SlideShare ist ein Scribd-Unternehmen logo
1 von 21
Linear Differential Equation
By
Nofal Umair
Introduction to Differential
Equations
Differential Equations
 An equation which involves unknown function of one or several variables that
relates the values of the function itself and its derivatives of various orders.
 ordinary differential equation (ode) : not involve partial derivatives
 partial differential equation (pde) : involves partial derivatives
 order of the differential equation is the order of the highest derivatives
Examples:
 second order ordinary differential
equation
 first order partial differential equation
2
2
3 sin
d y dy
x y
dxdx
y y x t
x
t x x t
Terminologies In Differential
Equation
• Existence: Does a differential equation have a
solution?
• Uniqueness: Does a differential equation have more
than one solution? If yes, how can we find a solution
which satisfies particular conditions?
• A problem in which we are looking for the unknown
function of a differential equation where the values of
the unknown function and its derivatives at some point
are known is called an initial value problem (in short
IVP).
• If no initial conditions are given, we call the description
of all solutions to the differential equation the general
solution.
Differential Equations
Some Application of Differential Equation in Engineering
Linear Differential Equation
A differential equation is linear, if
1. dependent variable and its derivatives are of degree one,
2. coefficients of a term does not depend upon dependent
variable.
Example:
36
4
3
3
y
dx
dy
dx
yd
is non - linear because in 2nd term is not of degree one.
.0932
2
y
dx
dy
dx
ydExample:
is linear.
1.
2.
( , )y f x y
First Order Linear Equations
• A linear first order equation is an equation
that can be expressed in the form
Where P and Q are functions of x
History
YEAR PROBLEM DESCRIPTION MATHAMATICIAN
1690 Problem of the
Isochrones
Finding a curve
along which a body
will fall with uniform
vertical velocity
James Bernoulli
1728 Problem of
Reducing 2nd Order
Equations to 1st
Order
Finding an
integrating factor
Leonhard Euler
1743 Problem of
determining
integrating factor for
the general linear
equation
Concept of the ad-
Joint of a differential
equation
Joseph Lagrange
1762 Problem of Linear
Equation with
Constant
Coefficients
Conditions under
which the order of a
linear differential
equation could be
lowered
Jean d’Alembert
Methods Solving LDE
1. Separable variable
M(x)dx + N(y)dy = 0
2. Homogenous
M(x,y)dx+N(x,y)dy=0, where M & N are nth degree
3. Exact
M(x,y)dx + N(x,y)dy=0, where M/ðy=0, where ðM/ðy = ðN/ðx
Solution of Differential Equation
1st Order DE - Separable Equations
The differential equation M(x,y)dx + N(x,y)dy = 0 is separable if the equation can
be written in the form:
02211 dyygxfdxygxf
Solution :
1. Multiply the equation by integrating factor:
ygxf 12
1
2. The variable are separated :
0
1
2
2
1
dy
yg
yg
dx
xf
xf
3. Integrating to find the solution:
Cdy
yg
yg
dx
xf
xf
1
2
2
1
1st Order DE - Homogeneous Equations
Homogeneous Function
f (x,y) is called homogenous of degree n if :
y,xfy,xf n
Examples:
yxxy,xf 34  homogeneous of degree 4
yxfyxx
yxxyxf
,
,
4344
34
yxxyxf cossin, 2  non-homogeneous
yxf
yxx
yxxyxf
n
,
cossin
cossin,
22
2
1st Order DE - Homogeneous Equations
The differential equation M(x,y)dx + N(x,y)dy = 0 is homogeneous if M(x,y) and
N(x,y) are homogeneous and of the same degree
Solution :
1. Use the transformation to : dvxdxvdyvxy
2. The equation become separable equation:
0,, dvvxQdxvxP
3. Use solution method for separable equation
Cdv
vg
vg
dx
xf
xf
1
2
2
1
4. After integrating, v is replaced by y/x
1st Order DE – Exact Equation
The differential equation M(x,y)dx + N(x,y)dy = 0 is an exact equation if :
Solution :
The solutions are given by the implicit equation
x
N
y
M
CyxF ,
1. Integrate either M(x,y) with respect to x or N(x,y) to y.
Assume integrating M(x,y), then :
where : F/ x = M(x,y) and F/ y = N(x,y)
ydxyxMyxF ,,
2. Now : yxNydxyxM
yy
F
,',
or : dxyxM
y
yxNy ,,'
1st Order DE – Exact Equation
3. Integrate ’(y) to get (y) and write down the result F(x,y) = C
Examples:
1. Solve :
01332 3
dyyxdxyx
Answer:
Newton's Law of Cooling
• It is a model that describes, mathematically, the change in temperature of
an object in a given environment. The law states that the rate of change (in
time) of the temperature is proportional to the difference between the
temperature T of the object and the temperature Te of the environment
surrounding the object.
d T / d t = - k (T - Te)
Let x = T - Te
so that dx / dt = dT / dt
d x / d t = - k x
The solution to the above differential equation is given by
x = A e - k t
substitute x by T – Te
T - Te = A e - k t
Assume that at t = 0 the temperature T = To
T0 - Te = A e o
which gives A = To-Te
The final expression for T(t) is given by T(t) = Te + (To- Te) e - k t
This last expression shows how the temperature T of the object changes with time.
Growth And Decay
• The initial value problem
where N(t) denotes population at time t and k is a constant of proportionality,
serves as a model for population growth and decay of insects, animals and
human population at certain places and duration.
Integrating both sides we get
ln N(t)=kt+ln C
or
or N(t)=Cekt
C can be determined if N(t) is given at certain time.
)(
)(
tkN
dt
tdN
kdt
tN
tdN
)(
)(
Carbon dating
Let M(t) be the amount of a product that decreases withtime t and the rate of
decrease is proportional to the amount M as follows
d M / d t = - k M
where d M / d t is the first derivative of M, k > 0 and t is the time.
Solve the above first order differential equation to obtain
M(t) = Ae-kt
where A is non zero constant. It we assume that M = Mo at t = 0, then
M= Ae0
which gives A = Mo
The solution may be written as follows
M(t) = Mo e-kt
Economics and Finance
• The problems regarding supply, demand and compounding interest can be
calculated by this equation
is a separable differential equation of first-order. We can write it as
dP=k(D-S) dt.
Integrating both sides, we get
P(t)=k(D-S)t+A
where A is a constant of integration.
Similarly
S(t)=S(0) ert ,Where S(0) is the initial money in the account
)( SDk
dt
dP

Weitere ähnliche Inhalte

Was ist angesagt?

1st order differential equations
1st order differential equations1st order differential equations
1st order differential equationsNisarg Amin
 
application of differential equations
application of differential equationsapplication of differential equations
application of differential equationsVenkata.Manish Reddy
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1Pokkarn Narkhede
 
Differential equations
Differential equationsDifferential equations
Differential equationsSeyid Kadher
 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equationsEmdadul Haque Milon
 
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJAPPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJZuhair Bin Jawaid
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Viraj Patel
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equationsAhmed Haider
 
Odepowerpointpresentation1
Odepowerpointpresentation1 Odepowerpointpresentation1
Odepowerpointpresentation1 Pokarn Narkhede
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential EquationsAMINULISLAM439
 
First Order Differential Equations
First Order Differential EquationsFirst Order Differential Equations
First Order Differential EquationsItishree Dash
 
Higher Differential Equation
Higher Differential Equation Higher Differential Equation
Higher Differential Equation Abdul Hannan
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equationsaman1894
 
Introduction to Differential Equations
Introduction to Differential EquationsIntroduction to Differential Equations
Introduction to Differential EquationsVishvaraj Chauhan
 
application of first order ordinary Differential equations
application of first order ordinary Differential equationsapplication of first order ordinary Differential equations
application of first order ordinary Differential equationsEmdadul Haque Milon
 
Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODEkishor pokar
 
Applications of differential equations(by Anil.S.Nayak)
Applications of differential equations(by Anil.S.Nayak)Applications of differential equations(by Anil.S.Nayak)
Applications of differential equations(by Anil.S.Nayak)anil7nayak
 

Was ist angesagt? (20)

1st order differential equations
1st order differential equations1st order differential equations
1st order differential equations
 
application of differential equations
application of differential equationsapplication of differential equations
application of differential equations
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equations
 
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJAPPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
 
Introduction to differential equation
Introduction to differential equationIntroduction to differential equation
Introduction to differential equation
 
Odepowerpointpresentation1
Odepowerpointpresentation1 Odepowerpointpresentation1
Odepowerpointpresentation1
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential Equations
 
First Order Differential Equations
First Order Differential EquationsFirst Order Differential Equations
First Order Differential Equations
 
Higher Differential Equation
Higher Differential Equation Higher Differential Equation
Higher Differential Equation
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
Introduction to Differential Equations
Introduction to Differential EquationsIntroduction to Differential Equations
Introduction to Differential Equations
 
application of first order ordinary Differential equations
application of first order ordinary Differential equationsapplication of first order ordinary Differential equations
application of first order ordinary Differential equations
 
Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODE
 
Applications of differential equations(by Anil.S.Nayak)
Applications of differential equations(by Anil.S.Nayak)Applications of differential equations(by Anil.S.Nayak)
Applications of differential equations(by Anil.S.Nayak)
 
Differential Equation
Differential EquationDifferential Equation
Differential Equation
 

Ähnlich wie First order linear differential equation

microproject@math (1).pdf
microproject@math (1).pdfmicroproject@math (1).pdf
microproject@math (1).pdfAthrvaKumkar
 
Applications of differential equation
Applications of differential equationApplications of differential equation
Applications of differential equationDeekshaSrivas
 
M1 unit i-jntuworld
M1 unit i-jntuworldM1 unit i-jntuworld
M1 unit i-jntuworldmrecedu
 
Application of calculus in everyday life
Application of calculus in everyday lifeApplication of calculus in everyday life
Application of calculus in everyday lifeMohamed Ibrahim
 
Week 8 [compatibility mode]
Week 8 [compatibility mode]Week 8 [compatibility mode]
Week 8 [compatibility mode]Hazrul156
 
Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in indiaEdhole.com
 
Differential equations final -mams
Differential equations final -mamsDifferential equations final -mams
Differential equations final -mamsarmanimams
 
Find the explicit solution of the linear DE dyxdx=-6x^3-6x^2 y+1 u.pdf
Find the explicit solution of the linear DE dyxdx=-6x^3-6x^2 y+1 u.pdfFind the explicit solution of the linear DE dyxdx=-6x^3-6x^2 y+1 u.pdf
Find the explicit solution of the linear DE dyxdx=-6x^3-6x^2 y+1 u.pdfsales89
 
Persamaan Differensial Biasa 2014
Persamaan Differensial Biasa 2014 Persamaan Differensial Biasa 2014
Persamaan Differensial Biasa 2014 Rani Sulvianuri
 
Solution of a subclass of singular second order
Solution of a subclass of singular second orderSolution of a subclass of singular second order
Solution of a subclass of singular second orderAlexander Decker
 
11.solution of a subclass of singular second order
11.solution of a subclass of singular second order11.solution of a subclass of singular second order
11.solution of a subclass of singular second orderAlexander Decker
 
MATLAB ODE
MATLAB ODEMATLAB ODE
MATLAB ODEKris014
 
On the Numerical Fixed Point Iterative Methods of Solution for the Boundary V...
On the Numerical Fixed Point Iterative Methods of Solution for the Boundary V...On the Numerical Fixed Point Iterative Methods of Solution for the Boundary V...
On the Numerical Fixed Point Iterative Methods of Solution for the Boundary V...BRNSS Publication Hub
 

Ähnlich wie First order linear differential equation (20)

microproject@math (1).pdf
microproject@math (1).pdfmicroproject@math (1).pdf
microproject@math (1).pdf
 
Applications of differential equation
Applications of differential equationApplications of differential equation
Applications of differential equation
 
M1 unit i-jntuworld
M1 unit i-jntuworldM1 unit i-jntuworld
M1 unit i-jntuworld
 
19 1
19 119 1
19 1
 
Application of calculus in everyday life
Application of calculus in everyday lifeApplication of calculus in everyday life
Application of calculus in everyday life
 
Week 8 [compatibility mode]
Week 8 [compatibility mode]Week 8 [compatibility mode]
Week 8 [compatibility mode]
 
19 4
19 419 4
19 4
 
Statistics Homework Help
Statistics Homework HelpStatistics Homework Help
Statistics Homework Help
 
Multiple Linear Regression Homework Help
Multiple Linear Regression Homework HelpMultiple Linear Regression Homework Help
Multiple Linear Regression Homework Help
 
Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in india
 
Differential equations final -mams
Differential equations final -mamsDifferential equations final -mams
Differential equations final -mams
 
Find the explicit solution of the linear DE dyxdx=-6x^3-6x^2 y+1 u.pdf
Find the explicit solution of the linear DE dyxdx=-6x^3-6x^2 y+1 u.pdfFind the explicit solution of the linear DE dyxdx=-6x^3-6x^2 y+1 u.pdf
Find the explicit solution of the linear DE dyxdx=-6x^3-6x^2 y+1 u.pdf
 
Persamaan Differensial Biasa 2014
Persamaan Differensial Biasa 2014 Persamaan Differensial Biasa 2014
Persamaan Differensial Biasa 2014
 
Solution of a subclass of singular second order
Solution of a subclass of singular second orderSolution of a subclass of singular second order
Solution of a subclass of singular second order
 
11.solution of a subclass of singular second order
11.solution of a subclass of singular second order11.solution of a subclass of singular second order
11.solution of a subclass of singular second order
 
MATLAB ODE
MATLAB ODEMATLAB ODE
MATLAB ODE
 
Transient heat conduction
Transient heat conductionTransient heat conduction
Transient heat conduction
 
M220w07
M220w07M220w07
M220w07
 
On the Numerical Fixed Point Iterative Methods of Solution for the Boundary V...
On the Numerical Fixed Point Iterative Methods of Solution for the Boundary V...On the Numerical Fixed Point Iterative Methods of Solution for the Boundary V...
On the Numerical Fixed Point Iterative Methods of Solution for the Boundary V...
 
04_AJMS_167_18_RA.pdf
04_AJMS_167_18_RA.pdf04_AJMS_167_18_RA.pdf
04_AJMS_167_18_RA.pdf
 

Mehr von Nofal Umair

Catalyst & Catalysis
Catalyst & CatalysisCatalyst & Catalysis
Catalyst & CatalysisNofal Umair
 
Production of biodiesel from jatropha plant
Production of biodiesel from jatropha plantProduction of biodiesel from jatropha plant
Production of biodiesel from jatropha plantNofal Umair
 
Presentation & interview skills
Presentation & interview skillsPresentation & interview skills
Presentation & interview skillsNofal Umair
 
Rotary & Centrifugal Filter
Rotary & Centrifugal Filter Rotary & Centrifugal Filter
Rotary & Centrifugal Filter Nofal Umair
 
Extreme values of a function & applications of derivative
Extreme values of a function & applications of derivativeExtreme values of a function & applications of derivative
Extreme values of a function & applications of derivativeNofal Umair
 
Nuclear chemistry
Nuclear chemistryNuclear chemistry
Nuclear chemistryNofal Umair
 
Fluid mechanics applications
Fluid mechanics applicationsFluid mechanics applications
Fluid mechanics applicationsNofal Umair
 
Critical analysis on semester and annual system
Critical analysis on semester and annual systemCritical analysis on semester and annual system
Critical analysis on semester and annual systemNofal Umair
 

Mehr von Nofal Umair (8)

Catalyst & Catalysis
Catalyst & CatalysisCatalyst & Catalysis
Catalyst & Catalysis
 
Production of biodiesel from jatropha plant
Production of biodiesel from jatropha plantProduction of biodiesel from jatropha plant
Production of biodiesel from jatropha plant
 
Presentation & interview skills
Presentation & interview skillsPresentation & interview skills
Presentation & interview skills
 
Rotary & Centrifugal Filter
Rotary & Centrifugal Filter Rotary & Centrifugal Filter
Rotary & Centrifugal Filter
 
Extreme values of a function & applications of derivative
Extreme values of a function & applications of derivativeExtreme values of a function & applications of derivative
Extreme values of a function & applications of derivative
 
Nuclear chemistry
Nuclear chemistryNuclear chemistry
Nuclear chemistry
 
Fluid mechanics applications
Fluid mechanics applicationsFluid mechanics applications
Fluid mechanics applications
 
Critical analysis on semester and annual system
Critical analysis on semester and annual systemCritical analysis on semester and annual system
Critical analysis on semester and annual system
 

Kürzlich hochgeladen

Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 

Kürzlich hochgeladen (20)

Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 

First order linear differential equation

  • 3. Differential Equations  An equation which involves unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders.  ordinary differential equation (ode) : not involve partial derivatives  partial differential equation (pde) : involves partial derivatives  order of the differential equation is the order of the highest derivatives Examples:  second order ordinary differential equation  first order partial differential equation 2 2 3 sin d y dy x y dxdx y y x t x t x x t
  • 4. Terminologies In Differential Equation • Existence: Does a differential equation have a solution? • Uniqueness: Does a differential equation have more than one solution? If yes, how can we find a solution which satisfies particular conditions? • A problem in which we are looking for the unknown function of a differential equation where the values of the unknown function and its derivatives at some point are known is called an initial value problem (in short IVP). • If no initial conditions are given, we call the description of all solutions to the differential equation the general solution.
  • 5. Differential Equations Some Application of Differential Equation in Engineering
  • 6. Linear Differential Equation A differential equation is linear, if 1. dependent variable and its derivatives are of degree one, 2. coefficients of a term does not depend upon dependent variable. Example: 36 4 3 3 y dx dy dx yd is non - linear because in 2nd term is not of degree one. .0932 2 y dx dy dx ydExample: is linear. 1. 2.
  • 7. ( , )y f x y
  • 8. First Order Linear Equations • A linear first order equation is an equation that can be expressed in the form Where P and Q are functions of x
  • 9. History YEAR PROBLEM DESCRIPTION MATHAMATICIAN 1690 Problem of the Isochrones Finding a curve along which a body will fall with uniform vertical velocity James Bernoulli 1728 Problem of Reducing 2nd Order Equations to 1st Order Finding an integrating factor Leonhard Euler 1743 Problem of determining integrating factor for the general linear equation Concept of the ad- Joint of a differential equation Joseph Lagrange 1762 Problem of Linear Equation with Constant Coefficients Conditions under which the order of a linear differential equation could be lowered Jean d’Alembert
  • 10. Methods Solving LDE 1. Separable variable M(x)dx + N(y)dy = 0 2. Homogenous M(x,y)dx+N(x,y)dy=0, where M & N are nth degree 3. Exact M(x,y)dx + N(x,y)dy=0, where M/ðy=0, where ðM/ðy = ðN/ðx
  • 12. 1st Order DE - Separable Equations The differential equation M(x,y)dx + N(x,y)dy = 0 is separable if the equation can be written in the form: 02211 dyygxfdxygxf Solution : 1. Multiply the equation by integrating factor: ygxf 12 1 2. The variable are separated : 0 1 2 2 1 dy yg yg dx xf xf 3. Integrating to find the solution: Cdy yg yg dx xf xf 1 2 2 1
  • 13. 1st Order DE - Homogeneous Equations Homogeneous Function f (x,y) is called homogenous of degree n if : y,xfy,xf n Examples: yxxy,xf 34  homogeneous of degree 4 yxfyxx yxxyxf , , 4344 34 yxxyxf cossin, 2  non-homogeneous yxf yxx yxxyxf n , cossin cossin, 22 2
  • 14. 1st Order DE - Homogeneous Equations The differential equation M(x,y)dx + N(x,y)dy = 0 is homogeneous if M(x,y) and N(x,y) are homogeneous and of the same degree Solution : 1. Use the transformation to : dvxdxvdyvxy 2. The equation become separable equation: 0,, dvvxQdxvxP 3. Use solution method for separable equation Cdv vg vg dx xf xf 1 2 2 1 4. After integrating, v is replaced by y/x
  • 15. 1st Order DE – Exact Equation The differential equation M(x,y)dx + N(x,y)dy = 0 is an exact equation if : Solution : The solutions are given by the implicit equation x N y M CyxF , 1. Integrate either M(x,y) with respect to x or N(x,y) to y. Assume integrating M(x,y), then : where : F/ x = M(x,y) and F/ y = N(x,y) ydxyxMyxF ,, 2. Now : yxNydxyxM yy F ,', or : dxyxM y yxNy ,,'
  • 16. 1st Order DE – Exact Equation 3. Integrate ’(y) to get (y) and write down the result F(x,y) = C Examples: 1. Solve : 01332 3 dyyxdxyx Answer:
  • 17. Newton's Law of Cooling • It is a model that describes, mathematically, the change in temperature of an object in a given environment. The law states that the rate of change (in time) of the temperature is proportional to the difference between the temperature T of the object and the temperature Te of the environment surrounding the object. d T / d t = - k (T - Te) Let x = T - Te so that dx / dt = dT / dt d x / d t = - k x The solution to the above differential equation is given by x = A e - k t substitute x by T – Te T - Te = A e - k t Assume that at t = 0 the temperature T = To
  • 18. T0 - Te = A e o which gives A = To-Te The final expression for T(t) is given by T(t) = Te + (To- Te) e - k t This last expression shows how the temperature T of the object changes with time.
  • 19. Growth And Decay • The initial value problem where N(t) denotes population at time t and k is a constant of proportionality, serves as a model for population growth and decay of insects, animals and human population at certain places and duration. Integrating both sides we get ln N(t)=kt+ln C or or N(t)=Cekt C can be determined if N(t) is given at certain time. )( )( tkN dt tdN kdt tN tdN )( )(
  • 20. Carbon dating Let M(t) be the amount of a product that decreases withtime t and the rate of decrease is proportional to the amount M as follows d M / d t = - k M where d M / d t is the first derivative of M, k > 0 and t is the time. Solve the above first order differential equation to obtain M(t) = Ae-kt where A is non zero constant. It we assume that M = Mo at t = 0, then M= Ae0 which gives A = Mo The solution may be written as follows M(t) = Mo e-kt
  • 21. Economics and Finance • The problems regarding supply, demand and compounding interest can be calculated by this equation is a separable differential equation of first-order. We can write it as dP=k(D-S) dt. Integrating both sides, we get P(t)=k(D-S)t+A where A is a constant of integration. Similarly S(t)=S(0) ert ,Where S(0) is the initial money in the account )( SDk dt dP