SlideShare ist ein Scribd-Unternehmen logo
1 von 31
Downloaden Sie, um offline zu lesen
INTRODUCTION TO DATA SCIENCE
NIKO VUOKKO
JYVÄSKYLÄ SUMMER SCHOOL
AUGUST 2013
DATA SCIENCE WITH A BROAD BRUSH
Concepts and methodologies
DATA SCIENCE IS AN UMBRELLA, A FUSION
• Databases and infrastructure
• Pattern mining
• Statistics
• Machine learning
• Numerical optimization
• Stochastic modeling
• Data visualization
… of specialties needed
for data-driven
business optimization
DATA SCIENTIST
• Data scientist is defined as DS : business problem  data solution
• Combination of strong programming, math, computational and business skills
• Recipe for success
1. Convert vague business requirements into measurable technical targets
2. Develop a solution to reach the targets
3. Communicate business results
4. Deploy the solution in production
UNDERSTANDING DATA
Monday 19 August 2013
PATTERN MINING AND DATA ANALYSIS
UNSUPERVISED LEARNING
• Could be called pattern recognition or structure discovery
• What kind of a process could have produced this data?
• Discovery of “interesting” phenomena in a dataset
• Now how do you define interesting?
• Learning algorithms exist for a huge collection of pattern types
• Analogy: You decide if you want to see westerns or comedies,
but the machine picks the movies
• But does “interesting” imply useful and significant?
EXAMPLES OF STRUCTURES IN DATA
• Clustering and mixture models: separation of data into parts
• Dictionary learning: a compact grammar of the dataset
• Single class learning: learn the natural boundaries of data
Example: Early detection of machine failure or network intrusion
• Latent allocation: learn hidden preferences driving purchase decisions
• Source separation: find independent generators of the data
Example: Independent phenomena affecting exchange rates
MORE EXAMPLES OF “INTERESTING” PATTERNS
• { charcoal, mustard } ⇒ sausage
• Grocery customer types with differing paths around the trading floor
• Pricing trend change in a web ad exchange
• Communities and topics in a social network
• Distinct features of a person’s face and fingerprints
• Objects emerging in front of a moving car
KNOW YOUR EIGENS AND SINGULARS
• Eigenvalue and singular value decompositions are central data analysis tools
• They describe the energy distribution and static core structures of data
Examples
• Face detection, speaker adaptation
• Google PageRank is basically just the world’s largest EVD
• Zombie outbreak risk is determined by its eigenvalues
• As a sub-component in every second learning algorithm
DIMENSION REDUCTION
• Some applications encounter large dimension counts up to millions
• Dimension reduction may either
1. Retain space: preserve the most “descriptive” dimensions
2. Transform space: trade interpretability for powerful rendition
• Usually transformations work oblivious to data (they are simple functions)
• Curvilinear transformations try to see how the data is “folded” and build new
dimensions specific to the given dataset
DIMENSION REDUCTION EXAMPLE
• Singular value decomposition is commonly used to remove the “noise
dimensions” with little energy
• Example: gene expression data and movie preferences have lots of these
• After this more complex methods can be used for unfolding the data
DIMENSION REDUCTION EXAMPLE
BLIND SOURCE SEPARATION
• Find latent sources that generated the data
• Tries to discover the real truth beneath all noise and convolution
• Examples:
• Air defense missile guidance systems
• Error-correcting codes
• Language modeling
• Brain activity factors
• Industrial process dynamics
• Factors behind climate change
(STATISTICAL) SIGNIFICANCE TESTING
• Example: Rejection rate increase in a manufacturing plant
• “What is the probability of observing this increase if everything was OK?”
• “What is the probability of having a valid alert if there really was something
wrong?”
• Reliability of significance testing results is wholly dependent on correct
modeling of the data source and pattern type
• Statistical significance is different from material significance
CORRELATION IS NOT CAUSALITY
A correlation may hide an almost arbitrary truth
• Cities with more firemen have more fires
• Companies spending more in marketing have higher revenues
• Marsupials exist mainly in Australia
• However, making successful predictions does not require causality
MACHINE LEARNING
Basics
SUPERVISED LEARNING
• Simplistically task is to find function f : f(input) = output
• Examples: spam filtering, speech recognition, steel strength estimation
• Risks for different types of errors can be very skewed
• Complex inputs may confuse or slow down models
• Unsupervised methods often useful in improving results by simplifying the input
SEMI-SUPERVISED LEARNING
• Only a part of data is labeled
• Needed when labeling data is expensive
• Understanding the structure of unlabeled data enhances learning by bringing
diversity and generalization and by constraining learning
• Relates to multi-source learning, some sources labeled, some not
• Examples:
• Object detection from a video feed
• Web page categorization
• Sentiment analysis
• Transfer learning between domains
TRAINING, TESTING, VALIDATION
• A model is trained using a training dataset
• The quality of the model is measured by using it on a separate testing dataset
• A model often contains hyper-parameters chosen by the user
• A separate validation dataset is split off from the training data
• Validation data is used for testing and finding good hyper-parameter values
• Cross-validation is common practice and asymptotically unbiased
BIAS AND VARIANCE
• Squared error of predictions consists of bias and variance (and noise)
• BIAS Model incapability of approximating the underlying truth
• VARIANCE Model reliance on whims of the observed data
• Complex models often have low bias and high variance
• Simple models often have high bias and low variance
• Having more data instances (rows) may reduce variance
• Having more detailed data (variables) may reduce bias
• Testing different types of models can explain how to improve your data
TRAINING AND TESTING, BIAS AND VARIANCE
Complex modelSimple model
Minimal testing error
Minimal training error
MACHINE LEARNING
Learning new tricks
THE KERNEL TRICK
• Many learning methods rely on inner products of data points
• The “kernel trick” maps the data to an implicitly defined, high dimension space
• Kernel is the matrix of the new inner products in this space
• Mapping itself often left unknown
• Example: Gaussian kernel associates local Euclidean neighborhoods to similarity
• Example: String kernels are used for modeling DNA sequence structure
• Kernels can be combined and custom built to match expert knowledge
A kernel is a dataset-specific space transformation,
success depends on good understanding of the dataset
ENSEMBLE LEARNING
• The power of many: combine multiple models into one
• Wide and strong proof of superior performance
• Extra bonus: often trivially parallelizable
OUR EXPERIENCE IS THAT MOST EFFORTS SHOULD BE CONCENTRATED IN
DERIVING SUBSTANTIALLY DIFFERENT APPROACHES, RATHER THAN REFINING
A SINGLE TECHNIQUE.
Netflix $1M prize winner (ensemble of 107 models)
“
“
ENSEMBLE LEARNING IN PRACTICE
• Boosting: weigh (⇒ low bias) focused (⇒ low bias) simple models (⇒ low bias)
• Bagging: average (⇒ low variance) results of simple models (⇒ low bias)
• What aspect of the data am I still missing?
• Variable mixing, discretized jumps, independent factors, transformations, etc.
• Questions about practical implementability and ROI
• Failure: Netflix winner solution never taken to production
• Success: Official US hurricane model is an ensemble of 43
RANDOMIZED LEARNING
• Motivation: random variation beats expert guidance surprisingly often
• Introducing randomness can improve generalization performance (smaller
variance)
• Randomness allows methods to discover unexpected success
• Examples: genetic models, simulated annealing, parallel tempering
• Increasingly useful to allow scale-out for large datasets
• Many successful methods combine random models as an ensemble
• Example: combining random projections or transformations can often beat optimized
unsupervised models
ONLINE LEARNING
• Instead of ingesting a training dataset, adjust the data model after every
incoming (instance, label) pair
• Allows quick adaptation and “always-on” operation
• Finds good models fast, but may miss the great one
⟹ suitable also as a burn-in for other models
• Useful especially for the present trend towards analyzing data streams
BAYESIAN BASICS
• Bayesians see data as fixed and parameters as distributions
• Parameters have prior assumptions that can encode expert knowledge
• Data is used as evidence for possible parameter values
• Final output is a set of posterior distributions for the parameters
• Models may employ only the most probable parameter values or their full
probability distribution
• Variational Bayes approximates the posterior with a simpler distribution
MODEL COMPLEXITY
• Limiting model size and complexity can be used to avoid excessive bias
• Minimum description length and Akaike/Bayesian information criteria are the
Occam’s razor of data science
• VC dimension of a model provides a theoretical limit for generalization error
• Regularization can limit instance weights or parameter sizes
• Bayesian models use hyper-parameters to limit parameter overfit
THE END

Weitere ähnliche Inhalte

Was ist angesagt?

Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Big Data [sorry] & Data Science: What Does a Data Scientist Do?Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Big Data [sorry] & Data Science: What Does a Data Scientist Do?Data Science London
 
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...Edureka!
 
Data Science Tutorial | What is Data Science? | Data Science For Beginners | ...
Data Science Tutorial | What is Data Science? | Data Science For Beginners | ...Data Science Tutorial | What is Data Science? | Data Science For Beginners | ...
Data Science Tutorial | What is Data Science? | Data Science For Beginners | ...Edureka!
 
Data Science Introduction
Data Science IntroductionData Science Introduction
Data Science IntroductionGang Tao
 
Data science presentation
Data science presentationData science presentation
Data science presentationMSDEVMTL
 
Data Science Training | Data Science For Beginners | Data Science With Python...
Data Science Training | Data Science For Beginners | Data Science With Python...Data Science Training | Data Science For Beginners | Data Science With Python...
Data Science Training | Data Science For Beginners | Data Science With Python...Simplilearn
 
Introduction To Data Science
Introduction To Data ScienceIntroduction To Data Science
Introduction To Data ScienceSpotle.ai
 
Data Science For Beginners | Who Is A Data Scientist? | Data Science Tutorial...
Data Science For Beginners | Who Is A Data Scientist? | Data Science Tutorial...Data Science For Beginners | Who Is A Data Scientist? | Data Science Tutorial...
Data Science For Beginners | Who Is A Data Scientist? | Data Science Tutorial...Edureka!
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data ScienceSrishti44
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data ScienceEdureka!
 
Intro to Data Science for Enterprise Big Data
Intro to Data Science for Enterprise Big DataIntro to Data Science for Enterprise Big Data
Intro to Data Science for Enterprise Big DataPaco Nathan
 
Data Science Training | Data Science Tutorial for Beginners | Data Science wi...
Data Science Training | Data Science Tutorial for Beginners | Data Science wi...Data Science Training | Data Science Tutorial for Beginners | Data Science wi...
Data Science Training | Data Science Tutorial for Beginners | Data Science wi...Edureka!
 
Introduction to data science.pptx
Introduction to data science.pptxIntroduction to data science.pptx
Introduction to data science.pptxSadhanaParameswaran
 
Data Science With Python | Python For Data Science | Python Data Science Cour...
Data Science With Python | Python For Data Science | Python Data Science Cour...Data Science With Python | Python For Data Science | Python Data Science Cour...
Data Science With Python | Python For Data Science | Python Data Science Cour...Simplilearn
 

Was ist angesagt? (20)

Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Big Data [sorry] & Data Science: What Does a Data Scientist Do?Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Big Data [sorry] & Data Science: What Does a Data Scientist Do?
 
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
 
Data Science Tutorial | What is Data Science? | Data Science For Beginners | ...
Data Science Tutorial | What is Data Science? | Data Science For Beginners | ...Data Science Tutorial | What is Data Science? | Data Science For Beginners | ...
Data Science Tutorial | What is Data Science? | Data Science For Beginners | ...
 
Data Science Introduction
Data Science IntroductionData Science Introduction
Data Science Introduction
 
Data science presentation
Data science presentationData science presentation
Data science presentation
 
Data Science Training | Data Science For Beginners | Data Science With Python...
Data Science Training | Data Science For Beginners | Data Science With Python...Data Science Training | Data Science For Beginners | Data Science With Python...
Data Science Training | Data Science For Beginners | Data Science With Python...
 
Data science
Data scienceData science
Data science
 
Introduction to data science
Introduction to data scienceIntroduction to data science
Introduction to data science
 
Introduction To Data Science
Introduction To Data ScienceIntroduction To Data Science
Introduction To Data Science
 
Data Science
Data ScienceData Science
Data Science
 
Data Science For Beginners | Who Is A Data Scientist? | Data Science Tutorial...
Data Science For Beginners | Who Is A Data Scientist? | Data Science Tutorial...Data Science For Beginners | Who Is A Data Scientist? | Data Science Tutorial...
Data Science For Beginners | Who Is A Data Scientist? | Data Science Tutorial...
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
What is Data Science
What is Data ScienceWhat is Data Science
What is Data Science
 
Data science
Data scienceData science
Data science
 
Intro to Data Science for Enterprise Big Data
Intro to Data Science for Enterprise Big DataIntro to Data Science for Enterprise Big Data
Intro to Data Science for Enterprise Big Data
 
Data Science Training | Data Science Tutorial for Beginners | Data Science wi...
Data Science Training | Data Science Tutorial for Beginners | Data Science wi...Data Science Training | Data Science Tutorial for Beginners | Data Science wi...
Data Science Training | Data Science Tutorial for Beginners | Data Science wi...
 
Introduction to data science.pptx
Introduction to data science.pptxIntroduction to data science.pptx
Introduction to data science.pptx
 
data science
data sciencedata science
data science
 
Data Science With Python | Python For Data Science | Python Data Science Cour...
Data Science With Python | Python For Data Science | Python Data Science Cour...Data Science With Python | Python For Data Science | Python Data Science Cour...
Data Science With Python | Python For Data Science | Python Data Science Cour...
 

Ähnlich wie Introduction to Data Science

Improving AI Development - Dave Litwiller - Jan 11 2022 - Public
Improving AI Development - Dave Litwiller - Jan 11 2022 - PublicImproving AI Development - Dave Litwiller - Jan 11 2022 - Public
Improving AI Development - Dave Litwiller - Jan 11 2022 - PublicDave Litwiller
 
Choosing a Machine Learning technique to solve your need
Choosing a Machine Learning technique to solve your needChoosing a Machine Learning technique to solve your need
Choosing a Machine Learning technique to solve your needGibDevs
 
Industrial Data Science
Industrial Data ScienceIndustrial Data Science
Industrial Data ScienceNiko Vuokko
 
Neo4j Theory and Practice - Tareq Abedrabbo @ GraphConnect London 2013
Neo4j Theory and Practice - Tareq Abedrabbo @ GraphConnect London 2013Neo4j Theory and Practice - Tareq Abedrabbo @ GraphConnect London 2013
Neo4j Theory and Practice - Tareq Abedrabbo @ GraphConnect London 2013Neo4j
 
Lecture 2 Data mining process.pdf
Lecture 2 Data mining process.pdfLecture 2 Data mining process.pdf
Lecture 2 Data mining process.pdfKaushik Kundu
 
MACHINE LEARNING PRESENTATION (ARTIFICIAL INTELLIGENCE)
MACHINE LEARNING PRESENTATION (ARTIFICIAL INTELLIGENCE)MACHINE LEARNING PRESENTATION (ARTIFICIAL INTELLIGENCE)
MACHINE LEARNING PRESENTATION (ARTIFICIAL INTELLIGENCE)MAHIRA
 
The zen of predictive modelling
The zen of predictive modellingThe zen of predictive modelling
The zen of predictive modellingQuinton Anderson
 
The Art of Intelligence – A Practical Introduction Machine Learning for Orac...
The Art of Intelligence – A Practical Introduction Machine Learning for Orac...The Art of Intelligence – A Practical Introduction Machine Learning for Orac...
The Art of Intelligence – A Practical Introduction Machine Learning for Orac...Lucas Jellema
 
"Solving Vision Tasks Using Deep Learning: An Introduction," a Presentation f...
"Solving Vision Tasks Using Deep Learning: An Introduction," a Presentation f..."Solving Vision Tasks Using Deep Learning: An Introduction," a Presentation f...
"Solving Vision Tasks Using Deep Learning: An Introduction," a Presentation f...Edge AI and Vision Alliance
 
02-Lifecycle.pptx
02-Lifecycle.pptx02-Lifecycle.pptx
02-Lifecycle.pptxShree Shree
 
MACHINE LEARNING YEAR DL SECOND PART.pptx
MACHINE LEARNING YEAR DL SECOND PART.pptxMACHINE LEARNING YEAR DL SECOND PART.pptx
MACHINE LEARNING YEAR DL SECOND PART.pptxNAGARAJANS68
 
DATA SCIENCE AND BIG DATA ANALYTICSCHAPTER 2 DATA ANA.docx
DATA SCIENCE AND BIG DATA ANALYTICSCHAPTER 2 DATA ANA.docxDATA SCIENCE AND BIG DATA ANALYTICSCHAPTER 2 DATA ANA.docx
DATA SCIENCE AND BIG DATA ANALYTICSCHAPTER 2 DATA ANA.docxrandyburney60861
 
Machine Learning in the Financial Industry
Machine Learning in the Financial IndustryMachine Learning in the Financial Industry
Machine Learning in the Financial IndustrySubrat Panda, PhD
 
MachineLearningSparkML.pptx
MachineLearningSparkML.pptxMachineLearningSparkML.pptx
MachineLearningSparkML.pptxharikaramisetty3
 
Large Scale Modeling Overview
Large Scale Modeling OverviewLarge Scale Modeling Overview
Large Scale Modeling OverviewFerris Jumah
 
Unit 3 part ii Data mining
Unit 3 part ii Data miningUnit 3 part ii Data mining
Unit 3 part ii Data miningDhilsath Fathima
 
MachineLearningSparkML.pptx
MachineLearningSparkML.pptxMachineLearningSparkML.pptx
MachineLearningSparkML.pptxsnigdhaagrawal11
 
MachineLearningSparkML.pptx
MachineLearningSparkML.pptxMachineLearningSparkML.pptx
MachineLearningSparkML.pptxAbderrahmanABID2
 

Ähnlich wie Introduction to Data Science (20)

Introduction to Machine Learning
Introduction to Machine LearningIntroduction to Machine Learning
Introduction to Machine Learning
 
Improving AI Development - Dave Litwiller - Jan 11 2022 - Public
Improving AI Development - Dave Litwiller - Jan 11 2022 - PublicImproving AI Development - Dave Litwiller - Jan 11 2022 - Public
Improving AI Development - Dave Litwiller - Jan 11 2022 - Public
 
Choosing a Machine Learning technique to solve your need
Choosing a Machine Learning technique to solve your needChoosing a Machine Learning technique to solve your need
Choosing a Machine Learning technique to solve your need
 
Industrial Data Science
Industrial Data ScienceIndustrial Data Science
Industrial Data Science
 
Neo4j Theory and Practice - Tareq Abedrabbo @ GraphConnect London 2013
Neo4j Theory and Practice - Tareq Abedrabbo @ GraphConnect London 2013Neo4j Theory and Practice - Tareq Abedrabbo @ GraphConnect London 2013
Neo4j Theory and Practice - Tareq Abedrabbo @ GraphConnect London 2013
 
Lecture 2 Data mining process.pdf
Lecture 2 Data mining process.pdfLecture 2 Data mining process.pdf
Lecture 2 Data mining process.pdf
 
MACHINE LEARNING PRESENTATION (ARTIFICIAL INTELLIGENCE)
MACHINE LEARNING PRESENTATION (ARTIFICIAL INTELLIGENCE)MACHINE LEARNING PRESENTATION (ARTIFICIAL INTELLIGENCE)
MACHINE LEARNING PRESENTATION (ARTIFICIAL INTELLIGENCE)
 
The zen of predictive modelling
The zen of predictive modellingThe zen of predictive modelling
The zen of predictive modelling
 
The Art of Intelligence – A Practical Introduction Machine Learning for Orac...
The Art of Intelligence – A Practical Introduction Machine Learning for Orac...The Art of Intelligence – A Practical Introduction Machine Learning for Orac...
The Art of Intelligence – A Practical Introduction Machine Learning for Orac...
 
"Solving Vision Tasks Using Deep Learning: An Introduction," a Presentation f...
"Solving Vision Tasks Using Deep Learning: An Introduction," a Presentation f..."Solving Vision Tasks Using Deep Learning: An Introduction," a Presentation f...
"Solving Vision Tasks Using Deep Learning: An Introduction," a Presentation f...
 
02-Lifecycle.pptx
02-Lifecycle.pptx02-Lifecycle.pptx
02-Lifecycle.pptx
 
MACHINE LEARNING YEAR DL SECOND PART.pptx
MACHINE LEARNING YEAR DL SECOND PART.pptxMACHINE LEARNING YEAR DL SECOND PART.pptx
MACHINE LEARNING YEAR DL SECOND PART.pptx
 
DATA SCIENCE AND BIG DATA ANALYTICSCHAPTER 2 DATA ANA.docx
DATA SCIENCE AND BIG DATA ANALYTICSCHAPTER 2 DATA ANA.docxDATA SCIENCE AND BIG DATA ANALYTICSCHAPTER 2 DATA ANA.docx
DATA SCIENCE AND BIG DATA ANALYTICSCHAPTER 2 DATA ANA.docx
 
Machine Learning in the Financial Industry
Machine Learning in the Financial IndustryMachine Learning in the Financial Industry
Machine Learning in the Financial Industry
 
MachineLearningSparkML.pptx
MachineLearningSparkML.pptxMachineLearningSparkML.pptx
MachineLearningSparkML.pptx
 
Large Scale Modeling Overview
Large Scale Modeling OverviewLarge Scale Modeling Overview
Large Scale Modeling Overview
 
Ml2 production
Ml2 productionMl2 production
Ml2 production
 
Unit 3 part ii Data mining
Unit 3 part ii Data miningUnit 3 part ii Data mining
Unit 3 part ii Data mining
 
MachineLearningSparkML.pptx
MachineLearningSparkML.pptxMachineLearningSparkML.pptx
MachineLearningSparkML.pptx
 
MachineLearningSparkML.pptx
MachineLearningSparkML.pptxMachineLearningSparkML.pptx
MachineLearningSparkML.pptx
 

Mehr von Niko Vuokko

Analytics in business
Analytics in businessAnalytics in business
Analytics in businessNiko Vuokko
 
Drones in real use
Drones in real useDrones in real use
Drones in real useNiko Vuokko
 
Analytiikka bisneksessä
Analytiikka bisneksessäAnalytiikka bisneksessä
Analytiikka bisneksessäNiko Vuokko
 
Sensor Data in Business
Sensor Data in BusinessSensor Data in Business
Sensor Data in BusinessNiko Vuokko
 
Sensoridatan ja liiketoiminnan tulevaisuus
Sensoridatan ja liiketoiminnan tulevaisuusSensoridatan ja liiketoiminnan tulevaisuus
Sensoridatan ja liiketoiminnan tulevaisuusNiko Vuokko
 
Metrics @ App Academy
Metrics @ App AcademyMetrics @ App Academy
Metrics @ App AcademyNiko Vuokko
 
Big Data Rampage
Big Data RampageBig Data Rampage
Big Data RampageNiko Vuokko
 

Mehr von Niko Vuokko (7)

Analytics in business
Analytics in businessAnalytics in business
Analytics in business
 
Drones in real use
Drones in real useDrones in real use
Drones in real use
 
Analytiikka bisneksessä
Analytiikka bisneksessäAnalytiikka bisneksessä
Analytiikka bisneksessä
 
Sensor Data in Business
Sensor Data in BusinessSensor Data in Business
Sensor Data in Business
 
Sensoridatan ja liiketoiminnan tulevaisuus
Sensoridatan ja liiketoiminnan tulevaisuusSensoridatan ja liiketoiminnan tulevaisuus
Sensoridatan ja liiketoiminnan tulevaisuus
 
Metrics @ App Academy
Metrics @ App AcademyMetrics @ App Academy
Metrics @ App Academy
 
Big Data Rampage
Big Data RampageBig Data Rampage
Big Data Rampage
 

Kürzlich hochgeladen

Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
Evaluating the top large language models.pdf
Evaluating the top large language models.pdfEvaluating the top large language models.pdf
Evaluating the top large language models.pdfChristopherTHyatt
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 

Kürzlich hochgeladen (20)

Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Evaluating the top large language models.pdf
Evaluating the top large language models.pdfEvaluating the top large language models.pdf
Evaluating the top large language models.pdf
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 

Introduction to Data Science

  • 1. INTRODUCTION TO DATA SCIENCE NIKO VUOKKO JYVÄSKYLÄ SUMMER SCHOOL AUGUST 2013
  • 2. DATA SCIENCE WITH A BROAD BRUSH Concepts and methodologies
  • 3. DATA SCIENCE IS AN UMBRELLA, A FUSION • Databases and infrastructure • Pattern mining • Statistics • Machine learning • Numerical optimization • Stochastic modeling • Data visualization … of specialties needed for data-driven business optimization
  • 4. DATA SCIENTIST • Data scientist is defined as DS : business problem  data solution • Combination of strong programming, math, computational and business skills • Recipe for success 1. Convert vague business requirements into measurable technical targets 2. Develop a solution to reach the targets 3. Communicate business results 4. Deploy the solution in production
  • 6. PATTERN MINING AND DATA ANALYSIS
  • 7. UNSUPERVISED LEARNING • Could be called pattern recognition or structure discovery • What kind of a process could have produced this data? • Discovery of “interesting” phenomena in a dataset • Now how do you define interesting? • Learning algorithms exist for a huge collection of pattern types • Analogy: You decide if you want to see westerns or comedies, but the machine picks the movies • But does “interesting” imply useful and significant?
  • 8. EXAMPLES OF STRUCTURES IN DATA • Clustering and mixture models: separation of data into parts • Dictionary learning: a compact grammar of the dataset • Single class learning: learn the natural boundaries of data Example: Early detection of machine failure or network intrusion • Latent allocation: learn hidden preferences driving purchase decisions • Source separation: find independent generators of the data Example: Independent phenomena affecting exchange rates
  • 9. MORE EXAMPLES OF “INTERESTING” PATTERNS • { charcoal, mustard } ⇒ sausage • Grocery customer types with differing paths around the trading floor • Pricing trend change in a web ad exchange • Communities and topics in a social network • Distinct features of a person’s face and fingerprints • Objects emerging in front of a moving car
  • 10. KNOW YOUR EIGENS AND SINGULARS • Eigenvalue and singular value decompositions are central data analysis tools • They describe the energy distribution and static core structures of data Examples • Face detection, speaker adaptation • Google PageRank is basically just the world’s largest EVD • Zombie outbreak risk is determined by its eigenvalues • As a sub-component in every second learning algorithm
  • 11. DIMENSION REDUCTION • Some applications encounter large dimension counts up to millions • Dimension reduction may either 1. Retain space: preserve the most “descriptive” dimensions 2. Transform space: trade interpretability for powerful rendition • Usually transformations work oblivious to data (they are simple functions) • Curvilinear transformations try to see how the data is “folded” and build new dimensions specific to the given dataset
  • 12. DIMENSION REDUCTION EXAMPLE • Singular value decomposition is commonly used to remove the “noise dimensions” with little energy • Example: gene expression data and movie preferences have lots of these • After this more complex methods can be used for unfolding the data
  • 14. BLIND SOURCE SEPARATION • Find latent sources that generated the data • Tries to discover the real truth beneath all noise and convolution • Examples: • Air defense missile guidance systems • Error-correcting codes • Language modeling • Brain activity factors • Industrial process dynamics • Factors behind climate change
  • 15. (STATISTICAL) SIGNIFICANCE TESTING • Example: Rejection rate increase in a manufacturing plant • “What is the probability of observing this increase if everything was OK?” • “What is the probability of having a valid alert if there really was something wrong?” • Reliability of significance testing results is wholly dependent on correct modeling of the data source and pattern type • Statistical significance is different from material significance
  • 16. CORRELATION IS NOT CAUSALITY A correlation may hide an almost arbitrary truth • Cities with more firemen have more fires • Companies spending more in marketing have higher revenues • Marsupials exist mainly in Australia • However, making successful predictions does not require causality
  • 18. SUPERVISED LEARNING • Simplistically task is to find function f : f(input) = output • Examples: spam filtering, speech recognition, steel strength estimation • Risks for different types of errors can be very skewed • Complex inputs may confuse or slow down models • Unsupervised methods often useful in improving results by simplifying the input
  • 19. SEMI-SUPERVISED LEARNING • Only a part of data is labeled • Needed when labeling data is expensive • Understanding the structure of unlabeled data enhances learning by bringing diversity and generalization and by constraining learning • Relates to multi-source learning, some sources labeled, some not • Examples: • Object detection from a video feed • Web page categorization • Sentiment analysis • Transfer learning between domains
  • 20. TRAINING, TESTING, VALIDATION • A model is trained using a training dataset • The quality of the model is measured by using it on a separate testing dataset • A model often contains hyper-parameters chosen by the user • A separate validation dataset is split off from the training data • Validation data is used for testing and finding good hyper-parameter values • Cross-validation is common practice and asymptotically unbiased
  • 21. BIAS AND VARIANCE • Squared error of predictions consists of bias and variance (and noise) • BIAS Model incapability of approximating the underlying truth • VARIANCE Model reliance on whims of the observed data • Complex models often have low bias and high variance • Simple models often have high bias and low variance • Having more data instances (rows) may reduce variance • Having more detailed data (variables) may reduce bias • Testing different types of models can explain how to improve your data
  • 22. TRAINING AND TESTING, BIAS AND VARIANCE Complex modelSimple model Minimal testing error Minimal training error
  • 24. THE KERNEL TRICK • Many learning methods rely on inner products of data points • The “kernel trick” maps the data to an implicitly defined, high dimension space • Kernel is the matrix of the new inner products in this space • Mapping itself often left unknown • Example: Gaussian kernel associates local Euclidean neighborhoods to similarity • Example: String kernels are used for modeling DNA sequence structure • Kernels can be combined and custom built to match expert knowledge A kernel is a dataset-specific space transformation, success depends on good understanding of the dataset
  • 25. ENSEMBLE LEARNING • The power of many: combine multiple models into one • Wide and strong proof of superior performance • Extra bonus: often trivially parallelizable OUR EXPERIENCE IS THAT MOST EFFORTS SHOULD BE CONCENTRATED IN DERIVING SUBSTANTIALLY DIFFERENT APPROACHES, RATHER THAN REFINING A SINGLE TECHNIQUE. Netflix $1M prize winner (ensemble of 107 models) “ “
  • 26. ENSEMBLE LEARNING IN PRACTICE • Boosting: weigh (⇒ low bias) focused (⇒ low bias) simple models (⇒ low bias) • Bagging: average (⇒ low variance) results of simple models (⇒ low bias) • What aspect of the data am I still missing? • Variable mixing, discretized jumps, independent factors, transformations, etc. • Questions about practical implementability and ROI • Failure: Netflix winner solution never taken to production • Success: Official US hurricane model is an ensemble of 43
  • 27. RANDOMIZED LEARNING • Motivation: random variation beats expert guidance surprisingly often • Introducing randomness can improve generalization performance (smaller variance) • Randomness allows methods to discover unexpected success • Examples: genetic models, simulated annealing, parallel tempering • Increasingly useful to allow scale-out for large datasets • Many successful methods combine random models as an ensemble • Example: combining random projections or transformations can often beat optimized unsupervised models
  • 28. ONLINE LEARNING • Instead of ingesting a training dataset, adjust the data model after every incoming (instance, label) pair • Allows quick adaptation and “always-on” operation • Finds good models fast, but may miss the great one ⟹ suitable also as a burn-in for other models • Useful especially for the present trend towards analyzing data streams
  • 29. BAYESIAN BASICS • Bayesians see data as fixed and parameters as distributions • Parameters have prior assumptions that can encode expert knowledge • Data is used as evidence for possible parameter values • Final output is a set of posterior distributions for the parameters • Models may employ only the most probable parameter values or their full probability distribution • Variational Bayes approximates the posterior with a simpler distribution
  • 30. MODEL COMPLEXITY • Limiting model size and complexity can be used to avoid excessive bias • Minimum description length and Akaike/Bayesian information criteria are the Occam’s razor of data science • VC dimension of a model provides a theoretical limit for generalization error • Regularization can limit instance weights or parameter sizes • Bayesian models use hyper-parameters to limit parameter overfit