SlideShare ist ein Scribd-Unternehmen logo
1 von 37
Downloaden Sie, um offline zu lesen
Integrals
Midpoint rule
∫
b
a
f(x) dx ≈
n
∑
i=1
f (x̄i) Δx = Δx [f ( ¯
x1) + … + f ( ¯
xn)]
where (xi−1, xi) and
Δx =
b − a
n
and
x̄i =
1
2
(xi−1 + xi)
Trapezoidal rule
∫
b
a
f(x) dx ≈ Tn =
Δx
2
[f(x0) + 2f(x1) + 2f(x2) + … + 2f(xn−1) + f(xn)]
where Δx =
b − a
n
and
xi = a + iΔx
Midpoint and trapezoidal error bounds
ET and EM are the errors in the trapezoidal and midpoint rules
1
|ET | ≤
K(b − a)3
12n2
and |EM | ≤
K(b − a)3
24n2
where | f′′(x)| ≤ K
for a ≤ x ≤ b
Simpson’s rule
∫
b
a
f(x) dx ≈ Sn =
Δx
3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + … + 2f(xn−2) + 4f(xn−1) + f(xn)]
where n is even and
Δx =
b − a
n
Simpson’s error bounds
ES is the error in Simpson’s rule
|ES | ≤
K(b − a)5
180n4
where f (4)
(x) ≤ K
for a ≤ x ≤ b
2
Symmetric functions
Suppose f is continuous on [−a, a].
If f is even [f(−x) = f(x)], then
∫
a
−a
f(x) dx = 2
∫
a
0
f(x) dx
If f is odd [f(−x) = − f(x)], then
∫
a
−a
f(x) dx = 0
Limit process for area under the curve
∫
b
a
f(x) dx = lim
n→∞
n
∑
i=1
f(xi)Δx
where Δx =
b − a
n
and xi = a + iΔx
Summation formulas for the limit process
n
∑
i=1
k = kn where k is any non-zero constant
n
∑
i=1
i =
n(n + 1)
2
=
n2
+ n
2
3
n
∑
i=1
i2
=
n(n + 1)(2n + 1)
6
=
2n3
+ 3n2
+ n
6
n
∑
i=1
i3
=
n2
(n + 1)2
4
=
n4
+ 2n3
+ n2
4
n
∑
i=1
i4
=
n(2n + 1)(n + 1)(3n2
+ 3n − 1)
30
=
6n5
+ 15n4
+ 10n3
+ 6n2
− n
30
Net change theorem
∫
b
a
F′(x) dx = F(b) − F(a)
Fundamental theorem of calculus
Suppose f is continuous on [a, b].
Part 1
Given integral How to solve it
f(x) =
∫
x
a
f(t) dt Plug x in for t.
f(x) =
∫
a
x
f(t) dt Reverse limits of integration and multiply by
−1, then plug x in for t.
4
f(x) =
∫
g(x)
a
f(t) dt Plug g(x) in for t, then multiply by dg/dx.
f(x) =
∫
a
g(x)
f(t) dt Reverse limits of integration and multiply by
−1, then plug g(x) in for t and multiply by dg/dx.
f(x) =
∫
h(x)
g(x)
f(t) dt Split the limits of integration as
∫
0
g(x)
f(t) dt +
∫
h(x)
0
f(t) dt. Reverse limits of
integration on
∫
0
g(x)
f(t) dt and multiply by −1,
then plug g(x) and h(x) in for t, multiplying by
dg/dx and dh/dx respectively.
Part 2
∫
b
a
f(x) dx = F(b) − F(a)
where F is any antiderivative of f, that is, a function such that
F′ = f
Integration by parts
∫
u dv = uv −
∫
v du
5
Properties of integrals
∫
b
a
c dx = c(b − a)
∫
b
a
f(x) + g(x) dx =
∫
b
a
f(x) dx +
∫
b
a
g(x) dx
∫
b
a
cf(x) dx = c
∫
b
a
f(x) dx
∫
b
a
f(x) − g(x) dx =
∫
b
a
f(x) dx −
∫
b
a
g(x) dx
Common indefinite integrals
∫
k dx = kx + C
∫
xn
dx =
xn+1
n + 1
+ C with n ≠ − 1
∫
1
x
dx = ln|x| + C
∫
ex
dx = ex
+ C
∫
ax
dx =
ax
ln a
+ C
6
Integrals of trig functions
∫
sin x dx = − cos x + C
∫
csc x dx = ln csc x − cot x + C
or
∫
csc x dx = ln
(
sin
x
2)
− ln
(
cos
x
2)
+ C
∫
cos x dx = sin x + C
∫
sec x dx = ln sec x + tan x + C
or
∫
sec x dx = ln
(
sin
x
2
+ cos
x
2)
− ln
(
cos
x
2
− sin
x
2)
+ C
∫
tan x dx = − ln cos x + C
∫
cot x dx = ln sin x + C
Other common trig integrals
∫
sec2
x dx = tan x + C
∫
csc2
x dx = − cot x + C
∫
sec x tan x dx = sec x + C
∫
csc x cot x dx = − csc x + C
∫
1
x2 + 1
dx = tan−1
x + C
∫
1
1 − x2
dx = sin−1
x + C
∫
sinh x dx = cosh x + C
∫
cosh x dx = sinh x + C
7
Integrals of inverse hyperbolic trig functions
∫
sinh−1
x dx = x sinh−1
x − x2
+ 1 + C
∫
cosh−1
x dx = x cosh−1
x − x − 1 x + 1 + C
∫
tanh−1
x dx =
1
2
log(1 − x2
) + x tanh−1
x + C
∫
coth−1
x dx =
1
2
log(1 − x2
) + x coth−1
x + C
Integrals resulting in inverse hyperbolic trig functions
∫
1
x2 + 1
dx = sinh−1
x
∫
1
x − 1 x + 1
dx = cosh−1
x
∫
1
1 − x2
dx = tanh−1
x
∫
1
1 − x2
dx = coth−1
x
8
Trig substitution setup
sin tan sec
the integral includes a2
− u2
a2
+ u2
u2
− a2
so substitute u = a sin θ u = a tan θ u = a sec θ
and use the identity 1 − sin2
θ = cos2
θ 1 + tan2
θ = sec2
θ sec2
θ − 1 = tan2
θ
solve for the trig sin θ =
u
a
tan θ =
u
a
sec θ =
u
a
and for du du = a cos θ dθ du = a sec2
θ dθ du = a sec θ tan θ dθ
and for θ θ = arcsin
u
a
θ = arctan
u
a
θ = arcsec
u
a
reference triangle
9
a
a
u
u u
a
a2
− u2
a2
+ u2
u2
− a2
θ θ θ
Trig substitution simplification
arcsin x arccos x arctan x arccscx arcsecx arccotx
sin of x 1 − x2 x
x2 + 1
1
x
1 −
1
x2
−
1
x
1
x2
+ 1
cos of 1 − x2
x
1
x2 + 1
1 −
1
x2
1
x
1
1
x2
+ 1
tan of
x
1 − x2
1 − x2
x
x
1
x 1 −
1
x2
x 1 −
1
x2
1
x
csc of
1
x
1
1 − x2
x2
+ 1
x
x
1
1 −
1
x2
x
1
x2
+ 1
sec of
1
1 − x2
1
x
x2
+ 1
1
1 −
1
x2
x
1
x2
+ 1
cot of
1 − x2
x
x
1 − x2
1
x
x 1 −
1
x2
1
x 1 −
1
x2
x
10
Applications of Integrals
Average value
fave =
1
b − a ∫
b
a
f(x) dx
Area between curves
A =
∫
b
a
| f(x) − g(x)| dx
Arc length
L =
∫
b
a
1 + [f′(x)]
2
dx =
∫
b
a
1 +
(
dy
dx)
2
dx for a function y = f(x)
on the interval a ≤ x ≤ b
L =
∫
d
c
1 + [g′(y)]
2
dy =
∫
d
c
1 +
(
dx
dy )
2
dy for a function x = g(y)
on the interval c ≤ y ≤ d
11
Surface area of revolution
The surface area of revolution is
S =
∫
b
a
2πy 1 +
(
dy
dx)
2
dx for a function y = f(x)
rotated about the x-axis
on the interval a ≤ x ≤ b
S =
∫
b
a
2πx 1 +
(
dy
dx )
2
dx for a function y = f(x)
rotated about the y-axis
on the interval a ≤ x ≤ b
S =
∫
d
c
2πy 1 +
(
dx
dy )
2
dy for a function x = g(y)
rotated about the x-axis
on the interval c ≤ y ≤ d
S =
∫
d
c
2πx 1 +
(
dx
dy )
2
dy for a function x = g(y)
rotated about the y-axis
on the interval c ≤ y ≤ d
12
Volume of revolution
Axis Disks Washers Shells
∫
area width
∫
area width
∫
circumference height width
Axis of revolution: HORIZONTAL
x-axis
∫
b
a
π [f(x)]
2
dx
∫
b
a
π [f(x)]
2
− π [g(x)]
2
dx
∫
d
c
2πy [f(y) − g(y)] dy
y = − k
∫
b
a
π [k + f(x)]
2
− π [k + g(x)]
2
dx
∫
d
c
2π(y + k)[f(y) − g(y)] dy
y = k
∫
b
a
π [k − g(x)]
2
− π [k − f(x)]
2
dx
∫
d
c
2π(k − y)[f(y) − g(y)] dy
Axis of revolution: VERTICAL
y-axis
∫
d
c
π [f(y)]
2
dy
∫
d
c
π [f(y)]
2
− π [g(y)]
2
dy
∫
b
a
2πx [f(x) − g(x)] dx
x = − k
∫
d
c
π [k + f(y)]
2
− π [k + g(y)]
2
dy
∫
b
a
2π(x + k)[f(x) − g(x)] dx
x = k
∫
d
c
π [k − g(y)]
2
− π [k − f(y)]
2
dy
∫
b
a
2π(k − x)[f(x) − g(x)] dx
13
Mean value theorem for integrals
If f is continuous on [a, b], then c exists in [a, b] such that
f(c) = fave =
1
b − a ∫
b
a
f(x) dx, that is,
∫
b
a
f(x) dx = f(c)(b − a)
Moments of the region
The moment of the region
about the y-axis is My = lim
n→∞
n
∑
i=1
ρx̄i f(x̄i)Δx = ρ
∫
b
a
xf(x) dx
about the x-axis is Mx = lim
n→∞
n
∑
i=1
ρ ⋅
1
2
[f(x̄i)]
2
Δx = ρ
∫
b
a
1
2
[f(x)]
2
dx
Center of mass of the region
The center of mass is located at (x̄, ȳ) where
x̄ =
My
m
=
1
A ∫
b
a
xf(x) dx and ȳ =
Mx
m
=
1
A ∫
b
a
1
2
[f(x)]
2
dx
14
Center of mass of the region bounded by two curves
The center of mass is located at (x̄, ȳ) where
x̄ =
1
A ∫
b
a
x [f(x) − g(x)] dx and ȳ =
1
A ∫
b
a
1
2 {[f(x)]
2
− [g(x)]
2
} dx
15
Polar & Parametric
Parametric
Derivatives
dy
dx
=
dy
dt
dx
dt
where
dx
dt
≠ 0
Area
A =
∫
b
a
y dx =
∫
β
α
g(t)f′(t) dt
Surface area of revolution
The surface area of a parametric curve rotated
about the x-axis is Sx =
∫
b
a
2πy
(
dx
dt )
2
+
(
dy
dt )
2
dt
about the y-axis is Sy =
∫
b
a
2πx
(
dx
dt )
2
+
(
dy
dt )
2
dt
16
Arc length
L =
∫
β
α
(
dx
dt )
2
+
(
dy
dt )
2
dt
Volume of revolution
The volume created by rotating a parametric curve
about the x-axis is Vx =
∫
b
a
πy2
[x′(t)] dt
about the y-axis is Vy =
∫
b
a
πx2
[y′(t)] dt
Polar
Conversion between cartesian and polar coordinates
x = r cos θ y = r sin θ x2
+ y2
= r2
Distance between two points
The distance between two polar coordinate points (r1, θ1) and (r2, θ2) is
17
D = (r2 cos θ2 − r1 cos θ1)
2
+ (r2 sin θ2 − r1 sin θ1)
2
Area
The area enclosed by a polar curve is
A =
∫
b
a
1
2
[f(θ)]
2
dθ =
∫
b
a
1
2
r2
dθ
Area between curves
The area between two polar curves is
A =
1
2 ∫
β
α
(router)2
− (rinner)2
dθ
Arc length
L =
∫
b
a
r2
+
(
dr
dθ )
2
dθ
Surface area of revolution
The surface area of revolution of a polar parametric curve rotated
18
about the x-axis is Sx =
∫
β
α
2πy r2
+
(
dr
dθ)
2
dθ
about the y-axis is Sy =
∫
β
α
2πx r2
+
(
dr
dθ)
2
dθ
19
Sequences & Series
Limit of a sequence
The limit of a sequence {an} is L
lim
n→∞
an = L or an → L as n → ∞
if we can make the terms of an closer and closer to L as we we make n
larger and larger. If
lim
n→∞
an
exists, the sequence converges (is convergent). Otherwise it diverges (is
divergent).
Precise definition of the limit of a sequence
The limit of a sequence {an} is L
lim
n→∞
an = L or an → L as n → ∞
if for every ϵ > 0 there is a corresponding integer N such that
if n > N then |an − L| < ϵ
20
Limit laws for sequences
If {an} and {bn} are convergent sequences and c is a constant, then
lim
n→∞
(an + bn) = lim
n→∞
an + lim
n→∞
bn lim
n→∞
(an − bn) = lim
n→∞
an − lim
n→∞
bn
lim
n→∞
can = c lim
n→∞
an lim
n→∞
c = c
lim
n→∞
(anbn) = lim
n→∞
an ⋅ lim
n→∞
bn lim
n→∞
an
bn
=
limn→∞ an
limn→∞ bn
if
lim
n→∞
bn ≠ 0
lim
n→∞
ap
n =
[
lim
n→∞
an]
p
if p > 0 and an > 0
Squeeze theorem for sequences
If an ≤ bn ≤ cn for n ≥ n0 and lim
n→∞
an = lim
n→∞
cn = L then lim
n→∞
bn = L.
Absolute value of a sequence
If lim
n→∞
|an | = 0, then lim
n→∞
an = 0.
21
Convergence of a sequence rn
The sequence {rn
} is convergent if −1 < r ≤ 1 and divergent for all other
values of r.
lim
n→∞
rn
= 0 if −1 < r < 1
= 1 if r = 1
Increasing, decreasing, and monotonic sequences
A sequence {an} is
increasing if an < an+1 for all n ≥ 1, (a1 < a2 < a3 < . . . )
decreasing if an > an+1 for all n ≥ 1, (a1 > a2 > a3 > . . . )
monotonic if it’s either increasing or decreasing
Bounded sequences
A sequence {an} is
bounded above if there’s a number M such that an ≤ M for all n ≥ 1
bounded below if there’s a number m such that m ≤ an for all n ≥ 1
a bounded sequence if it’s bounded above and below
22
Monotonic sequence theorem
Every bounded, monotonic sequence is convergent.
Partial sum of the series
Given a series
∞
∑
n=1
an = a1 + a2 + a3 + . . . , let sn denote its nth partial sum.
sn =
n
∑
i=1
ai = a1 + a2 + … + an
If the sequence {sn} converges and lim
n→∞
sn = s exists as a real number, then
the series
∑
an converges and we can say
a1 + a2 + … + an + … = s or
∞
∑
n=1
an = s
The number s is the sum of the series. If the sequence {sn} diverges, then
the series diverges.
Convergence and sum of a geometric series
The geometric series
∞
∑
n=1
arn−1
= a + ar + ar2
+ . . .
23
converges if |r| < 1, otherwise it diverges (if |r| ≥ 1). The sum of the
convergent series is
∞
∑
n=1
arn−1
=
a
1 − r
|r| < 1
Convergence of an
If the series
∞
∑
n=1
an converges, then lim
n→∞
an = 0.
Test for divergence
If lim
n→∞
an doesn’t exist or if lim
n→∞
an ≠ 0, then the series
∞
∑
n=1
an diverges.
Laws of convergent series
If the series an and bn both converge, then so do these (where c is a
constant):
∞
∑
n=1
can = c
∞
∑
n=1
an
∞
∑
n=1
(an + bn) =
∞
∑
n=1
an +
∞
∑
n=1
bn
24
∞
∑
n=1
(an − bn) =
∞
∑
n=1
an −
∞
∑
n=1
bn
Integral test for convergence
Suppose f is a continuous, positive, decreasing function on [1,∞), and let
an = f(n).
If
∫
∞
1
f(x) dx converges, then
∞
∑
n=1
an converges.
If
∫
∞
1
f(x) dx diverges, then
∞
∑
n=1
an diverges.
Remainder estimate for the integral test
Suppose f(k) = ak, where f is a continuous, positive, decreasing function for
x ≥ n and
∑
an converges. If Rn = s − sn, then
∫
∞
n+1
f(x) dx ≤ Rn ≤
∫
∞
n
f(x) dx
p-Series test for convergence
The p-series
∞
∑
n=1
1
np
25
converges if p > 1
diverges if p ≤ 1
Comparison test for convergence
Suppose that
∑
an and
∑
bn are series with positive terms.
If
∑
bn converges and an ≤ bn for all n, then
∑
an converges.
If
∑
bn diverges and an ≥ bn for all n, then
∑
an diverges.
Limit comparison test for convergence
Suppose that
∑
an and
∑
bn are series with positive terms.
If lim
n→∞
an
bn
= c
where c is a finite number and
where 0 < c < ∞
then either both series converge or both diverge.
Alternating series test for convergence
If the alternating series
26
∞
∑
n=1
(−1)n−1
bn = b1 − b2 + b3 − b4 + b5 − b6 + … bn > 0
satisfies
bn+1 ≤ bn for all n
lim
n→∞
bn = 0
then the series converges.
Alternating series estimation theorem
If s =
∑
(−1)n−1
bn is the sum of an alternating series that satisfies
bn+1 ≤ bn
lim
n→∞
bn = 0
then |Rn | = |s − sn | ≤ bn+1.
Absolute convergence
A series
∑
an is absolutely convergent if the series of absolute values
∑
|an | is convergent.
If a series
∑
an is absolutely convergent, then it’s convergent.
27
Conditional convergence
A series
∑
an is conditionally convergent if it’s convergent but not
absolutely convergent.
Ratio test for convergence
If lim
n→∞
an+1
an
= L < 1, then the series
∞
∑
n=1
an is absolutely convergent.
If lim
n→∞
an+1
an
= L > 1 or lim
n→∞
an+1
an
= ∞, then the series
∞
∑
n=1
an is divergent.
If lim
n→∞
an+1
an
= 1, the ratio test is inconclusive about the convergence of
∞
∑
n=1
an, which means we’ll have to use a different convergence test to
determine convergence.
Root test for convergence
If lim
n→∞
n
|an | = L < 1, then the series
∞
∑
n=1
an is absolutely convergent.
If lim
n→∞
n
|an | = L > 1 or lim
n→∞
n
|an | = ∞, then the series
∞
∑
n=1
an is divergent.
28
If lim
n→∞
n
|an | = 1, the root test is inconclusive about the convergence of
∞
∑
n=1
an, which means we’ll have to use a different convergence test to
determine convergence.
Convergence of power series
Given a power series
∞
∑
n=0
cn(x − a)n
,
the series converges only when x = a or
the series converges for all x or
there is a positive number R such that the series converges if |x − a| < R and
diverges if |x − a| > R
Differentiation and integration of power series
If the power series
∑
cn(x − a)n
has a radius of convergence R > 0, then the
function f defined by
f(x) = c0 + c1(x − a) + c2(x − a)2
+ … =
∞
∑
n=0
cn(x − a)n
is differentiable (and therefore continuous) on the interval (a − R, a + R) and
29
f′(x) = c1 + 2c2(x − a) + 3c3(x − a)2
+ … =
∞
∑
n=1
ncn(x − a)n−1
∫
f(x) dx = C + c0(x − a) + c1
(x − a)2
2
+ c2
(x − a)3
3
+ … = C +
∞
∑
n=0
cn
(x − a)n+1
n + 1
Note: The radii of convergence of these two power series is R.
Power series representation (expansion)
If f has a power series representation (expansion) at a, that is, if
f(x) =
∞
∑
n=0
cn(x − a)n
|x − a| < R
then its coefficients are given by
cn =
f (n)
(a)
n!
and the power series has the form
f(x) =
∞
∑
n=0
f (n)
(a)
n!
(x − a)n
= f(a) +
f′(a)
1!
(x − a) +
f′′(a)
2!
(x − a)2
+
f′′′(a)
3!
(x − a)3
+ . . .
which is the taylor series of the function f at a (or about a or centered at a).
30
Taylor series
The taylor series of a function f at a (or about a or centered at a) is
f(x) =
∞
∑
n=0
f (n)
(a)
n!
(x − a)n
= f(a) +
f′(a)
1!
(x − a) +
f′′(a)
2!
(x − a)2
+
f′′′(a)
3!
(x − a)3
+ . . .
Remainder of the taylor series
If f(x) = Tn(x) + Rn(x) where Tn is the nth-degree taylor polynomial of f at a
and
lim
n→∞
Rn(x) = 0
for |x − a| < R, then f is equal to the sum of its taylor series on the interval
|x − a| < R.
Taylor’s inequality
If
| f (n+1)
(x)| ≤ M for |x − a| ≤ d
then the remainder Rn(x) of the taylor series satisfies the inequality
|Rn(x)| ≤
M
(n + 1)!
|x − a|n+1
for |x − a| ≤ d
31
Maclaurin series
The maclaurin series is a specific instance of the taylor series where a = 0. In other words,
it’s just the taylor series of a function f at 0 (or about 0 or centered at 0).
f(x) =
∞
∑
n=0
f (n)
(0)
n!
(x − 0)n
=
∞
∑
n=0
f (n)
(0)
n!
xn
= f(0) +
f′(0)
1!
(x − 0) +
f′′(0)
2!
(x − 0)2
+
f′′′(0)
3!
(x − 0)3
+ . . .
= f(0) +
f′(0)
1!
x +
f′′(0)
2!
x2
+
f′′′(0)
3!
x3
+ . . .
Common maclaurin series and their radii of convergence
1
1 − x
=
∞
∑
n=0
xn
= 1 + x + x2
+ x3
+ . . . R = 1
ex
=
∞
∑
n=0
xn
n!
= 1 +
x
1!
+
x2
2!
+
x3
3!
+ … R = ∞
sin x =
∞
∑
n=0
(−1)n x2n+1
(2n + 1)!
= x −
x3
3!
+
x5
5!
−
x7
7!
+ … R = ∞
cos x =
∞
∑
n=0
(−1)n x2n
(2n)!
= 1 −
x2
2!
+
x4
4!
−
x6
6!
+ … R = ∞
32
tan−1
x =
∞
∑
n=0
(−1)n x2n+1
2n + 1
= x −
x3
3
+
x5
5
−
x7
7
+ R = 1
ln(1 + x) =
∞
∑
n=1
(−1)n−1 xn
n
= x −
x2
2
+
x3
3
−
x4
4
+ … R = 1
(1 + x)k
=
∞
∑
n=0
(
k
n)
xn
= 1 + kx +
k(k − 1)
2!
x2
+
k(k − 1)(k − 2)
3!
x3
+ . . . R = 1
Exponential series
ex
=
∞
∑
n=0
xn
n!
for all x
e =
∞
∑
n=0
1
n!
= 1 +
1
1!
+
1
2!
+
1
3!
+ . . .
Binomial series
If k is any real number and |x| < 1, then
(1 + x)k
=
∞
∑
n=0
(
k
n)
xn
= 1 + kx +
k(k − 1)
2!
x2
+
k(k − 1)(k − 2)
3!
x3
+ . . .
33
Recognizing types of series
Use this visual guide to train yourself to quickly recognize different types of series.
Sometimes the best way to recognize the type of series is to write out the first few terms
of the series and then match it to one of the types of series below.
Geometric series
2.3171717... = 2.3 +
17
103
+
17
105
+
17
107
+ . . . = 2.3 +
17
103 (
1 +
1
102
+
1
104
+ . . .
)
5 −
10
3
+
20
9
−
40
27
+ . . . = 5
[
1 −
2
3
+
(
2
3)
2
−
(
2
3)
3
+ . . .
]
4 + 3 +
9
4
+
27
16
+ . . . = 4
[
1 +
3
4
+
(
3
4)
2
+
(
3
4)
3
+ . . .
]
3 − 4 +
16
3
−
64
9
+ . . . = 3
[
1 −
4
3
+
(
4
3)
2
−
(
4
3)
3
+ . . .
]
10 − 2 + 0.4 − 0.08 + . . . = 10 [1 − 0.2 + (0.2)2
− (0.2)3
+ . . . ]
2 + 0.5 + 0.125 + 0.03125 + = 2 [1 + 0.25 + (0.25)2
+ (0.25)3
+ . . . ]
p-series
∞
∑
n=1
1
n3
=
1
13
+
1
23
+
1
33
+
1
43
+ . . .
34
∞
∑
n=1
1
n
1
3
=
∞
∑
n=1
1
3
n
= 1 +
1
3
2
+
1
3
3
+
1
3
4
+ . . .
Telescoping series
∞
∑
n=1
(
1
n
−
1
n + 1)
=
(
1 −
1
2)
+
(
1
2
−
1
3)
+
(
1
3
−
1
4)
+ . . . +
(
1
n
−
1
n + 1 )
Alternating series
(−1)n
(−1)n−1
(−1)n+1
Will start with − Will start with + Will start with +
∞
∑
n=1
(−1)n
n
2n + 3
∞
∑
n=1
(−1)n−1
2n + 1
∞
∑
n=1
(−1)n+1 n2
n3 + 4
∞
∑
n=1
(−1)n n
n3 + 2
∞
∑
n=1
(−1)n−1
e
2
n
∞
∑
n=1
(−1)n+1
ne−n
∞
∑
n=1
(−1)n 3n − 1
2n + 1
∞
∑
n=1
(−1)n−1
arctan n
∞
∑
n=1
(−1)n
e−n
∞
∑
n=1
(−1)n−1
ln(n + 4)
35
36

Weitere ähnliche Inhalte

Was ist angesagt?

Trigonometry cheat sheet
Trigonometry cheat sheetTrigonometry cheat sheet
Trigonometry cheat sheetmelkydinsay
 
Bi-linear transformation 2
Bi-linear transformation 2Bi-linear transformation 2
Bi-linear transformation 2Buvaneswari
 
Integration formulas
Integration formulasIntegration formulas
Integration formulasKrishna Gali
 
Systems Of Differential Equations
Systems Of Differential EquationsSystems Of Differential Equations
Systems Of Differential EquationsJDagenais
 
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsSolution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsHareem Aslam
 
Mat conjuntos numericos 003 exercicios
Mat conjuntos numericos  003 exerciciosMat conjuntos numericos  003 exercicios
Mat conjuntos numericos 003 exerciciostrigono_metrico
 
「ガロア表現」を使って素数の分解法則を考える #mathmoring
「ガロア表現」を使って素数の分解法則を考える #mathmoring「ガロア表現」を使って素数の分解法則を考える #mathmoring
「ガロア表現」を使って素数の分解法則を考える #mathmoringJunpei Tsuji
 
Calculus Cheat Sheet All
Calculus Cheat Sheet AllCalculus Cheat Sheet All
Calculus Cheat Sheet AllMoe Han
 
Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Rai University
 
The vector or cross product
The vector or cross productThe vector or cross product
The vector or cross productSabir Ahmed
 
Jacobi iteration method
Jacobi iteration methodJacobi iteration method
Jacobi iteration methodMONIRUL ISLAM
 
32 stoke's theorem
32 stoke's theorem32 stoke's theorem
32 stoke's theoremmath267
 
Cac chuyen _de_boi_duong_hoc_sinh_gioi_toan_lop_7_
Cac chuyen _de_boi_duong_hoc_sinh_gioi_toan_lop_7_Cac chuyen _de_boi_duong_hoc_sinh_gioi_toan_lop_7_
Cac chuyen _de_boi_duong_hoc_sinh_gioi_toan_lop_7_ntmtam80
 
[Htq] toan 9 hsg tp hn dap an
[Htq] toan 9 hsg tp hn   dap an[Htq] toan 9 hsg tp hn   dap an
[Htq] toan 9 hsg tp hn dap anHồng Quang
 
【材料力学】3次元空間のひずみ (II-08-1 2020)
【材料力学】3次元空間のひずみ (II-08-1 2020)【材料力学】3次元空間のひずみ (II-08-1 2020)
【材料力学】3次元空間のひずみ (II-08-1 2020)Kazuhiro Suga
 
Math34 Trigonometric Formulas
Math34 Trigonometric  FormulasMath34 Trigonometric  Formulas
Math34 Trigonometric FormulasTopTuition
 

Was ist angesagt? (20)

Trigonometry cheat sheet
Trigonometry cheat sheetTrigonometry cheat sheet
Trigonometry cheat sheet
 
Capitulo 7 Soluciones Purcell 9na Edicion
Capitulo 7 Soluciones Purcell 9na EdicionCapitulo 7 Soluciones Purcell 9na Edicion
Capitulo 7 Soluciones Purcell 9na Edicion
 
Bi-linear transformation 2
Bi-linear transformation 2Bi-linear transformation 2
Bi-linear transformation 2
 
Integration formulas
Integration formulasIntegration formulas
Integration formulas
 
Jacobi method
Jacobi methodJacobi method
Jacobi method
 
Systems Of Differential Equations
Systems Of Differential EquationsSystems Of Differential Equations
Systems Of Differential Equations
 
Capitulo 4 Soluciones Purcell 9na Edicion
Capitulo 4 Soluciones Purcell 9na EdicionCapitulo 4 Soluciones Purcell 9na Edicion
Capitulo 4 Soluciones Purcell 9na Edicion
 
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsSolution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 Functions
 
Trigonometry cheat sheet
Trigonometry cheat sheetTrigonometry cheat sheet
Trigonometry cheat sheet
 
Mat conjuntos numericos 003 exercicios
Mat conjuntos numericos  003 exerciciosMat conjuntos numericos  003 exercicios
Mat conjuntos numericos 003 exercicios
 
「ガロア表現」を使って素数の分解法則を考える #mathmoring
「ガロア表現」を使って素数の分解法則を考える #mathmoring「ガロア表現」を使って素数の分解法則を考える #mathmoring
「ガロア表現」を使って素数の分解法則を考える #mathmoring
 
Calculus Cheat Sheet All
Calculus Cheat Sheet AllCalculus Cheat Sheet All
Calculus Cheat Sheet All
 
Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2
 
The vector or cross product
The vector or cross productThe vector or cross product
The vector or cross product
 
Jacobi iteration method
Jacobi iteration methodJacobi iteration method
Jacobi iteration method
 
32 stoke's theorem
32 stoke's theorem32 stoke's theorem
32 stoke's theorem
 
Cac chuyen _de_boi_duong_hoc_sinh_gioi_toan_lop_7_
Cac chuyen _de_boi_duong_hoc_sinh_gioi_toan_lop_7_Cac chuyen _de_boi_duong_hoc_sinh_gioi_toan_lop_7_
Cac chuyen _de_boi_duong_hoc_sinh_gioi_toan_lop_7_
 
[Htq] toan 9 hsg tp hn dap an
[Htq] toan 9 hsg tp hn   dap an[Htq] toan 9 hsg tp hn   dap an
[Htq] toan 9 hsg tp hn dap an
 
【材料力学】3次元空間のひずみ (II-08-1 2020)
【材料力学】3次元空間のひずみ (II-08-1 2020)【材料力学】3次元空間のひずみ (II-08-1 2020)
【材料力学】3次元空間のひずみ (II-08-1 2020)
 
Math34 Trigonometric Formulas
Math34 Trigonometric  FormulasMath34 Trigonometric  Formulas
Math34 Trigonometric Formulas
 

Ähnlich wie Integrals Guide

Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonPamelaew
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tablesGaurav Vasani
 
Last+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxLast+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxAryanMishra860130
 
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manualnodyligomi
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and transDr Fereidoun Dejahang
 
Differential calculus
Differential calculusDifferential calculus
Differential calculusChit Laplana
 
Mathematical formula tables
Mathematical formula tablesMathematical formula tables
Mathematical formula tablesSaravana Selvan
 
03 convexfunctions
03 convexfunctions03 convexfunctions
03 convexfunctionsSufyan Sahoo
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuityPume Ananda
 
Bahan ajar kalkulus integral
Bahan ajar kalkulus integralBahan ajar kalkulus integral
Bahan ajar kalkulus integralgrand_livina_good
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life OlooPundit
 
Application of derivatives 2 maxima and minima
Application of derivatives 2  maxima and minimaApplication of derivatives 2  maxima and minima
Application of derivatives 2 maxima and minimasudersana viswanathan
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Asad Bukhari
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Nur Kamila
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Fatini Adnan
 

Ähnlich wie Integrals Guide (20)

Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tables
 
Last+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxLast+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptx
 
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
Mathematical formula tables
Mathematical formula tablesMathematical formula tables
Mathematical formula tables
 
03 convexfunctions
03 convexfunctions03 convexfunctions
03 convexfunctions
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
Bahan ajar kalkulus integral
Bahan ajar kalkulus integralBahan ajar kalkulus integral
Bahan ajar kalkulus integral
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
Application of derivatives 2 maxima and minima
Application of derivatives 2  maxima and minimaApplication of derivatives 2  maxima and minima
Application of derivatives 2 maxima and minima
 
boyd 3.1
boyd 3.1boyd 3.1
boyd 3.1
 
Improper integral
Improper integralImproper integral
Improper integral
 
Derivatives
DerivativesDerivatives
Derivatives
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
 

Kürzlich hochgeladen

mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...Pooja Nehwal
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 

Kürzlich hochgeladen (20)

mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 

Integrals Guide

  • 1.
  • 2. Integrals Midpoint rule ∫ b a f(x) dx ≈ n ∑ i=1 f (x̄i) Δx = Δx [f ( ¯ x1) + … + f ( ¯ xn)] where (xi−1, xi) and Δx = b − a n and x̄i = 1 2 (xi−1 + xi) Trapezoidal rule ∫ b a f(x) dx ≈ Tn = Δx 2 [f(x0) + 2f(x1) + 2f(x2) + … + 2f(xn−1) + f(xn)] where Δx = b − a n and xi = a + iΔx Midpoint and trapezoidal error bounds ET and EM are the errors in the trapezoidal and midpoint rules 1
  • 3. |ET | ≤ K(b − a)3 12n2 and |EM | ≤ K(b − a)3 24n2 where | f′′(x)| ≤ K for a ≤ x ≤ b Simpson’s rule ∫ b a f(x) dx ≈ Sn = Δx 3 [f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + … + 2f(xn−2) + 4f(xn−1) + f(xn)] where n is even and Δx = b − a n Simpson’s error bounds ES is the error in Simpson’s rule |ES | ≤ K(b − a)5 180n4 where f (4) (x) ≤ K for a ≤ x ≤ b 2
  • 4. Symmetric functions Suppose f is continuous on [−a, a]. If f is even [f(−x) = f(x)], then ∫ a −a f(x) dx = 2 ∫ a 0 f(x) dx If f is odd [f(−x) = − f(x)], then ∫ a −a f(x) dx = 0 Limit process for area under the curve ∫ b a f(x) dx = lim n→∞ n ∑ i=1 f(xi)Δx where Δx = b − a n and xi = a + iΔx Summation formulas for the limit process n ∑ i=1 k = kn where k is any non-zero constant n ∑ i=1 i = n(n + 1) 2 = n2 + n 2 3
  • 5. n ∑ i=1 i2 = n(n + 1)(2n + 1) 6 = 2n3 + 3n2 + n 6 n ∑ i=1 i3 = n2 (n + 1)2 4 = n4 + 2n3 + n2 4 n ∑ i=1 i4 = n(2n + 1)(n + 1)(3n2 + 3n − 1) 30 = 6n5 + 15n4 + 10n3 + 6n2 − n 30 Net change theorem ∫ b a F′(x) dx = F(b) − F(a) Fundamental theorem of calculus Suppose f is continuous on [a, b]. Part 1 Given integral How to solve it f(x) = ∫ x a f(t) dt Plug x in for t. f(x) = ∫ a x f(t) dt Reverse limits of integration and multiply by −1, then plug x in for t. 4
  • 6. f(x) = ∫ g(x) a f(t) dt Plug g(x) in for t, then multiply by dg/dx. f(x) = ∫ a g(x) f(t) dt Reverse limits of integration and multiply by −1, then plug g(x) in for t and multiply by dg/dx. f(x) = ∫ h(x) g(x) f(t) dt Split the limits of integration as ∫ 0 g(x) f(t) dt + ∫ h(x) 0 f(t) dt. Reverse limits of integration on ∫ 0 g(x) f(t) dt and multiply by −1, then plug g(x) and h(x) in for t, multiplying by dg/dx and dh/dx respectively. Part 2 ∫ b a f(x) dx = F(b) − F(a) where F is any antiderivative of f, that is, a function such that F′ = f Integration by parts ∫ u dv = uv − ∫ v du 5
  • 7. Properties of integrals ∫ b a c dx = c(b − a) ∫ b a f(x) + g(x) dx = ∫ b a f(x) dx + ∫ b a g(x) dx ∫ b a cf(x) dx = c ∫ b a f(x) dx ∫ b a f(x) − g(x) dx = ∫ b a f(x) dx − ∫ b a g(x) dx Common indefinite integrals ∫ k dx = kx + C ∫ xn dx = xn+1 n + 1 + C with n ≠ − 1 ∫ 1 x dx = ln|x| + C ∫ ex dx = ex + C ∫ ax dx = ax ln a + C 6
  • 8. Integrals of trig functions ∫ sin x dx = − cos x + C ∫ csc x dx = ln csc x − cot x + C or ∫ csc x dx = ln ( sin x 2) − ln ( cos x 2) + C ∫ cos x dx = sin x + C ∫ sec x dx = ln sec x + tan x + C or ∫ sec x dx = ln ( sin x 2 + cos x 2) − ln ( cos x 2 − sin x 2) + C ∫ tan x dx = − ln cos x + C ∫ cot x dx = ln sin x + C Other common trig integrals ∫ sec2 x dx = tan x + C ∫ csc2 x dx = − cot x + C ∫ sec x tan x dx = sec x + C ∫ csc x cot x dx = − csc x + C ∫ 1 x2 + 1 dx = tan−1 x + C ∫ 1 1 − x2 dx = sin−1 x + C ∫ sinh x dx = cosh x + C ∫ cosh x dx = sinh x + C 7
  • 9. Integrals of inverse hyperbolic trig functions ∫ sinh−1 x dx = x sinh−1 x − x2 + 1 + C ∫ cosh−1 x dx = x cosh−1 x − x − 1 x + 1 + C ∫ tanh−1 x dx = 1 2 log(1 − x2 ) + x tanh−1 x + C ∫ coth−1 x dx = 1 2 log(1 − x2 ) + x coth−1 x + C Integrals resulting in inverse hyperbolic trig functions ∫ 1 x2 + 1 dx = sinh−1 x ∫ 1 x − 1 x + 1 dx = cosh−1 x ∫ 1 1 − x2 dx = tanh−1 x ∫ 1 1 − x2 dx = coth−1 x 8
  • 10. Trig substitution setup sin tan sec the integral includes a2 − u2 a2 + u2 u2 − a2 so substitute u = a sin θ u = a tan θ u = a sec θ and use the identity 1 − sin2 θ = cos2 θ 1 + tan2 θ = sec2 θ sec2 θ − 1 = tan2 θ solve for the trig sin θ = u a tan θ = u a sec θ = u a and for du du = a cos θ dθ du = a sec2 θ dθ du = a sec θ tan θ dθ and for θ θ = arcsin u a θ = arctan u a θ = arcsec u a reference triangle 9 a a u u u a a2 − u2 a2 + u2 u2 − a2 θ θ θ
  • 11. Trig substitution simplification arcsin x arccos x arctan x arccscx arcsecx arccotx sin of x 1 − x2 x x2 + 1 1 x 1 − 1 x2 − 1 x 1 x2 + 1 cos of 1 − x2 x 1 x2 + 1 1 − 1 x2 1 x 1 1 x2 + 1 tan of x 1 − x2 1 − x2 x x 1 x 1 − 1 x2 x 1 − 1 x2 1 x csc of 1 x 1 1 − x2 x2 + 1 x x 1 1 − 1 x2 x 1 x2 + 1 sec of 1 1 − x2 1 x x2 + 1 1 1 − 1 x2 x 1 x2 + 1 cot of 1 − x2 x x 1 − x2 1 x x 1 − 1 x2 1 x 1 − 1 x2 x 10
  • 12. Applications of Integrals Average value fave = 1 b − a ∫ b a f(x) dx Area between curves A = ∫ b a | f(x) − g(x)| dx Arc length L = ∫ b a 1 + [f′(x)] 2 dx = ∫ b a 1 + ( dy dx) 2 dx for a function y = f(x) on the interval a ≤ x ≤ b L = ∫ d c 1 + [g′(y)] 2 dy = ∫ d c 1 + ( dx dy ) 2 dy for a function x = g(y) on the interval c ≤ y ≤ d 11
  • 13. Surface area of revolution The surface area of revolution is S = ∫ b a 2πy 1 + ( dy dx) 2 dx for a function y = f(x) rotated about the x-axis on the interval a ≤ x ≤ b S = ∫ b a 2πx 1 + ( dy dx ) 2 dx for a function y = f(x) rotated about the y-axis on the interval a ≤ x ≤ b S = ∫ d c 2πy 1 + ( dx dy ) 2 dy for a function x = g(y) rotated about the x-axis on the interval c ≤ y ≤ d S = ∫ d c 2πx 1 + ( dx dy ) 2 dy for a function x = g(y) rotated about the y-axis on the interval c ≤ y ≤ d 12
  • 14. Volume of revolution Axis Disks Washers Shells ∫ area width ∫ area width ∫ circumference height width Axis of revolution: HORIZONTAL x-axis ∫ b a π [f(x)] 2 dx ∫ b a π [f(x)] 2 − π [g(x)] 2 dx ∫ d c 2πy [f(y) − g(y)] dy y = − k ∫ b a π [k + f(x)] 2 − π [k + g(x)] 2 dx ∫ d c 2π(y + k)[f(y) − g(y)] dy y = k ∫ b a π [k − g(x)] 2 − π [k − f(x)] 2 dx ∫ d c 2π(k − y)[f(y) − g(y)] dy Axis of revolution: VERTICAL y-axis ∫ d c π [f(y)] 2 dy ∫ d c π [f(y)] 2 − π [g(y)] 2 dy ∫ b a 2πx [f(x) − g(x)] dx x = − k ∫ d c π [k + f(y)] 2 − π [k + g(y)] 2 dy ∫ b a 2π(x + k)[f(x) − g(x)] dx x = k ∫ d c π [k − g(y)] 2 − π [k − f(y)] 2 dy ∫ b a 2π(k − x)[f(x) − g(x)] dx 13
  • 15. Mean value theorem for integrals If f is continuous on [a, b], then c exists in [a, b] such that f(c) = fave = 1 b − a ∫ b a f(x) dx, that is, ∫ b a f(x) dx = f(c)(b − a) Moments of the region The moment of the region about the y-axis is My = lim n→∞ n ∑ i=1 ρx̄i f(x̄i)Δx = ρ ∫ b a xf(x) dx about the x-axis is Mx = lim n→∞ n ∑ i=1 ρ ⋅ 1 2 [f(x̄i)] 2 Δx = ρ ∫ b a 1 2 [f(x)] 2 dx Center of mass of the region The center of mass is located at (x̄, ȳ) where x̄ = My m = 1 A ∫ b a xf(x) dx and ȳ = Mx m = 1 A ∫ b a 1 2 [f(x)] 2 dx 14
  • 16. Center of mass of the region bounded by two curves The center of mass is located at (x̄, ȳ) where x̄ = 1 A ∫ b a x [f(x) − g(x)] dx and ȳ = 1 A ∫ b a 1 2 {[f(x)] 2 − [g(x)] 2 } dx 15
  • 17. Polar & Parametric Parametric Derivatives dy dx = dy dt dx dt where dx dt ≠ 0 Area A = ∫ b a y dx = ∫ β α g(t)f′(t) dt Surface area of revolution The surface area of a parametric curve rotated about the x-axis is Sx = ∫ b a 2πy ( dx dt ) 2 + ( dy dt ) 2 dt about the y-axis is Sy = ∫ b a 2πx ( dx dt ) 2 + ( dy dt ) 2 dt 16
  • 18. Arc length L = ∫ β α ( dx dt ) 2 + ( dy dt ) 2 dt Volume of revolution The volume created by rotating a parametric curve about the x-axis is Vx = ∫ b a πy2 [x′(t)] dt about the y-axis is Vy = ∫ b a πx2 [y′(t)] dt Polar Conversion between cartesian and polar coordinates x = r cos θ y = r sin θ x2 + y2 = r2 Distance between two points The distance between two polar coordinate points (r1, θ1) and (r2, θ2) is 17
  • 19. D = (r2 cos θ2 − r1 cos θ1) 2 + (r2 sin θ2 − r1 sin θ1) 2 Area The area enclosed by a polar curve is A = ∫ b a 1 2 [f(θ)] 2 dθ = ∫ b a 1 2 r2 dθ Area between curves The area between two polar curves is A = 1 2 ∫ β α (router)2 − (rinner)2 dθ Arc length L = ∫ b a r2 + ( dr dθ ) 2 dθ Surface area of revolution The surface area of revolution of a polar parametric curve rotated 18
  • 20. about the x-axis is Sx = ∫ β α 2πy r2 + ( dr dθ) 2 dθ about the y-axis is Sy = ∫ β α 2πx r2 + ( dr dθ) 2 dθ 19
  • 21. Sequences & Series Limit of a sequence The limit of a sequence {an} is L lim n→∞ an = L or an → L as n → ∞ if we can make the terms of an closer and closer to L as we we make n larger and larger. If lim n→∞ an exists, the sequence converges (is convergent). Otherwise it diverges (is divergent). Precise definition of the limit of a sequence The limit of a sequence {an} is L lim n→∞ an = L or an → L as n → ∞ if for every ϵ > 0 there is a corresponding integer N such that if n > N then |an − L| < ϵ 20
  • 22. Limit laws for sequences If {an} and {bn} are convergent sequences and c is a constant, then lim n→∞ (an + bn) = lim n→∞ an + lim n→∞ bn lim n→∞ (an − bn) = lim n→∞ an − lim n→∞ bn lim n→∞ can = c lim n→∞ an lim n→∞ c = c lim n→∞ (anbn) = lim n→∞ an ⋅ lim n→∞ bn lim n→∞ an bn = limn→∞ an limn→∞ bn if lim n→∞ bn ≠ 0 lim n→∞ ap n = [ lim n→∞ an] p if p > 0 and an > 0 Squeeze theorem for sequences If an ≤ bn ≤ cn for n ≥ n0 and lim n→∞ an = lim n→∞ cn = L then lim n→∞ bn = L. Absolute value of a sequence If lim n→∞ |an | = 0, then lim n→∞ an = 0. 21
  • 23. Convergence of a sequence rn The sequence {rn } is convergent if −1 < r ≤ 1 and divergent for all other values of r. lim n→∞ rn = 0 if −1 < r < 1 = 1 if r = 1 Increasing, decreasing, and monotonic sequences A sequence {an} is increasing if an < an+1 for all n ≥ 1, (a1 < a2 < a3 < . . . ) decreasing if an > an+1 for all n ≥ 1, (a1 > a2 > a3 > . . . ) monotonic if it’s either increasing or decreasing Bounded sequences A sequence {an} is bounded above if there’s a number M such that an ≤ M for all n ≥ 1 bounded below if there’s a number m such that m ≤ an for all n ≥ 1 a bounded sequence if it’s bounded above and below 22
  • 24. Monotonic sequence theorem Every bounded, monotonic sequence is convergent. Partial sum of the series Given a series ∞ ∑ n=1 an = a1 + a2 + a3 + . . . , let sn denote its nth partial sum. sn = n ∑ i=1 ai = a1 + a2 + … + an If the sequence {sn} converges and lim n→∞ sn = s exists as a real number, then the series ∑ an converges and we can say a1 + a2 + … + an + … = s or ∞ ∑ n=1 an = s The number s is the sum of the series. If the sequence {sn} diverges, then the series diverges. Convergence and sum of a geometric series The geometric series ∞ ∑ n=1 arn−1 = a + ar + ar2 + . . . 23
  • 25. converges if |r| < 1, otherwise it diverges (if |r| ≥ 1). The sum of the convergent series is ∞ ∑ n=1 arn−1 = a 1 − r |r| < 1 Convergence of an If the series ∞ ∑ n=1 an converges, then lim n→∞ an = 0. Test for divergence If lim n→∞ an doesn’t exist or if lim n→∞ an ≠ 0, then the series ∞ ∑ n=1 an diverges. Laws of convergent series If the series an and bn both converge, then so do these (where c is a constant): ∞ ∑ n=1 can = c ∞ ∑ n=1 an ∞ ∑ n=1 (an + bn) = ∞ ∑ n=1 an + ∞ ∑ n=1 bn 24
  • 26. ∞ ∑ n=1 (an − bn) = ∞ ∑ n=1 an − ∞ ∑ n=1 bn Integral test for convergence Suppose f is a continuous, positive, decreasing function on [1,∞), and let an = f(n). If ∫ ∞ 1 f(x) dx converges, then ∞ ∑ n=1 an converges. If ∫ ∞ 1 f(x) dx diverges, then ∞ ∑ n=1 an diverges. Remainder estimate for the integral test Suppose f(k) = ak, where f is a continuous, positive, decreasing function for x ≥ n and ∑ an converges. If Rn = s − sn, then ∫ ∞ n+1 f(x) dx ≤ Rn ≤ ∫ ∞ n f(x) dx p-Series test for convergence The p-series ∞ ∑ n=1 1 np 25
  • 27. converges if p > 1 diverges if p ≤ 1 Comparison test for convergence Suppose that ∑ an and ∑ bn are series with positive terms. If ∑ bn converges and an ≤ bn for all n, then ∑ an converges. If ∑ bn diverges and an ≥ bn for all n, then ∑ an diverges. Limit comparison test for convergence Suppose that ∑ an and ∑ bn are series with positive terms. If lim n→∞ an bn = c where c is a finite number and where 0 < c < ∞ then either both series converge or both diverge. Alternating series test for convergence If the alternating series 26
  • 28. ∞ ∑ n=1 (−1)n−1 bn = b1 − b2 + b3 − b4 + b5 − b6 + … bn > 0 satisfies bn+1 ≤ bn for all n lim n→∞ bn = 0 then the series converges. Alternating series estimation theorem If s = ∑ (−1)n−1 bn is the sum of an alternating series that satisfies bn+1 ≤ bn lim n→∞ bn = 0 then |Rn | = |s − sn | ≤ bn+1. Absolute convergence A series ∑ an is absolutely convergent if the series of absolute values ∑ |an | is convergent. If a series ∑ an is absolutely convergent, then it’s convergent. 27
  • 29. Conditional convergence A series ∑ an is conditionally convergent if it’s convergent but not absolutely convergent. Ratio test for convergence If lim n→∞ an+1 an = L < 1, then the series ∞ ∑ n=1 an is absolutely convergent. If lim n→∞ an+1 an = L > 1 or lim n→∞ an+1 an = ∞, then the series ∞ ∑ n=1 an is divergent. If lim n→∞ an+1 an = 1, the ratio test is inconclusive about the convergence of ∞ ∑ n=1 an, which means we’ll have to use a different convergence test to determine convergence. Root test for convergence If lim n→∞ n |an | = L < 1, then the series ∞ ∑ n=1 an is absolutely convergent. If lim n→∞ n |an | = L > 1 or lim n→∞ n |an | = ∞, then the series ∞ ∑ n=1 an is divergent. 28
  • 30. If lim n→∞ n |an | = 1, the root test is inconclusive about the convergence of ∞ ∑ n=1 an, which means we’ll have to use a different convergence test to determine convergence. Convergence of power series Given a power series ∞ ∑ n=0 cn(x − a)n , the series converges only when x = a or the series converges for all x or there is a positive number R such that the series converges if |x − a| < R and diverges if |x − a| > R Differentiation and integration of power series If the power series ∑ cn(x − a)n has a radius of convergence R > 0, then the function f defined by f(x) = c0 + c1(x − a) + c2(x − a)2 + … = ∞ ∑ n=0 cn(x − a)n is differentiable (and therefore continuous) on the interval (a − R, a + R) and 29
  • 31. f′(x) = c1 + 2c2(x − a) + 3c3(x − a)2 + … = ∞ ∑ n=1 ncn(x − a)n−1 ∫ f(x) dx = C + c0(x − a) + c1 (x − a)2 2 + c2 (x − a)3 3 + … = C + ∞ ∑ n=0 cn (x − a)n+1 n + 1 Note: The radii of convergence of these two power series is R. Power series representation (expansion) If f has a power series representation (expansion) at a, that is, if f(x) = ∞ ∑ n=0 cn(x − a)n |x − a| < R then its coefficients are given by cn = f (n) (a) n! and the power series has the form f(x) = ∞ ∑ n=0 f (n) (a) n! (x − a)n = f(a) + f′(a) 1! (x − a) + f′′(a) 2! (x − a)2 + f′′′(a) 3! (x − a)3 + . . . which is the taylor series of the function f at a (or about a or centered at a). 30
  • 32. Taylor series The taylor series of a function f at a (or about a or centered at a) is f(x) = ∞ ∑ n=0 f (n) (a) n! (x − a)n = f(a) + f′(a) 1! (x − a) + f′′(a) 2! (x − a)2 + f′′′(a) 3! (x − a)3 + . . . Remainder of the taylor series If f(x) = Tn(x) + Rn(x) where Tn is the nth-degree taylor polynomial of f at a and lim n→∞ Rn(x) = 0 for |x − a| < R, then f is equal to the sum of its taylor series on the interval |x − a| < R. Taylor’s inequality If | f (n+1) (x)| ≤ M for |x − a| ≤ d then the remainder Rn(x) of the taylor series satisfies the inequality |Rn(x)| ≤ M (n + 1)! |x − a|n+1 for |x − a| ≤ d 31
  • 33. Maclaurin series The maclaurin series is a specific instance of the taylor series where a = 0. In other words, it’s just the taylor series of a function f at 0 (or about 0 or centered at 0). f(x) = ∞ ∑ n=0 f (n) (0) n! (x − 0)n = ∞ ∑ n=0 f (n) (0) n! xn = f(0) + f′(0) 1! (x − 0) + f′′(0) 2! (x − 0)2 + f′′′(0) 3! (x − 0)3 + . . . = f(0) + f′(0) 1! x + f′′(0) 2! x2 + f′′′(0) 3! x3 + . . . Common maclaurin series and their radii of convergence 1 1 − x = ∞ ∑ n=0 xn = 1 + x + x2 + x3 + . . . R = 1 ex = ∞ ∑ n=0 xn n! = 1 + x 1! + x2 2! + x3 3! + … R = ∞ sin x = ∞ ∑ n=0 (−1)n x2n+1 (2n + 1)! = x − x3 3! + x5 5! − x7 7! + … R = ∞ cos x = ∞ ∑ n=0 (−1)n x2n (2n)! = 1 − x2 2! + x4 4! − x6 6! + … R = ∞ 32
  • 34. tan−1 x = ∞ ∑ n=0 (−1)n x2n+1 2n + 1 = x − x3 3 + x5 5 − x7 7 + R = 1 ln(1 + x) = ∞ ∑ n=1 (−1)n−1 xn n = x − x2 2 + x3 3 − x4 4 + … R = 1 (1 + x)k = ∞ ∑ n=0 ( k n) xn = 1 + kx + k(k − 1) 2! x2 + k(k − 1)(k − 2) 3! x3 + . . . R = 1 Exponential series ex = ∞ ∑ n=0 xn n! for all x e = ∞ ∑ n=0 1 n! = 1 + 1 1! + 1 2! + 1 3! + . . . Binomial series If k is any real number and |x| < 1, then (1 + x)k = ∞ ∑ n=0 ( k n) xn = 1 + kx + k(k − 1) 2! x2 + k(k − 1)(k − 2) 3! x3 + . . . 33
  • 35. Recognizing types of series Use this visual guide to train yourself to quickly recognize different types of series. Sometimes the best way to recognize the type of series is to write out the first few terms of the series and then match it to one of the types of series below. Geometric series 2.3171717... = 2.3 + 17 103 + 17 105 + 17 107 + . . . = 2.3 + 17 103 ( 1 + 1 102 + 1 104 + . . . ) 5 − 10 3 + 20 9 − 40 27 + . . . = 5 [ 1 − 2 3 + ( 2 3) 2 − ( 2 3) 3 + . . . ] 4 + 3 + 9 4 + 27 16 + . . . = 4 [ 1 + 3 4 + ( 3 4) 2 + ( 3 4) 3 + . . . ] 3 − 4 + 16 3 − 64 9 + . . . = 3 [ 1 − 4 3 + ( 4 3) 2 − ( 4 3) 3 + . . . ] 10 − 2 + 0.4 − 0.08 + . . . = 10 [1 − 0.2 + (0.2)2 − (0.2)3 + . . . ] 2 + 0.5 + 0.125 + 0.03125 + = 2 [1 + 0.25 + (0.25)2 + (0.25)3 + . . . ] p-series ∞ ∑ n=1 1 n3 = 1 13 + 1 23 + 1 33 + 1 43 + . . . 34
  • 36. ∞ ∑ n=1 1 n 1 3 = ∞ ∑ n=1 1 3 n = 1 + 1 3 2 + 1 3 3 + 1 3 4 + . . . Telescoping series ∞ ∑ n=1 ( 1 n − 1 n + 1) = ( 1 − 1 2) + ( 1 2 − 1 3) + ( 1 3 − 1 4) + . . . + ( 1 n − 1 n + 1 ) Alternating series (−1)n (−1)n−1 (−1)n+1 Will start with − Will start with + Will start with + ∞ ∑ n=1 (−1)n n 2n + 3 ∞ ∑ n=1 (−1)n−1 2n + 1 ∞ ∑ n=1 (−1)n+1 n2 n3 + 4 ∞ ∑ n=1 (−1)n n n3 + 2 ∞ ∑ n=1 (−1)n−1 e 2 n ∞ ∑ n=1 (−1)n+1 ne−n ∞ ∑ n=1 (−1)n 3n − 1 2n + 1 ∞ ∑ n=1 (−1)n−1 arctan n ∞ ∑ n=1 (−1)n e−n ∞ ∑ n=1 (−1)n−1 ln(n + 4) 35
  • 37. 36