SlideShare ist ein Scribd-Unternehmen logo
1 von 73
Persamaan Non Linier
Persamaan Non Linier
 Metode Tabel
 Metode Biseksi
 Metode Regula Falsi
 Metode Iterasi Sederhana
 Metode Newton-Raphson
 Metode Secant.
Persamaan Non Linier
 penentuan akar-akar persamaan non
linier.
 Akar sebuah persamaan f(x) =0 adalah
nilai-nilai x yang menyebabkan nilai f(x)
sama dengan nol.
 akar persamaan f(x) adalah titik potong
antara kurva f(x) dan sumbu X.
Persamaan Non Linier
Persamaan Non Linier
 Penyelesaian persamaan linier mx + c = 0
dimana m dan c adalah konstanta, dapat
dihitung dengan :
mx + c = 0
x = -
 Penyelesaian persamaan kuadrat ax2 + bx +
c = 0 dapat dihitung dengan menggunakan
rumus ABC.
m
c
a
ac
b
b
x
2
4
2
12




Penyelesaian Persamaan Non
Linier
 Metode Tertutup
 Mencari akar pada range [a,b] tertentu
 Dalam range[a,b] dipastikan terdapat satu akar
 Hasil selalu konvergen  disebut juga metode
konvergen
 Metode Terbuka
 Diperlukan tebakan awal
 xn dipakai untuk menghitung xn+1
 Hasil dapat konvergen atau divergen
Metode Tertutup
 Metode Tabel
 Metode Biseksi
 Metode Regula Falsi
Metode Terbuka
 Metode Iterasi Sederhana
 Metode Newton-Raphson
 Metode Secant.
Theorema
 Suatu range x=[a,b] mempunyai akar bila f(a) dan f(b)
berlawanan tanda atau memenuhi f(a).f(b)<0
 Theorema di atas dapat dijelaskan dengan grafik-grafik
sebagai berikut:
Karena f(a).f(b)<0 maka pada range
x=[a,b] terdapat akar.
Karena f(a).f(b)>0 maka pada
range x=[a,b] tidak dapat
dikatakan terdapat akar.
Metode Table
 Metode Table atau
pembagian area.
 Dimana untuk x di
antara a dan b dibagi
sebanyak N bagian dan
pada masing-masing
bagian dihitung nilai
f(x) sehingga diperoleh
tabel :
X f(x)
x0=a f(a)
x1 f(x1)
x2 f(x2)
x3 f(x3)
…… ……
xn=b f(b)
Metode Table
Contoh
 Selesaikan persamaan
: x+ex = 0 dengan
range x =
 Untuk mendapatkan
penyelesaian dari
persamaan di atas
range x =
dibagi menjadi 10
bagian sehingga
diperoleh :
X f(x)
-1,0 -0,63212
-0,9 -0,49343
-0,8 -0,35067
-0,7 -0,20341
-0,6 -0,05119
-0,5 0,10653
-0,4 0,27032
-0,3 0,44082
-0,2 0,61873
-0,1 0,80484
0,0 1,00000
 
0
,
1

 
0
,
1

Contoh
 Dari table diperoleh penyelesaian berada di
antara –0,6 dan –0,5 dengan nilai f(x)
masing-masing -0,0512 dan 0,1065, sehingga
dapat diambil keputusan penyelesaiannya di
x=-0,6.
 Bila pada range x =
dibagi 10 maka diperoleh f(x) terdekat
dengan nol pada x = -0,57 dengan F(x) =
0,00447
 
5
,
0
,
6
,
0 

Kelemahan Metode Table
 Metode table ini secara umum sulit
mendapatkan penyelesaian dengan error
yang kecil, karena itu metode ini tidak
digunakan dalam penyelesaian persamaan
non linier
 Tetapi metode ini digunakan sebagai taksiran
awal mengetahui area penyelesaian yang
benar sebelum menggunakan metode yang
lebih baik dalam menentukan penyelesaian.
Metode Biseksi
 Ide awal metode ini adalah metode table,
dimana area dibagi menjadi N bagian.
 Hanya saja metode biseksi ini membagi range
menjadi 2 bagian, dari dua bagian ini dipilih
bagian mana yang mengandung dan bagian
yang tidak mengandung akar dibuang.Hal ini
dilakukan berulang-ulang hingga diperoleh
akar persamaan.
Metode Biseksi
 Untuk menggunakan metode biseksi, terlebih dahulu
ditentukan batas bawah (a) dan batas atas (b).Kemudian
dihitung nilai tengah :
x =
 Dari nilai x ini perlu dilakukan pengecekan keberadaan akar.
Secara matematik, suatu range terdapat akar persamaan
bila f(a) dan f(b) berlawanan tanda atau dituliskan :
f(a) . f(b) < 0
 Setelah diketahui dibagian mana terdapat akar, maka batas
bawah dan batas atas di perbaharui sesuai dengan range
dari bagian yang mempunyai akar.
2
b
a 
Algoritma Biseksi
Contoh Soal
 Selesaikan persamaan xe-x+1 = 0, dengan
menggunakan range x=[-1,0], maka
diperoleh tabel biseksi sebagai berikut :
Contoh Soal
 Dimana x =
Pada iterasi ke 10 diperoleh x = -0.56738
dan f(x) = -0.00066
 Untuk menghentikan iterasi, dapat dilakukan
dengan menggunakan toleransi error atau
iterasi maksimum.
 Catatan : Dengan menggunakan metode
biseksi dengan tolerasi error 0.001
dibutuhkan 10 iterasi, semakin teliti (kecil
toleransi errorny) maka semakin besar jumlah
iterasi yang dibutuhkan.
2
b
a 
Metode Regula Falsi
 metode pencarian akar persamaan
dengan memanfaatkan kemiringan dan
selisih tinggi dari dua titik batas range.
 Dua titik a dan b pada fungsi f(x)
digunakan untuk mengestimasi posisi c
dari akar interpolasi linier.
 Dikenal dengan metode False Position
Metode Regula Falsi
Metode Regula Falsi
x
b
b
f
a
b
a
f
b
f




 0
)
(
)
(
)
(
)
(
)
(
)
)(
(
a
f
b
f
a
b
b
f
b
x




)
(
)
(
)
(
)
(
a
f
b
f
a
bf
b
af
x



Algoritma Metode Regula Falsi
Contoh Soal
 Selesaikan persamaan xe-x+1=0 pada range x= [0,-1]
Contoh Soal
Akar persamaan diperoleh di x=-0.56741 dengan
kesalahan =0,00074
Metode Iterasi Sederhana
 Metode iterasi sederhana adalah metode
yang memisahkan x dengan sebagian x yang
lain sehingga diperoleh : x = g(x).
 Contoh :
 x – ex = 0  ubah
 x = ex atau g(x) = ex
 g(x) inilah yang menjadi dasar iterasi pada
metode iterasi sederhana ini
Metode Iterasi Sederhana
Contoh :
 Carilah akar pers f(x) = x2-2x-3
 x2-2x-3 = 0
 X2 = 2x + 3
 Tebakan awal = 4
 E = 0.00001
 Hasil = 3
3
2 
 x
x
3
2
1 

 n
n x
x
Contoh :
 x2-2x-3 = 0
 X(x-2) = 3
 X = 3 /(x-2)
 Tebakan awal = 4
 E = 0.00001
 Hasil = -1
Contoh :
 x2-2x-3 = 0
 X = (x2-3)/2
 Tebakan awal = 4
 E = 0.00001
 Hasil divergen
Syarat Konvergensi
 Pada range I = [s-h, s+h] dengan s titik
tetap
 Jika 0<g’(x)<1 untuk setiap x Є I iterasi
konvergen monoton.
 Jika -1<g’(x)<0 untuk setiap x Є I iterasi
konvergen berosilasi.
 Jika g’(x)>1 untuk setiap x Є I, maka iterasi
divergen monoton.
 Jika g’(x)<-1 untuk setiap x Є I, maka iterasi
divergen berosilasi.
 Tebakan awal 4
 G’(4) = 0.1508 < 1
 Konvergen Monoton
3
2
2
1
)
(
'
3
2
)
(
3
2
1







r
r
r
r
x
x
g
x
x
g
x
x
 Tebakan awal 4
 G’(4) = |-0.75| < 1
 Konvergen Berisolasi
2
1
)
2
(
3
)
(
'
)
2
(
3
)
(
)
2
(
3








x
x
g
x
x
g
x
x
r
r
 Tebakan awal 4
 G’(4) = 4 > 1
 Divergen Monoton
x
x
g
x
x
g



)
(
'
2
)
3
(
)
(
2
Latihan Soal
 Apa yang terjadi dengan pemilihan x0 pada
pencarian akar persamaan :
 X3 + 6x – 3 = 0
 Dengan x
 Cari akar persamaan dengan x0 = 0.5
 X0 = 1.5, x0 = 2.2, x0 = 2.7
6
3
3
1




r
r
x
x
Contoh :
Metode Newton Raphson
 metode pendekatan yang menggunakan
satu titik awal dan mendekatinya
dengan memperhatikan slope atau
gradien pada titik tersebut.Titik
pendekatan ke n+1 dituliskan dengan :
Xn+1 = xn -
 
 
n
n
x
F
x
F
1
Metode Newton Raphson
Algoritma Metode Newton
Raphson
1. Definisikan fungsi f(x) dan f1(x)
2. Tentukan toleransi error (e) dan iterasi maksimum (n)
3. Tentukan nilai pendekatan awal x0
4. Hitung f(x0) dan f’(x0)
5. Untuk iterasi I = 1 s/d n atau |f(xi)|> e
 Hitung f(xi) dan f1(xi)
6. Akar persamaan adalah nilai xi yang terakhir diperoleh.
 
 
i
i
i
i
x
f
x
f
x
x 1
1 


Contoh Soal
 Selesaikan persamaan x - e-x = 0 dengan titik
pendekatan awal x0 =0
 f(x) = x - e-x  f’(x)=1+e-x
 f(x0) = 0 - e-0 = -1
 f’(x0) = 1 + e-0 = 2
 
 
5
,
0
2
1
0
0
1
0
0
1 





x
f
x
f
x
x
Contoh Soal
 f(x1) = -0,106631 dan f1(x1) = 1,60653
 x2 =
 f(x2) = -0,00130451 dan f1(x2) = 1,56762
 x3 =
 f(x3) = -1,96.10-7. Suatu bilangan yang sangat kecil.
 Sehingga akar persamaan x = 0,567143.
 
 
566311
,
0
60653
,
1
106531
,
0
5
,
0
1
1
1
1 




x
f
x
f
x
 
 
567143
,
0
56762
,
1
00130451
,
0
566311
,
0
2
1
2
2 




x
f
x
f
x
Contoh
 x - e-x = 0  x0 =0, e = 0.00001
Contoh :
 x + e-x cos x -2 = 0  x0=1
 f(x) = x + e-x cos x - 2
 f’(x) = 1 – e-x cos x – e-x sin x
Permasalahan pada pemakaian
metode newton raphson
 Metode ini tidak dapat digunakan ketika titik pendekatannya
berada pada titik ekstrim atau titik puncak, karena pada titik ini
nilai F1(x) = 0 sehingga nilai penyebut dari sama dengan
nol, secara grafis dapat dilihat sebagai berikut:
Bila titik pendekatan
berada pada titik puncak,
maka titik selanjutnya
akan berada di tak
berhingga.
 
 
x
F
x
F
1
Permasalahan pada pemakaian
metode newton raphson
 Metode ini menjadi sulit atau
lama mendapatkan
penyelesaian ketika titik
pendekatannya berada di
antara dua titik stasioner.
 Bila titik pendekatan berada
pada dua tiitik puncak akan
dapat mengakibatkan
hilangnya penyelesaian
(divergensi). Hal ini
disebabkan titik selanjutnya
berada pada salah satu titik
puncak atau arah
pendekatannya berbeda.
Hasil Tidak Konvergen
Penyelesaian Permasalahan pada
pemakaian metode newton raphson
1. Bila titik pendekatan berada pada titik puncak
maka titik pendekatan tersebut harus di geser
sedikit, xi = xi dimana adalah konstanta
yang ditentukan dengan demikian dan
metode newton raphson tetap dapat berjalan.
2. Untuk menghindari titik-titik pendekatan yang
berada jauh, sebaiknya pemakaian metode newton
raphson ini didahului oleh metode tabel, sehingga
dapat di jamin konvergensi dari metode newton
raphson.

 
  0
1

i
x
F
Contoh Soal
 x . e-x + cos(2x) = 0  x0 = 0,176281
 f(x) = x . e-x + cos(2x)
 f1(x) = (1-x) e-x – 2 sin (2x)
 F(x0) = 1,086282
 F1(x0) = -0,000015
X = 71365,2
padahal dalam range 0 sampai
dengan 1 terdapat akar di
sekitar 0.5 s/d 1.
Contoh Soal
 Untuk menghindari hal ini sebaiknya digunakan grafik atau
tabel sehingga dapat diperoleh pendekatan awal yang baik.
Digunakan pendekatan awal x0=0.5
x
Contoh Soal
 Hasil dari penyelesaian persamaan
 x * exp(-x) + cos(2x) = 0 pada range [0,5]
Contoh
 Hitunglah akar dengan metode Newthon
Raphson. Gunakan e=0.00001. Tebakan awal akar x0 = 1
 Penyelesaian
 Prosedur iterasi Newthon Raphson
2
5
)
( x
e
x
f x


2
5
)
( x
e
x
f x

 x
e
x
f x
10
)
(
' 

x
e
x
e
x
x x
x
r
r
10
5 2
1





0 1 -2.28172
1 0.686651 -0.370399
2 0.610741 -0.0232286
3 0.605296 -0.000121011
4 0.605267 -3.35649e-009
Akar terletak di x = 0.605267
Contoh
 Tentukan bagaimana cara menentukan
Metode Secant
 Metode Newton Raphson memerlukan
perhitungan turunan fungsi f’(x).
 Tidak semua fungsi mudah dicari turunannya
terutama fungsi yang bentuknya rumit.
 Turunan fungsi dapat dihilangkan dengan cara
menggantinya dengan bentuk lain yang ekivalen
 Modifikasi metode Newton Raphson dinamakan
metode Secant.
1

r
x 1

r
x
r
x
r
x
 Metode Newton-Raphson
1
1)
(
)
(
)
(
'








r
r
r
r
x
x
x
f
x
f
x
y
x
f
)
(
'
)
(
1
r
r
r
r
x
f
x
f
x
x 


)
(
)
(
)
)(
(
1
1
1







r
r
r
r
r
r
r
x
f
x
f
x
x
x
f
x
x
Algoritma Metode Secant :
 Definisikan fungsi F(x)
 Definisikan torelansi error (e) dan iterasi maksimum (n)
 Masukkan dua nilai pendekatan awal yang di antaranya
terdapat akar yaitu x0 dan x1, sebaiknya gunakan metode
tabel atau grafis untuk menjamin titik pendakatannya
adalah titik pendekatan yang konvergensinya pada akar
persamaan yang diharapkan.
 Hitung F(x0) dan F(x1) sebagai y0 dan y1
 Untuk iterasi I = 1 s/d n atau |F(xi)|
hitung yi+1 = F(xi+1)
 Akar persamaan adalah nilai x yang terakhir.
1
1
1







i
i
i
i
i
i
i
y
y
x
x
y
x
x
Contoh Soal
 Penyelesaian
 x2 –(x + 1) e-x = 0 ?
Contoh Kasus Penyelesaian
Persamaan Non Linier
 Penentuan nilai maksimal dan minimal fungsi
non linier
 Perhitungan nilai konstanta pada matrik dan
determinan, yang biasanya muncul dalam
permasalahan sistem linier, bisa digunakan
untuk menghitung nilai eigen
 Penentuan titik potong beberapa fungsi non
linier, yang banyak digunakan untuk
keperluan perhitungan-perhitungan secara
grafis.
Penentuan Nilai Maksimal dan
Minimal Fungsi Non Linier
 nilai maksimal dan minimal dari f(x) 
memenuhi f’(x)=0.
 g(x)=f’(x)  g(x)=0
 Menentukan nilai maksimal atau
minimal  f”(x)
Contoh Soal
 Tentukan nilai minimal dari f(x) = x2-(x+1)e-2x+1
-0.5
0
0.5
1
1.5
2
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x**2-(x+1)*exp(-2*x)+1
nilai minimal terletak antara –0.4 dan –0.2
Menghitung Titik Potong 2
Buah Kurva
x
y
y=f(x)
y=g(x)
p
f(x) = g(x)
atau
f(x) – g(x) =
0
Contoh Soal
 Tentukan titik potong y=2x3-x dan y=e-x
-1
-0.5
0
0.5
1
1.5
2
2.5
3
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
2*x**3-x
exp(-x)
akar terletak di antara 0.8 dan 1
Soal (1)
 Tahun 1225 Leonardo da Pisa mencari akar
persamaan
 F(x) = x3 + 2x2 + 10x – 20 = 0
 Dan menemukan x = 1.368808107.
 Tidak seorangpun yang mengetahui cara Leonardo
menemukan nilai ini. Sekarang rahasia ini dapat
dipecahkan dengan metode iterasi sederhana.
 Carilah salah satu dari kemungkinan x = g(x). Lalu
dengan memberikan sembarang input awal, tentukan
x=g(x) yang mana yang menghasilkan akar
persamaan yang ditemukan Leonardo itu.
Soal (2)
 Hitung akar 27 dan akar 50 dengan biseksi dan regula falsi !
Bandingkan ke dua metode tersebut ! Mana yang lebih
cepat ?
 Catat hasil uji coba
a b N e Iterasi
Biseksi
Iterasi
Regula Falsi
0.1
0.01
0.001
0.0001
Soal (3)
 Tentukan nilai puncak pada kurva y =
x2 + e-2xsin(x) pada range x=[0,10]
 Dengan metode newthon raphson

Weitere ähnliche Inhalte

Was ist angesagt?

Determinan matriks kelas xi
Determinan matriks kelas xiDeterminan matriks kelas xi
Determinan matriks kelas xiEndang Firdaus
 
Modul persamaan diferensial
Modul persamaan diferensialModul persamaan diferensial
Modul persamaan diferensialAwatifAtif
 
Kuantor dan Validitas Pembuktian
Kuantor dan Validitas PembuktianKuantor dan Validitas Pembuktian
Kuantor dan Validitas PembuktianEman Mendrofa
 
6. HUBUNGAN LINEAR.pptx
6. HUBUNGAN LINEAR.pptx6. HUBUNGAN LINEAR.pptx
6. HUBUNGAN LINEAR.pptxMentariClara1
 
Supremum dan infimum
Supremum dan infimum  Supremum dan infimum
Supremum dan infimum Rossi Fauzi
 
Bab v persamaan-diferensial-parsial
Bab v persamaan-diferensial-parsialBab v persamaan-diferensial-parsial
Bab v persamaan-diferensial-parsialfekissombolayuk
 
Modul 5 residu kuadratis
Modul 5   residu kuadratisModul 5   residu kuadratis
Modul 5 residu kuadratisAcika Karunila
 
Persamaan diferensial-orde-11
Persamaan diferensial-orde-11Persamaan diferensial-orde-11
Persamaan diferensial-orde-11tahank
 
Persamaan diferensial biasa: persamaan diferensial orde-kedua
Persamaan diferensial biasa: persamaan diferensial orde-keduaPersamaan diferensial biasa: persamaan diferensial orde-kedua
Persamaan diferensial biasa: persamaan diferensial orde-keduadwiprananto
 
Kongruensi kuadratis
Kongruensi kuadratisKongruensi kuadratis
Kongruensi kuadratisFara Silfia
 
RPP: Persamaan dan Pertidaksamaan Kuadrat
RPP: Persamaan dan Pertidaksamaan KuadratRPP: Persamaan dan Pertidaksamaan Kuadrat
RPP: Persamaan dan Pertidaksamaan KuadratYani Pieter Pitoy
 
PD orde2 Tak Homogen 2
PD orde2 Tak Homogen 2PD orde2 Tak Homogen 2
PD orde2 Tak Homogen 2unesa
 
Persamaan diferensial
Persamaan diferensialPersamaan diferensial
Persamaan diferensialWiko Prameso
 
Analisis Real (Barisan Bilangan Real) Latihan bagian 2.3
Analisis Real (Barisan Bilangan Real) Latihan bagian 2.3Analisis Real (Barisan Bilangan Real) Latihan bagian 2.3
Analisis Real (Barisan Bilangan Real) Latihan bagian 2.3Arvina Frida Karela
 

Was ist angesagt? (20)

Determinan matriks kelas xi
Determinan matriks kelas xiDeterminan matriks kelas xi
Determinan matriks kelas xi
 
Pengenalan Persamaan Differensial Parsial
Pengenalan Persamaan Differensial ParsialPengenalan Persamaan Differensial Parsial
Pengenalan Persamaan Differensial Parsial
 
Modul persamaan diferensial
Modul persamaan diferensialModul persamaan diferensial
Modul persamaan diferensial
 
Analisis real
Analisis realAnalisis real
Analisis real
 
Kuantor dan Validitas Pembuktian
Kuantor dan Validitas PembuktianKuantor dan Validitas Pembuktian
Kuantor dan Validitas Pembuktian
 
6. HUBUNGAN LINEAR.pptx
6. HUBUNGAN LINEAR.pptx6. HUBUNGAN LINEAR.pptx
6. HUBUNGAN LINEAR.pptx
 
Supremum dan infimum
Supremum dan infimum  Supremum dan infimum
Supremum dan infimum
 
Bab v persamaan-diferensial-parsial
Bab v persamaan-diferensial-parsialBab v persamaan-diferensial-parsial
Bab v persamaan-diferensial-parsial
 
Modul 5 residu kuadratis
Modul 5   residu kuadratisModul 5   residu kuadratis
Modul 5 residu kuadratis
 
Deret Fourier
Deret FourierDeret Fourier
Deret Fourier
 
Persamaan diferensial-orde-11
Persamaan diferensial-orde-11Persamaan diferensial-orde-11
Persamaan diferensial-orde-11
 
Persamaan diferensial biasa: persamaan diferensial orde-kedua
Persamaan diferensial biasa: persamaan diferensial orde-keduaPersamaan diferensial biasa: persamaan diferensial orde-kedua
Persamaan diferensial biasa: persamaan diferensial orde-kedua
 
Kongruensi kuadratis
Kongruensi kuadratisKongruensi kuadratis
Kongruensi kuadratis
 
RPP: Persamaan dan Pertidaksamaan Kuadrat
RPP: Persamaan dan Pertidaksamaan KuadratRPP: Persamaan dan Pertidaksamaan Kuadrat
RPP: Persamaan dan Pertidaksamaan Kuadrat
 
Koset Suatu Grup
Koset Suatu GrupKoset Suatu Grup
Koset Suatu Grup
 
PD orde2 Tak Homogen 2
PD orde2 Tak Homogen 2PD orde2 Tak Homogen 2
PD orde2 Tak Homogen 2
 
Bilangan kompleks
Bilangan kompleksBilangan kompleks
Bilangan kompleks
 
Persamaan diferensial
Persamaan diferensialPersamaan diferensial
Persamaan diferensial
 
Analisis Real (Barisan Bilangan Real) Latihan bagian 2.3
Analisis Real (Barisan Bilangan Real) Latihan bagian 2.3Analisis Real (Barisan Bilangan Real) Latihan bagian 2.3
Analisis Real (Barisan Bilangan Real) Latihan bagian 2.3
 
kekontinuan fungsi
kekontinuan fungsikekontinuan fungsi
kekontinuan fungsi
 

Ähnlich wie Metode Non Linier

Metnum3 persnonlinierbaru2-140216091500-phpapp01
Metnum3 persnonlinierbaru2-140216091500-phpapp01Metnum3 persnonlinierbaru2-140216091500-phpapp01
Metnum3 persnonlinierbaru2-140216091500-phpapp01Alvin Setiawan
 
Met num3 persnonl-inier_baru
Met num3 persnonl-inier_baruMet num3 persnonl-inier_baru
Met num3 persnonl-inier_baruRany Aries
 
Met num3 persnonl-inier_baru
Met num3 persnonl-inier_baruMet num3 persnonl-inier_baru
Met num3 persnonl-inier_baruAlvin Setiawan
 
Met num3 persnonl-inier_baru
Met num3 persnonl-inier_baruMet num3 persnonl-inier_baru
Met num3 persnonl-inier_baruAlen Pepa
 
Metode numerik persamaan non linier
Metode numerik persamaan non linierMetode numerik persamaan non linier
Metode numerik persamaan non linierIzhan Nassuha
 
materi matkul MetNum3-PersNonLInier (1).ppt
materi matkul MetNum3-PersNonLInier (1).pptmateri matkul MetNum3-PersNonLInier (1).ppt
materi matkul MetNum3-PersNonLInier (1).pptasmaun4
 
Met num02 persamaan non linier
Met num02 persamaan non linierMet num02 persamaan non linier
Met num02 persamaan non linierAlvin Setiawan
 
akarakarpersamaannonlinier-140220044419-phpapp01 (1).ppt
akarakarpersamaannonlinier-140220044419-phpapp01 (1).pptakarakarpersamaannonlinier-140220044419-phpapp01 (1).ppt
akarakarpersamaannonlinier-140220044419-phpapp01 (1).pptasmaun4
 
Akar akar persamaan non linier
Akar akar persamaan non linierAkar akar persamaan non linier
Akar akar persamaan non linierAlen Pepa
 
Praktikum2 7
Praktikum2 7Praktikum2 7
Praktikum2 7Alen Pepa
 
Persamaan non linier
Persamaan non linierPersamaan non linier
Persamaan non liniersoniyora1
 
11 algo akarpersamaan
11 algo akarpersamaan11 algo akarpersamaan
11 algo akarpersamaanArif Rahman
 
6A_Kelompok 3_PPT.pptx
6A_Kelompok 3_PPT.pptx6A_Kelompok 3_PPT.pptx
6A_Kelompok 3_PPT.pptxKhorsyidPasya1
 
konsep dasar numerik.pptx
konsep dasar numerik.pptxkonsep dasar numerik.pptx
konsep dasar numerik.pptxFildaNurAini1
 
Aries suharso 0422037701_metode tertutup
Aries suharso 0422037701_metode tertutupAries suharso 0422037701_metode tertutup
Aries suharso 0422037701_metode tertutuparies22suharso
 
Fisika komputasi
Fisika komputasiFisika komputasi
Fisika komputasidesiluvita
 

Ähnlich wie Metode Non Linier (20)

Metnum3 persnonlinierbaru2-140216091500-phpapp01
Metnum3 persnonlinierbaru2-140216091500-phpapp01Metnum3 persnonlinierbaru2-140216091500-phpapp01
Metnum3 persnonlinierbaru2-140216091500-phpapp01
 
Met num3 persnonl-inier_baru
Met num3 persnonl-inier_baruMet num3 persnonl-inier_baru
Met num3 persnonl-inier_baru
 
Met num3 persnonl-inier_baru
Met num3 persnonl-inier_baruMet num3 persnonl-inier_baru
Met num3 persnonl-inier_baru
 
Met num3 persnonl-inier_baru
Met num3 persnonl-inier_baruMet num3 persnonl-inier_baru
Met num3 persnonl-inier_baru
 
Metode numerik persamaan non linier
Metode numerik persamaan non linierMetode numerik persamaan non linier
Metode numerik persamaan non linier
 
materi matkul MetNum3-PersNonLInier (1).ppt
materi matkul MetNum3-PersNonLInier (1).pptmateri matkul MetNum3-PersNonLInier (1).ppt
materi matkul MetNum3-PersNonLInier (1).ppt
 
1. Pers_Non_Linier.ppt
1. Pers_Non_Linier.ppt1. Pers_Non_Linier.ppt
1. Pers_Non_Linier.ppt
 
Met num02 persamaan non linier
Met num02 persamaan non linierMet num02 persamaan non linier
Met num02 persamaan non linier
 
akarakarpersamaannonlinier-140220044419-phpapp01 (1).ppt
akarakarpersamaannonlinier-140220044419-phpapp01 (1).pptakarakarpersamaannonlinier-140220044419-phpapp01 (1).ppt
akarakarpersamaannonlinier-140220044419-phpapp01 (1).ppt
 
Akar akar persamaan non linier
Akar akar persamaan non linierAkar akar persamaan non linier
Akar akar persamaan non linier
 
Paper
PaperPaper
Paper
 
Praktikum2 7
Praktikum2 7Praktikum2 7
Praktikum2 7
 
Persamaan non linier
Persamaan non linierPersamaan non linier
Persamaan non linier
 
PERSAMAAN NONLINEAR
PERSAMAAN NONLINEARPERSAMAAN NONLINEAR
PERSAMAAN NONLINEAR
 
11 algo akarpersamaan
11 algo akarpersamaan11 algo akarpersamaan
11 algo akarpersamaan
 
6A_Kelompok 3_PPT.pptx
6A_Kelompok 3_PPT.pptx6A_Kelompok 3_PPT.pptx
6A_Kelompok 3_PPT.pptx
 
konsep dasar numerik.pptx
konsep dasar numerik.pptxkonsep dasar numerik.pptx
konsep dasar numerik.pptx
 
Aries suharso 0422037701_metode tertutup
Aries suharso 0422037701_metode tertutupAries suharso 0422037701_metode tertutup
Aries suharso 0422037701_metode tertutup
 
Fisika komputasi
Fisika komputasiFisika komputasi
Fisika komputasi
 
42514 persamaan non linier
42514 persamaan non linier42514 persamaan non linier
42514 persamaan non linier
 

Mehr von NafisClassic

Aljabar_Linear_Elementer dalam kuliah.ppt
Aljabar_Linear_Elementer dalam kuliah.pptAljabar_Linear_Elementer dalam kuliah.ppt
Aljabar_Linear_Elementer dalam kuliah.pptNafisClassic
 
Tipe_Data_Terstruktur pada perkuliahan.ppt
Tipe_Data_Terstruktur pada perkuliahan.pptTipe_Data_Terstruktur pada perkuliahan.ppt
Tipe_Data_Terstruktur pada perkuliahan.pptNafisClassic
 
PENGENALAN- STRUKTUR DATA SEBELUM MEMULAI PEMROGRAMAN
PENGENALAN- STRUKTUR DATA SEBELUM MEMULAI PEMROGRAMANPENGENALAN- STRUKTUR DATA SEBELUM MEMULAI PEMROGRAMAN
PENGENALAN- STRUKTUR DATA SEBELUM MEMULAI PEMROGRAMANNafisClassic
 
Pengantar Mata kuliah Ilmu Komunikasi Data .pdf
Pengantar Mata kuliah Ilmu Komunikasi Data .pdfPengantar Mata kuliah Ilmu Komunikasi Data .pdf
Pengantar Mata kuliah Ilmu Komunikasi Data .pdfNafisClassic
 
PERTEMUAN 6 PS.ppt
PERTEMUAN 6 PS.pptPERTEMUAN 6 PS.ppt
PERTEMUAN 6 PS.pptNafisClassic
 
Pertemuan 8 Pemilhan Teknologi.ppt
Pertemuan 8 Pemilhan Teknologi.pptPertemuan 8 Pemilhan Teknologi.ppt
Pertemuan 8 Pemilhan Teknologi.pptNafisClassic
 
Pertemuan 8 Pemilhan Teknologi.ppt
Pertemuan 8 Pemilhan Teknologi.pptPertemuan 8 Pemilhan Teknologi.ppt
Pertemuan 8 Pemilhan Teknologi.pptNafisClassic
 
Pert 2 BAB 1 Mengenal Sistem Komp.ppt
Pert 2 BAB 1 Mengenal Sistem Komp.pptPert 2 BAB 1 Mengenal Sistem Komp.ppt
Pert 2 BAB 1 Mengenal Sistem Komp.pptNafisClassic
 
Konsep Dasar Teknologi Informasi.ppt
Konsep Dasar Teknologi Informasi.pptKonsep Dasar Teknologi Informasi.ppt
Konsep Dasar Teknologi Informasi.pptNafisClassic
 
PERTEMUAN 4 Fungsi SO.pptx
PERTEMUAN 4 Fungsi SO.pptxPERTEMUAN 4 Fungsi SO.pptx
PERTEMUAN 4 Fungsi SO.pptxNafisClassic
 
Pengenalan SO.pptx
Pengenalan SO.pptxPengenalan SO.pptx
Pengenalan SO.pptxNafisClassic
 
Komunikasi DAta.ppt
Komunikasi DAta.pptKomunikasi DAta.ppt
Komunikasi DAta.pptNafisClassic
 

Mehr von NafisClassic (16)

Aljabar_Linear_Elementer dalam kuliah.ppt
Aljabar_Linear_Elementer dalam kuliah.pptAljabar_Linear_Elementer dalam kuliah.ppt
Aljabar_Linear_Elementer dalam kuliah.ppt
 
Tipe_Data_Terstruktur pada perkuliahan.ppt
Tipe_Data_Terstruktur pada perkuliahan.pptTipe_Data_Terstruktur pada perkuliahan.ppt
Tipe_Data_Terstruktur pada perkuliahan.ppt
 
PENGENALAN- STRUKTUR DATA SEBELUM MEMULAI PEMROGRAMAN
PENGENALAN- STRUKTUR DATA SEBELUM MEMULAI PEMROGRAMANPENGENALAN- STRUKTUR DATA SEBELUM MEMULAI PEMROGRAMAN
PENGENALAN- STRUKTUR DATA SEBELUM MEMULAI PEMROGRAMAN
 
Pengantar Mata kuliah Ilmu Komunikasi Data .pdf
Pengantar Mata kuliah Ilmu Komunikasi Data .pdfPengantar Mata kuliah Ilmu Komunikasi Data .pdf
Pengantar Mata kuliah Ilmu Komunikasi Data .pdf
 
PERTEMUAN 6 PS.ppt
PERTEMUAN 6 PS.pptPERTEMUAN 6 PS.ppt
PERTEMUAN 6 PS.ppt
 
Pertemuan 8 Pemilhan Teknologi.ppt
Pertemuan 8 Pemilhan Teknologi.pptPertemuan 8 Pemilhan Teknologi.ppt
Pertemuan 8 Pemilhan Teknologi.ppt
 
Pertemuan 8 Pemilhan Teknologi.ppt
Pertemuan 8 Pemilhan Teknologi.pptPertemuan 8 Pemilhan Teknologi.ppt
Pertemuan 8 Pemilhan Teknologi.ppt
 
Pert 2 BAB 1 Mengenal Sistem Komp.ppt
Pert 2 BAB 1 Mengenal Sistem Komp.pptPert 2 BAB 1 Mengenal Sistem Komp.ppt
Pert 2 BAB 1 Mengenal Sistem Komp.ppt
 
BAB 2.pptx
BAB 2.pptxBAB 2.pptx
BAB 2.pptx
 
BAB 1.pptx
BAB 1.pptxBAB 1.pptx
BAB 1.pptx
 
Konsep Dasar Teknologi Informasi.ppt
Konsep Dasar Teknologi Informasi.pptKonsep Dasar Teknologi Informasi.ppt
Konsep Dasar Teknologi Informasi.ppt
 
PERTEMUAN 4 Fungsi SO.pptx
PERTEMUAN 4 Fungsi SO.pptxPERTEMUAN 4 Fungsi SO.pptx
PERTEMUAN 4 Fungsi SO.pptx
 
Pengenalan SO.pptx
Pengenalan SO.pptxPengenalan SO.pptx
Pengenalan SO.pptx
 
Komunikasi DAta.ppt
Komunikasi DAta.pptKomunikasi DAta.ppt
Komunikasi DAta.ppt
 
1 Peng Jarkom.ppt
1 Peng Jarkom.ppt1 Peng Jarkom.ppt
1 Peng Jarkom.ppt
 
ppt-matriks.ppt
ppt-matriks.pptppt-matriks.ppt
ppt-matriks.ppt
 

Kürzlich hochgeladen

Jurnal Dwi mingguan modul 1.2-gurupenggerak.pptx
Jurnal Dwi mingguan modul 1.2-gurupenggerak.pptxJurnal Dwi mingguan modul 1.2-gurupenggerak.pptx
Jurnal Dwi mingguan modul 1.2-gurupenggerak.pptxBambang440423
 
Karakteristik Negara Brazil, Geografi Regional Dunia
Karakteristik Negara Brazil, Geografi Regional DuniaKarakteristik Negara Brazil, Geografi Regional Dunia
Karakteristik Negara Brazil, Geografi Regional DuniaNadia Putri Ayu
 
Catatan di setiap Indikator Fokus Perilaku
Catatan di setiap Indikator Fokus PerilakuCatatan di setiap Indikator Fokus Perilaku
Catatan di setiap Indikator Fokus PerilakuHANHAN164733
 
MA Kelas XII Bab 1 materi musik mkontemnporerFase F.pdf
MA Kelas XII  Bab 1 materi musik mkontemnporerFase F.pdfMA Kelas XII  Bab 1 materi musik mkontemnporerFase F.pdf
MA Kelas XII Bab 1 materi musik mkontemnporerFase F.pdfcicovendra
 
Kelompok 1_Karakteristik negara jepang.pdf
Kelompok 1_Karakteristik negara jepang.pdfKelompok 1_Karakteristik negara jepang.pdf
Kelompok 1_Karakteristik negara jepang.pdfCloverash1
 
PPT_AKUNTANSI_PAJAK_ATAS_ASET_TETAP.pptx
PPT_AKUNTANSI_PAJAK_ATAS_ASET_TETAP.pptxPPT_AKUNTANSI_PAJAK_ATAS_ASET_TETAP.pptx
PPT_AKUNTANSI_PAJAK_ATAS_ASET_TETAP.pptxalalfardilah
 
adap penggunaan media sosial dalam kehidupan sehari-hari.pptx
adap penggunaan media sosial dalam kehidupan sehari-hari.pptxadap penggunaan media sosial dalam kehidupan sehari-hari.pptx
adap penggunaan media sosial dalam kehidupan sehari-hari.pptxmtsmampunbarub4
 
Membuat Strategi Penerapan Kurikulum Merdeka di dalam Kelas
Membuat Strategi Penerapan Kurikulum Merdeka di dalam KelasMembuat Strategi Penerapan Kurikulum Merdeka di dalam Kelas
Membuat Strategi Penerapan Kurikulum Merdeka di dalam KelasHardaminOde2
 
Topik 1 - Pengenalan Penghayatan Etika dan Peradaban Acuan Malaysia.pptx
Topik 1 - Pengenalan Penghayatan Etika dan Peradaban Acuan Malaysia.pptxTopik 1 - Pengenalan Penghayatan Etika dan Peradaban Acuan Malaysia.pptx
Topik 1 - Pengenalan Penghayatan Etika dan Peradaban Acuan Malaysia.pptxsyafnasir
 
Teknik Menjawab Kertas P.Moral SPM 2024.pptx
Teknik Menjawab Kertas P.Moral SPM  2024.pptxTeknik Menjawab Kertas P.Moral SPM  2024.pptx
Teknik Menjawab Kertas P.Moral SPM 2024.pptxwongcp2
 
Prakarsa Perubahan dengan Kanvas ATAP & BAGJA.pptx
Prakarsa Perubahan dengan Kanvas ATAP & BAGJA.pptxPrakarsa Perubahan dengan Kanvas ATAP & BAGJA.pptx
Prakarsa Perubahan dengan Kanvas ATAP & BAGJA.pptxSyaimarChandra1
 
1.2.a.6. Demonstrasi Konstektual - Modul 1.2 (Shinta Novianti - CGP A10).pdf
1.2.a.6. Demonstrasi Konstektual - Modul 1.2 (Shinta Novianti - CGP A10).pdf1.2.a.6. Demonstrasi Konstektual - Modul 1.2 (Shinta Novianti - CGP A10).pdf
1.2.a.6. Demonstrasi Konstektual - Modul 1.2 (Shinta Novianti - CGP A10).pdfShintaNovianti1
 
Materi power point Kepemimpinan leadership .ppt
Materi power point Kepemimpinan leadership .pptMateri power point Kepemimpinan leadership .ppt
Materi power point Kepemimpinan leadership .pptAcemediadotkoM1
 
IPA Kelas 9 BAB 10 - www.ilmuguru.org.pptx
IPA Kelas 9 BAB 10 - www.ilmuguru.org.pptxIPA Kelas 9 BAB 10 - www.ilmuguru.org.pptx
IPA Kelas 9 BAB 10 - www.ilmuguru.org.pptxErikaPuspita10
 
Materi Lingkaran kelas 6 terlengkap.pptx
Materi Lingkaran kelas 6 terlengkap.pptxMateri Lingkaran kelas 6 terlengkap.pptx
Materi Lingkaran kelas 6 terlengkap.pptxshafiraramadhani9
 
PUEBI.bahasa Indonesia/pedoman umum ejaan bahasa Indonesia pptx.
PUEBI.bahasa Indonesia/pedoman umum ejaan bahasa Indonesia pptx.PUEBI.bahasa Indonesia/pedoman umum ejaan bahasa Indonesia pptx.
PUEBI.bahasa Indonesia/pedoman umum ejaan bahasa Indonesia pptx.aechacha366
 
Kelompok 4 : Karakteristik Negara Inggris
Kelompok 4 : Karakteristik Negara InggrisKelompok 4 : Karakteristik Negara Inggris
Kelompok 4 : Karakteristik Negara InggrisNazla aulia
 
Wawasan Nusantara sebagai satu kesatuan, politik, ekonomi, sosial, budaya, d...
Wawasan Nusantara  sebagai satu kesatuan, politik, ekonomi, sosial, budaya, d...Wawasan Nusantara  sebagai satu kesatuan, politik, ekonomi, sosial, budaya, d...
Wawasan Nusantara sebagai satu kesatuan, politik, ekonomi, sosial, budaya, d...MarwanAnugrah
 
DESAIN MEDIA PEMBELAJARAN BAHASA INDONESIA BERBASIS DIGITAL.pptx
DESAIN MEDIA PEMBELAJARAN BAHASA INDONESIA BERBASIS DIGITAL.pptxDESAIN MEDIA PEMBELAJARAN BAHASA INDONESIA BERBASIS DIGITAL.pptx
DESAIN MEDIA PEMBELAJARAN BAHASA INDONESIA BERBASIS DIGITAL.pptxFuzaAnggriana
 
aksi nyata pendidikan inklusif.pelatihan mandiri pmm
aksi nyata pendidikan inklusif.pelatihan mandiri pmmaksi nyata pendidikan inklusif.pelatihan mandiri pmm
aksi nyata pendidikan inklusif.pelatihan mandiri pmmeunikekambe10
 

Kürzlich hochgeladen (20)

Jurnal Dwi mingguan modul 1.2-gurupenggerak.pptx
Jurnal Dwi mingguan modul 1.2-gurupenggerak.pptxJurnal Dwi mingguan modul 1.2-gurupenggerak.pptx
Jurnal Dwi mingguan modul 1.2-gurupenggerak.pptx
 
Karakteristik Negara Brazil, Geografi Regional Dunia
Karakteristik Negara Brazil, Geografi Regional DuniaKarakteristik Negara Brazil, Geografi Regional Dunia
Karakteristik Negara Brazil, Geografi Regional Dunia
 
Catatan di setiap Indikator Fokus Perilaku
Catatan di setiap Indikator Fokus PerilakuCatatan di setiap Indikator Fokus Perilaku
Catatan di setiap Indikator Fokus Perilaku
 
MA Kelas XII Bab 1 materi musik mkontemnporerFase F.pdf
MA Kelas XII  Bab 1 materi musik mkontemnporerFase F.pdfMA Kelas XII  Bab 1 materi musik mkontemnporerFase F.pdf
MA Kelas XII Bab 1 materi musik mkontemnporerFase F.pdf
 
Kelompok 1_Karakteristik negara jepang.pdf
Kelompok 1_Karakteristik negara jepang.pdfKelompok 1_Karakteristik negara jepang.pdf
Kelompok 1_Karakteristik negara jepang.pdf
 
PPT_AKUNTANSI_PAJAK_ATAS_ASET_TETAP.pptx
PPT_AKUNTANSI_PAJAK_ATAS_ASET_TETAP.pptxPPT_AKUNTANSI_PAJAK_ATAS_ASET_TETAP.pptx
PPT_AKUNTANSI_PAJAK_ATAS_ASET_TETAP.pptx
 
adap penggunaan media sosial dalam kehidupan sehari-hari.pptx
adap penggunaan media sosial dalam kehidupan sehari-hari.pptxadap penggunaan media sosial dalam kehidupan sehari-hari.pptx
adap penggunaan media sosial dalam kehidupan sehari-hari.pptx
 
Membuat Strategi Penerapan Kurikulum Merdeka di dalam Kelas
Membuat Strategi Penerapan Kurikulum Merdeka di dalam KelasMembuat Strategi Penerapan Kurikulum Merdeka di dalam Kelas
Membuat Strategi Penerapan Kurikulum Merdeka di dalam Kelas
 
Topik 1 - Pengenalan Penghayatan Etika dan Peradaban Acuan Malaysia.pptx
Topik 1 - Pengenalan Penghayatan Etika dan Peradaban Acuan Malaysia.pptxTopik 1 - Pengenalan Penghayatan Etika dan Peradaban Acuan Malaysia.pptx
Topik 1 - Pengenalan Penghayatan Etika dan Peradaban Acuan Malaysia.pptx
 
Teknik Menjawab Kertas P.Moral SPM 2024.pptx
Teknik Menjawab Kertas P.Moral SPM  2024.pptxTeknik Menjawab Kertas P.Moral SPM  2024.pptx
Teknik Menjawab Kertas P.Moral SPM 2024.pptx
 
Prakarsa Perubahan dengan Kanvas ATAP & BAGJA.pptx
Prakarsa Perubahan dengan Kanvas ATAP & BAGJA.pptxPrakarsa Perubahan dengan Kanvas ATAP & BAGJA.pptx
Prakarsa Perubahan dengan Kanvas ATAP & BAGJA.pptx
 
1.2.a.6. Demonstrasi Konstektual - Modul 1.2 (Shinta Novianti - CGP A10).pdf
1.2.a.6. Demonstrasi Konstektual - Modul 1.2 (Shinta Novianti - CGP A10).pdf1.2.a.6. Demonstrasi Konstektual - Modul 1.2 (Shinta Novianti - CGP A10).pdf
1.2.a.6. Demonstrasi Konstektual - Modul 1.2 (Shinta Novianti - CGP A10).pdf
 
Materi power point Kepemimpinan leadership .ppt
Materi power point Kepemimpinan leadership .pptMateri power point Kepemimpinan leadership .ppt
Materi power point Kepemimpinan leadership .ppt
 
IPA Kelas 9 BAB 10 - www.ilmuguru.org.pptx
IPA Kelas 9 BAB 10 - www.ilmuguru.org.pptxIPA Kelas 9 BAB 10 - www.ilmuguru.org.pptx
IPA Kelas 9 BAB 10 - www.ilmuguru.org.pptx
 
Materi Lingkaran kelas 6 terlengkap.pptx
Materi Lingkaran kelas 6 terlengkap.pptxMateri Lingkaran kelas 6 terlengkap.pptx
Materi Lingkaran kelas 6 terlengkap.pptx
 
PUEBI.bahasa Indonesia/pedoman umum ejaan bahasa Indonesia pptx.
PUEBI.bahasa Indonesia/pedoman umum ejaan bahasa Indonesia pptx.PUEBI.bahasa Indonesia/pedoman umum ejaan bahasa Indonesia pptx.
PUEBI.bahasa Indonesia/pedoman umum ejaan bahasa Indonesia pptx.
 
Kelompok 4 : Karakteristik Negara Inggris
Kelompok 4 : Karakteristik Negara InggrisKelompok 4 : Karakteristik Negara Inggris
Kelompok 4 : Karakteristik Negara Inggris
 
Wawasan Nusantara sebagai satu kesatuan, politik, ekonomi, sosial, budaya, d...
Wawasan Nusantara  sebagai satu kesatuan, politik, ekonomi, sosial, budaya, d...Wawasan Nusantara  sebagai satu kesatuan, politik, ekonomi, sosial, budaya, d...
Wawasan Nusantara sebagai satu kesatuan, politik, ekonomi, sosial, budaya, d...
 
DESAIN MEDIA PEMBELAJARAN BAHASA INDONESIA BERBASIS DIGITAL.pptx
DESAIN MEDIA PEMBELAJARAN BAHASA INDONESIA BERBASIS DIGITAL.pptxDESAIN MEDIA PEMBELAJARAN BAHASA INDONESIA BERBASIS DIGITAL.pptx
DESAIN MEDIA PEMBELAJARAN BAHASA INDONESIA BERBASIS DIGITAL.pptx
 
aksi nyata pendidikan inklusif.pelatihan mandiri pmm
aksi nyata pendidikan inklusif.pelatihan mandiri pmmaksi nyata pendidikan inklusif.pelatihan mandiri pmm
aksi nyata pendidikan inklusif.pelatihan mandiri pmm
 

Metode Non Linier

  • 2. Persamaan Non Linier  Metode Tabel  Metode Biseksi  Metode Regula Falsi  Metode Iterasi Sederhana  Metode Newton-Raphson  Metode Secant.
  • 3. Persamaan Non Linier  penentuan akar-akar persamaan non linier.  Akar sebuah persamaan f(x) =0 adalah nilai-nilai x yang menyebabkan nilai f(x) sama dengan nol.  akar persamaan f(x) adalah titik potong antara kurva f(x) dan sumbu X.
  • 5. Persamaan Non Linier  Penyelesaian persamaan linier mx + c = 0 dimana m dan c adalah konstanta, dapat dihitung dengan : mx + c = 0 x = -  Penyelesaian persamaan kuadrat ax2 + bx + c = 0 dapat dihitung dengan menggunakan rumus ABC. m c a ac b b x 2 4 2 12    
  • 6. Penyelesaian Persamaan Non Linier  Metode Tertutup  Mencari akar pada range [a,b] tertentu  Dalam range[a,b] dipastikan terdapat satu akar  Hasil selalu konvergen  disebut juga metode konvergen  Metode Terbuka  Diperlukan tebakan awal  xn dipakai untuk menghitung xn+1  Hasil dapat konvergen atau divergen
  • 7. Metode Tertutup  Metode Tabel  Metode Biseksi  Metode Regula Falsi
  • 8. Metode Terbuka  Metode Iterasi Sederhana  Metode Newton-Raphson  Metode Secant.
  • 9. Theorema  Suatu range x=[a,b] mempunyai akar bila f(a) dan f(b) berlawanan tanda atau memenuhi f(a).f(b)<0  Theorema di atas dapat dijelaskan dengan grafik-grafik sebagai berikut: Karena f(a).f(b)<0 maka pada range x=[a,b] terdapat akar. Karena f(a).f(b)>0 maka pada range x=[a,b] tidak dapat dikatakan terdapat akar.
  • 10. Metode Table  Metode Table atau pembagian area.  Dimana untuk x di antara a dan b dibagi sebanyak N bagian dan pada masing-masing bagian dihitung nilai f(x) sehingga diperoleh tabel : X f(x) x0=a f(a) x1 f(x1) x2 f(x2) x3 f(x3) …… …… xn=b f(b)
  • 12. Contoh  Selesaikan persamaan : x+ex = 0 dengan range x =  Untuk mendapatkan penyelesaian dari persamaan di atas range x = dibagi menjadi 10 bagian sehingga diperoleh : X f(x) -1,0 -0,63212 -0,9 -0,49343 -0,8 -0,35067 -0,7 -0,20341 -0,6 -0,05119 -0,5 0,10653 -0,4 0,27032 -0,3 0,44082 -0,2 0,61873 -0,1 0,80484 0,0 1,00000   0 , 1    0 , 1 
  • 13. Contoh  Dari table diperoleh penyelesaian berada di antara –0,6 dan –0,5 dengan nilai f(x) masing-masing -0,0512 dan 0,1065, sehingga dapat diambil keputusan penyelesaiannya di x=-0,6.  Bila pada range x = dibagi 10 maka diperoleh f(x) terdekat dengan nol pada x = -0,57 dengan F(x) = 0,00447   5 , 0 , 6 , 0  
  • 14. Kelemahan Metode Table  Metode table ini secara umum sulit mendapatkan penyelesaian dengan error yang kecil, karena itu metode ini tidak digunakan dalam penyelesaian persamaan non linier  Tetapi metode ini digunakan sebagai taksiran awal mengetahui area penyelesaian yang benar sebelum menggunakan metode yang lebih baik dalam menentukan penyelesaian.
  • 15. Metode Biseksi  Ide awal metode ini adalah metode table, dimana area dibagi menjadi N bagian.  Hanya saja metode biseksi ini membagi range menjadi 2 bagian, dari dua bagian ini dipilih bagian mana yang mengandung dan bagian yang tidak mengandung akar dibuang.Hal ini dilakukan berulang-ulang hingga diperoleh akar persamaan.
  • 16.
  • 17. Metode Biseksi  Untuk menggunakan metode biseksi, terlebih dahulu ditentukan batas bawah (a) dan batas atas (b).Kemudian dihitung nilai tengah : x =  Dari nilai x ini perlu dilakukan pengecekan keberadaan akar. Secara matematik, suatu range terdapat akar persamaan bila f(a) dan f(b) berlawanan tanda atau dituliskan : f(a) . f(b) < 0  Setelah diketahui dibagian mana terdapat akar, maka batas bawah dan batas atas di perbaharui sesuai dengan range dari bagian yang mempunyai akar. 2 b a 
  • 19. Contoh Soal  Selesaikan persamaan xe-x+1 = 0, dengan menggunakan range x=[-1,0], maka diperoleh tabel biseksi sebagai berikut :
  • 20. Contoh Soal  Dimana x = Pada iterasi ke 10 diperoleh x = -0.56738 dan f(x) = -0.00066  Untuk menghentikan iterasi, dapat dilakukan dengan menggunakan toleransi error atau iterasi maksimum.  Catatan : Dengan menggunakan metode biseksi dengan tolerasi error 0.001 dibutuhkan 10 iterasi, semakin teliti (kecil toleransi errorny) maka semakin besar jumlah iterasi yang dibutuhkan. 2 b a 
  • 21. Metode Regula Falsi  metode pencarian akar persamaan dengan memanfaatkan kemiringan dan selisih tinggi dari dua titik batas range.  Dua titik a dan b pada fungsi f(x) digunakan untuk mengestimasi posisi c dari akar interpolasi linier.  Dikenal dengan metode False Position
  • 23. Metode Regula Falsi x b b f a b a f b f      0 ) ( ) ( ) ( ) ( ) ( ) )( ( a f b f a b b f b x     ) ( ) ( ) ( ) ( a f b f a bf b af x   
  • 25. Contoh Soal  Selesaikan persamaan xe-x+1=0 pada range x= [0,-1]
  • 26. Contoh Soal Akar persamaan diperoleh di x=-0.56741 dengan kesalahan =0,00074
  • 27. Metode Iterasi Sederhana  Metode iterasi sederhana adalah metode yang memisahkan x dengan sebagian x yang lain sehingga diperoleh : x = g(x).  Contoh :  x – ex = 0  ubah  x = ex atau g(x) = ex  g(x) inilah yang menjadi dasar iterasi pada metode iterasi sederhana ini
  • 29. Contoh :  Carilah akar pers f(x) = x2-2x-3  x2-2x-3 = 0  X2 = 2x + 3  Tebakan awal = 4  E = 0.00001  Hasil = 3 3 2   x x 3 2 1    n n x x
  • 30.
  • 31. Contoh :  x2-2x-3 = 0  X(x-2) = 3  X = 3 /(x-2)  Tebakan awal = 4  E = 0.00001  Hasil = -1
  • 32.
  • 33. Contoh :  x2-2x-3 = 0  X = (x2-3)/2  Tebakan awal = 4  E = 0.00001  Hasil divergen
  • 34. Syarat Konvergensi  Pada range I = [s-h, s+h] dengan s titik tetap  Jika 0<g’(x)<1 untuk setiap x Є I iterasi konvergen monoton.  Jika -1<g’(x)<0 untuk setiap x Є I iterasi konvergen berosilasi.  Jika g’(x)>1 untuk setiap x Є I, maka iterasi divergen monoton.  Jika g’(x)<-1 untuk setiap x Є I, maka iterasi divergen berosilasi.
  • 35.  Tebakan awal 4  G’(4) = 0.1508 < 1  Konvergen Monoton 3 2 2 1 ) ( ' 3 2 ) ( 3 2 1        r r r r x x g x x g x x  Tebakan awal 4  G’(4) = |-0.75| < 1  Konvergen Berisolasi 2 1 ) 2 ( 3 ) ( ' ) 2 ( 3 ) ( ) 2 ( 3         x x g x x g x x r r
  • 36.  Tebakan awal 4  G’(4) = 4 > 1  Divergen Monoton x x g x x g    ) ( ' 2 ) 3 ( ) ( 2
  • 37. Latihan Soal  Apa yang terjadi dengan pemilihan x0 pada pencarian akar persamaan :  X3 + 6x – 3 = 0  Dengan x  Cari akar persamaan dengan x0 = 0.5  X0 = 1.5, x0 = 2.2, x0 = 2.7 6 3 3 1     r r x x
  • 39. Metode Newton Raphson  metode pendekatan yang menggunakan satu titik awal dan mendekatinya dengan memperhatikan slope atau gradien pada titik tersebut.Titik pendekatan ke n+1 dituliskan dengan : Xn+1 = xn -     n n x F x F 1
  • 41. Algoritma Metode Newton Raphson 1. Definisikan fungsi f(x) dan f1(x) 2. Tentukan toleransi error (e) dan iterasi maksimum (n) 3. Tentukan nilai pendekatan awal x0 4. Hitung f(x0) dan f’(x0) 5. Untuk iterasi I = 1 s/d n atau |f(xi)|> e  Hitung f(xi) dan f1(xi) 6. Akar persamaan adalah nilai xi yang terakhir diperoleh.     i i i i x f x f x x 1 1   
  • 42. Contoh Soal  Selesaikan persamaan x - e-x = 0 dengan titik pendekatan awal x0 =0  f(x) = x - e-x  f’(x)=1+e-x  f(x0) = 0 - e-0 = -1  f’(x0) = 1 + e-0 = 2     5 , 0 2 1 0 0 1 0 0 1       x f x f x x
  • 43. Contoh Soal  f(x1) = -0,106631 dan f1(x1) = 1,60653  x2 =  f(x2) = -0,00130451 dan f1(x2) = 1,56762  x3 =  f(x3) = -1,96.10-7. Suatu bilangan yang sangat kecil.  Sehingga akar persamaan x = 0,567143.     566311 , 0 60653 , 1 106531 , 0 5 , 0 1 1 1 1      x f x f x     567143 , 0 56762 , 1 00130451 , 0 566311 , 0 2 1 2 2      x f x f x
  • 44. Contoh  x - e-x = 0  x0 =0, e = 0.00001
  • 45. Contoh :  x + e-x cos x -2 = 0  x0=1  f(x) = x + e-x cos x - 2  f’(x) = 1 – e-x cos x – e-x sin x
  • 46.
  • 47. Permasalahan pada pemakaian metode newton raphson  Metode ini tidak dapat digunakan ketika titik pendekatannya berada pada titik ekstrim atau titik puncak, karena pada titik ini nilai F1(x) = 0 sehingga nilai penyebut dari sama dengan nol, secara grafis dapat dilihat sebagai berikut: Bila titik pendekatan berada pada titik puncak, maka titik selanjutnya akan berada di tak berhingga.     x F x F 1
  • 48. Permasalahan pada pemakaian metode newton raphson  Metode ini menjadi sulit atau lama mendapatkan penyelesaian ketika titik pendekatannya berada di antara dua titik stasioner.  Bila titik pendekatan berada pada dua tiitik puncak akan dapat mengakibatkan hilangnya penyelesaian (divergensi). Hal ini disebabkan titik selanjutnya berada pada salah satu titik puncak atau arah pendekatannya berbeda.
  • 50. Penyelesaian Permasalahan pada pemakaian metode newton raphson 1. Bila titik pendekatan berada pada titik puncak maka titik pendekatan tersebut harus di geser sedikit, xi = xi dimana adalah konstanta yang ditentukan dengan demikian dan metode newton raphson tetap dapat berjalan. 2. Untuk menghindari titik-titik pendekatan yang berada jauh, sebaiknya pemakaian metode newton raphson ini didahului oleh metode tabel, sehingga dapat di jamin konvergensi dari metode newton raphson.      0 1  i x F
  • 51. Contoh Soal  x . e-x + cos(2x) = 0  x0 = 0,176281  f(x) = x . e-x + cos(2x)  f1(x) = (1-x) e-x – 2 sin (2x)  F(x0) = 1,086282  F1(x0) = -0,000015 X = 71365,2 padahal dalam range 0 sampai dengan 1 terdapat akar di sekitar 0.5 s/d 1.
  • 52.
  • 53. Contoh Soal  Untuk menghindari hal ini sebaiknya digunakan grafik atau tabel sehingga dapat diperoleh pendekatan awal yang baik. Digunakan pendekatan awal x0=0.5 x
  • 54. Contoh Soal  Hasil dari penyelesaian persamaan  x * exp(-x) + cos(2x) = 0 pada range [0,5]
  • 55.
  • 56. Contoh  Hitunglah akar dengan metode Newthon Raphson. Gunakan e=0.00001. Tebakan awal akar x0 = 1  Penyelesaian  Prosedur iterasi Newthon Raphson 2 5 ) ( x e x f x   2 5 ) ( x e x f x   x e x f x 10 ) ( '   x e x e x x x x r r 10 5 2 1      0 1 -2.28172 1 0.686651 -0.370399 2 0.610741 -0.0232286 3 0.605296 -0.000121011 4 0.605267 -3.35649e-009 Akar terletak di x = 0.605267
  • 57.
  • 58. Contoh  Tentukan bagaimana cara menentukan
  • 59. Metode Secant  Metode Newton Raphson memerlukan perhitungan turunan fungsi f’(x).  Tidak semua fungsi mudah dicari turunannya terutama fungsi yang bentuknya rumit.  Turunan fungsi dapat dihilangkan dengan cara menggantinya dengan bentuk lain yang ekivalen  Modifikasi metode Newton Raphson dinamakan metode Secant.
  • 61.  Metode Newton-Raphson 1 1) ( ) ( ) ( '         r r r r x x x f x f x y x f ) ( ' ) ( 1 r r r r x f x f x x    ) ( ) ( ) )( ( 1 1 1        r r r r r r r x f x f x x x f x x
  • 62. Algoritma Metode Secant :  Definisikan fungsi F(x)  Definisikan torelansi error (e) dan iterasi maksimum (n)  Masukkan dua nilai pendekatan awal yang di antaranya terdapat akar yaitu x0 dan x1, sebaiknya gunakan metode tabel atau grafis untuk menjamin titik pendakatannya adalah titik pendekatan yang konvergensinya pada akar persamaan yang diharapkan.  Hitung F(x0) dan F(x1) sebagai y0 dan y1  Untuk iterasi I = 1 s/d n atau |F(xi)| hitung yi+1 = F(xi+1)  Akar persamaan adalah nilai x yang terakhir. 1 1 1        i i i i i i i y y x x y x x
  • 63. Contoh Soal  Penyelesaian  x2 –(x + 1) e-x = 0 ?
  • 64. Contoh Kasus Penyelesaian Persamaan Non Linier  Penentuan nilai maksimal dan minimal fungsi non linier  Perhitungan nilai konstanta pada matrik dan determinan, yang biasanya muncul dalam permasalahan sistem linier, bisa digunakan untuk menghitung nilai eigen  Penentuan titik potong beberapa fungsi non linier, yang banyak digunakan untuk keperluan perhitungan-perhitungan secara grafis.
  • 65. Penentuan Nilai Maksimal dan Minimal Fungsi Non Linier  nilai maksimal dan minimal dari f(x)  memenuhi f’(x)=0.  g(x)=f’(x)  g(x)=0  Menentukan nilai maksimal atau minimal  f”(x)
  • 66. Contoh Soal  Tentukan nilai minimal dari f(x) = x2-(x+1)e-2x+1 -0.5 0 0.5 1 1.5 2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 x**2-(x+1)*exp(-2*x)+1 nilai minimal terletak antara –0.4 dan –0.2
  • 67.
  • 68. Menghitung Titik Potong 2 Buah Kurva x y y=f(x) y=g(x) p f(x) = g(x) atau f(x) – g(x) = 0
  • 69. Contoh Soal  Tentukan titik potong y=2x3-x dan y=e-x -1 -0.5 0 0.5 1 1.5 2 2.5 3 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 2*x**3-x exp(-x) akar terletak di antara 0.8 dan 1
  • 70.
  • 71. Soal (1)  Tahun 1225 Leonardo da Pisa mencari akar persamaan  F(x) = x3 + 2x2 + 10x – 20 = 0  Dan menemukan x = 1.368808107.  Tidak seorangpun yang mengetahui cara Leonardo menemukan nilai ini. Sekarang rahasia ini dapat dipecahkan dengan metode iterasi sederhana.  Carilah salah satu dari kemungkinan x = g(x). Lalu dengan memberikan sembarang input awal, tentukan x=g(x) yang mana yang menghasilkan akar persamaan yang ditemukan Leonardo itu.
  • 72. Soal (2)  Hitung akar 27 dan akar 50 dengan biseksi dan regula falsi ! Bandingkan ke dua metode tersebut ! Mana yang lebih cepat ?  Catat hasil uji coba a b N e Iterasi Biseksi Iterasi Regula Falsi 0.1 0.01 0.001 0.0001
  • 73. Soal (3)  Tentukan nilai puncak pada kurva y = x2 + e-2xsin(x) pada range x=[0,10]  Dengan metode newthon raphson