
Electric	
  car	
  
Residents	
  travel:	
  Gasoline	
  à	
                                                      616	
                                       0.03	
  
Hybrid	
  car	
  
Source:	
  Johansson	
  et	
  al.	
  (2012a).	
  


                                                                                                                                           	
   14	
  
Submitted	
  article	
  –	
  Journal	
  of	
  Energy	
  Policy	
  	
  
Do	
  not	
  copy	
  or	
  redistribute!	
  
	
  
A	
  first	
  comparison	
  between	
  the	
  baseline	
  emissions	
  (Table	
  7)	
  and	
  the	
  reductions	
  
through	
   roadmap	
   actions	
   (Table	
   8)	
   demonstrates	
   that	
   it	
   is	
   difficult	
   to	
   become	
  
climate	
  positive	
  on	
  a	
  local	
  scale.	
  As	
  regards	
  possible	
  road	
  mapping	
  actions,	
  even	
  
the	
  more	
  ambitious	
  actions,	
  such	
  as	
  influencing	
  the	
  residents’	
  travel	
  behaviour,	
  
only	
  reduce	
  total	
  baseline	
  emissions	
  by	
  about	
  10%	
  each.	
  Furthermore,	
  while	
  the	
  
current	
   proposed	
   actions	
   only	
   represent	
   a	
   fraction	
   of	
   possible	
   emissions	
   cuts,	
  
they	
  are	
  in	
  themselves	
  rather	
  ambitious.	
  The	
  baseline	
  energy	
  use	
  for	
  buildings	
  
in	
   the	
   baseline	
   is	
   already	
   25%	
   lower	
   than	
   the	
   current	
   Swedish	
   building	
   code	
  
requirements	
   (Boverket,	
   2011)	
   and	
   implementing	
   55	
   kwh/m2	
   and	
   year	
   is	
   close	
  
to	
   the	
   Swedish	
   passive	
   house	
   standard.	
   	
   Therefore,	
   it	
   seems	
   unlikely	
   that	
   the	
  
SRS	
  district	
  will	
  manage	
  to	
  achieve	
  climate	
  positive	
  status	
  just	
  by	
  roadmapping	
  
action	
  strategies	
  within	
  the	
  urban	
  district	
  itself.	
  


      8. Credits	
  –	
  Roadmapping	
  Actions	
  Outside	
  the	
  District	
  
We	
   can	
   see	
   from	
   comparing	
   the	
   magnitudes	
   of	
   possible	
   roadmapping	
   actions	
   to	
  
reduce	
   emissions	
   (through	
   energy	
   efficiency,	
   fuel	
   switching	
   and	
   influencing	
  
residents	
   behaviour)	
   against	
   the	
   baseline	
   emissions	
   that	
   it	
   will	
   be	
   difficult	
   to	
  
reach	
   a	
   climate	
   positive	
   outcome	
   solely	
   by	
   local	
   actions	
   within	
   SRS’s	
  
geographical	
   boundary.	
   The	
   CCI	
   framework	
   recognises	
   this	
   problem	
   and	
   the	
  
solution	
   proposed	
   is	
   to	
   implement	
   credits	
   (CCI,	
   2011),	
   using	
   the	
   same	
   general	
  
principle	
  as	
  credits	
  from	
  the	
  flexible	
  Kyoto	
  mechanisms	
  (Joint	
  Implementation,	
  
Clean	
   Development	
   Mechanism	
   and	
   Emissions	
   Trading)	
   (UNFCC,	
   1998).	
  
Through	
   these,	
   the	
   emissions	
   of	
   a	
   country,	
   city	
   or	
   area	
   are	
   cut	
   by	
   emissions	
  
reductions	
   in	
   other	
   places	
   (referred	
   to	
   as	
   certified	
   emission	
   reductions,	
   or	
  
credits	
   for	
   short).	
   However,	
   there	
   are	
   significant	
   differences	
   between	
   CCI’s	
  
credits	
   and	
   those	
   relating	
   to	
   flexible	
   mechanisms,	
   the	
   major	
   difference	
   being	
  
that	
   CCI’s	
   credits	
   have	
   to	
   be	
   generated	
  locally,	
  in	
  relation	
  to	
  the	
  urban	
  district	
  
itself.	
  To	
  be	
  able	
  to	
  generate	
  a	
  credit	
  according	
  to	
  CCI,	
  the	
  urban	
  district	
  must	
  be	
  
connected	
   through	
   relevant	
   infrastructure	
   (energy,	
   transport,	
   waste)	
   or	
   other	
  
relevant	
   processes	
   (for	
   instance	
   decision	
   making	
   processes,	
   rules,	
   regulations,	
  
standards).	
   Note	
   also	
   that	
   the	
   purchase	
   of	
   credits	
   not	
   generated	
   in	
   connection	
  
with	
   the	
   urban	
   district	
   (as	
   can	
   be	
   done	
   with	
   credits	
   from	
   the	
   flexible	
   Kyoto	
  
mechanisms)	
  is	
  not	
  accepted	
  as	
  a	
  reduction	
  strategy	
  (CCI,	
  2011).	
  Once	
  the	
  sum	
  
of	
   emissions	
   reductions	
   from	
   roadmap	
   actions	
   and	
   credits	
   is	
   greater	
   than	
   the	
  
baseline	
  emissions,	
  the	
  area	
  is	
  considered	
  to	
  be	
  climate	
  positive.	
  
To	
   demonstrate	
   what	
   could	
   be	
   considered	
   local	
   credits,	
   we	
   calculated	
   the	
  
magnitude	
  of	
  emission	
  reductions	
  from	
  a	
  few	
  possible	
  actions	
  (Johansson	
  et	
  al.,	
  
2012a).	
   All	
   of	
   the	
   actions	
   build	
   on	
   official	
   documents	
   (environmental	
   plans,	
  
applications,	
   etc.),	
   for	
   inspiration,	
   but	
   note	
   that	
   all	
   credit	
   actions	
   are	
   just	
   a	
  
representation	
  of	
  magnitudes	
  and	
  do	
  not	
  represent	
  actual	
  emission	
  reductions	
  
decided	
   by	
   the	
   stakeholders	
   involved.	
   The	
   magnitudes	
   of	
   the	
   following	
   credit	
  
actions	
  are	
  shown	
  in	
  Table	
  9	
  (Johansson	
  et	
  al.,	
  2012a):	
  	
  
        • Electrification	
   of	
   the	
   harbour	
   –	
   The	
   harbour	
   area	
   is	
   close	
   to	
   SRS	
   and	
   the	
  
            idea	
  is	
  to	
  connect	
  ships	
  and	
  ferries	
  that	
  make	
  port	
  on	
  a	
  regular	
  basis	
  to	
  
            the	
  electricity	
  grid	
  instead	
  of	
  having	
  them	
  idle	
  using	
  diesel	
  engines.	
  The	
  
            magnitudes	
   of	
   two	
   different	
   credit	
   actions	
   are	
   calculated,	
   one	
   where	
  



                                                                                                                                    	
   15	
  
Submitted	
  article	
  –	
  Journal	
  of	
  Energy	
  Policy	
  	
  
Do	
  not	
  copy	
  or	
  redistribute!	
  
             diesel	
  is	
  replaced	
  by	
  electricity	
  from	
  the	
  Nordic	
  electricity	
  mix	
  and	
  one	
  
             where	
  it	
  is	
  replaced	
  by	
  wind	
  power.	
  	
  
       •     Workers’	
  travel	
  –	
  One	
  goal	
  is	
  that	
  workers	
  should	
  be	
  able	
  to	
  travel	
  using	
  
             low	
  CO2e	
  vehicles.	
  Just	
  as	
  in	
  the	
  case	
  of	
  residents’	
  travel,	
  the	
  calculated	
  
             magnitudes	
   are	
   represented	
   by	
   50%	
   of	
   transportation	
   by	
   gasoline	
   car	
  
             being	
  shifted	
  to	
  either	
  electric	
  car	
  or	
  hybrid	
  car	
  (gasoline	
  &	
  electricity).	
  
	
  

Table	
  9.	
  Magnitude	
  of	
  emissions	
  reduction	
  effect	
  achieved	
  by	
  possible	
  credit	
  actions	
  

                                                             Emissions	
                 Per	
  capita	
  emissions	
  
Possible	
  credit	
  action	
                               reduction	
  	
             reduction	
  	
  
                                                             [ton	
  CO2e/year]	
   [ton	
  CO2e/cap,	
  year]	
  
Electrification	
  of	
  the	
  harbour	
                                      3,199	
                            0.17	
  
-­‐	
  Diesel	
  à	
  Wind	
  power	
  
Electrification	
  of	
  the	
  harbour	
                                  2,423	
                                      0.13	
  
-­‐	
  Diesel	
  à	
  Nordic	
  electricity	
  mix	
  
Workers’	
  commuting	
  	
                                                1,688	
                                      0.09	
  
Gasoline	
  à	
  Electric	
  car	
  
Workers’	
  commuting	
  	
                                                  362	
                                     0.019	
  
Gasoline	
  à	
  Hybrid	
  car	
  
Source:	
  Johansson	
  et	
  al.	
  (2012a).	
  
	
  	
  
Just	
  as	
  in	
  the	
  case	
  of	
  roadmapping	
  actions,	
  the	
  magnitudes	
  of	
  emission	
  cuts	
  from	
  
credit	
  actions	
  are	
  small	
  relative	
  to	
  the	
  baseline	
  emissions.	
  Even	
  a	
  major	
  action	
  
such	
  as	
  electrification	
  of	
  the	
  harbour	
  represents	
  roughly	
  only	
  a	
  10%	
  reduction	
  
in	
  emissions,	
  while	
  the	
  other	
  actions	
  have	
  smaller	
  effects	
  (Table	
  9).	
  The	
  credit	
  
action	
   effects	
   calculated	
   of	
   course	
   represent	
   only	
   a	
   small	
   proportion	
   of	
   possible	
  
actions	
  that	
  the	
  City	
  of	
  Stockholm	
  could	
  undertake.	
  	
  


       9. Discussion	
  
It	
  is	
  difficult	
  to	
  achieve	
  climate	
  positive	
  status	
  on	
  local	
  scale	
  with	
  planned	
  
actions	
  
Even	
   adding	
   roadmapping	
   and	
   credit	
   actions	
   together,	
   it	
   will	
   still	
   be	
   a	
   challenge	
  
for	
   SRS	
   to	
   become	
   climate	
   positive.	
   However,	
   the	
   roadmapping	
   process	
   can	
  
serve	
  as	
  a	
  catalyst	
  to	
  start	
  a	
  process	
  of	
  implementing	
  innovative	
  solutions	
  with	
  
important	
   stakeholders	
   in	
   the	
   development	
   process,	
   such	
   as	
   the	
   landowner,	
  
relevant	
   authorities,	
   construction	
   companies,	
   (future)	
   residents,	
   etc.	
   Since	
   the	
  
road	
  mapping	
  process	
  has	
  the	
  explicit	
  goal	
  of	
  achieving	
  a	
  climate	
  positive	
  urban	
  
district,	
   the	
   actions	
   and	
   their	
   calculated	
   magnitude	
   in	
   relation	
   to	
   the	
   baseline	
  
emissions	
   can	
   serve	
   as	
   a	
   very	
   powerful	
   motivational	
   tool	
   and	
   driving	
   force	
   to	
  
reach	
  the	
  targets	
  that	
  would	
  otherwise	
  have	
  been	
  impossible.	
  Credits	
  can	
  then	
  
be	
  used	
  when	
  local	
  options	
  run	
  out.	
  	
  
	
  
The	
   potential	
   and	
   risks	
   of	
   credits	
   –	
   a	
   driving	
   force	
   and	
   possible	
  
greenwashing	
  
The	
  key	
  aspect	
  of	
  the	
  concept	
  of	
  credits	
  is	
  how	
  the	
  term	
  ‘local’	
  is	
  defined.	
  Since	
  
some	
   of	
   the	
   systems	
   connected	
   to	
   the	
   urban	
   district	
   span	
   a	
   vast	
   geographical	
  


                                                                                                                              	
   16	
  
Submitted	
  article	
  –	
  Journal	
  of	
  Energy	
  Policy	
  	
  
Do	
  not	
  copy	
  or	
  redistribute!	
  
area	
  (such	
  as	
  the	
  Nordic	
  electricity	
  system),	
  it	
  is	
  important	
  that	
  the	
  term	
  local	
  is	
  
not	
  used	
  too	
  liberally	
  in	
  order	
  to	
  avoid	
  the	
  risk	
  of	
  greenwashing.	
  Technically,	
  for	
  
example,	
   a	
   wind	
   power	
   plant	
   in	
   the	
   north	
   of	
   Sweden	
   could	
   possibly	
   pass	
   as	
   a	
  
credit,	
   since	
   the	
   electricity	
   system	
   is	
   connected,	
   but	
   it	
   can	
   scarcely	
   be	
  
considered	
   to	
   be	
   local	
   electricity	
   production,	
   since	
   the	
   distance	
   between	
  
Stockholm	
  and	
  the	
  wind	
  power	
  in	
  northern	
  Sweden	
  could	
  be	
  600-­‐1000	
  km.	
  On	
  
the	
   other	
   hand,	
   local	
   credits	
   according	
   to	
   the	
   framework	
   could	
   be	
   a	
   very	
  
important	
   driving	
   force	
   for	
   innovations	
   that	
   generate	
   credits	
   not	
   only	
   for	
   the	
  
urban	
   district,	
   but	
   also	
   for	
   other	
   parts	
   of	
   the	
   city,	
   aiding	
   their	
   work	
   to	
  
implement	
  local	
  climate	
  action(s).	
  In	
  order	
  to	
  use	
  and	
  develop	
  local	
  credits,	
  the	
  
city	
  needs	
  to	
  formulate	
  its	
  definition	
  of	
  ‘local’	
  before	
  creating	
  business	
  models	
  
and	
  inviting	
  developers	
  and	
  stakeholders	
  to	
  join	
  in	
  the	
  process	
  of	
  creating	
  credit	
  
actions.	
  
	
  
Emissions	
  change	
  over	
  time	
  	
  
It	
   is	
   important	
   to	
   note	
   that	
   even	
   after	
   sufficient	
   amounts	
   of	
   credit	
   have	
   been	
  
generated	
  by	
  actions	
  outside	
  the	
  geographical	
  system	
  boundary,	
  some	
  problems	
  
remain,	
  namely;	
  	
  
Since	
   the	
   emissions	
   are	
   primarily	
   based	
   on	
   current	
   district	
   heating	
   and	
  
electricity	
   mixes,	
   a	
   margin	
   of	
   safety	
   needs	
   to	
   be	
   added	
   since	
   emission	
   factors	
  
can	
   fluctuate	
   by	
   20%	
   or	
   more	
   on	
   a	
   yearly	
   basis	
   (Johansson	
  et	
  al.,	
   2012b).	
   As	
   the	
  
energy	
   system	
   in	
   the	
   Nordic	
   countries	
   becomes	
   more	
   integrated	
   with	
   central	
  
Europe,	
   the	
   energy	
   mixes	
   will	
   also	
   change,	
   which	
   could	
   impact	
   on	
   emissions	
  
(Eurostat,	
  2012).	
  	
  
The	
   baseline	
   needs	
   to	
   be	
   continuously	
   updated	
   as	
   measured	
   data	
   become	
  
available.	
  It	
  is	
  also	
  important	
  to	
  bear	
  in	
  mind	
  that	
  changes	
  over	
  time	
  in	
  the	
  two	
  
key	
   areas,	
   buildings	
   and	
   transportation,	
   need	
   to	
   be	
   taken	
   into	
   account.	
   It	
   is	
   also	
  
important	
  to	
  take	
  into	
  account	
  that	
  once	
  infrastructure	
  has	
  been	
  built,	
  there	
  are	
  
lock-­‐in	
   effects	
   when	
   it	
   comes	
   to	
   emissions	
   (Unruh,	
   2000).	
   These	
   include	
  
technical	
   and	
   behavioural	
   aspects	
   and	
   thus	
   it	
   is	
   important	
   to	
   plan	
   ahead,	
  
especially	
  when	
  aiming	
  for	
  an	
  ambitious	
  goal	
  such	
  as	
  climate	
  positive.	
  	
  
	
  
Not	
  all	
  emissions	
  are	
  included	
  	
  	
  
As	
  previously	
  mentioned,	
  it	
  is	
  important	
  to	
  bear	
  in	
  mind	
  that	
  not	
  all	
  emissions	
  
are	
   included,	
   both	
   when	
   comparing	
   the	
   urban	
   district	
   with	
   the	
   surrounding	
   city	
  
and	
   when	
   comparing	
   the	
   city	
   with	
   the	
   world.	
   Significant	
   emissions	
   caused	
   by	
  
the	
   urban	
   district	
   may	
   take	
   place	
   outside	
   the	
   set	
   boundaries	
   and	
   need	
   to	
   be	
  
addressed.	
  When	
  discussing	
  the	
  geographical	
  area	
  from	
  an	
  urban	
  district	
  point	
  
of	
   view,	
   there	
   are	
   some	
   additional	
   considerations	
   that	
   need	
   to	
   be	
   taken	
   into	
  
account.	
  They	
  are	
  similar	
  but	
  not	
  equal	
  to	
  the	
  discussions	
  of	
  a	
  city’s	
  boundary	
  
and	
  its	
  emissions	
  outside	
  that	
  boundary.	
  A	
  study	
  on	
  cities	
  by	
  Davis	
  &	
  Caldeira	
  
(2010)	
   concluded	
   that	
   20-­‐50%	
   of	
   emissions	
   are	
   generated	
   outside	
   the	
   city’s	
  
geographical	
  boundary,	
  or	
  occur	
  as	
  the	
  result	
  of	
  cross	
  boundary	
  emissions	
  (Räty	
  
&	
   Carlsson	
   Kanyama,	
   2007;	
   Cool	
   California,	
   2011 2 ).	
   When	
   adding	
   baseline	
  
emissions	
  in	
  the	
  present	
  case	
  study,	
  some	
  emissions	
  from	
  activities	
  taking	
  place	
  
outside	
  SRS	
  but	
  inside	
  Stockholm	
  were	
  not	
  included	
  and	
  adding	
  these	
  emissions	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  In	
  the	
  Cool	
  California	
  household	
  calculator,	
  average	
  values	
  for	
  California	
  were	
  

input	
  as	
  suggested	
  by	
  the	
  tool.	
  	
  

                                                                                                                                                                                                                        	
   17	
  
Submitted	
  article	
  –	
  Journal	
  of	
  Energy	
  Policy	
  	
  
Do	
  not	
  copy	
  or	
  redistribute!	
  
from	
  consumption,	
  construction	
  and	
  long	
  distance	
  travel	
  would	
  further	
  increase	
  
total	
  emissions	
  from	
  the	
  baseline’s	
  2.2	
  ton	
  CO2e/capita	
  to	
  2.7	
  ton	
  CO2e/capita.	
  
Note	
   also	
   that	
   an	
   ‘accounting’	
   perspective	
   is	
   used	
   in	
   this	
   paper,	
   which	
   means	
  
that	
   there	
   is	
   no	
   obligation	
   to	
   verify	
   that	
   energy	
   saved	
   by	
   SRS	
   is	
   not	
   used	
   by	
  
anyone	
  else	
  (e.g.	
  rebound	
  effects)	
  or	
  that	
  fossil	
  fuels	
  replaced	
  by	
  new	
  renewable	
  
energy	
  generation	
  are	
  not	
  used	
  anywhere	
  else.	
  	
  
	
  

Conclusions	
  	
  
Some	
   aspects	
   of	
   the	
   baseline,	
   system	
   boundaries	
   and	
   roadmap	
   actions	
   are	
  
clearly	
   influenced	
   by	
   the	
   characteristics	
   of	
   Stockholm	
   Royal	
   Seaport,	
   for	
  
instance	
   that	
   there	
   is	
   a	
   district	
   heating	
   network	
   or	
   that	
   the	
   Nordic	
   electricity	
  
mix	
  has	
  relatively	
  low	
  CO2e	
  emissions	
  per	
  kWh	
  (compared	
  with	
  the	
  US,	
  China,	
  
etc.).	
   The	
   selected	
   roadmap	
   actions	
   are	
   therefore	
   likely	
   to	
   vary	
   depending	
   on	
  
geographical	
  location	
  and	
  the	
  individual	
  characteristics	
  of	
  each	
  individual	
  urban	
  
development.	
   A	
   general	
   conclusion	
   that	
   remains	
   is	
   that	
   it	
   is	
   important	
   to	
  
transparently	
   track	
   energy	
   use	
   and	
   emissions,	
   especially	
   if	
   a	
   more	
   complete	
  
view	
  of	
  emissions	
  is	
  to	
  be	
  achieved	
  at	
  a	
  later	
  stage.	
  
	
  
As	
   a	
   tool/model	
   for	
   creating	
   a	
   climate	
   positive	
   urban	
   district,	
   the	
   approach	
   of	
  
baseline,	
   roadmap	
   and	
   credits	
   seems	
   to	
   work	
   well	
   in	
   the	
   general	
   sense	
   that	
   it	
  
promotes	
  actions	
  towards	
  low	
  energy	
  use,	
  a	
  high	
  degree	
  of	
  renewables	
  and	
  local	
  
energy	
   generation	
   and	
   that	
   the	
   urban	
   district	
   can	
   function	
   as	
   a	
   catalyst	
   for	
  
surrounding	
   districts	
   to	
   reduce	
   emissions.	
   Credits	
   and	
   roadmapping	
   can	
   serve	
  
as	
   driving	
   forces	
   for	
   innovation.	
   The	
   key	
   challenge	
   is	
   to	
   have	
   a	
   high	
   degree	
   of	
  
transparency	
  regarding	
  which	
  emissions	
  are	
  included	
  and	
  excluded	
  in	
  order	
  to	
  
avoid	
  the	
  risk	
  of	
  greenwashing.	
  	
  	
  
	
  
	
                                              	
  




                                                                                                                                     	
   18	
  
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop
Preparation material clue expert workshop

Weitere ähnliche Inhalte

Ähnlich wie Preparation material clue expert workshop

Climate-KIC Thematic Summer School 2014 ‘Transforming the Future Built Enviro...
Climate-KIC Thematic Summer School 2014 ‘Transforming the Future Built Enviro...Climate-KIC Thematic Summer School 2014 ‘Transforming the Future Built Enviro...
Climate-KIC Thematic Summer School 2014 ‘Transforming the Future Built Enviro...Ricardo Mejia Sarmiento
 
Cesba sprintworkshop - oct 13
Cesba sprintworkshop - oct 13Cesba sprintworkshop - oct 13
Cesba sprintworkshop - oct 13MARIE Project
 
Han Brezet_Introduction To Sustainable Pss & Tools
Han Brezet_Introduction To Sustainable Pss & ToolsHan Brezet_Introduction To Sustainable Pss & Tools
Han Brezet_Introduction To Sustainable Pss & ToolsCarlo Vezzoli
 
011 - That’s the way to do it? Results launch from two pan-European studies: ...
011 - That’s the way to do it? Results launch from two pan-European studies: ...011 - That’s the way to do it? Results launch from two pan-European studies: ...
011 - That’s the way to do it? Results launch from two pan-European studies: ...djhutch
 
GERALD BUSCA BDN Inno CV
GERALD BUSCA BDN Inno CVGERALD BUSCA BDN Inno CV
GERALD BUSCA BDN Inno CVGerald Busca
 
Exploiting the Added Value of Climate Services - From Climate Service Concept...
Exploiting the Added Value of Climate Services - From Climate Service Concept...Exploiting the Added Value of Climate Services - From Climate Service Concept...
Exploiting the Added Value of Climate Services - From Climate Service Concept...Environmental Protection Agency, Ireland
 
Webinar - Transport and storage economics of CCS in The Netherlands
Webinar - Transport and storage economics of CCS in The NetherlandsWebinar - Transport and storage economics of CCS in The Netherlands
Webinar - Transport and storage economics of CCS in The NetherlandsGlobal CCS Institute
 
2. GTC-K Introduction
2. GTC-K Introduction2. GTC-K Introduction
2. GTC-K IntroductionMaxCho
 
EU Research Excellence and Capacity for Horizon 2020 Topics SCC-02-2016-2017 ...
EU Research Excellence and Capacity for Horizon 2020 Topics SCC-02-2016-2017 ...EU Research Excellence and Capacity for Horizon 2020 Topics SCC-02-2016-2017 ...
EU Research Excellence and Capacity for Horizon 2020 Topics SCC-02-2016-2017 ...Environmental Protection Agency, Ireland
 
ELEEP Policy Recommendations Renewable Energy and Climate Change:
ELEEP Policy Recommendations Renewable Energy and Climate Change:  ELEEP Policy Recommendations Renewable Energy and Climate Change:
ELEEP Policy Recommendations Renewable Energy and Climate Change: ELEEP Network
 
Terry Waugh (3)
Terry Waugh (3)Terry Waugh (3)
Terry Waugh (3)REPUTE101
 
2nd issue of LiCEA newsletter
2nd issue of LiCEA newsletter2nd issue of LiCEA newsletter
2nd issue of LiCEA newsletterJan Šašek
 
EU Research Excellence and Capacity for Horizon 2020 Topics SC5-08-2017 – Xav...
EU Research Excellence and Capacity for Horizon 2020 Topics SC5-08-2017 – Xav...EU Research Excellence and Capacity for Horizon 2020 Topics SC5-08-2017 – Xav...
EU Research Excellence and Capacity for Horizon 2020 Topics SC5-08-2017 – Xav...Environmental Protection Agency, Ireland
 
ISES 2013 - Day 3 - Unni Steinsmo (CEO, Sintef) - Innovation
ISES 2013  - Day 3 - Unni Steinsmo (CEO, Sintef) - InnovationISES 2013  - Day 3 - Unni Steinsmo (CEO, Sintef) - Innovation
ISES 2013 - Day 3 - Unni Steinsmo (CEO, Sintef) - InnovationStudent Energy
 

Ähnlich wie Preparation material clue expert workshop (20)

Climate-KIC Thematic Summer School 2014 ‘Transforming the Future Built Enviro...
Climate-KIC Thematic Summer School 2014 ‘Transforming the Future Built Enviro...Climate-KIC Thematic Summer School 2014 ‘Transforming the Future Built Enviro...
Climate-KIC Thematic Summer School 2014 ‘Transforming the Future Built Enviro...
 
Cesba sprintworkshop - oct 13
Cesba sprintworkshop - oct 13Cesba sprintworkshop - oct 13
Cesba sprintworkshop - oct 13
 
Han Brezet_Introduction To Sustainable Pss & Tools
Han Brezet_Introduction To Sustainable Pss & ToolsHan Brezet_Introduction To Sustainable Pss & Tools
Han Brezet_Introduction To Sustainable Pss & Tools
 
011 - That’s the way to do it? Results launch from two pan-European studies: ...
011 - That’s the way to do it? Results launch from two pan-European studies: ...011 - That’s the way to do it? Results launch from two pan-European studies: ...
011 - That’s the way to do it? Results launch from two pan-European studies: ...
 
Indoor Climate Remediation 2014
Indoor Climate Remediation 2014Indoor Climate Remediation 2014
Indoor Climate Remediation 2014
 
GERALD BUSCA BDN Inno CV
GERALD BUSCA BDN Inno CVGERALD BUSCA BDN Inno CV
GERALD BUSCA BDN Inno CV
 
EERA Net Cofund CCS, Ragnhild Rønneberg (The Research Council of Norway) UK/N...
EERA Net Cofund CCS, Ragnhild Rønneberg (The Research Council of Norway) UK/N...EERA Net Cofund CCS, Ragnhild Rønneberg (The Research Council of Norway) UK/N...
EERA Net Cofund CCS, Ragnhild Rønneberg (The Research Council of Norway) UK/N...
 
Kaptur news-05
Kaptur news-05Kaptur news-05
Kaptur news-05
 
Exploiting the Added Value of Climate Services - From Climate Service Concept...
Exploiting the Added Value of Climate Services - From Climate Service Concept...Exploiting the Added Value of Climate Services - From Climate Service Concept...
Exploiting the Added Value of Climate Services - From Climate Service Concept...
 
Webinar - Transport and storage economics of CCS in The Netherlands
Webinar - Transport and storage economics of CCS in The NetherlandsWebinar - Transport and storage economics of CCS in The Netherlands
Webinar - Transport and storage economics of CCS in The Netherlands
 
2. GTC-K Introduction
2. GTC-K Introduction2. GTC-K Introduction
2. GTC-K Introduction
 
EU Research Excellence and Capacity for Horizon 2020 Topics SCC-02-2016-2017 ...
EU Research Excellence and Capacity for Horizon 2020 Topics SCC-02-2016-2017 ...EU Research Excellence and Capacity for Horizon 2020 Topics SCC-02-2016-2017 ...
EU Research Excellence and Capacity for Horizon 2020 Topics SCC-02-2016-2017 ...
 
ELEEP Policy Recommendations Renewable Energy and Climate Change:
ELEEP Policy Recommendations Renewable Energy and Climate Change:  ELEEP Policy Recommendations Renewable Energy and Climate Change:
ELEEP Policy Recommendations Renewable Energy and Climate Change:
 
Terry Waugh (3)
Terry Waugh (3)Terry Waugh (3)
Terry Waugh (3)
 
2nd issue of LiCEA newsletter
2nd issue of LiCEA newsletter2nd issue of LiCEA newsletter
2nd issue of LiCEA newsletter
 
EU Research Excellence and Capacity for Horizon 2020 Topics SC5-08-2017 – Xav...
EU Research Excellence and Capacity for Horizon 2020 Topics SC5-08-2017 – Xav...EU Research Excellence and Capacity for Horizon 2020 Topics SC5-08-2017 – Xav...
EU Research Excellence and Capacity for Horizon 2020 Topics SC5-08-2017 – Xav...
 
3. Krakow Technology Park
3. Krakow Technology Park3. Krakow Technology Park
3. Krakow Technology Park
 
ISES 2013 - Day 3 - Unni Steinsmo (CEO, Sintef) - Innovation
ISES 2013  - Day 3 - Unni Steinsmo (CEO, Sintef) - InnovationISES 2013  - Day 3 - Unni Steinsmo (CEO, Sintef) - Innovation
ISES 2013 - Day 3 - Unni Steinsmo (CEO, Sintef) - Innovation
 
ENERGISE partners + synopsis
ENERGISE partners + synopsisENERGISE partners + synopsis
ENERGISE partners + synopsis
 
EPA Horizon 2020 SC5 Roadshow presentation - TCD 21.07.15
EPA Horizon 2020 SC5 Roadshow presentation - TCD 21.07.15EPA Horizon 2020 SC5 Roadshow presentation - TCD 21.07.15
EPA Horizon 2020 SC5 Roadshow presentation - TCD 21.07.15
 

Preparation material clue expert workshop

  • 1. Climate Neutrality for Urban Districts in Europe Edinburgh Expert Workshop 14th-15th March 2013 Expert Workshop Preparation Material This project is funded by the European Regional Development Fund through the INTERREG IVC
  • 2. WELCOME TO THE EXPERT WORKSHOP IN EDINBURGH We are happy to welcome you to the Expert Workshop in Edinburgh. This event is part of the INTERREG IVC project CLUE (Climate Neutral Urban Districts in Europe); a project where regions, cities and universities across Europe exchange experiences and develop methods concerning policymaking. This workshop focuses on methods and tools for indicators, benchmarking and scenario regarding climate neutrality for urban districts. This material hopes to aid you in your preparations before the workshop as well as be a guiding document during the event. Included is related background reading for each of the three sessions that the workshop will consist of but also practical information as venue and transportation information and the latest agenda. We hope that this document will provide all the information needed. Session 2 of this event will consist of three thematic workshops (breakout sessions) running in parallel. This means that the workshop participants will be divided into three groups. For this to run as smoothly as possible we ask you to choose which one of the groups you would like to join. The three themes are;  Indicators for following up and evaluate climate neutrality actions  Benchmarking; accounting procedures, audit tools for calculations of carbon footprints.  Scenario methods for planning and development of climate neutrality Please announce which group you would like to join to Louise Årman at larman@kth.se. We would be grateful if you could give us this indication at the latest on Friday March 8th. We will do our best to meet all of your requests concerning choice of group but we cannot guarantee that we can meet you first choice due to restricted number of places in each group. We also hope that you as a participating expert will contribute with 5-10 minutes presentation of experiences within you groups theme. You can use power-point, but it is not necessary, it is more important that you could present you or your city´s experiences of work. Included in the material for session 2 you can find guiding questions that we hope can facilitate and be an inspiration in the preparation of a presentation. Looking forward to meet all of you in Edinburgh for an exciting event and warmly welcome to the Expert Workshop! On behalf of the university group in the CLUE project FEL! INGEN TEXT MED ANGIVET FORMAT I DOKUMENTET. This project is funded by the European Regional Development Fund through the INTERREG IVC programme
  • 3. VENUE AND TRANSPORT INFORMATION The Edinburgh Workshop will be held in The Edinburgh Suite in New Craig, the main building on Edinburgh Napier University’s Craighouse Campus, Craighouse Road, Edinburgh EH10 5LG. Craighouse is located in the south west of the city. It is served by two buses: the number 23 which runs every 10 minutes; and the number 41 which runs every 30 minutes. Both buses drive up into the campus itself. Taxis are the easiest option and can be either booked in advance or hailed on the street. The two largest firms are Central (0131 2292468) and City Cabs (0131 228 1211). If you have any questions or need assistance with travel arrangements in Edinburgh please contact Fiona Campbell at fh.campbell@napier.ac.uk. AGENDA DAY 1, MARCH 14TH, 08.30-17.00 08.30-09.00: Coffee 09.00-09.30: Welcome to the Expert Workshop Presentation of general outline and practical information 09.30-11.00: Session 1: What do we mean with Climate Neutrality on an Urban District Level?  Definitions, science, technology, models and tools for policy making, with references e.g. to Clinton Climate Initiative and Stockholm Royal Seaport (Industrial Ecology, KTH)  Q&A 11.00-11.45: Session 2: Introduction to the Thematic Workshops Introduction to the thematic workshops, aims, outline and preface to each theme. 12.00-13.00: Lunch 13.00-15.00 Parallel Thematic Workshops During the afternoon of the first day three parallel thematic workshops will be held on experiences and methods:  Indicators for following up and evaluate climate neutrality actions  Benchmarking; accounting procedures, audit tools for calculations of carbon footprints.  Scenario methods for planning and development of climate neutrality actions. FEL! INGEN TEXT MED ANGIVET FORMAT I DOKUMENTET. This project is funded by the European Regional Development Fund through the INTERREG IVC programme
  • 4. 15.00-15.30 Coffee 15.30-16.30: Summery of the Day  Summary of the parallel workgroups presented by the moderator of each group  Common discussion and Q&A 16.30-17.30: Session 3: Introduction to the Scenario Wor kshop Next Day 20.00- Conference Dinner DAY 2, MARCH 15TH, 08.30-14.00 08.30-09.00: Coffee 09.00-12.00: Simulated Scenario Workshop This last part of the workshop will demonstrate how scenario methods might be used in city planning and stakeholder participation. This will be a simulated stakeholder scenario workshop. Participants will get instructions before and some might be invited to present scenarios regarding an imaginary European city. The workshop will consider future energy consumption scenarios and focus on dilemmas regarding climate neutral urban areas. Important dilemmas are for example:  Focus on reduced energy consumption or on supplying renewable energy  Focus on more population density to prevent urban sprawl and increase infrastructure efficiency, or more green areas and urban gardens? After this simulated workshop, it will be discussed to what degree this approach meets requirements of various participants. The University of Delft is responsible for this workshop and background documents. 12.00-13.00: Ending Plenary Session  Feedback of scenario building exercises  Next steps and creation of a carbon neutrality network  Summary of the workshop 13.00-14.00: Lunch FEL! INGEN TEXT MED ANGIVET FORMAT I DOKUMENTET. This project is funded by the European Regional Development Fund through the INTERREG IVC programme
  • 5. Session 1 - Climate Urban Neutrality Content Johansson et. al. (submitted). Creating a Climate Positive Urban District – A Case Study of Stockholm Royal Seaport. Submitted to Journal of Energy Policy Johansson et. al. (submitted). Climate Positive Urban Districts – Methodological Considerations. Using Findings Based on the Case of Stockholm Royal Seaport. Submitted to Journal of Energy Policy
  • 6. Submitted  article  –  Journal  of  Energy  Policy     Do  not  copy  or  redistribute!     Creating  a  Climate  Positive  Urban  District     –  A  Case  Study  of  Stockholm  Royal  Seaport       Stefan  Johansson*,  PhD  Candidate,  sjindeco@kth.se    Tel:  +46  8  790  87  61   Hossein  Shahrokni,  PhD  Candidate,  hosseins@kth.se  Tel:  +46  8  790  87  05   Anna  Rúna  Kristinsdóttir,  Research  Engineer,  arkr@kth.se  Tel:  +46  8  790  87  05   Nils  Brandt,  Associate  Professor,  nilsb@kth.se  Tel:  +46  8  790  87  59     *Corresponding  author     KTH,  Royal  Institute  of  Technology   School  of  Industrial  Engineering  and  Management   Division  of  Industrial  Ecology     Teknikringen  34   SE-­‐100  44  Stockholm,  Sweden       Abstract:  This  paper  describes  the  findings  of  a  case  study  on  the  possibility  to   create   a   climate   positive   urban   district,   the   Stockholm   Royal   Seaport   (SRS).   SRS   is  being  developed  with  the  explicit  goal  of  becoming  climate  positive  and  in  the   paper   we   study   SRS’s   emissions   of   greenhouse   gases   (GHG)   and   tries   to   determine   this   possibility.   To   support   our   findings   we   define   the   concept   of   a   climate  positive  urban  district,  SRS’s  scope  of  emissions  and  system  boundaries,   in   order   to   create   a   baseline   of   the   urban   district’s   GHG   emissions.   Finally   we   discuss   SRS’s   process   of   trying   to   become   a   climate   positive   urban   district,   both   in   terms   of   considerations   that   have   been   made   regarding   scopes,   boundaries   and  data  as  well  as  SRS’s  relation  to  the  City  of  Stockholm.         Key  words:     Climate  positive  urban  districts   Stockholm  Royal  Seaport     Case  study                 1. Introduction   By   2007,   more   than   half   the   world’s   population   was   living   in   urban   areas   (United   Nations,   2007).   Cities   are   becoming   one   of   the   key   leverage   points   for   climate  change,  since  they  are  recognised  as  being  one  of  the  major  emitters  of   greenhouse   gases   (GHG),   while   also   being   the   ideal   platform   to   cut   emissions   (Grimm  et  al.,  2008;  International  Energy  Agency,  2008).  In  Stockholm,  Sweden,   a  new  urban  district  called  Stockholm  Royal  Seaport  (SRS)  is  being  developed,   with   the   explicit   goal   of   achieving   climate   positive   status.   The   Clinton     1  
  • 7. Submitted  article  –  Journal  of  Energy  Policy     Do  not  copy  or  redistribute!   Foundation’s   Clinton   Climate   Initiative   (CCI)   developed   the   conceptual   framework   for   climate   positive   urban   districts,   the   Climate   Positive   Program,   and   SRS   is   one   of   16   participating   projects   in   different   regions   around   the   world.  The  framework  focuses  on  low  energy  use,  a  high  degree  of  renewables,   local   on-­‐site   energy   production   and   influencing   nearby   districts/communities   towards  low  carbon  emissions  (CCI,  2011).  This  paper  examines  the  concept  of   a   climate   positive   urban   district   by   applying   the   CCI   framework   to   SRS,   while   still   maintaining   the   possibility   to   compare   SRS   to   the   City   of   Stockholm   by   using   the   same   methodology   concerning   local   data   and   system   boundaries   as   the  City.    It  also  compares  the  urban  district  in  general  and  its  GHG  emissions  to   the  rest  of  the  city  and  tries  to  draw  conclusions  from  the  findings.       The  paper  begins  by  describing  the  SRS  urban  district,  its  characteristics  and  its   relation  to  the  City  of  Stockholm  in  terms  of  climate-­‐related  goals  and  then  goes   on   to   describe   SRS’s   process   to   become   a   climate   positive   urban   district.   The   aims   and   objectives   of   the   case   study   are   then   presented,   beginning   with   an   examination   of   the   definition   of   a   climate   positive   urban   district,   scopes   of   emissions   and   system   boundaries   and   then   describing   the   calculated   GHG   emissions   of   the   urban   district.   Next,   the   baseline   emissions   are   compared   against  the  magnitudes  of  a  few  possible  actions  to  reduce  the  urban  district’s   GHG   emissions.   Finally,   there   is   a   concluding   discussion   on   the   concept   of   a   climate   positive   urban   district,   its   GHG   emissions   and   the   generality   of   the   results.   2. Background       Characteristics  of  the  SRS  area  –  Present  and  Future  Infrastructure   The  area  where  SRS  is  being  built  is  a  brownfield  site  currently  being  used  for   housing,   gas   utilities,   a   combined   heat   and   power   plant   and   a   harbour.   It   serves   as   a   thoroughfare   for   traffic   to   the   harbour   and   to   the   island   of   Lidingö   (population  42  000  in  2009;  Lidingö  stad,  2011).  SRS  also  occupies  a  wedge  of   the   National   City   Park   in   central   Stockholm   (City   of   Stockholm,   2011).   The   current   thoroughfare   will   be   expanded   in   an   effort   to   build   a   partial   beltway   around  Stockholm.  By  the  time  the  development  is  completed,  a  total  of  10,000   apartments   housing   19   000   residents   will   have   been   built,   along   with   a   large   non-­‐residential   area   containing   workspaces   for   30   000   workers,   commercial   spaces  and  a  shopping  mall.  The  SRS  project  is  expected  to  achieve  full  build-­‐out   in   2030,   but   the   first   residents   will   be   moving   in   later   this   year.   The   planned   land  uses  are  summarised  by  area  in  Table  1.       Table  1.  Built  areas  of  Stockholm  Royal  Seaport  by  type  at  full  build-­‐out   Planned  area  [m2]  at  full  build-­‐out   Land  use  by  type   Multifamily  housing   1,143,400   Office  space   712,330   Commercial  space   84,015   Schools   9,500     2  
  • 8. Submitted  article  –  Journal  of  Energy  Policy     Do  not  copy  or  redistribute!   Source:  Johansson  et  al.  (2012b).   SRS  in  Relation  to  the  City  of  Stockholm  and  its  Climate  Goals   SRS   is   located   near   central   Stockholm   (3   km   from   the   city   centre),   with   easy   access  to  public  transportation,  walking  and  cycle  trails.  The  area  is  to  become   Stockholm’s   second   so-­‐called   eco-­‐district,   with   a   strong   ‘green   profile’   formulated   in   a   environmental   programme   for   the   district   (City   of   Stockholm,   2012).  The  first  eco-­‐district,  Hammaby  Sjöstad  (Hammarby  Sea  City),  attempted   to   be   an   area   that   was   “twice   as   good”   from   an   environmental   perspective   as   other  areas  being  built  at  the  time  (mid-­‐1990s)  (Pandis  &  Brandt,  2009).       SRS  has  two  goals  with  regard  to  climate  change  and  GHG  emissions  by  the  time   build-­‐out   is   completed   in   2030,   namely   to   have   developed   a   climate   positive   urban   district   and   to   have   become   a   fossil-­‐fuel   free   urban   district   (City   of   Stockholm,  2010b).  As  a  comparison,  the  City  of  Stockholm’s  goals  are  to  limit   GHG  emissions  to  3.0  ton  carbon  dioxide  equivalents  (CO2e)  per  capita1  by  the   year  2015  and  to  become  a  fossil-­‐fuel  free  city  by  2050  (Stockholm,  2010a).       Since  SRS  is  part  of  the  City  of  Stockholm,  we  deemed  it  appropriate  to  base  our   study   on   earlier   experiences   from   the   City   and   to   use   the   same   system   boundaries   and   methods   for   quantifying   GHG   emissions   as   the   rest   of   the   City   whenever   possible.   This   approach   also   enabled   us   to   make   comparisons   and   benchmark   between   SRS   and   the   surrounding   City   of   Stockholm.   Like   many   cities   (Kramers   et   al.,   2012),   Stockholm   has   traditionally   focused   on   direct   emissions   within   its   geographical   boundary   while   excluding   emissions   from   sources   such   as   long   distance   travel,   construction   and   consumption.   A   noteworthy   feature   of   the   City   of   Stockholm   is   that   no   waste   treatment   takes   place  within  its  geographical  boundary  and  therefore  the  only  waste  emissions   included  are  those  from  collection,  transportation  and  incineration  of  waste  in   the  district-­‐heating  grid  (City  of  Stockholm,  2010a).     3. Aims  and  Objectives   The   main   aims   of   the   study   were   to   study   the   GHG   emissions   of   SRS   in   a   transparent  way  and  to  determine  its  possibilities  to  become  a  climate  positive   urban   district.   To   achieve   this   aim,   the   following   specific   objectives   were   formulated:     • Define  the  concept  of  a  climate  positive  urban  district     • Describe  SRS’s  scope  of  emissions,  system  boundaries  and  data     • Calculate  SRS’s  baseline  emissions   • Calculate   the   magnitudes   of   a   few   potential   actions   to   cut   SRS’s   GHG   emissions   • Discuss   the   results   obtained   in   terms   of   magnitude   of   GHG   emissions,   SRS’s   possibility   to   become   climate   positive   and   the   relationship                                                                                                                   1  By  capita,  the  city  and  we  use  the  number  of  residents  living  in  an  enclosed   area,  either  the  City  of  Stockholm  or  the  SRS  urban  district.       3  
  • 9. Submitted  article  –  Journal  of  Energy  Policy     Do  not  copy  or  redistribute!   between  GHG  emissions  from  SRS  compared  with  those  from  the  rest  of   the  City  of  Stockholm.     This  paper  describes  the  findings  of  our  case  study  on  SRS’s  progress  towards   becoming  a  climate  positive  urban  district.     4. The  Concept  of  a  Climate  Positive  Urban  District     A  number  of  different  terminologies  and/or  concepts  are  used  when  discussing   GHG   emissions   in   urban   settings.   Most   are   intuitively   understandable   in   a   general   sense   (carbon-­‐neutral,   zero   carbon,   etc.)   but   when   examined   in   closer   detail   they   are   quite   diverse   and   formal   definitions   and   related   standards   currently   do   not   exist   (Murray   &   Dey,   2009)   or   are   vague,   creating   the   possibility   of   significant   confusion   and   uncertainty.   The   lack   of   standards   also   makes   comparison   and   benchmarking   between   cities/urban   districts   etc.   difficult  or  impossible.     The  Definition  of  a  Climate  Positive  Urban  District  Used  by  SRS   Kennedy   &   Sgouridis   (2011)   review   a   number   of   different   low   GHG   concepts.   According   to   their   definition,   a   carbon-­‐neutral   district   is   one   where   direct   emissions  (also  referred  to  as  scope  1)  and  important  indirect  emissions  (also   referred  to  as  scope  2  and  3)  are  in  balance/equal  to  reductions,  sequestrations,   sinks   and   offsets.   A   climate   positive   district   can   be   defined   as   one   where   emissions  are  less  than  the  sum  of  reductions,  sequestrations,  sinks  and  offsets,   or   where   reductions,   sequestrations,   sinks   and   offsets   outweigh   emissions.   However,  in  the  case  of  SRS,  we  were  unable  to  identify  any  significant  sinks  or   sequestrations.     SRS’s   Process   of   Becoming   a   Climate   Positive   Urban   District   According   to   CCI   There   are   two   main   phases   in   SRS’s   process   to   become   a   climate   positive   urban   district  based  on  the  methodology  supplied  by  CCI  (Figure  1)  (CCI,  2011).  The   first  step  of  the  process  is  to  create  a  GHG  emissions  baseline  for  the  SRS  area.   This   baseline   serves   as   the   basis   for   the   next   phase,   which   is   to   develop   a   roadmap   of   actions   that   will   lead   to   a   climate   positive   outcome.   The   roadmap   includes  actions  which  focus  on  energy  efficiency  measures,  fuel  switching  from   fossil   fuels   to   renewables   and   local   energy   generation.   The   roadmap   actions   are   constrained   to   those   directly   applied   within   SRS’s   geographical   boundary.   Figure  1  illustrates  the  process  being  used  by  SRS  to  become  climate  positive.       4  
  • 10. Submitted  article  –  Journal  of  Energy  Policy     Do  not  copy  or  redistribute!         Figure  1.  Summary  of  the  process  by  which  Stockholm  Royal  Seaport  is  striving  to  become  a  climate   positive  urban  district.     5. The  GHG  Baseline  for  SRS  –  Scopes  and  Boundaries   In  the  GHG  baseline  for  SRS,  the  concept  we  used  for  setting  the  boundaries  was   that   initially   developed   for   the   GHG   Protocol   by   World   Resources   Institute   (WRI)   and   the   World   Business   Council   for   Sustainable   Development   (WBCSD)   (Rangathan  et  al.,  2004;  Kennedy  &  Sgouridis,  2011).  The  scopes  are  defined  as:     Scope  1  –  Includes  direct  emissions  such  as  emissions  from  heating,  cooling  and   transportation.   Scope   2   –   Core   external   emissions   such   as   waste   treatment   and   electricity   generation.   Scope   3   –   Non-­‐core   emissions   such   as   emissions   from   consumption   not   included  in  scope  1  or  2  and  other  emissions  not  connected  to  the  geographical   area  such  as  long  distance  travel.       When  defining  what  is  included  in  the  scopes,  the  district’s  system  boundaries   also  need to be defined.  There  are  four  system  boundaries  to  take  into  account,   geographical,     activity,   temporal   and   life   cycle   system   boundaries.   To   determine   the   emissions   included   within   the   boundaries,   SRS   focuses   on   emissions   related   to   activities   directly   related   to   the   geographical   area,   much   like   the   City   of   Stockholm   itself   does   when   calculating   emissions   for   the   entire   city   (City   of   Stockholm,  2010).     The  Geographical  Boundary   The   SRS’s   geographical   system   boundary   is   defined   as   the   perimeter   that   encloses  the  236  hectares  of  project  area  (City  of  Stockholm,  2012).  Emissions   associated   with   activities   related   to   the   district   and   emitted   inside   the     5  
  • 11. Submitted  article  –  Journal  of  Energy  Policy     Do  not  copy  or  redistribute!   geographical   boundary   are   accounted   for,   while   emissions   not   associated   with   the  district  are  excluded.  This  excludes,  among  other  activities,  emissions  from   the   combined   heat   and   power   plant   not   related   to   buildings   in   SRS,   since   it   supplies   a   far   greater   area   than   SRS   with   heating,   cooling   and   electricity.   If   a   strict  geographical  perspective  had  been  implemented,  all  of  the  emissions  from   the  power  plant  would  have  been  included,  despite  the  fact  that  most  emissions   were  generated  by  energy  use  elsewhere.       The  Activity  Boundary   The   activity   boundary   determines   which   activities   are   included   and   excluded   from  the  baseline.  As  stated  previously,  we  deemed  it  appropriate  to  include  the   same   activities   as   the   City   of   Stockholm   does   when   calculating   its   GHG   emissions  (City  of  Stockholm,  2010a).  This  means  that  emissions  from  heating,   cooling,   electricity   and   transportation   are   included,   while   emissions   from   the   construction   of   infrastructure,   consumption   and   long   distance   travel   are   excluded.   A   main   difference   from   the   City   of   Stockholm’s   traditional   way   of   calculating  emissions  is  that  we  include  life  cycle  emissions  from  the  treatment   of  waste  in  the  baseline,  since  the  waste  is  generated  by  activities  taking  place   within   the   geographical   boundary   despite   treatment   taking   place   outside   it.   Traditionally,   the   City   of   Stockholm   has   only   included   waste   emissions   stemming  from  transportation  and  waste  incineration.  The  rationale  behind  this   is  that  household  and  food  waste,  which  represents  the  majority  of  the  waste,  is   transported   for   incineration   in   the   local   district   heating   system,   whereas   the   treatment   plant   for   the   other   waste   is   located   outside   the   city   boundary.   However,  we  believed  that  its  emissions  should  be  included.     The  Temporal  Boundary     The   temporal   boundary   for   SRS   is   set   to   start   at   complete   build-­‐out   in   2030   (also   called   operational   emissions).   Therefore   emissions   from   building   and   infrastructure  construction  are  excluded.  The  emissions  are  measured  as  annual   emissions,   either   as   ton   CO2e   per   year   or   as   ton   CO2e/capita   and   year.   The   temporal  boundary  also  has  a  significant  effect  on  the  baseline.  Since  SRS  will  be   built   over   an   extended   period   of   time,   almost   20   years,   the   baseline   will   be   a   moving   target   as   the   technology   and   other   drivers   (for   instance   travel   behaviour)   advance   throughout   the   development   process.   Current   trends   with   more   energy-­‐efficient   buildings   and   vehicles   and   a   shift   to   more   vehicles   running  on  renewable  fuels  are  likely  to  continue  (Trafikverket,  2011),  but  can   be  (partially)  offset  by  increased  use.  To  counter  this  potential  uncertainty,  we   decided  to  use  2010  as  a  base  year  of  reference  in  the  baseline.  The  base  year  is   used   to   set   the   composition   of   energy   sources,   vehicle   fleet,   waste   generation,   emission  factors  of  district  heating  and  electricity  and  so  forth.  No  changes  over   time   are   taken   into   account   for   the   baseline,   which   has   been   found   to   be   the   most  conservative  approach.   The  Life  Cycle  Boundary   The   City   of   Stockholm   uses   life   cycle-­‐based   emission   factors   for   all   fuels   and   energy   carriers   used   in   mobile   and   stationary   combustion,   using   the   best   available  data  for  each  energy  source  and  presenting  all  data  used,  calculations   and  assumptions  in  a  transparent  way  (Johansson  et  al.,  2012b).  The  life  cycle     6  
  • 12. Submitted  article  –  Journal  of  Energy  Policy     Do  not  copy  or  redistribute!   data  include  emissions  of  carbon  dioxide,  methane  and  nitrous  oxide,  accounted   as  CO2e.       Summary  of  SRS’s  Scopes  and  Boundaries     Using   the   scopes   of   emissions   together   with   the   system   boundaries   we   were   able   to   decide   which   emissions   are   included   in   the   baseline   and   which   are   excluded.  For  each  emission  category,  the  principle  of  activities  directly  related   to   the   geographical   area   is   used.   However,   within   each   emissions   category   important  choices  had  to  been  made,  as  described  below.     Energy   The   emissions   from   energy   include   emissions   from   energy   use   in   the   area   (buildings,   infrastructure)   and   emission   reductions   from   local   energy   generation  (more  about  this  in  the  results  of  the  SRS  baseline).  The  principle  of   only   including   activities   directly   related   to   the   SRS   district   were   used   to   limit   the   emissions   from   the   combined   heat   and   power   plant   located   in   the   area   to   emissions   from   building   energy   use   (heating,   cooling,   electricity)   in   the   area,   instead   of   accounting   for   all   of   the   emissions,   since   the   majority   of   these   stem   from  energy  use  in  the  City  of  Stockholm.     Transportation   The   transportation   emissions   include   emissions   from   people   and   activities   directly   connected   with   the   urban   district.   This   means   that   transportation   emissions  from  residents’  private  and  commuting  trips  are  included,  while  their   business  trips  are  excluded  since  it  was  assumed  that  they  do  not  work  locally.   For   workers,   the   emissions   from   personal   trips   and   commuting   are   excluded,   since   they   were   assumed   not   to   live   in   SRS,   while   emissions   from   business   trips   are  included,  since  the  companies  are  located  within  SRS.     Waste   The  emissions  from  waste  include  emissions  from  the  waste  collection  process,   transportation  and  the  treatment  of  waste.     Excluded  emissions   The   emissions   from   consumption   are   excluded,   since   almost   none   of   the   GHG   emissions   from   the   production   of   the   goods   consumed   take   place   inside   SRS,   with  the  exception  of  energy  use  and  emissions  from  waste.     Long   distance   travel   by   modes   such   as   air,   bus,   ferry   and   train   are   excluded,   since  they  do  not  take  place  within  the  geographical  area.     Emissions   from   societal   functions   that   a   person   living   in   SRS   (might)   need,   such   as  hospitals,  sport  centres,  public  administration,  etc.  are  excluded,  since  these   activities  do  not  take  place  within  SRS.       The   included   and   excluded   emissions   in   the   GHG   emissions   baseline   for   SRS   are   summarised  in  Table  2.       Table  2.  Summary  of  included  and  excluded  GHG  emissions  in  the  Stockholm  Royal  Seaport   baseline   Included  emissions   Comments   Energy   -­‐Emissions   related   to   heating,   cooling   and   electricity  directly  linked  to  activities  within  the   geographical  boundary  of  SRS.       7  
  • 13. Submitted  article  –  Journal  of  Energy  Policy     Do  not  copy  or  redistribute!   -­‐Emission   reductions   from   local   energy   production   directly   related   to   the   geographical   boundary  of  SRS.   -­‐Energy   used   in   infrastructure   such   as   road   maintenance,  traffic  lights,  etc.     Transportation   Emissions   related   to   transportation   stemming   from   activities   directly   related   to   the   geographical  area  of  SRS:     - Private  trips  (residents)   - Commuting  trips  (residents)   - Business  trips  (workers)   - Goods  and  services   Waste   Emissions   and   emissions   reductions   from   the   collection,  transport  and  treatment  of  waste.     Excluded  emissions   Comments   Consumption   The   only   emissions   from   consumption   included   are   direct   energy   use   and/or   emissions   from   waste.     Long  distance  travel   Air  travel,  long  distance  bus,  ferry,  train   Emissions   from   societal   - Hospitals   functions   not   located   within   - Sport  centres   SRS   - Public  administration     …   Construction       6. Results:  The  GHG  baseline  of  SRS  –  Emissions  and   Calculations   Calculations  of  the  yearly  GHG  emissions  in  the  baseline  were  divided  into  three   main  emissions  categories:  energy,  transportation  and  waste.  For  instance,  the   energy   emissions   category   includes   energy   in   buildings,   infrastructure,   water   and   locally   generated   energy.   For   each   emissions   category,   the   data   used   are   described  below  together  with  any  assumptions  made.  To  determine  what  data   to  use  in  the  baseline,  we  adopted  the  following  data  hierarchy:       1. Where  local  SRS-­‐specific  data  are  available,  these  are  primarily  used.  For   instance   projected   heating   and   hot   water   demand   [kWh/m2   and   year]   for  buildings.     2. Where   SRS-­‐specific   data   are   unavailable,   data   for   the   City   of   Stockholm   or   greater   Stockholm   are   used,   for   instance   composition   of   the   vehicle   fleet   [%   gasoline   cars,   %   biogas   cars,   etc.],   and   emissions   from   the   Stockholm  district  heating  mix  [g  CO2e/kWh].   3. Where   data   specific   for   Stockholm   are   unavailable,   data   for   Sweden   or   the   Nordic   countries   are   used,   for   instance   GHG   emissions   from   waste   management  by  fractions  of  waste  in  Sweden  [g  CO2e/ton  waste].     8  
  • 14. Submitted  article  –  Journal  of  Energy  Policy     Do  not  copy  or  redistribute!     All  calculations  made  are  using  the  same  basic  formula:     Activity  *  Emission  Factor  =  Emissions     Examples   of   activities   are   annual   energy   use   [kWh   of   a   fuel   or   energy   carrier/year],   annual   person   kilometres   (PKM)   travelled   [PKM   of   a   mode   of   transportation/year]   and   annual   waste   generated   [ton   per   waste   fraction   and   year].   The   emission   factors   are   coupled   with   the   respective   activities.   In   the   example   above,   emissions   from   energy   use   are   expressed   as   [g   CO2e/kWh   of   fuel  or  energy  carrier],  those  from  transportation  as  [g  CO2e/PKM  of  the  mode   of  transportation  used]  and  those  from  waste  as  [g  CO2e/ton  of  waste  fraction   and  treatment  method].     Energy   The   emissions   related   to   energy   in   the   baseline   include   emissions   from   heating,   cooling   and   electricity   used   in   buildings,   emissions   from   energy   used   in   the   infrastructure  (street  lights,  traffic  lights,  road  maintenance,  snow  clearing,  etc.)   and   emissions   from   supplying   the   district   with   water.   Also   included   in   the   energy   part   of   the   baseline   are   emissions   reductions   from   locally   generated   energy,  such  as  biogas  from  wastewater  sludge.     Buildings   The   buildings   in   the   SRS   are   divided   into   four   categories,   multifamily   housing,   offices,   commercial   space   and   schools.   The   emissions   included   come   from   heating,   cooling   and   electricity,   with   electricity   end-­‐uses   tracked   separately   (elevators,  pumps,  ventilation,  etc.).     Data  used  and  calculations:     The   data   used   in   the   baseline   are   based   on   the   assumption   that   the   projected   (simulated)  energy  use  for  the  buildings  in  the  first  construction  phase  (2012-­‐ 2014)  will  be  representative  for  the  entire  district.  The  emissions  factors  used   are   three-­‐year   mean   values   for   the   Stockholm   district   heating   mix   and   the   Nordic   electricity   system   (Johansson   et   al.,   2012b).   The   reason   for   using   the   three-­‐year   mean   instead   of   only   using   the   base   year   (2010)   emissions   was   to   eliminate   the   seasonal   variations   of   hot   and   cold   years,   which   affect   the   emissions  factors.       For   each   type   of   building,   the   projected   energy   used   is   calculated.   In   the   first   build   phase   strict   energy   requirements   on   energy   use   in   buildings   had   yet   to   be   implemented  but  simulations  have  demonstrated  that  the  projected  energy  use   is   roughly   25%   lower   than   specified   in   the   current   Swedish   building   codes   (Boverket,   2011).   Total   energy   use   and   emissions   are   therefore   calculated   according  to  Table  3.     Table  3.  Projected  energy  use  and  emissions  from  different  types  of  buildings  in  the  baseline   Energy  by  type/Buildings  by  type   Residential   Offices   Commercial   Schools   Heating  and  cooling           Heating  [kWh/m2,  year]   42.5   35   25   55   Hot  water  [kWh/m2,  year]   25   2   2   10     9  
  • 15. Submitted  article  –  Journal  of  Energy  Policy     Do  not  copy  or  redistribute!   Cooling  [kWh/m2,  year]   0   20   35   0   Surface  area  [m2]   1,143,400   712,330   84,015   9,500   Total  energy  use  [GWh/year]   77.2   40.6   5.2   0.6   Emissions  factor  [g  CO2e/kWh]   98.45   Total  emissions  [ton  CO2e/year]   7  598.3   3  997.4   512.8   60.8             Electricity           Building  electricity  [kWh/m2,  year]   15   25   20   15   Residential/commercial   electricity   30   50   80   35   [kWh/m2,  year]   Surface  area  [m2]   1,143,400   712,330   84,015   9,500   Total  energy  use  [GWh/year]   51.5   53.4   8.4   0.48   Emission  factor  [g  CO2e/kWh]   69.73   Total  emissions  [ton  CO2e/year]   3,587.8   3,725.3   585.8   33.1             Total   emissions   (heating,   cooling   &   11,186.1   7,722.7   1,098.6   93.9   electricity)   by   building   type     [ton  CO2e/year]   Total  building  emissions  [ton  CO2e/year]   20,301.3   Source:  Johansson  et  al.  (2012b).   Infrastructure,  Water  and  Locally  Generated  Energy   The   emissions   from   infrastructure   in   SRS   include   emissions   from   electricity   used   in   streetlights,   traffic   lights,   non-­‐building   related   electricity   (pumps,   fountains,   etc.)   as   well   as   mainly   diesel   fuel   used   in   the   operation   of   road   infrastructure   (road   maintenance,   snow   cleaning,   gritting,   etc.)   (Table   4).   The   emissions   from   water   include   emissions   from   the   electricity   used   to   collect,   treat  and  distribute  water  to  and  from  SRS.     In   the   baseline   there   is   not   much   local   energy   production,   but   wastewater   sludge   from   the   urban   development   is   collected   and   used   to   generate   biogas.   In   the  baseline  scenario  the  biogas  is  then  upgraded  and  used  to  replace  gasoline   in  cars,  thus  reducing  baseline  emissions  (Johansson  et  al.,  2012b).     Data  used  and  calculations:     The   data   regarding   electricity   use   in   infrastructure   were   developed   using   the   master  plans  for  SRS.  The  data  for  road  maintenance  are  based  on  figures  from   the  City  of  Stockholm  (Fahlberg  et  al.,  2007),  assuming  that  SRS  infrastructure   will  require  the  same  amount  of  maintenance  as  the  rest  of  the  City.     Water  use  is  based  on  technology  currently  in  use  in  Hammarby  Sjöstad  (Pandis   &  Brandt,  2009)  and  that  will  be  implemented  in  SRS,  while  the  energy  use  for   collection,   treatment   and   distribution   is   based   on   figures   for   the   City   of   Stockholm  (Stockholm  Vatten,  2010).     The   amount   of   biogas   generated   by   wastewater   sludge   was   estimated   and   the   full  amount  assumed  to  replace  gasoline  in  cars.       Table  4.  Projected  energy  use  and  emissions  from  infrastructure,  water  and  locally  generated   energy  in  Stockholm  Royal  Seaport   Activity   Annual   energy   Emissions   Emissions     use  [kWh/year]   factor     [ton  CO2e/year]     10  
  • 16. Submitted  article  –  Journal  of  Energy  Policy     Do  not  copy  or  redistribute!   [g  CO2e/kWh]   Infrastructure         -­‐   Electricity   in   street   lights,   756,000   69.73   52.7   traffic  lights,  etc.   -­‐  Road  maintenance     7,670,300   279.31   2,142.4   Water           -­‐   Collection,   treatment,   1,862,595   69.73   129.9   distribution     Locally  generated  energy         -­‐   Generated   biogas   2,300,000   -­‐  586.6   -­‐  557.7   replacing  E5  Petrol   Total  emissions  [ton  CO2e/year]   1,767.3   Source:  Johansson  et  al.  (2012b).   Transportation   In   the   baseline,   transportation   emissions   are   divided   into   four   categories,   private   trips,   commuting   trips,   business   trips   and   the   transportation   of   goods   and  services  to  the  area.  The  transportation  emissions  highlight  the  problem  of   measuring   emissions   on   the   urban   district   level   in   comparison   with   the   city   level.  If  a  strict  geographical  perspective  is  employed  only  emissions  within  that   area  are  addressed.  This  might  lead  to  sub-­‐optimisation  by  clouding  significant   actions  that  could  improve  the  whole  transportation  system,  collaborating  with   the  right  stakeholders  (public  transportation  companies,  car  sharing  companies,   mobility   management,   etc.),   as   well   as   only   accounting   for   a   fraction   of   the   transportation   emissions   that   the   district   actually   generates.   For   instance,   the   new   thoroughfare   is   likely   to   include   significant   amounts   of   traffic   from   the   island   of   Lidingö,   combined   with   transportation   from   the   harbour,   both   of   which  are  mostly  unrelated  to  the  urban  district.  This  raises  the  question  of  who   should   be   responsible   for   them   and   where   the   reduction   strategies   should   be   implemented.   The   accounting   method   used   accounts   for   commuting   emissions   to  where  the  commuter  lives.  That  accounting  method  skews  planned  efforts  by   SRS   to   be   a   working   centre   with   more   than   twice   as   many   workspaces   as   residential   spaces.   Therefore   significant   emissions   from   worker   commutes   are   excluded,   despite   the   fact   that   that   most   “Smart   Growth”   transportation   measures   can   readily   be   undertaken   on   the   district   level   to   minimise   them.   These  include  mixed  use  planning,  increased  density,  increased  walkability  and   easy   cycling   access,   limited   parking   spaces   and   increased   parking   fees,   and   so   forth  (City  of  Stockholm,  2012).       Based   on   this,   the   baseline   transportation   emissions   include   emissions   from   residents’   private   and   commuting   trips,   workers’   business   trips   and   emissions   from  the  transportation  of  goods  and  services  delivered  to  and  from  the  urban   district  (Table  5).     Data  used  and  calculations:     All  activity  data  regarding  resident  and  worker  trips  were  developed  using  two   transportation   studies,   one   focusing   on   the   inner   City   of   Stockholm   (USK,   2006)   and   one   focusing   on   Stockholm   as   a   whole   (Rytterbro   et   al.,   2011).   The   total   projected  travel  demand  was  calculated.  Transportation  emissions  from  goods     11  
  • 17. Submitted  article  –  Journal  of  Energy  Policy     Do  not  copy  or  redistribute!   and   services   were   estimated   using   Stockholm-­‐specific   data   (Fahlberg   et   al.,   2007).     Table  5.  Projected  emissions  and  travel  behaviour  of  residents  and  workers  in  Stockholm  Royal   Seaport  2010   Mode   of   Residents     Workers   Emissions   Total   emissions   transportation   [PKM/year]   [PKM/year]   factor     [ton  CO2e/year]   [g  CO2e/PKM]   Car  -­‐  biogas   920,046   780,696   0.02   0.03   Car  –  E85   6,584,892   5,587,546   76.78   934.60   Car  –  Gasoline  E5   36,045,366   30,585,942   170.81   11,381.30   Car  –  Diesel  RME5   12,109,452   10,275,357   166.04   3,716.80   Car  –  Electric   2,418   2,052   11.56   0.05   Car  –  Hybrid   885,626   751,489   136.65   223.70   Local  bus   11,003,413   1,184,771   4.13   50.30   Local  train   27,907,469   1,777,157   0.05   1.50   Long  distance  bus   7,187,855   0,00   32.00   230.00   Long  distance  train   24,284,576   7,108,628   0.13   4.10   Physically  active   18,703,695   1,184,771   0.00   0   Total  residential  emissions   9,074.23   Total  worker  emissions     7,468.15   Goods  and  services   3,289.26   Transportation  totals   19,831.7   Source:  Johansson  et  al.  (2012b).   Waste   Each   waste   fraction   includes   emissions   from   collecting,   transporting   and   treating   each   fraction,   as   well   as   emissions   reductions   from   recycling   compared   with   using   virgin   materials   (Table   6).   The   waste   emissions   exclude   the   upstream   lifecycle   emissions   of   production   and   transporting   the   respective   goods   before   they   are   disposed   of   as   waste.   This   merits   a   discussion   about   consumption   that   is   outside   the   scope   of   this   paper,   but   it   should   at   least   be   noted   that   this   exclusion   leads   to   the   paradox   that   the   more   food   and   goods   consumed   within   SRS,   the   lower   their   emissions.   This   is   because   the   waste   generated   is   combusted   in   the   district   heating   system,   which   leads   to   lower   district   heating   emissions   compared   with   using   fossil   fuels.   Each   emissions   factor  is  based  on  waste  treatment  in  Sweden,  since  SRS-­‐specific  or  Stockholm-­‐ specific  data  are  not  available  at  this  time.     Data  used  and  calculations:     The  waste  streams  in  the  urban  development  were  projected  using  data  for  the   City   of   Stockholm   combined   with   the   possibility   to   collect   household   waste,   combustibles,  newspapers  and  paper  beside  or  within  the  buildings  themselves.   Table  6.  Emissions  from  waste  in  the  baseline  for  Stockholm  Royal  Seaport     Waste  fraction   Ton   Emissions   factor     Annual   emissions   waste/year   [ton  CO2e/ton  waste  ]   [ton  CO2e/year]   Mixed   municipal   solid   7,574   All  municipal  solid  waste  is  used  in  the  City  of   waste   Stockholm’s  district  heating  network  and   emissions  are  therefore  attributed  there     12  
  • 18. Submitted  article  –  Journal  of  Energy  Policy     Do  not  copy  or  redistribute!   Gardening  waste   122   -­‐0.4   -­‐48.8   Bulk  waste   3,168   -­‐0.1   -­‐316.8   Sorted  waste         -­‐  Glass   718   -­‐0.04   -­‐28.7   -­‐  Paper   2,537   -­‐0.18   -­‐456.7   -­‐  Metal   109   -­‐0.61   -­‐66.5   -­‐  Newspapers   896   -­‐0.18   -­‐161.3   -­‐  Plastics   800   1.52   1  216   -­‐  Electronics   329   -­‐0.05   -­‐16.5   -­‐  Hazardous  waste   49   -­‐0.3   -­‐14.7   Waste  totals       106   Source:  Johansson  et  al.  (2012b).   Baseline  Results     The  baseline  emissions  in  the  different  categories  discussed  above  are   summarised  in  Table  7.     Table  7.  Summary  of  baseline  emissions  for  SRS   Emission  Categories   Ton  CO2e/year   Ton  CO2e/capita   Energy       -­‐Heating  &  cooling   12,169.3   0.64   -­‐Electricity   7,932   0.42   -­‐Water  &  infrastructure   2,325   0.12   -­‐Locally  produced  energy   -­‐  557.7   -­‐0.03   Transportation         -­‐Residents     9,074.2   0.48   -­‐Workers   7,468.1   0.39   -­‐  Goods  &  services   3,289.2   0.17   Waste   106   0.01   Baseline  totals   41,806.1   2.20   Source:  Johansson  et  al.  (2012b).     The   baseline   emissions   of   2.2   ton   CO2e/capita   are   low   compared   with   the   emissions   from   the   average   person   living   in   Stockholm,   which   in   2010   were   roughly   3.2   ton   CO2e/capita   (City   of   Stockholm,   2010a).   At   first   glance,   emissions  from  the  SRS  area  are  significantly  lower,  due  in  part  to  some  of  the   emission   factors   having   been   updated   since   the   City   of   Stockholm’s   last   calculation   in   2010,   lowering   SRS’s   emissions.   However,   the   major   reason   for   the   lower   emissions   for   SRS   is   that   not   all   emissions   are   included   due   to   the   choice  of  focusing  on  activities  directly  related  to  SRS’s  geographical  area.  When   moving   from   the   city   level   to   the   urban   district   level,   an   additional   ‘layer’   of   emissions  is  added,  namely  those  that  take  place  within  the  city  but  not  within   the   specific   urban   district   representing   these   emissions,   which   can   have   a   significant   impact   on   total   emissions.   For   example,   in   the   case   of   SRS,   many   societal   functions   that   a   resident   uses   regularly,   such   as   hospitals,   libraries,   sports  centres,  etc.,  are  not  included  in  the  geographical  area.  That  means  that   the   urban   district’s   emissions   are   too   low   compared   with   the   total   city   emissions.   On   the   other   hand,   two   of   the   main   sources   of   emissions   in   Stockholm  are  located  in  the  SRS  area,  since  it  includes  the  combined  heat  and   power   plant   and   the   harbour.   There   is   also   the   question   of   the   thoroughfare,     13  
  • 19. Submitted  article  –  Journal  of  Energy  Policy     Do  not  copy  or  redistribute!   since   most   of   the   traffic   it   carries   is   not   related   to   the   SRS   district   itself.   The   emissions  from  these  sources  are  instead  scaled  to  proportion  of  the  residents,   so   that   every   person   in   Stockholm   gets   an   equal   share.   If   emissions   from   activities  not  included  in  the  geographical  baseline  but  connected  to  the  City  of   Stockholm   were   to   be   included   in   the   calculations,   such   as   emissions   from   hospitals,   sports   centres,   public   offices   and   so   forth,   the   annual   emissions   of   a   resident  in  SRS  would  increase  by  at  least  0.5  ton  CO2e  per  capita  (Fahlberg  et   al.,  2007).   7. Magnitude  Study  of  Possible  Roadmap  Actions     Once   the   baseline   has   been   clearly   defined,   the   next   step   in   the   process   is   to   develop   roadmap   actions.   They   can   be   divided   into   three   categories;   energy   efficiency   measures,   fuel   switching   and   behaviour   changes   that   lead   to   either   fuel  switching  or  energy  efficiency.  In  order  to  discuss  the  magnitude  of  effect  of   possible  road  mapping  actions,  here  we  calculated  the  emission  reductions  for  a   few   simple   examples.   These   actions   represent   interpretations   of   SRS’s   overall   environmental  programme  and  the  environmental  requirements  for  the  second   build   phase   of   SRS.   Note   that   the   actions   only   represent   magnitudes   of   emissions   reductions,   and   no   decisions   to   implement   them   in   any   way   have   been   made   by   the   stakeholders   involved.   Note   also   that   no   consideration   has   been   given   so   far   to   the   effect   that   different   actions   have   on   each   other.   The   following  actions  were  identified  for  study  (Johansson  et  al.,  2012a):   • Solar  photo  voltaics  (PV)  -­‐  Solar  PV  should  generate  at  least  30%  of  the   building  electricity  used  for  lifts,  ventilation,  pumps,  etc.     • Phase  2  Energy  demands  –  In  the  second  build  phase  of  SRS,  an  energy   target   is   to   reduce   the   total   energy   use   excluding   household   and   commercial   electricity   to   55   kWh/m2   and   year.   This   would   then   serve   as   a  limit  for  future  build  phases.       • Residential   travel   –   One   goal   is   that   residents   should   be   able   to   travel   using  low  CO2e  vehicles.  In  the  magnitude  of  reductions  calculated  here,   50%  of  transportation  by  gasoline  car  is  shifted  to  either  electric  car  or   hybrid  car  (gasoline  &  electricity).     The  calculated  emissions  reductions  are  summarised  in  Table  8.       Table  8  Magnitude  of  emissions  reduction  effect  of  possible  road  mapping  actions   Emissions   Per  capita  emissions   Possible  roadmapping  action   reduction     reduction     [ton  CO2e/year]   [ton  CO2e/cap,   year]   Solar  PV  –  30  %  of  building   438   0.02   electricity   Phase  2  Energy  demands   3,095   0.16   Residents  travel:  Gasoline  à   2,870   0.15   Electric  car   Residents  travel:  Gasoline  à   616   0.03   Hybrid  car   Source:  Johansson  et  al.  (2012a).     14  
  • 20. Submitted  article  –  Journal  of  Energy  Policy     Do  not  copy  or  redistribute!     A  first  comparison  between  the  baseline  emissions  (Table  7)  and  the  reductions   through   roadmap   actions   (Table   8)   demonstrates   that   it   is   difficult   to   become   climate  positive  on  a  local  scale.  As  regards  possible  road  mapping  actions,  even   the  more  ambitious  actions,  such  as  influencing  the  residents’  travel  behaviour,   only  reduce  total  baseline  emissions  by  about  10%  each.  Furthermore,  while  the   current   proposed   actions   only   represent   a   fraction   of   possible   emissions   cuts,   they  are  in  themselves  rather  ambitious.  The  baseline  energy  use  for  buildings   in   the   baseline   is   already   25%   lower   than   the   current   Swedish   building   code   requirements   (Boverket,   2011)   and   implementing   55   kwh/m2   and   year   is   close   to   the   Swedish   passive   house   standard.     Therefore,   it   seems   unlikely   that   the   SRS  district  will  manage  to  achieve  climate  positive  status  just  by  roadmapping   action  strategies  within  the  urban  district  itself.   8. Credits  –  Roadmapping  Actions  Outside  the  District   We   can   see   from   comparing   the   magnitudes   of   possible   roadmapping   actions   to   reduce   emissions   (through   energy   efficiency,   fuel   switching   and   influencing   residents   behaviour)   against   the   baseline   emissions   that   it   will   be   difficult   to   reach   a   climate   positive   outcome   solely   by   local   actions   within   SRS’s   geographical   boundary.   The   CCI   framework   recognises   this   problem   and   the   solution   proposed   is   to   implement   credits   (CCI,   2011),   using   the   same   general   principle  as  credits  from  the  flexible  Kyoto  mechanisms  (Joint  Implementation,   Clean   Development   Mechanism   and   Emissions   Trading)   (UNFCC,   1998).   Through   these,   the   emissions   of   a   country,   city   or   area   are   cut   by   emissions   reductions   in   other   places   (referred   to   as   certified   emission   reductions,   or   credits   for   short).   However,   there   are   significant   differences   between   CCI’s   credits   and   those   relating   to   flexible   mechanisms,   the   major   difference   being   that   CCI’s   credits   have   to   be   generated  locally,  in  relation  to  the  urban  district   itself.  To  be  able  to  generate  a  credit  according  to  CCI,  the  urban  district  must  be   connected   through   relevant   infrastructure   (energy,   transport,   waste)   or   other   relevant   processes   (for   instance   decision   making   processes,   rules,   regulations,   standards).   Note   also   that   the   purchase   of   credits   not   generated   in   connection   with   the   urban   district   (as   can   be   done   with   credits   from   the   flexible   Kyoto   mechanisms)  is  not  accepted  as  a  reduction  strategy  (CCI,  2011).  Once  the  sum   of   emissions   reductions   from   roadmap   actions   and   credits   is   greater   than   the   baseline  emissions,  the  area  is  considered  to  be  climate  positive.   To   demonstrate   what   could   be   considered   local   credits,   we   calculated   the   magnitude  of  emission  reductions  from  a  few  possible  actions  (Johansson  et  al.,   2012a).   All   of   the   actions   build   on   official   documents   (environmental   plans,   applications,   etc.),   for   inspiration,   but   note   that   all   credit   actions   are   just   a   representation  of  magnitudes  and  do  not  represent  actual  emission  reductions   decided   by   the   stakeholders   involved.   The   magnitudes   of   the   following   credit   actions  are  shown  in  Table  9  (Johansson  et  al.,  2012a):     • Electrification   of   the   harbour   –   The   harbour   area   is   close   to   SRS   and   the   idea  is  to  connect  ships  and  ferries  that  make  port  on  a  regular  basis  to   the  electricity  grid  instead  of  having  them  idle  using  diesel  engines.  The   magnitudes   of   two   different   credit   actions   are   calculated,   one   where     15  
  • 21. Submitted  article  –  Journal  of  Energy  Policy     Do  not  copy  or  redistribute!   diesel  is  replaced  by  electricity  from  the  Nordic  electricity  mix  and  one   where  it  is  replaced  by  wind  power.     • Workers’  travel  –  One  goal  is  that  workers  should  be  able  to  travel  using   low  CO2e  vehicles.  Just  as  in  the  case  of  residents’  travel,  the  calculated   magnitudes   are   represented   by   50%   of   transportation   by   gasoline   car   being  shifted  to  either  electric  car  or  hybrid  car  (gasoline  &  electricity).     Table  9.  Magnitude  of  emissions  reduction  effect  achieved  by  possible  credit  actions   Emissions   Per  capita  emissions   Possible  credit  action   reduction     reduction     [ton  CO2e/year]   [ton  CO2e/cap,  year]   Electrification  of  the  harbour   3,199   0.17   -­‐  Diesel  à  Wind  power   Electrification  of  the  harbour   2,423   0.13   -­‐  Diesel  à  Nordic  electricity  mix   Workers’  commuting     1,688   0.09   Gasoline  à  Electric  car   Workers’  commuting     362   0.019   Gasoline  à  Hybrid  car   Source:  Johansson  et  al.  (2012a).       Just  as  in  the  case  of  roadmapping  actions,  the  magnitudes  of  emission  cuts  from   credit  actions  are  small  relative  to  the  baseline  emissions.  Even  a  major  action   such  as  electrification  of  the  harbour  represents  roughly  only  a  10%  reduction   in  emissions,  while  the  other  actions  have  smaller  effects  (Table  9).  The  credit   action   effects   calculated   of   course   represent   only   a   small   proportion   of   possible   actions  that  the  City  of  Stockholm  could  undertake.     9. Discussion   It  is  difficult  to  achieve  climate  positive  status  on  local  scale  with  planned   actions   Even   adding   roadmapping   and   credit   actions   together,   it   will   still   be   a   challenge   for   SRS   to   become   climate   positive.   However,   the   roadmapping   process   can   serve  as  a  catalyst  to  start  a  process  of  implementing  innovative  solutions  with   important   stakeholders   in   the   development   process,   such   as   the   landowner,   relevant   authorities,   construction   companies,   (future)   residents,   etc.   Since   the   road  mapping  process  has  the  explicit  goal  of  achieving  a  climate  positive  urban   district,   the   actions   and   their   calculated   magnitude   in   relation   to   the   baseline   emissions   can   serve   as   a   very   powerful   motivational   tool   and   driving   force   to   reach  the  targets  that  would  otherwise  have  been  impossible.  Credits  can  then   be  used  when  local  options  run  out.       The   potential   and   risks   of   credits   –   a   driving   force   and   possible   greenwashing   The  key  aspect  of  the  concept  of  credits  is  how  the  term  ‘local’  is  defined.  Since   some   of   the   systems   connected   to   the   urban   district   span   a   vast   geographical     16  
  • 22. Submitted  article  –  Journal  of  Energy  Policy     Do  not  copy  or  redistribute!   area  (such  as  the  Nordic  electricity  system),  it  is  important  that  the  term  local  is   not  used  too  liberally  in  order  to  avoid  the  risk  of  greenwashing.  Technically,  for   example,   a   wind   power   plant   in   the   north   of   Sweden   could   possibly   pass   as   a   credit,   since   the   electricity   system   is   connected,   but   it   can   scarcely   be   considered   to   be   local   electricity   production,   since   the   distance   between   Stockholm  and  the  wind  power  in  northern  Sweden  could  be  600-­‐1000  km.  On   the   other   hand,   local   credits   according   to   the   framework   could   be   a   very   important   driving   force   for   innovations   that   generate   credits   not   only   for   the   urban   district,   but   also   for   other   parts   of   the   city,   aiding   their   work   to   implement  local  climate  action(s).  In  order  to  use  and  develop  local  credits,  the   city  needs  to  formulate  its  definition  of  ‘local’  before  creating  business  models   and  inviting  developers  and  stakeholders  to  join  in  the  process  of  creating  credit   actions.     Emissions  change  over  time     It   is   important   to   note   that   even   after   sufficient   amounts   of   credit   have   been   generated  by  actions  outside  the  geographical  system  boundary,  some  problems   remain,  namely;     Since   the   emissions   are   primarily   based   on   current   district   heating   and   electricity   mixes,   a   margin   of   safety   needs   to   be   added   since   emission   factors   can   fluctuate   by   20%   or   more   on   a   yearly   basis   (Johansson  et  al.,   2012b).   As   the   energy   system   in   the   Nordic   countries   becomes   more   integrated   with   central   Europe,   the   energy   mixes   will   also   change,   which   could   impact   on   emissions   (Eurostat,  2012).     The   baseline   needs   to   be   continuously   updated   as   measured   data   become   available.  It  is  also  important  to  bear  in  mind  that  changes  over  time  in  the  two   key   areas,   buildings   and   transportation,   need   to   be   taken   into   account.   It   is   also   important  to  take  into  account  that  once  infrastructure  has  been  built,  there  are   lock-­‐in   effects   when   it   comes   to   emissions   (Unruh,   2000).   These   include   technical   and   behavioural   aspects   and   thus   it   is   important   to   plan   ahead,   especially  when  aiming  for  an  ambitious  goal  such  as  climate  positive.       Not  all  emissions  are  included       As  previously  mentioned,  it  is  important  to  bear  in  mind  that  not  all  emissions   are   included,   both   when   comparing   the   urban   district   with   the   surrounding   city   and   when   comparing   the   city   with   the   world.   Significant   emissions   caused   by   the   urban   district   may   take   place   outside   the   set   boundaries   and   need   to   be   addressed.  When  discussing  the  geographical  area  from  an  urban  district  point   of   view,   there   are   some   additional   considerations   that   need   to   be   taken   into   account.  They  are  similar  but  not  equal  to  the  discussions  of  a  city’s  boundary   and  its  emissions  outside  that  boundary.  A  study  on  cities  by  Davis  &  Caldeira   (2010)   concluded   that   20-­‐50%   of   emissions   are   generated   outside   the   city’s   geographical  boundary,  or  occur  as  the  result  of  cross  boundary  emissions  (Räty   &   Carlsson   Kanyama,   2007;   Cool   California,   2011 2 ).   When   adding   baseline   emissions  in  the  present  case  study,  some  emissions  from  activities  taking  place   outside  SRS  but  inside  Stockholm  were  not  included  and  adding  these  emissions                                                                                                                   2  In  the  Cool  California  household  calculator,  average  values  for  California  were   input  as  suggested  by  the  tool.       17  
  • 23. Submitted  article  –  Journal  of  Energy  Policy     Do  not  copy  or  redistribute!   from  consumption,  construction  and  long  distance  travel  would  further  increase   total  emissions  from  the  baseline’s  2.2  ton  CO2e/capita  to  2.7  ton  CO2e/capita.   Note   also   that   an   ‘accounting’   perspective   is   used   in   this   paper,   which   means   that   there   is   no   obligation   to   verify   that   energy   saved   by   SRS   is   not   used   by   anyone  else  (e.g.  rebound  effects)  or  that  fossil  fuels  replaced  by  new  renewable   energy  generation  are  not  used  anywhere  else.       Conclusions     Some   aspects   of   the   baseline,   system   boundaries   and   roadmap   actions   are   clearly   influenced   by   the   characteristics   of   Stockholm   Royal   Seaport,   for   instance   that   there   is   a   district   heating   network   or   that   the   Nordic   electricity   mix  has  relatively  low  CO2e  emissions  per  kWh  (compared  with  the  US,  China,   etc.).   The   selected   roadmap   actions   are   therefore   likely   to   vary   depending   on   geographical  location  and  the  individual  characteristics  of  each  individual  urban   development.   A   general   conclusion   that   remains   is   that   it   is   important   to   transparently   track   energy   use   and   emissions,   especially   if   a   more   complete   view  of  emissions  is  to  be  achieved  at  a  later  stage.     As   a   tool/model   for   creating   a   climate   positive   urban   district,   the   approach   of   baseline,   roadmap   and   credits   seems   to   work   well   in   the   general   sense   that   it   promotes  actions  towards  low  energy  use,  a  high  degree  of  renewables  and  local   energy   generation   and   that   the   urban   district   can   function   as   a   catalyst   for   surrounding   districts   to   reduce   emissions.   Credits   and   roadmapping   can   serve   as   driving   forces   for   innovation.   The   key   challenge   is   to   have   a   high   degree   of   transparency  regarding  which  emissions  are  included  and  excluded  in  order  to   avoid  the  risk  of  greenwashing.               18