SlideShare ist ein Scribd-Unternehmen logo
1 von 43
Downloaden Sie, um offline zu lesen
Network	
  Science:	
  Theory,	
  Modeling	
  and	
  
Applications	
  
Madhav	
  V.	
  Marathe	
  	
  
Dept.	
  of	
  Computer	
  Science	
  &	
  	
  
Network	
  Dynamics	
  and	
  Simulation	
  Science	
  Laboratory	
  
Virginia	
  Bioinformatics	
  Institute	
  
Virginia	
  Tech	
  
NDSSL	
  TR-­10-­148	
  
Supported by Grants from NIH MIDAS, NSF HSD, NSF CNS, CDC COE, and DoD.
Network Dynamics & Simulation Science Laboratory
Where:	
  LLNL,	
  Livermore,	
  	
  
Dates:	
  December	
  1st	
  to	
  December	
  15th	
  	
  	
  2010	
  
Hosts:	
  Dr.	
  David	
  Brown	
  and	
  Dr.	
  Celeste	
  Matarazzo	
  
Time:	
  10.00	
  am	
  to	
  11.30	
  am	
  (OfMice	
  hours	
  as	
  needed	
  afterwards)	
  
Lecturer:	
  Madhav	
  Marathe,	
  Virginia	
  Tech	
  (mmarathe@vbi.vt.edu)	
  
Guest	
  Lectures:	
  Christopher	
  Kuhlman	
  (VT),	
  Goran	
  Konjevod	
  
(Staff	
  Scientist,	
  LLNL),	
  Anil	
  Vullikanti	
  (Asst	
  Prof.	
  VT	
  and	
  DOE	
  
Career	
  award	
  recipient)	
  
Network Dynamics & Simulation Science Laboratory
Complex	
  Networks	
  are	
  pervasive	
  in	
  our	
  society.	
  Realistic	
  biological,	
  information,	
  social	
  and	
  technical	
  networks	
  
share	
  a	
  number	
  of	
  unique	
  features	
  that	
  distinguish	
  them	
  from	
  physical	
  networks.	
  Examples	
  of	
  such	
  features	
  
include:	
   irregularity,	
   time-­‐varying	
   structure,	
   heterogeneity	
   among	
   individual	
   components,	
   and	
   selMish/
cooperative	
  game-­‐like	
  behavior	
  by	
  individual	
  components	
  and	
  co-­‐evolution.	
  The	
  size	
  and	
  heterogeneity	
  of	
  these	
  
networks,	
   their	
   co-­‐evolving	
   nature	
   and	
   the	
   technical	
   difMiculties	
   in	
   applying	
   dimension	
   reduction	
   techniques	
  
commonly	
  used	
  to	
  analyze	
  physical	
  systems	
  makes	
  reasoning,	
  prediction	
  and	
  controlling	
  of	
  these	
  networks	
  even	
  
more	
  challenging.	
  
Recent	
   quantitative	
   changes	
   in	
   high	
   performance	
   and	
   pervasive	
   computing	
   including	
   faster	
   machines,	
  
distributed	
   sensors	
   and	
   service-­‐oriented	
   software	
   have	
   created	
   new	
   opportunities	
   for	
   collecting,	
   integrating,	
  
analyzing	
   and	
   accessing	
   information	
   related	
   to	
   such	
   large	
   complex	
   networks.	
   The	
   advances	
   in	
   network	
   and	
  
information	
  science	
  that	
  build	
  on	
  this	
  new	
  capability	
  provide	
  entirely	
  new	
  ways	
  for	
  reasoning	
  and	
  controlling	
  
these	
   networks.	
   Together,	
   they	
   enhance	
   our	
   ability	
   to	
   formulate,	
   analyze	
   and	
   realize	
   novel	
   public	
   policies	
  
pertaining	
  to	
  these	
  complex	
  networks.	
  
The	
  course	
  will	
  cover	
  the	
  mathematical	
  and	
  computational	
  aspects	
  of	
  Network	
  Science.	
  It	
  will	
  provide	
  a	
  broad	
  
overview	
  of	
  the	
  area	
  and	
  then	
  will	
  focus	
  on	
  	
  
• Mathematical	
  aspects,	
  including	
  structure	
  theorems,	
  existence	
  proofs,	
  	
  
• Computational	
   aspects,	
   including,	
   provable	
   lower	
   as	
   well	
   as	
   upper	
   bounds	
   on	
   the	
   computational	
   resources,	
  
efMicient	
  algorithms	
  for	
  computing	
  the	
  structure	
  and	
  dynamics	
  over	
  complex	
  networks,	
  
• Developing	
   high	
   performance	
   computing	
   based	
   computational	
   models	
   and	
   modeling	
   environments	
   for	
  
supporting	
  Network	
  Science.	
  
Practical	
  applications	
  arising	
  in	
  the	
  context	
  of	
  infrastructure	
  planning,	
  energy	
  systems,	
  national	
  security	
  and	
  
integrated	
  communication	
  systems	
  will	
  be	
  used	
  to	
  illustrate	
  the	
  applicability	
  of	
  the	
  concepts.	
  	
  	
  	
  
Course Synopsis
Network Dynamics & Simulation Science Laboratory
Work	
  funded	
  in	
  part	
  by	
  NIGMS,	
  NIH	
  MIDAS	
  	
  program,	
  	
  CDC,	
  Center	
  of	
  
Excellence	
  in	
  Medical	
  Informatics,	
  DTRA	
  CNIMS,	
  NSF,	
  NeTs,	
  	
  NECO	
  and	
  OCI	
  	
  
program,	
  VT	
  Foundation.	
  
Network Dynamics & Simulation Science Laboratory
• 	
  Lada	
  Adamic:	
  For	
  graciously	
  sharing	
  her	
  course	
  notes	
  	
  
• 	
  NDSSL	
  Laboratory	
  members	
  who	
  are	
  in	
  reality	
  coauthors	
  of	
  this.	
  
• 	
  Other	
  places	
  that	
  I	
  have	
  borrowed	
  the	
  material	
  includes:	
  
• Tim	
  Roughgarden’s	
  lectures	
  on	
  Games	
  
• David	
  Kempe’s	
  Lectures	
  on	
  Networks	
  
• Henning	
  	
  Mortveit’s	
  lectures	
  on	
  SDS	
  
• Bogdan	
  Oporowski’s	
  lecture	
  on	
  Graph	
  theory	
  
• Michael	
  Kearns	
  lectures	
  on	
  Networks	
  and	
  Games	
  	
  
• …	
  and	
  many	
  more	
  
• Books	
  
• Fernando	
  Vega-­‐Redondo,	
  Complex	
  Social	
  Networks,	
  Econometric	
  Society	
  
Monographs,	
  ,	
  	
  Cambridge	
  University	
  Press,	
  2007	
  
• D.	
  Easley,	
  J.	
  Kleinberg.	
  Networks,	
  Crowds,	
  and	
  Markets:	
  reasoning	
  about	
  a	
  Highly	
  
Connected	
  World,	
  Cambridge	
  University	
  Press,	
  2010.	
  
• J.	
  Kleinberg,	
  E.	
  Tardos.	
  Algorithm	
  Design.	
  Addison	
  Wesley,	
  2005.	
  	
  
Matthew	
  Jackson,	
  Social	
  and	
  Economic	
  Networks,	
  Princeton	
  University	
  Press,	
  
2010	
  	
  
• …	
  and	
  many	
  more	
  
Acknowledgements for Course Material
What	
  is	
  a	
  Network?	
  
	
  History,	
  Broad	
  Research	
  Questions,	
  Illustrative	
  
Applications	
  
Network Dynamics & Simulation Science Laboratory
What	
  is	
  a	
  network	
  ?	
  
  Although	
  no	
  formal	
  accepted	
  
deMinition,	
  there	
  appears	
  to	
  be	
  a	
  
consensus	
  that	
  all	
  network	
  
comprise	
  of	
  the	
  following	
  
attributes:	
  
  A	
  set	
  of	
  agents	
  (entities):	
  agents	
  
can	
  be	
  simple,	
  game	
  like,	
  adaptive	
  
…	
  
  Interaction	
  among	
  the	
  entities	
  
governed	
  by	
  a	
  graph	
  (binary	
  or	
  in	
  
general	
  k-­‐ary	
  relationship)	
  
  Graph	
  itself	
  can	
  change,	
  co-­‐evolve	
  with	
  
the	
  entities	
  
  Entities	
  modify	
  their	
  local	
  states	
  
and	
  behavior	
  by	
  interacting	
  with	
  
their	
  neighbors	
  
Blogosphere
(datamining.typepad.com)
points lines
vertices edges, arcs math
nodes links computer science
sites bonds physics
actors ties, relations sociology
node
edge
Images	
  of	
  Various	
  Networks	
  
Network Dynamics & Simulation Science Laboratory
Social	
  Networks:	
  Facebook	
  has	
  over	
  500Million	
  
individuals!	
  
http://www.smrfoundation.org/category/industry/companies/facebook/
Network Dynamics & Simulation Science Laboratory
High	
  School	
  Dating	
  Network	
  (Discovery	
  Magazine	
  
2007)	
  
Network Dynamics & Simulation Science Laboratory
Router-­level	
  network	
  based	
  on	
  ISPs	
  
Network Dynamics & Simulation Science Laboratory
Delta	
  Airlines	
  Routes	
  (airline	
  routes	
  maps.com	
  
Network Dynamics & Simulation Science Laboratory
EU	
  rail	
  network	
  
Network Dynamics & Simulation Science Laboratory
Biological	
  Networks	
  
Institute of biology and technology - Saclay (iBiTec-S)/ Unités/
Department of Integrative Biology and Molecular Genetics (SBiGeM)/
Integrative biology laboratory (LBI)/ Dynamics of Biological Network (J. Labarre)
http://djpowell.wordpress.com/
http://www.leonelmoura.com/tree.html
Network Dynamics & Simulation Science Laboratory
In	
  real	
  world	
  Networks	
  are	
  layered	
  and	
  	
  coupled	
  
Network Dynamics & Simulation Science Laboratory
Growth	
  of	
  network	
  science	
  as	
  measured	
  by	
  
publications	
  
#papers	
  with	
  “complex	
  networks”	
  
in	
  the	
  title	
  
[National	
  Academy	
  of	
  Science	
  
Report,	
  2007]	
  
Journal	
  special	
  issues	
  on	
  Network	
  
Science	
  
Network Dynamics & Simulation Science Laboratory
Even	
  appears	
  in	
  main	
  stream	
  publications	
  
YESTERDAY	
  !	
  	
  
Network Dynamics & Simulation Science Laboratory
The	
  Emerging	
  Network	
  Science?	
  
  Newman,	
  Barabasi,	
  Watts:	
  The	
  Structure	
  and	
  Dynamics	
  of	
  Networks:	
  “We	
  
argue	
  that	
  the	
  science	
  of	
  networks	
  that	
  has	
  been	
  taking	
  shape	
  over	
  the	
  last	
  few	
  
years	
  is	
  distinguished	
  from	
  preceding	
  work	
  on	
  networks	
  in	
  three	
  important	
  
ways:	
  	
  
  (1)	
  by	
  focusing	
  on	
  the	
  properties	
  of	
  real-­‐world	
  networks,	
  it	
  is	
  concerned	
  with	
  
empirical	
  as	
  well	
  as	
  theoretical	
  questions;	
  	
  
  (2)	
  it	
  frequently	
  takes	
  the	
  view	
  that	
  networks	
  are	
  not	
  static,	
  but	
  evolve	
  in	
  time	
  
according	
  to	
  various	
  dynamical	
  rules;	
  and	
  	
  
  (3)	
  it	
  aims,	
  ultimately	
  at	
  least,	
  to	
  understand	
  networks	
  not	
  just	
  as	
  topological	
  
objects,	
  but	
  also	
  as	
  the	
  framework	
  upon	
  which	
  distributed	
  dynamical	
  systems	
  are	
  
built.”	
  
  Kearns:	
  An	
  Emerging	
  Science:	
  
  Examine	
  apparent	
  similarities	
  (and	
  differences)	
  between	
  many	
  social,	
  
economic,	
  information,	
  biological	
  and	
  technological	
  networks	
  
  Importance	
  of	
  network	
  effects	
  in	
  such	
  systems	
  
  How	
  things	
  are	
  connected	
  matters	
  greatly	
  
  Details	
  of	
  interaction	
  matter	
  greatly	
  
  Qualitative	
  and	
  quantitative;	
  can	
  be	
  very	
  subtle	
  
  A	
  revolution	
  of	
  measurement,	
  theory,	
  and	
  breadth	
  of	
  vision	
  
Network Dynamics & Simulation Science Laboratory
Science	
  of	
  Networks:	
  A	
  personal	
  (and	
  likely	
  
biased)	
  viewpoint	
  1:	
  
  Real	
  World	
  Networks:	
  
  Extremely	
  important	
  but	
  ..	
  
  Folks	
  in	
  social	
  sciences,	
  transportation,	
  electrical	
  systems,	
  VLSI,	
  …	
  all	
  
have	
  been	
  studying	
  real	
  world	
  networks	
  
  We	
  need	
  to	
  seriously	
  revisit	
  the	
  use	
  of	
  simple	
  random	
  graph	
  models	
  as	
  
a	
  way	
  to	
  explain	
  a	
  phenomenon:	
  the	
  mathematics	
  is	
  elegant	
  but	
  often	
  
means	
  very	
  little	
  in	
  the	
  real	
  world	
  
  Real	
  world	
  networks	
  are	
  dynamic,	
  coupled	
  and	
  co-­‐evolve	
  
  Ability	
  to	
  collect	
  data	
  that	
  is	
  diverse	
  (spatially,	
  
demographically),	
  process	
  it,	
  store	
  it	
  and	
  reason	
  about	
  it	
  very	
  
fast	
  
  New	
  data	
  should	
  be	
  utilized	
  in	
  developing	
  network	
  models	
  
New	
  and	
  realistic	
  models	
  of	
  real	
  world	
  networks.	
  	
  
Models	
  should	
  represent	
  coupling	
  and	
  co-­evolution	
  
Network Dynamics & Simulation Science Laboratory
Accessibility	
  of	
  Network	
  Science:	
  Pervasive	
  Computing	
  	
  
Environment	
  
  High	
  performance	
  computing	
  (larger	
  machines,	
  data	
  intensive	
  systems,	
  
distributed	
  systems	
  …)	
  
  Software	
  as	
  a	
  service;	
  delivering	
  results	
  to	
  specialist	
  who	
  is	
  not	
  
interested	
  in	
  becoming	
  a	
  computer	
  scientist	
  
  Ability	
  to	
  collect	
  data	
  that	
  is	
  diverse	
  (spatially,	
  demographically),	
  process	
  
it,	
  store	
  it	
  and	
  reason	
  about	
  it	
  very	
  fast	
  
Develop	
  Pervasive	
  computing	
  technology	
  to	
  deliver	
  
Network	
  Science	
  technology	
  to	
  domain	
  specialists	
  and	
  
others	
  who	
  are	
  not	
  computing	
  experts	
  
Network Dynamics & Simulation Science Laboratory
Science	
  of	
  Networks:	
  Centrality	
  of	
  Computing	
  and	
  
Information	
  Science	
  
  From	
  analytical	
  results	
  to	
  algorithmic	
  viewpoint:	
  this	
  is	
  the	
  essence	
  of	
  
new	
  science	
  in	
  my	
  opinion	
  if	
  one	
  has	
  to	
  do	
  deal	
  with	
  real	
  networks	
  
  Questions	
  that	
  become	
  important	
  are:	
  
  How	
  can	
  we	
  design	
  certain	
  networks	
  
  How	
  can	
  we	
  measure	
  distributed	
  networks	
  
  What	
  is	
  a	
  certain	
  set	
  of	
  distributed	
  agents	
  computing:	
  interaction	
  based	
  computing	
  and	
  
social	
  cognition	
  
  Models	
  are	
  not	
  monolithic	
  or	
  federated	
  anymore	
  but	
  really	
  a	
  way	
  to	
  
synthesize	
  information	
  by	
  interacting	
  with	
  various	
  components	
  –	
  
Milner’s	
  in_luential	
  idea	
  on	
  interactionism	
  
Algorithmic	
  Viewpoint	
  	
  provide	
  the	
  foundational	
  basis	
  	
  
HPC	
  computing	
  provide	
  the	
  underlying	
  technology	
  
Network Dynamics & Simulation Science Laboratory
Inter	
  and	
  intra-­discipline	
  interactions	
  –	
  
Emergence	
  of	
  a	
  Giant	
  Component	
  !	
  	
  
  We	
  have	
  reached	
  	
  critical	
  point	
  wherein	
  researchers	
  from	
  diverse	
  
disciplines	
  are	
  starting	
  to	
  share	
  their	
  ideas	
  and	
  interact	
  
(Gladwell’s	
  Tipping	
  point)	
  
  Beautiful	
  convergence	
  of	
  ideas	
  and	
  view	
  points	
  in	
  CS,	
  Engineering,	
  
Economics,	
  Mathematics,	
  Physics,	
  	
  Social	
  Science,	
  Biology….	
  
(convergence	
  of	
  several	
  events,	
  world	
  becoming	
  smaller,	
  funding	
  
agencies	
  pushing	
  to	
  do	
  joint	
  work!,	
  global	
  problems,	
  problems	
  that	
  
were	
  being	
  solved	
  by	
  disciplinary	
  viewpoints)	
  
  Economic	
  drivers:	
  Information	
  economy,	
  distributed	
  logisitics,	
  
global	
  markets,	
  mobile	
  labor	
  force,	
  funding	
  shortfalls	
  
  Measurement	
  technologies	
  and	
  technologies	
  for	
  developing	
  and	
  
sustaining	
  diverse	
  organizations	
  and	
  ecosystems	
  have	
  taken	
  hold	
  
Multi-­disciplinary	
  view	
  important:	
  from	
  real	
  research	
  
social	
  networks	
  !	
  
Network Dynamics & Simulation Science Laboratory
Culmination	
  of	
  diverse	
  _ields:	
  Viewpoints	
  
are	
  different	
  and	
  interesting	
  
Engineers	
  
• Understand	
  how	
  infrastructure	
  
networks	
  work	
  	
  
• Design	
  and	
  control	
  of	
  these	
  
networks	
  
Computer	
  Scientists	
  
• Understand	
  and	
  design	
  complex,	
  
distributed	
  networks	
  
• 	
  algorithmic	
  view:	
  	
  design	
  of	
  a	
  
system	
  and	
  inferring	
  its	
  
semantics	
  
Social	
  Scientists,	
  Behavioral	
  
Psychologists,	
  Economists	
  
• Understand	
  human	
  behavior	
  in	
  
“simple”	
  settings	
  
• Revised	
  views	
  of	
  economic	
  
rationality	
  in	
  humans	
  
Biologists	
  
• Neural	
  networks,	
  gene	
  regulatory	
  
networks,…	
  
• Understanding	
  the	
  evolution	
  of	
  
networks	
  
Physicists	
  and	
  
Mathematicians	
  
• Interest	
  and	
  methods	
  in	
  complex	
  
systems	
  
• Theories	
  of	
  macroscopic	
  behavior	
  
(phase	
  transitions)	
  
Scientists forming
co-evolving
networks World
Network Dynamics & Simulation Science Laboratory
Proposed	
  Components	
  of	
  a	
  Research	
  Program	
  in	
  
Network	
  Science	
  and	
  Engineering	
  
Structural	
  Analysis	
  
of	
  Complex	
  
Networks	
  
Dynamics	
  on	
  
Complex	
  Networks	
  
Co-­‐evolution	
  of	
  
dynamics,	
  network	
  
and	
  individual	
  
behavior	
  
Measurement	
  and	
  
Inference	
  
Networks
Science in Real
World
Network Dynamics & Simulation Science Laboratory
Key	
  Research	
  Challenges	
  (NA	
  report	
  on	
  Network	
  	
  
Science)	
  
1.  Dynamics:	
  Better	
  understanding	
  between	
  structure	
  
and	
  function	
  
2.  Modeling	
  and	
  Analysis	
  of	
  large	
  networks:	
  Tools,	
  
abstractions,	
  approximations	
  
3.  Design	
  and	
  Synthesis	
  of	
  Networks	
  
4.  Increasing	
  level	
  of	
  rigor	
  and	
  mathematical	
  structure	
  
5.  Abstracting	
  common	
  concepts	
  across	
  Mields	
  
6.  Better	
  experiments	
  and	
  measurements	
  of	
  network	
  
structure	
  
7.  Robustness	
  and	
  Security	
  
Motivating	
  examples/applications	
  
Network Dynamics & Simulation Science Laboratory
Application	
  1	
  (1736):	
  First	
  Use	
  of	
  Graphs	
  	
  
Seven	
  Bridges	
  of	
  Königsberg	
  
  Seven	
  Bridges	
  of	
  Königsberg	
  –	
  one	
  of	
  the	
  Mirst	
  problems	
  in	
  graph	
  
theory	
  
  Is	
  there	
  a	
  route	
  that	
  crosses	
  each	
  bridge	
  only	
  once	
  and	
  returns	
  to	
  the	
  
starting	
  point?	
  
We	
  will	
  see	
  how	
  this	
  problem	
  can	
  be	
  solved	
  by	
  modeling	
  it	
  as	
  a	
  
graph	
  theory	
  problem	
  later	
  
Network Dynamics & Simulation Science Laboratory
Application	
  2	
  (1850s):	
  
Cholera	
  Pandemic:	
  John	
  Snow	
  	
  
First	
  Cholera	
  Pandemic	
  
Second	
  Cholera	
  Pandemic	
  
 During	
  this	
  time	
  germ	
  theory	
  of	
  diseases	
  was	
  
not	
  widely	
  accepted.	
  
 During	
  John	
  Snow's	
  life	
  time	
  there	
  were	
  three	
  
pandemics	
  of	
  Asiatic	
  cholera	
  (1817-­‐23,	
  1826-­‐37	
  
and	
  1846-­‐63),	
  two	
  of	
  which	
  reached	
  the	
  British	
  
isles.	
  
 	
  The	
  epidemic	
  in	
  1848	
  to	
  1849,	
  killed	
  	
  between	
  
50,000	
  and	
  70,000	
  in	
  England	
  and	
  Wales.	
  A	
  third	
  
outbreak	
  in	
  1854	
  left	
  over	
  30,000	
  people	
  dead	
  in	
  
London	
  alone.	
  	
  
 Vibrio	
  cholerae:	
  Toxin	
  alters	
  sodium	
  pump	
  in	
  
intestinal	
  cells	
  	
  Mluid	
  loss	
  
 Entry:	
  oral	
  Colonization:	
  small	
  intestine	
  
Symptoms:	
  nausea,	
  diarrhea,	
  muscle	
  cramps,	
  
shock	
  
http://www.ph.ucla.edu/epi/snow.html
Network Dynamics & Simulation Science Laboratory
Application	
  3	
  (1950-­60)	
  	
  
Segregation	
  (Schelling):	
  Micromotives	
  to	
  Macrobehavior	
  
  Duncan	
  and	
  Duncan’s	
  (1957)	
  study	
  of	
  Chicago	
  
  1940-­‐1950	
  Census	
  tracts,	
  mixed	
  neighborhoods	
  all	
  segregate	
  
  Placed	
  pennies	
  and	
  dimes	
  on	
  a	
  chess	
  board	
  and	
  moved	
  them	
  
around	
  according	
  to	
  various	
  rules.	
  	
  
  Board	
  =	
  	
  city,	
  	
  Square	
  =	
  Housing	
  lot,	
  agent:	
  at	
  a	
  location	
  
  Pennies	
  and	
  dimes	
  =	
  agents	
  representing	
  two	
  groups	
  in	
  society,	
  	
  
e.g.	
  boys	
  and	
  girls,	
  smokers	
  and	
  non-­‐smokers,	
  etc.	
  	
  
  Neighborhood	
  =adjacent	
  	
  locations	
  on	
  the	
  board	
  
  Happy	
  if	
  (neighbors	
  of	
  same	
  type	
  >	
  threshold)	
  	
  
  If	
  Unhappy	
  then	
  move	
  to	
  a	
  random	
  location	
  	
  that	
  is	
  happy	
  
  Result:	
  Many	
  basic	
  conMigurations	
  produce	
  segregation	
  
  relate	
  decisions	
  about	
  where	
  to	
  live	
  (micro)	
  to	
  patterns	
  of	
  
segregation	
  (macro)	
  
  No	
  obvious	
  relationship	
  between	
  individual	
  behavior	
  and	
  
aggregate	
  outcomes.	
  	
  
  Behavior	
  is	
  interdependent.	
  Individuals’	
  behaviors	
  depend	
  on	
  
social	
  context	
  (micro)	
  
  Individual	
  behaviors	
  collectively	
  change	
  social	
  context	
  (long	
  
term,	
  macro)	
  
http://cs.gmu.edu/~eclab/projects/mason/projects/schelling/
Network Dynamics & Simulation Science Laboratory
Application	
  4:	
  Power	
  grids	
  and	
  cascading	
  failures	
  
  Vast	
  system	
  of	
  electricity	
  generation,	
  transmission	
  &	
  distribution	
  is	
  
essentially	
  
a	
  single	
  network	
  
  Power	
  Mlows	
  through	
  
all	
  paths	
  from	
  source	
  to	
  sink	
  
(Mlow	
  calculations	
  are	
  
important	
  for	
  other	
  networks,	
  
even	
  social	
  ones)	
  
  All	
  AC	
  lines	
  within	
  an	
  	
  
interconnect	
  must	
  be	
  in	
  sync	
  
  If	
  frequency	
  varies	
  too	
  much	
  (as	
  line	
  approaches	
  capacity),	
  a	
  circuit	
  
breaker	
  takes	
  the	
  generator	
  out	
  of	
  the	
  system	
  
  Larger	
  Mlows	
  are	
  sent	
  to	
  neighboring	
  parts	
  of	
  the	
  grid	
  –	
  triggering	
  a	
  
cascading	
  failure	
  
Network Dynamics & Simulation Science Laboratory
Application	
  4:	
  	
  
Blackout	
  of	
  2003:	
  
  Electrical	
  Infrastructure	
  
Affected	
  
  Area	
  of	
  50	
  million	
  people	
  in	
  eight	
  US	
  
states	
  and	
  two	
  provinces	
  in	
  Canada	
  
  Approximately61,800Megawatts
(MW)oMload	
  	
  
  Most	
  cascaded	
  happen	
  extremely	
  
rapidly	
  from	
  4.10	
  pm	
  to	
  4.13	
  pm	
  
  Human	
  and	
  information	
  system	
  
error	
  also	
  contributed	
  to	
  the	
  
cascade	
  
  Other	
  Infrastructures	
  including	
  
water,	
  communication,	
  and	
  most	
  
notably	
  transportation	
  (rail,	
  road	
  
and	
  air)	
  were	
  affected	
  
  TV	
  and	
  radio	
  stations	
  also	
  
affected	
  
Network Dynamics & Simulation Science Laboratory
Timeline	
  for	
  2003	
  Blackout:	
  Need	
  for	
  Multi-­level	
  
networks	
  
The	
  2003	
  blackout	
  wasn't	
  just	
  about	
  fallen	
  trees	
  and	
  broken	
  
transmission	
  lines.	
  As	
  this	
  timeline	
  from	
  the	
  Department	
  of	
  Energy	
  
report	
  shows,	
  it	
  resulted	
  from	
  a	
  combination	
  of	
  many	
  grid	
  events,	
  
computer	
  glitches,	
  and	
  human	
  interaction.	
  
Network Dynamics & Simulation Science Laboratory
Blackout	
  of	
  2003:Time	
  Line	
  –	
  The	
  Initial	
  Phase	
  
  12:15	
  p.m.	
  Incorrect	
  telemetry	
  data	
  renders	
  inoperative	
  the	
  state	
  estimator,	
  a	
  power	
  Mlow	
  
monitoring	
  tool	
  operated	
  by	
  the	
  Indiana-­‐based
Midwest	
  Independent	
  Transmission	
  System	
  Operator	
  (MISO).	
  An	
  operator	
  corrects	
  the	
  telemetry	
  
problem	
  but	
  forgets	
  to	
  restart	
  the	
  monitoring	
  tool.	
  	
  
  1:31	
  p.m.	
  The	
  Eastlake,	
  Ohio	
  generating	
  plant	
  shuts	
  down.	
  The	
  plant	
  is	
  owned	
  by	
  FirstEnergy,	
  an	
  
Akron,	
  Ohio-­‐based	
  company	
  that	
  had	
  experienced	
  extensive	
  recent	
  maintenance	
  problems.	
  
  2:02	
  p.m.	
  The	
  Mirst	
  of	
  several	
  345	
  kV	
  overhead	
  transmission	
  lines	
  in	
  northeast	
  Ohio	
  fails	
  due	
  to	
  
contact	
  with	
  a	
  tree	
  in	
  Walton	
  Hills,	
  Ohio.	
  
  	
  2:14	
  p.m.	
  An	
  alarm	
  system	
  fails	
  at	
  FirstEnergy's	
  control	
  room	
  and	
  is	
  not	
  repaired.	
  	
  
  3:05	
  p.m.	
  A	
  345	
  kV	
  transmission	
  line	
  known	
  as	
  the	
  Chamberlain-­‐Harding	
  line	
  fails	
  in	
  Parma,	
  south	
  
of	
  Cleveland,	
  due	
  to	
  a	
  tree.	
  	
  
  3:17	
  p.m.	
  Voltage	
  dips	
  temporarily	
  on	
  the	
  Ohio	
  portion	
  of	
  the	
  grid.	
  Controllers	
  take	
  no	
  action.	
  	
  
  3:32	
  p.m.	
  Power	
  shifted	
  by	
  the	
  Mirst	
  failure	
  onto	
  another	
  345	
  kV	
  power	
  line,	
  the	
  Hanna-­‐Juniper	
  
interconnection,	
  causes	
  it	
  to	
  sag	
  into	
  a	
  tree,	
  bringing	
  it	
  ofMline	
  as	
  well.	
  While	
  MISO	
  and	
  FirstEnergy	
  
controllers	
  concentrate	
  on	
  understanding	
  the	
  failures,	
  they	
  fail	
  to	
  inform	
  system	
  controllers	
  in	
  
nearby	
  states.	
  	
  
  3:39	
  p.m.	
  A	
  FirstEnergy	
  138	
  kV	
  line	
  fails	
  in	
  northern	
  Ohio.	
  
  3:41	
  p.m.	
  A	
  circuit	
  breaker	
  connecting	
  FirstEnergy's	
  grid	
  with	
  that	
  of	
  American	
  Electric	
  Power	
  is	
  
tripped	
  as	
  a	
  345	
  kV	
  power	
  line	
  (Star-­‐South	
  Canton	
  interconnection)	
  and	
  Mifteen	
  138	
  kV	
  lines	
  fail	
  in	
  
rapid	
  succession	
  in	
  northern	
  Ohio.	
  	
  
http://en.wikipedia.org/wiki/Northeast_Blackout_of_2003	
  
Network Dynamics & Simulation Science Laboratory
Blackout	
  of	
  2003:	
  Timeline	
  -­-­	
  	
  the	
  	
  cascade	
  begins	
  
  3:46	
  p.m.	
  A	
  Mifth	
  345	
  kV	
  line,	
  the	
  Tidd-­‐Canton	
  Central	
  line,	
  trips	
  ofMline.	
  	
  
  4:05:57	
  p.m.	
  The	
  Sammis-­‐Star	
  345	
  kV	
  line	
  trips	
  due	
  to	
  undervoltage	
  and	
  overcurrent	
  
interpreted	
  as	
  a	
  short	
  circuit.	
  Later	
  analysis	
  suggests	
  that	
  the	
  blackout	
  could	
  have	
  been	
  
averted	
  prior	
  to	
  this	
  failure	
  by	
  cutting	
  1.5	
  GW	
  of	
  load	
  in	
  the	
  Cleveland–Akron	
  area.	
  	
  
  4:06–4:08	
  p.m.	
  Sustained	
  power	
  surge	
  north	
  toward	
  Cleveland	
  overloads	
  3	
  138	
  kV	
  lines.	
  	
  
  4:09:02	
  p.m.	
  Voltage	
  sags	
  deeply	
  as	
  Ohio	
  draws	
  2	
  GW	
  of	
  power	
  from	
  Michigan,	
  creating	
  
simultaneous	
  undervoltage	
  and	
  overcurrent	
  conditions	
  as	
  power	
  attempts	
  to	
  Mlow	
  in	
  such	
  a	
  
way	
  as	
  to	
  rebalance	
  the	
  system's	
  voltage.	
  	
  
  4:10:34	
  p.m.	
  Many	
  transmission	
  lines	
  trip	
  out,	
  Mirst	
  in	
  Michigan	
  and	
  then	
  in	
  Ohio,	
  blocking	
  the	
  
eastward	
  Mlow	
  of	
  power	
  around	
  the	
  south	
  shore	
  of	
  Lake	
  Erie.	
  Suddenly	
  bereft	
  of	
  demand,	
  
generating	
  stations	
  go	
  ofMline,	
  creating	
  a	
  huge	
  power	
  deMicit.	
  In	
  seconds,	
  power	
  surges	
  in	
  from	
  
the	
  east,	
  overloading	
  east-­‐coast	
  power	
  plants	
  whose	
  generators	
  go	
  ofMline	
  as	
  a	
  protective	
  
measure,	
  and	
  the	
  blackout	
  is	
  on.	
  
  4:10:37	
  p.m.	
  The	
  eastern	
  and	
  western	
  Michigan	
  power	
  grids	
  disconnect	
  from	
  each	
  other.	
  Two	
  
345	
  kV	
  lines	
  in	
  Michigan	
  trip.	
  A	
  line	
  that	
  runs	
  from	
  Grand	
  Ledge	
  to	
  Ann	
  Arbor	
  known	
  as	
  the	
  
Oneida-­‐Majestic	
  interconnection	
  trips.	
  A	
  short	
  time	
  later,	
  a	
  line	
  running	
  from	
  Bay	
  City	
  south	
  
to	
  Flint	
  in	
  Consumers	
  Energy's	
  system	
  known	
  as	
  the	
  Hampton-­‐Thetford	
  line	
  also	
  trips.	
  	
  
  4:10:38	
  p.m.	
  Cleveland	
  separates	
  from	
  the	
  Pennsylvania	
  grid.	
  
Network Dynamics & Simulation Science Laboratory
Blackout	
  of	
  2003:	
  Timeline	
  -­-­	
  Crescendo	
  
  4:10:39	
  p.m.	
  3.7	
  GW	
  power	
  Mlows	
  from	
  the	
  east	
  along	
  the	
  north	
  shore	
  of	
  Lake	
  Erie,	
  through	
  
Ontario	
  to	
  southern	
  Michigan	
  and	
  northern	
  Ohio,	
  a	
  Mlow	
  more	
  than	
  ten	
  times	
  greater	
  than	
  the	
  
condition	
  30	
  seconds	
  earlier,	
  causing	
  a	
  voltage	
  drop	
  across	
  the	
  system.	
  4:10:40	
  p.m.	
  Flow	
  Mlips	
  to	
  
2	
  GW	
  eastward	
  from	
  Michigan	
  through	
  Ontario	
  (a	
  net	
  reversal	
  of	
  5.7	
  GW	
  of	
  power),	
  then	
  reverses	
  
back	
  westward	
  again	
  within	
  a	
  half	
  second.	
  
  4:10:40	
  p.m.	
  Flow	
  Mlips	
  to	
  2	
  GW	
  eastward	
  from	
  Michigan	
  through	
  Ontario	
  (a	
  net	
  reversal	
  of	
  5.7	
  
GW	
  of	
  power),	
  then	
  reverses	
  back	
  westward	
  again	
  within	
  a	
  half	
  second.	
  	
  
  4:10:43	
  p.m.	
  International	
  connections	
  between	
  the	
  United	
  States	
  and	
  Canada	
  begin	
  failing.	
  
  4:10:45	
  p.m.	
  Northwestern	
  Ontario	
  separates	
  from	
  the	
  east	
  when	
  the	
  Wawa-­‐Marathon	
  230	
  kV	
  
line	
  north	
  of	
  Lake	
  Superior	
  disconnects.	
  The	
  Mirst	
  Ontario	
  power	
  plants	
  go	
  ofMline	
  in	
  response	
  to	
  
the	
  unstable	
  voltage	
  and	
  current	
  demand	
  on	
  the	
  system.	
  	
  
  4:10:46	
  p.m.	
  New	
  York	
  separates	
  from	
  the	
  New	
  England	
  grid.	
  	
  
  4:10:50	
  p.m.	
  Ontario	
  separates	
  from	
  the	
  western	
  New	
  York	
  grid.	
  	
  
  4:11:57	
  p.m.	
  The	
  Keith-­‐Waterman,	
  Bunce	
  Creek-­‐Scott	
  230	
  kV	
  lines	
  and	
  the	
  St.	
  Clair-­‐Lambton	
  #1	
  
230	
  kV	
  line	
  and	
  #2	
  345	
  kV	
  line	
  between	
  Michigan	
  and	
  Ontario	
  fail.	
  	
  
  4:12:03	
  p.m.	
  Windsor,	
  Ontario	
  and	
  surrounding	
  areas	
  drop	
  off	
  the	
  grid.	
  	
  
  4:12:58	
  p.m.	
  Northern	
  New	
  Jersey	
  separates	
  its	
  power-­‐grids	
  from	
  New	
  York	
  and	
  the	
  Philadelphia	
  
area,	
  causing	
  a	
  cascade	
  of	
  failing	
  secondary	
  generator	
  plants	
  along	
  the	
  Jersey	
  coast	
  and	
  
throughout	
  the	
  inland	
  west.	
  	
  
  4:13	
  p.m.	
  End	
  of	
  cascading	
  failure.	
  256	
  power	
  plants	
  are	
  off-­‐line,	
  85%	
  of	
  which	
  went	
  ofMline	
  after	
  
the	
  grid	
  separations	
  occurred,	
  most	
  due	
  to	
  the	
  action	
  of	
  automatic	
  protective	
  controls.	
  
Network Dynamics & Simulation Science Laboratory
Milgram’s	
  Small	
  World	
  Experiment	
  
  Travers	
  &	
  Milgram	
  1969:	
  classic	
  early	
  social	
  
network	
  study	
  
  destination:	
  a	
  Boston	
  stockbroker;	
  	
  
	
  lived	
  in	
  Sharon,	
  MA	
  
  sources:	
  Nebraska	
  stockowners;	
  	
  
  forward	
  letter	
  to	
  a	
  Mirst-­‐name	
  	
  
	
  acquaintance	
  “closer”	
  to	
  target	
  
  Information	
  provided:	
  
  name,	
  address,	
  occupation,	
  Mirm,	
  college,	
  wife’s	
  
name	
  and	
  hometown	
  
  navigational	
  value?	
  
  Basic	
  Mindings:	
  
  64	
  of	
  296	
  chains	
  reached	
  the	
  target	
  
  20%	
  of	
  senders	
  reached	
  target.	
  
  average	
  chain	
  length	
  =	
  6.5:	
  “Six	
  degrees	
  of	
  separation”	
  
  average	
  length	
  of	
  completed	
  chains:	
  5.2	
  
  interaction	
  of	
  chain	
  length	
  and	
  navigational	
  
difMiculties	
  
  main	
  approach	
  routes:	
  home	
  (6.1)	
  and	
  work	
  
(4.6)	
  
  Boston	
  sources	
  (4.4)	
  faster	
  than	
  Nebraska	
  (5.5)	
  
  no	
  advantage	
  for	
  Nebraska	
  stockowners	
  
NE
MA
Network Dynamics & Simulation Science Laboratory
Recent	
  small	
  world	
  experiment	
  
Setup	
  
  Email	
  experiment	
  	
  Dodds,	
  
Muhamad,	
  Watts,	
  	
  Science	
  301,	
  
(2003)	
  
  18	
  targets,	
  13	
  different	
  countries	
  
60,000+	
  participants	
  
  a	
  professor	
  at	
  an	
  Ivy	
  League	
  
university,	
  
  an	
  archival	
  inspector	
  in	
  Estonia,	
  
  a	
  technology	
  consultant	
  in	
  India,	
  
  a	
  policeman	
  in	
  Australia,	
  
  a	
  veterinarian	
  in	
  the	
  Norwegian	
  
army.	
  
Basic	
  Analysis	
  
  Approximate	
  37%	
  participation	
  rate	
  
approximately	
  .	
  
  Probability	
  of	
  a	
  chain	
  of	
  length	
  10	
  
getting	
  through:	
  
  .3710	
  ~	
  5	
  x	
  10-­‐5	
  
  so	
  only	
  one	
  out	
  of	
  20,000	
  chains	
  would	
  
make	
  it	
  
  actual	
  #	
  of	
  completed	
  chains:	
  384	
  
(1.6%	
  of	
  all	
  chains).	
  
  Average	
  path	
  length:	
  4,	
  median:	
  7	
  
  Small	
  changes	
  in	
  attrition	
  rates	
  lead	
  to	
  
large	
  changes	
  in	
  completion	
  rates	
  
  e.g.,	
  a	
  15%	
  decrease	
  in	
  attrition	
  rate	
  
would	
  lead	
  to	
  a	
  800%	
  increase	
  in	
  
completion	
  rate	
  
Network Dynamics & Simulation Science Laboratory
Estimating	
  ‘recovered’	
  chain	
  lengths	
  for	
  uncompleted	
  
chains	
  
  <L>	
  =	
  4.05	
  for	
  all	
  completed	
  chains	
  
  L*	
  =	
  Estimated	
  `true'	
  median	
  chain	
  length	
  
  Intra-­‐country	
  chains:	
  L*	
  =	
  5	
  
  Inter-­‐country	
  chains:	
  L*	
  =	
  7	
  
  All	
  chains:	
  L*	
  =	
  7	
  
  Milgram:	
  L	
  *	
  ~	
  8-­‐9	
  hops	
  
Network Dynamics & Simulation Science Laboratory
Attrition	
  rate	
  stays	
  approx.	
  constant	
  throughout	
  
  rL	
  –	
  probability	
  of	
  not	
  passing	
  on	
  the	
  message	
  at	
  
distance	
  L	
  from	
  the	
  source	
  
average
95 % confidence interval
Network Dynamics & Simulation Science Laboratory
Estimated	
  ‘recovered’	
  chain	
  lengths	
  
  observed	
  chain	
  
lengths	
  
  ‘recovered’	
  
histogram	
  of	
  
path	
  lengths	
  
  	
  
inter-­‐country	
  
intra-­‐country	
  	
  
Network Dynamics & Simulation Science Laboratory
Small	
  world	
  experiment	
  at	
  Columbia	
  
 Successful	
  chains	
  disproportionately	
  used	
  
 	
  weak	
  ties	
  (Granovetter)	
  
 	
  professional	
  ties	
  (34%	
  vs.	
  13%)	
  
 	
  ties	
  originating	
  at	
  work/college	
  
 	
  target's	
  work	
  (65%	
  vs.	
  40%)	
  
 .	
  .	
  .	
  and	
  disproportionately	
  avoided	
  
 	
  hubs	
  (8%	
  vs.	
  1%)	
  (+	
  no	
  evidence	
  of	
  funnels)	
  
 	
  family/friendship	
  ties	
  (60%	
  vs.	
  83%)	
  
 Strategy:	
  Geography	
  -­‐>	
  Work	
  
Network Dynamics & Simulation Science Laboratory
How	
  many	
  hops	
  actually	
  separate	
  any	
  two	
  individuals	
  
in	
  the	
  world?	
  
  Participants	
  are	
  not	
  perfect	
  in	
  routing	
  messages	
  
  They	
  use	
  only	
  local	
  information	
  
  “The	
  accuracy	
  of	
  small	
  world	
  chains	
  in	
  social	
  networks”	
  	
  
Peter	
  D.	
  Killworth,	
  Chris	
  McCarty	
  ,	
  H.	
  Russell	
  Bernard&	
  Mark	
  House:	
  
  Analyze	
  10920	
  shortest	
  path	
  connections	
  between	
  105	
  
members	
  of	
  an	
  interviewing	
  bureau,	
  
  together	
  with	
  the	
  equivalent	
  conceptual,	
  or	
  ‘small	
  world’	
  routes,	
  
which	
  use	
  individuals’	
  selections	
  of	
  intermediaries.	
  	
  
  This	
  permits	
  the	
  Mirst	
  study	
  of	
  the	
  impact	
  of	
  accuracy	
  within	
  
small	
  world	
  chains.	
  
  The	
  mean	
  small	
  world	
  path	
  length	
  (3.23)	
  is	
  40%	
  longer	
  than	
  the	
  
mean	
  of	
  the	
  actual	
  shortest	
  paths	
  (2.30)	
  
  Model	
  suggests	
  that	
  people	
  make	
  a	
  less	
  than	
  optimal	
  small	
  
world	
  choice	
  more	
  than	
  half	
  the	
  time.	
  
Network Dynamics & Simulation Science Laboratory
Tentative	
  Schedule	
  
  Week	
  1	
  –	
  Module	
  1.	
  December	
  1-­‐2	
  (Wednesday,	
  &	
  Thursday)	
  
  Wednesday(1st	
  December):	
  Introduction	
  to	
  Network	
  Science	
  
  Thursday(2nd	
  December):	
  SDS	
  and	
  Diffusion	
  on	
  Networks,	
  
  Friday	
  (Extra	
  Class	
  if	
  interest):	
  EpiCure	
  –	
  modeling	
  environment	
  for	
  studying	
  
malware	
  propagation	
  in	
  wireless	
  networks.	
  
  	
  Week	
  2	
  –	
  Module	
  2	
  December	
  7-­‐9	
  	
  (Monday,	
  Tuesday,	
  Thursday)	
  	
  
  Monday	
  (6th	
  December):	
  	
  Control	
  and	
  InMluence	
  maximization	
  
  Tuesday	
  (7th	
  December):	
  Branching	
  process	
  result,	
  proof	
  of	
  Fastdiffuse.	
  Introduction	
  to	
  
various	
  diffusion	
  style	
  modeling	
  environments	
  
  Wednesday	
  (Extra	
  class	
  if	
  interest):	
  	
  Population	
  and	
  Network	
  Synthesis.	
  Introduction	
  
to	
  graph	
  analysis	
  
  Thursday	
  (9th	
  December):	
  SIMDEMICS	
  and	
  related	
  modeling	
  environments.	
  
  Week	
  3	
  –	
  Module	
  3	
  and	
  Module	
  4	
  (December	
  13-­‐16)	
  
  Monday	
  (13th	
  December):	
  Markets,	
  Games,	
  Mechanism	
  Design	
  and	
  SIGMA:	
  a	
  modeling	
  
environment	
  to	
  study	
  commodity	
  markets	
  on	
  networks,	
  	
  
  Tuesday	
  (14th	
  December):	
  Shortest	
  Paths,	
  Formal	
  language	
  constrained	
  paths,	
  Greedy	
  
routing,	
  routing	
  in	
  small	
  world	
  networks,	
  Introduction	
  to	
  TRANSIMS.	
  
  Thursday	
  (15th	
  December):	
  	
  Concluding	
  remarks,	
  Brief	
  discussion	
  of	
  	
  uncovered	
  topics,	
  
Open	
  Problems,	
  Directions	
  for	
  Future	
  Work.	
  

Weitere ähnliche Inhalte

Was ist angesagt?

Community Detection with Networkx
Community Detection with NetworkxCommunity Detection with Networkx
Community Detection with NetworkxErika Fille Legara
 
Introduction to Neo4j for the Emirates & Bahrain
Introduction to Neo4j for the Emirates & BahrainIntroduction to Neo4j for the Emirates & Bahrain
Introduction to Neo4j for the Emirates & BahrainNeo4j
 
RDBMS to Graph
RDBMS to GraphRDBMS to Graph
RDBMS to GraphNeo4j
 
Community detection in graphs
Community detection in graphsCommunity detection in graphs
Community detection in graphsNicola Barbieri
 
Querying Linked Data with SPARQL
Querying Linked Data with SPARQLQuerying Linked Data with SPARQL
Querying Linked Data with SPARQLOlaf Hartig
 
Social network analysis part ii
Social network analysis part iiSocial network analysis part ii
Social network analysis part iiTHomas Plotkowiak
 
How Graph Algorithms Answer your Business Questions in Banking and Beyond
How Graph Algorithms Answer your Business Questions in Banking and BeyondHow Graph Algorithms Answer your Business Questions in Banking and Beyond
How Graph Algorithms Answer your Business Questions in Banking and BeyondNeo4j
 
Introduction to Social Network Analysis
Introduction to Social Network AnalysisIntroduction to Social Network Analysis
Introduction to Social Network AnalysisPremsankar Chakkingal
 
Community detection
Community detectionCommunity detection
Community detectionScott Pauls
 
The contribution of authors: A study of the relationship between the size and...
The contribution of authors: A study of the relationship between the size and...The contribution of authors: A study of the relationship between the size and...
The contribution of authors: A study of the relationship between the size and...Rickard Danell
 
Neo4j GraphTalk Helsinki - Introduction and Graph Use Cases
Neo4j GraphTalk Helsinki - Introduction and Graph Use CasesNeo4j GraphTalk Helsinki - Introduction and Graph Use Cases
Neo4j GraphTalk Helsinki - Introduction and Graph Use CasesNeo4j
 
Social network analysis
Social network analysisSocial network analysis
Social network analysisCaleb Jones
 
Social network analysis (SNA) - Big data and social data - Telecommunications...
Social network analysis (SNA) - Big data and social data - Telecommunications...Social network analysis (SNA) - Big data and social data - Telecommunications...
Social network analysis (SNA) - Big data and social data - Telecommunications...Wael Elrifai
 
Data Modeling with Neo4j
Data Modeling with Neo4jData Modeling with Neo4j
Data Modeling with Neo4jNeo4j
 

Was ist angesagt? (20)

Community Detection with Networkx
Community Detection with NetworkxCommunity Detection with Networkx
Community Detection with Networkx
 
Introduction to Neo4j for the Emirates & Bahrain
Introduction to Neo4j for the Emirates & BahrainIntroduction to Neo4j for the Emirates & Bahrain
Introduction to Neo4j for the Emirates & Bahrain
 
06 Community Detection
06 Community Detection06 Community Detection
06 Community Detection
 
10 Strength Of Weak Ties
10 Strength Of Weak Ties10 Strength Of Weak Ties
10 Strength Of Weak Ties
 
RDBMS to Graph
RDBMS to GraphRDBMS to Graph
RDBMS to Graph
 
Community detection in graphs
Community detection in graphsCommunity detection in graphs
Community detection in graphs
 
Querying Linked Data with SPARQL
Querying Linked Data with SPARQLQuerying Linked Data with SPARQL
Querying Linked Data with SPARQL
 
Social network analysis part ii
Social network analysis part iiSocial network analysis part ii
Social network analysis part ii
 
How Graph Algorithms Answer your Business Questions in Banking and Beyond
How Graph Algorithms Answer your Business Questions in Banking and BeyondHow Graph Algorithms Answer your Business Questions in Banking and Beyond
How Graph Algorithms Answer your Business Questions in Banking and Beyond
 
Introduction to Social Network Analysis
Introduction to Social Network AnalysisIntroduction to Social Network Analysis
Introduction to Social Network Analysis
 
Graph databases
Graph databasesGraph databases
Graph databases
 
Community detection
Community detectionCommunity detection
Community detection
 
The contribution of authors: A study of the relationship between the size and...
The contribution of authors: A study of the relationship between the size and...The contribution of authors: A study of the relationship between the size and...
The contribution of authors: A study of the relationship between the size and...
 
Network stats using Gephi
Network stats using GephiNetwork stats using Gephi
Network stats using Gephi
 
randomwalk.ppt
randomwalk.pptrandomwalk.ppt
randomwalk.ppt
 
09 Ego Network Analysis
09 Ego Network Analysis09 Ego Network Analysis
09 Ego Network Analysis
 
Neo4j GraphTalk Helsinki - Introduction and Graph Use Cases
Neo4j GraphTalk Helsinki - Introduction and Graph Use CasesNeo4j GraphTalk Helsinki - Introduction and Graph Use Cases
Neo4j GraphTalk Helsinki - Introduction and Graph Use Cases
 
Social network analysis
Social network analysisSocial network analysis
Social network analysis
 
Social network analysis (SNA) - Big data and social data - Telecommunications...
Social network analysis (SNA) - Big data and social data - Telecommunications...Social network analysis (SNA) - Big data and social data - Telecommunications...
Social network analysis (SNA) - Big data and social data - Telecommunications...
 
Data Modeling with Neo4j
Data Modeling with Neo4jData Modeling with Neo4j
Data Modeling with Neo4j
 

Andere mochten auch

Intro to network Science
Intro to network ScienceIntro to network Science
Intro to network SciencePyData
 
A Perspective on Graph Theory and Network Science
A Perspective on Graph Theory and Network ScienceA Perspective on Graph Theory and Network Science
A Perspective on Graph Theory and Network ScienceMarko Rodriguez
 
An Introduction to Network Theory
An Introduction to Network TheoryAn Introduction to Network Theory
An Introduction to Network TheorySocialphysicist
 
HP_Putting_Customers_First
HP_Putting_Customers_FirstHP_Putting_Customers_First
HP_Putting_Customers_FirstShankar Banavasi
 
Raindrop impact on saturated sediment
Raindrop impact on saturated sedimentRaindrop impact on saturated sediment
Raindrop impact on saturated sedimentMohsen Cheraghi
 
Egresados presentacion
Egresados presentacionEgresados presentacion
Egresados presentacionSelf-Employed
 
Jaimin chp-1 - introduction - 2011 batch
Jaimin   chp-1  - introduction - 2011 batchJaimin   chp-1  - introduction - 2011 batch
Jaimin chp-1 - introduction - 2011 batchJaimin Jani
 
UWC renewable energy proposal
UWC renewable energy proposalUWC renewable energy proposal
UWC renewable energy proposalTobi Kellner
 
Minicourse on Network Science
Minicourse on Network ScienceMinicourse on Network Science
Minicourse on Network SciencePavel Loskot
 
Joget Workflow v5 Training - Module 1 - Introduction to Joget Workflow
Joget Workflow v5 Training - Module 1 - Introduction to Joget WorkflowJoget Workflow v5 Training - Module 1 - Introduction to Joget Workflow
Joget Workflow v5 Training - Module 1 - Introduction to Joget WorkflowJoget Workflow
 
Bioinformatics en español
Bioinformatics en españolBioinformatics en español
Bioinformatics en españolsiuniversity
 
Sistemas. presentacion bioinformática
Sistemas. presentacion bioinformáticaSistemas. presentacion bioinformática
Sistemas. presentacion bioinformáticaMariaAlejandraC23
 
Governing Big Data : Principles and practices
Governing Big Data : Principles and practicesGoverning Big Data : Principles and practices
Governing Big Data : Principles and practicesPiyush Malik
 
heart cardiac cycle
heart cardiac cycleheart cardiac cycle
heart cardiac cyclesydpeck93
 
OpenFOAM Programming Tips
OpenFOAM Programming TipsOpenFOAM Programming Tips
OpenFOAM Programming TipsFumiya Nozaki
 
オープンソースの CFD ソフトウェア SU2 のチュートリアルをやってみた
オープンソースの CFD ソフトウェア SU2 のチュートリアルをやってみたオープンソースの CFD ソフトウェア SU2 のチュートリアルをやってみた
オープンソースの CFD ソフトウェア SU2 のチュートリアルをやってみたFumiya Nozaki
 
OpenFOAM for beginners: Hands-on training
OpenFOAM for beginners: Hands-on trainingOpenFOAM for beginners: Hands-on training
OpenFOAM for beginners: Hands-on trainingJibran Haider
 

Andere mochten auch (20)

Intro to network Science
Intro to network ScienceIntro to network Science
Intro to network Science
 
A Perspective on Graph Theory and Network Science
A Perspective on Graph Theory and Network ScienceA Perspective on Graph Theory and Network Science
A Perspective on Graph Theory and Network Science
 
An Introduction to Network Theory
An Introduction to Network TheoryAn Introduction to Network Theory
An Introduction to Network Theory
 
Analysis of Major Trends in Big Data Analytics
Analysis of Major Trends in Big Data AnalyticsAnalysis of Major Trends in Big Data Analytics
Analysis of Major Trends in Big Data Analytics
 
HP_Putting_Customers_First
HP_Putting_Customers_FirstHP_Putting_Customers_First
HP_Putting_Customers_First
 
Raindrop impact on saturated sediment
Raindrop impact on saturated sedimentRaindrop impact on saturated sediment
Raindrop impact on saturated sediment
 
Egresados presentacion
Egresados presentacionEgresados presentacion
Egresados presentacion
 
Jaimin chp-1 - introduction - 2011 batch
Jaimin   chp-1  - introduction - 2011 batchJaimin   chp-1  - introduction - 2011 batch
Jaimin chp-1 - introduction - 2011 batch
 
UWC renewable energy proposal
UWC renewable energy proposalUWC renewable energy proposal
UWC renewable energy proposal
 
Minicourse on Network Science
Minicourse on Network ScienceMinicourse on Network Science
Minicourse on Network Science
 
OpenFOAM Training v5-1-en
OpenFOAM Training v5-1-enOpenFOAM Training v5-1-en
OpenFOAM Training v5-1-en
 
Joget Workflow v5 Training - Module 1 - Introduction to Joget Workflow
Joget Workflow v5 Training - Module 1 - Introduction to Joget WorkflowJoget Workflow v5 Training - Module 1 - Introduction to Joget Workflow
Joget Workflow v5 Training - Module 1 - Introduction to Joget Workflow
 
Bioinformatics en español
Bioinformatics en españolBioinformatics en español
Bioinformatics en español
 
Sistemas. presentacion bioinformática
Sistemas. presentacion bioinformáticaSistemas. presentacion bioinformática
Sistemas. presentacion bioinformática
 
Governing Big Data : Principles and practices
Governing Big Data : Principles and practicesGoverning Big Data : Principles and practices
Governing Big Data : Principles and practices
 
heart cardiac cycle
heart cardiac cycleheart cardiac cycle
heart cardiac cycle
 
OpenFOAM Programming Tips
OpenFOAM Programming TipsOpenFOAM Programming Tips
OpenFOAM Programming Tips
 
オープンソースの CFD ソフトウェア SU2 のチュートリアルをやってみた
オープンソースの CFD ソフトウェア SU2 のチュートリアルをやってみたオープンソースの CFD ソフトウェア SU2 のチュートリアルをやってみた
オープンソースの CFD ソフトウェア SU2 のチュートリアルをやってみた
 
OpenFOAM for beginners: Hands-on training
OpenFOAM for beginners: Hands-on trainingOpenFOAM for beginners: Hands-on training
OpenFOAM for beginners: Hands-on training
 
Control of-respiration
Control of-respirationControl of-respiration
Control of-respiration
 

Ähnlich wie Network Science: Theory, Modeling and Applications

dagrep_v006_i004_p057_s16152
dagrep_v006_i004_p057_s16152dagrep_v006_i004_p057_s16152
dagrep_v006_i004_p057_s16152Lenore Mullin
 
FAST AND ACCURATE MINING THE COMMUNITY STRUCTURE: INTEGRATING CENTER LOCATING...
FAST AND ACCURATE MINING THE COMMUNITY STRUCTURE: INTEGRATING CENTER LOCATING...FAST AND ACCURATE MINING THE COMMUNITY STRUCTURE: INTEGRATING CENTER LOCATING...
FAST AND ACCURATE MINING THE COMMUNITY STRUCTURE: INTEGRATING CENTER LOCATING...Nexgen Technology
 
Feasibility of Artificial Neural Network in Civil Engineering
Feasibility of Artificial Neural Network in Civil EngineeringFeasibility of Artificial Neural Network in Civil Engineering
Feasibility of Artificial Neural Network in Civil Engineeringijtsrd
 
Grid computing the grid
Grid computing the gridGrid computing the grid
Grid computing the gridJivan Nepali
 
Networks, Deep Learning and COVID-19
Networks, Deep Learning and COVID-19Networks, Deep Learning and COVID-19
Networks, Deep Learning and COVID-19tm1966
 
Data mining based social network
Data mining based social networkData mining based social network
Data mining based social networkFiras Husseini
 
Contractor-Borner-SNA-SAC
Contractor-Borner-SNA-SACContractor-Borner-SNA-SAC
Contractor-Borner-SNA-SACwebuploader
 
GridComputing-an introduction.ppt
GridComputing-an introduction.pptGridComputing-an introduction.ppt
GridComputing-an introduction.pptNileshkuGiri
 
Visually Exploring Social Participation in Encyclopedia of Life
Visually Exploring Social Participation in Encyclopedia of LifeVisually Exploring Social Participation in Encyclopedia of Life
Visually Exploring Social Participation in Encyclopedia of LifeHarish Vaidyanathan
 
How to make data more usable on the Internet of Things
How to make data more usable on the Internet of ThingsHow to make data more usable on the Internet of Things
How to make data more usable on the Internet of ThingsPayamBarnaghi
 
SIX DEGREES OF SEPARATION TO IMPROVE ROUTING IN OPPORTUNISTIC NETWORKS
SIX DEGREES OF SEPARATION TO IMPROVE ROUTING IN OPPORTUNISTIC NETWORKSSIX DEGREES OF SEPARATION TO IMPROVE ROUTING IN OPPORTUNISTIC NETWORKS
SIX DEGREES OF SEPARATION TO IMPROVE ROUTING IN OPPORTUNISTIC NETWORKSijujournal
 
Six Degrees of Separation to Improve Routing in Opportunistic Networks
Six Degrees of Separation to Improve Routing in Opportunistic NetworksSix Degrees of Separation to Improve Routing in Opportunistic Networks
Six Degrees of Separation to Improve Routing in Opportunistic Networksijujournal
 
The Importance of Large-Scale Computer Science Research Efforts
The Importance of Large-Scale Computer Science Research EffortsThe Importance of Large-Scale Computer Science Research Efforts
The Importance of Large-Scale Computer Science Research EffortsLarry Smarr
 
Ncct Ieee Software Abstract Collection Volume 1 50+ Abst
Ncct   Ieee Software Abstract Collection Volume 1   50+ AbstNcct   Ieee Software Abstract Collection Volume 1   50+ Abst
Ncct Ieee Software Abstract Collection Volume 1 50+ Abstncct
 
Semantic Sensor Networks and Linked Stream Data
Semantic Sensor Networks and Linked Stream DataSemantic Sensor Networks and Linked Stream Data
Semantic Sensor Networks and Linked Stream DataOscar Corcho
 

Ähnlich wie Network Science: Theory, Modeling and Applications (20)

Web and Complex Systems Lab @ Kno.e.sis
Web and Complex Systems Lab @ Kno.e.sisWeb and Complex Systems Lab @ Kno.e.sis
Web and Complex Systems Lab @ Kno.e.sis
 
dagrep_v006_i004_p057_s16152
dagrep_v006_i004_p057_s16152dagrep_v006_i004_p057_s16152
dagrep_v006_i004_p057_s16152
 
FAST AND ACCURATE MINING THE COMMUNITY STRUCTURE: INTEGRATING CENTER LOCATING...
FAST AND ACCURATE MINING THE COMMUNITY STRUCTURE: INTEGRATING CENTER LOCATING...FAST AND ACCURATE MINING THE COMMUNITY STRUCTURE: INTEGRATING CENTER LOCATING...
FAST AND ACCURATE MINING THE COMMUNITY STRUCTURE: INTEGRATING CENTER LOCATING...
 
Network literacy-high-res
Network literacy-high-resNetwork literacy-high-res
Network literacy-high-res
 
Feasibility of Artificial Neural Network in Civil Engineering
Feasibility of Artificial Neural Network in Civil EngineeringFeasibility of Artificial Neural Network in Civil Engineering
Feasibility of Artificial Neural Network in Civil Engineering
 
Grid computing the grid
Grid computing the gridGrid computing the grid
Grid computing the grid
 
Networks, Deep Learning and COVID-19
Networks, Deep Learning and COVID-19Networks, Deep Learning and COVID-19
Networks, Deep Learning and COVID-19
 
Data mining based social network
Data mining based social networkData mining based social network
Data mining based social network
 
Contractor-Borner-SNA-SAC
Contractor-Borner-SNA-SACContractor-Borner-SNA-SAC
Contractor-Borner-SNA-SAC
 
GridComputing-an introduction.ppt
GridComputing-an introduction.pptGridComputing-an introduction.ppt
GridComputing-an introduction.ppt
 
Visually Exploring Social Participation in Encyclopedia of Life
Visually Exploring Social Participation in Encyclopedia of LifeVisually Exploring Social Participation in Encyclopedia of Life
Visually Exploring Social Participation in Encyclopedia of Life
 
How to make data more usable on the Internet of Things
How to make data more usable on the Internet of ThingsHow to make data more usable on the Internet of Things
How to make data more usable on the Internet of Things
 
SIX DEGREES OF SEPARATION TO IMPROVE ROUTING IN OPPORTUNISTIC NETWORKS
SIX DEGREES OF SEPARATION TO IMPROVE ROUTING IN OPPORTUNISTIC NETWORKSSIX DEGREES OF SEPARATION TO IMPROVE ROUTING IN OPPORTUNISTIC NETWORKS
SIX DEGREES OF SEPARATION TO IMPROVE ROUTING IN OPPORTUNISTIC NETWORKS
 
Six Degrees of Separation to Improve Routing in Opportunistic Networks
Six Degrees of Separation to Improve Routing in Opportunistic NetworksSix Degrees of Separation to Improve Routing in Opportunistic Networks
Six Degrees of Separation to Improve Routing in Opportunistic Networks
 
Grid computing
Grid computingGrid computing
Grid computing
 
The Importance of Large-Scale Computer Science Research Efforts
The Importance of Large-Scale Computer Science Research EffortsThe Importance of Large-Scale Computer Science Research Efforts
The Importance of Large-Scale Computer Science Research Efforts
 
grid computing
grid computinggrid computing
grid computing
 
Ncct Ieee Software Abstract Collection Volume 1 50+ Abst
Ncct   Ieee Software Abstract Collection Volume 1   50+ AbstNcct   Ieee Software Abstract Collection Volume 1   50+ Abst
Ncct Ieee Software Abstract Collection Volume 1 50+ Abst
 
Semantic Sensor Networks and Linked Stream Data
Semantic Sensor Networks and Linked Stream DataSemantic Sensor Networks and Linked Stream Data
Semantic Sensor Networks and Linked Stream Data
 
Cyberistructure
CyberistructureCyberistructure
Cyberistructure
 

Mehr von Biocomplexity Institute of Virginia Tech

Mehr von Biocomplexity Institute of Virginia Tech (20)

Ebola response in Liberia: A step towards real-time epidemic science
Ebola response in Liberia: A step towards real-time epidemic scienceEbola response in Liberia: A step towards real-time epidemic science
Ebola response in Liberia: A step towards real-time epidemic science
 
Use of CINET in Education and Research
Use of CINET in Education and ResearchUse of CINET in Education and Research
Use of CINET in Education and Research
 
Using CINET
Using CINETUsing CINET
Using CINET
 
CINET: A Cyber-Infrastructure for Network Science Overview
CINET: A Cyber-Infrastructure for Network Science OverviewCINET: A Cyber-Infrastructure for Network Science Overview
CINET: A Cyber-Infrastructure for Network Science Overview
 
CINET: A CyberInfrastructure for Network Science
CINET: A CyberInfrastructure for Network ScienceCINET: A CyberInfrastructure for Network Science
CINET: A CyberInfrastructure for Network Science
 
Modeling the Ebola Outbreak in West Africa, March 10th 2015 update
Modeling the Ebola Outbreak in West Africa, March 10th 2015 updateModeling the Ebola Outbreak in West Africa, March 10th 2015 update
Modeling the Ebola Outbreak in West Africa, March 10th 2015 update
 
Modeling the Ebola Outbreak in West Africa, February 24th 2015 update
Modeling the Ebola Outbreak in West Africa, February 24th 2015 updateModeling the Ebola Outbreak in West Africa, February 24th 2015 update
Modeling the Ebola Outbreak in West Africa, February 24th 2015 update
 
Modeling the Ebola Outbreak in West Africa, February 10th 2015 update
Modeling the Ebola Outbreak in West Africa, February 10th 2015 updateModeling the Ebola Outbreak in West Africa, February 10th 2015 update
Modeling the Ebola Outbreak in West Africa, February 10th 2015 update
 
Modeling the Ebola Outbreak in West Africa, February 3rd 2015 update
Modeling the Ebola Outbreak in West Africa, February 3rd 2015 updateModeling the Ebola Outbreak in West Africa, February 3rd 2015 update
Modeling the Ebola Outbreak in West Africa, February 3rd 2015 update
 
Modeling the Ebola Outbreak in West Africa, January 27th 2015 update
Modeling the Ebola Outbreak in West Africa, January 27th 2015 updateModeling the Ebola Outbreak in West Africa, January 27th 2015 update
Modeling the Ebola Outbreak in West Africa, January 27th 2015 update
 
Modeling the Ebola Outbreak in West Africa, January 20th 2015 update
Modeling the Ebola Outbreak in West Africa, January 20th 2015 updateModeling the Ebola Outbreak in West Africa, January 20th 2015 update
Modeling the Ebola Outbreak in West Africa, January 20th 2015 update
 
Modeling the Ebola Outbreak in West Africa, January 13th 2015 update
Modeling the Ebola Outbreak in West Africa, January 13th 2015 updateModeling the Ebola Outbreak in West Africa, January 13th 2015 update
Modeling the Ebola Outbreak in West Africa, January 13th 2015 update
 
Modeling the Ebola Outbreak in West Africa January 6th 2015 update
Modeling the Ebola Outbreak in West Africa January 6th 2015 updateModeling the Ebola Outbreak in West Africa January 6th 2015 update
Modeling the Ebola Outbreak in West Africa January 6th 2015 update
 
Modeling the Ebola Outbreak in West Africa, December 22nd 2014 update
Modeling the Ebola Outbreak in West Africa, December 22nd 2014 updateModeling the Ebola Outbreak in West Africa, December 22nd 2014 update
Modeling the Ebola Outbreak in West Africa, December 22nd 2014 update
 
Modeling the Ebola Outbreak in West Africa, December 16th 2014 update
Modeling the Ebola Outbreak in West Africa, December 16th 2014 updateModeling the Ebola Outbreak in West Africa, December 16th 2014 update
Modeling the Ebola Outbreak in West Africa, December 16th 2014 update
 
Modeling the Ebola Outbreak in West Africa, November 25th 2014 update
Modeling the Ebola Outbreak in West Africa, November 25th 2014 updateModeling the Ebola Outbreak in West Africa, November 25th 2014 update
Modeling the Ebola Outbreak in West Africa, November 25th 2014 update
 
Modeling the Ebola Outbreak in West Africa, December 2nd 2014 update
Modeling the Ebola Outbreak in West Africa, December 2nd 2014 updateModeling the Ebola Outbreak in West Africa, December 2nd 2014 update
Modeling the Ebola Outbreak in West Africa, December 2nd 2014 update
 
Modeling the Ebola Outbreak in West Africa, December 9th 2014 update
Modeling the Ebola Outbreak in West Africa, December 9th 2014 updateModeling the Ebola Outbreak in West Africa, December 9th 2014 update
Modeling the Ebola Outbreak in West Africa, December 9th 2014 update
 
Modeling the Ebola Outbreak in West Africa, November 18th 2014 update
Modeling the Ebola Outbreak in West Africa, November 18th 2014 updateModeling the Ebola Outbreak in West Africa, November 18th 2014 update
Modeling the Ebola Outbreak in West Africa, November 18th 2014 update
 
Modeling the Ebola Outbreak in West Africa, November 7th 2014 update
Modeling the Ebola Outbreak in West Africa, November 7th 2014 updateModeling the Ebola Outbreak in West Africa, November 7th 2014 update
Modeling the Ebola Outbreak in West Africa, November 7th 2014 update
 

Kürzlich hochgeladen

GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencySheetal Arora
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPirithiRaju
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...ssifa0344
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 

Kürzlich hochgeladen (20)

GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 

Network Science: Theory, Modeling and Applications

  • 1. Network  Science:  Theory,  Modeling  and   Applications   Madhav  V.  Marathe     Dept.  of  Computer  Science  &     Network  Dynamics  and  Simulation  Science  Laboratory   Virginia  Bioinformatics  Institute   Virginia  Tech   NDSSL  TR-­10-­148   Supported by Grants from NIH MIDAS, NSF HSD, NSF CNS, CDC COE, and DoD.
  • 2. Network Dynamics & Simulation Science Laboratory Where:  LLNL,  Livermore,     Dates:  December  1st  to  December  15th      2010   Hosts:  Dr.  David  Brown  and  Dr.  Celeste  Matarazzo   Time:  10.00  am  to  11.30  am  (OfMice  hours  as  needed  afterwards)   Lecturer:  Madhav  Marathe,  Virginia  Tech  (mmarathe@vbi.vt.edu)   Guest  Lectures:  Christopher  Kuhlman  (VT),  Goran  Konjevod   (Staff  Scientist,  LLNL),  Anil  Vullikanti  (Asst  Prof.  VT  and  DOE   Career  award  recipient)  
  • 3. Network Dynamics & Simulation Science Laboratory Complex  Networks  are  pervasive  in  our  society.  Realistic  biological,  information,  social  and  technical  networks   share  a  number  of  unique  features  that  distinguish  them  from  physical  networks.  Examples  of  such  features   include:   irregularity,   time-­‐varying   structure,   heterogeneity   among   individual   components,   and   selMish/ cooperative  game-­‐like  behavior  by  individual  components  and  co-­‐evolution.  The  size  and  heterogeneity  of  these   networks,   their   co-­‐evolving   nature   and   the   technical   difMiculties   in   applying   dimension   reduction   techniques   commonly  used  to  analyze  physical  systems  makes  reasoning,  prediction  and  controlling  of  these  networks  even   more  challenging.   Recent   quantitative   changes   in   high   performance   and   pervasive   computing   including   faster   machines,   distributed   sensors   and   service-­‐oriented   software   have   created   new   opportunities   for   collecting,   integrating,   analyzing   and   accessing   information   related   to   such   large   complex   networks.   The   advances   in   network   and   information  science  that  build  on  this  new  capability  provide  entirely  new  ways  for  reasoning  and  controlling   these   networks.   Together,   they   enhance   our   ability   to   formulate,   analyze   and   realize   novel   public   policies   pertaining  to  these  complex  networks.   The  course  will  cover  the  mathematical  and  computational  aspects  of  Network  Science.  It  will  provide  a  broad   overview  of  the  area  and  then  will  focus  on     • Mathematical  aspects,  including  structure  theorems,  existence  proofs,     • Computational   aspects,   including,   provable   lower   as   well   as   upper   bounds   on   the   computational   resources,   efMicient  algorithms  for  computing  the  structure  and  dynamics  over  complex  networks,   • Developing   high   performance   computing   based   computational   models   and   modeling   environments   for   supporting  Network  Science.   Practical  applications  arising  in  the  context  of  infrastructure  planning,  energy  systems,  national  security  and   integrated  communication  systems  will  be  used  to  illustrate  the  applicability  of  the  concepts.         Course Synopsis
  • 4. Network Dynamics & Simulation Science Laboratory Work  funded  in  part  by  NIGMS,  NIH  MIDAS    program,    CDC,  Center  of   Excellence  in  Medical  Informatics,  DTRA  CNIMS,  NSF,  NeTs,    NECO  and  OCI     program,  VT  Foundation.  
  • 5. Network Dynamics & Simulation Science Laboratory •   Lada  Adamic:  For  graciously  sharing  her  course  notes     •   NDSSL  Laboratory  members  who  are  in  reality  coauthors  of  this.   •   Other  places  that  I  have  borrowed  the  material  includes:   • Tim  Roughgarden’s  lectures  on  Games   • David  Kempe’s  Lectures  on  Networks   • Henning    Mortveit’s  lectures  on  SDS   • Bogdan  Oporowski’s  lecture  on  Graph  theory   • Michael  Kearns  lectures  on  Networks  and  Games     • …  and  many  more   • Books   • Fernando  Vega-­‐Redondo,  Complex  Social  Networks,  Econometric  Society   Monographs,  ,    Cambridge  University  Press,  2007   • D.  Easley,  J.  Kleinberg.  Networks,  Crowds,  and  Markets:  reasoning  about  a  Highly   Connected  World,  Cambridge  University  Press,  2010.   • J.  Kleinberg,  E.  Tardos.  Algorithm  Design.  Addison  Wesley,  2005.     Matthew  Jackson,  Social  and  Economic  Networks,  Princeton  University  Press,   2010     • …  and  many  more   Acknowledgements for Course Material
  • 6. What  is  a  Network?    History,  Broad  Research  Questions,  Illustrative   Applications  
  • 7. Network Dynamics & Simulation Science Laboratory What  is  a  network  ?     Although  no  formal  accepted   deMinition,  there  appears  to  be  a   consensus  that  all  network   comprise  of  the  following   attributes:     A  set  of  agents  (entities):  agents   can  be  simple,  game  like,  adaptive   …     Interaction  among  the  entities   governed  by  a  graph  (binary  or  in   general  k-­‐ary  relationship)     Graph  itself  can  change,  co-­‐evolve  with   the  entities     Entities  modify  their  local  states   and  behavior  by  interacting  with   their  neighbors   Blogosphere (datamining.typepad.com) points lines vertices edges, arcs math nodes links computer science sites bonds physics actors ties, relations sociology node edge
  • 8. Images  of  Various  Networks  
  • 9. Network Dynamics & Simulation Science Laboratory Social  Networks:  Facebook  has  over  500Million   individuals!   http://www.smrfoundation.org/category/industry/companies/facebook/
  • 10. Network Dynamics & Simulation Science Laboratory High  School  Dating  Network  (Discovery  Magazine   2007)  
  • 11. Network Dynamics & Simulation Science Laboratory Router-­level  network  based  on  ISPs  
  • 12. Network Dynamics & Simulation Science Laboratory Delta  Airlines  Routes  (airline  routes  maps.com  
  • 13. Network Dynamics & Simulation Science Laboratory EU  rail  network  
  • 14. Network Dynamics & Simulation Science Laboratory Biological  Networks   Institute of biology and technology - Saclay (iBiTec-S)/ Unités/ Department of Integrative Biology and Molecular Genetics (SBiGeM)/ Integrative biology laboratory (LBI)/ Dynamics of Biological Network (J. Labarre) http://djpowell.wordpress.com/ http://www.leonelmoura.com/tree.html
  • 15. Network Dynamics & Simulation Science Laboratory In  real  world  Networks  are  layered  and    coupled  
  • 16. Network Dynamics & Simulation Science Laboratory Growth  of  network  science  as  measured  by   publications   #papers  with  “complex  networks”   in  the  title   [National  Academy  of  Science   Report,  2007]   Journal  special  issues  on  Network   Science  
  • 17. Network Dynamics & Simulation Science Laboratory Even  appears  in  main  stream  publications   YESTERDAY  !    
  • 18. Network Dynamics & Simulation Science Laboratory The  Emerging  Network  Science?     Newman,  Barabasi,  Watts:  The  Structure  and  Dynamics  of  Networks:  “We   argue  that  the  science  of  networks  that  has  been  taking  shape  over  the  last  few   years  is  distinguished  from  preceding  work  on  networks  in  three  important   ways:       (1)  by  focusing  on  the  properties  of  real-­‐world  networks,  it  is  concerned  with   empirical  as  well  as  theoretical  questions;       (2)  it  frequently  takes  the  view  that  networks  are  not  static,  but  evolve  in  time   according  to  various  dynamical  rules;  and       (3)  it  aims,  ultimately  at  least,  to  understand  networks  not  just  as  topological   objects,  but  also  as  the  framework  upon  which  distributed  dynamical  systems  are   built.”     Kearns:  An  Emerging  Science:     Examine  apparent  similarities  (and  differences)  between  many  social,   economic,  information,  biological  and  technological  networks     Importance  of  network  effects  in  such  systems     How  things  are  connected  matters  greatly     Details  of  interaction  matter  greatly     Qualitative  and  quantitative;  can  be  very  subtle     A  revolution  of  measurement,  theory,  and  breadth  of  vision  
  • 19. Network Dynamics & Simulation Science Laboratory Science  of  Networks:  A  personal  (and  likely   biased)  viewpoint  1:     Real  World  Networks:     Extremely  important  but  ..     Folks  in  social  sciences,  transportation,  electrical  systems,  VLSI,  …  all   have  been  studying  real  world  networks     We  need  to  seriously  revisit  the  use  of  simple  random  graph  models  as   a  way  to  explain  a  phenomenon:  the  mathematics  is  elegant  but  often   means  very  little  in  the  real  world     Real  world  networks  are  dynamic,  coupled  and  co-­‐evolve     Ability  to  collect  data  that  is  diverse  (spatially,   demographically),  process  it,  store  it  and  reason  about  it  very   fast     New  data  should  be  utilized  in  developing  network  models   New  and  realistic  models  of  real  world  networks.     Models  should  represent  coupling  and  co-­evolution  
  • 20. Network Dynamics & Simulation Science Laboratory Accessibility  of  Network  Science:  Pervasive  Computing     Environment     High  performance  computing  (larger  machines,  data  intensive  systems,   distributed  systems  …)     Software  as  a  service;  delivering  results  to  specialist  who  is  not   interested  in  becoming  a  computer  scientist     Ability  to  collect  data  that  is  diverse  (spatially,  demographically),  process   it,  store  it  and  reason  about  it  very  fast   Develop  Pervasive  computing  technology  to  deliver   Network  Science  technology  to  domain  specialists  and   others  who  are  not  computing  experts  
  • 21. Network Dynamics & Simulation Science Laboratory Science  of  Networks:  Centrality  of  Computing  and   Information  Science     From  analytical  results  to  algorithmic  viewpoint:  this  is  the  essence  of   new  science  in  my  opinion  if  one  has  to  do  deal  with  real  networks     Questions  that  become  important  are:     How  can  we  design  certain  networks     How  can  we  measure  distributed  networks     What  is  a  certain  set  of  distributed  agents  computing:  interaction  based  computing  and   social  cognition     Models  are  not  monolithic  or  federated  anymore  but  really  a  way  to   synthesize  information  by  interacting  with  various  components  –   Milner’s  in_luential  idea  on  interactionism   Algorithmic  Viewpoint    provide  the  foundational  basis     HPC  computing  provide  the  underlying  technology  
  • 22. Network Dynamics & Simulation Science Laboratory Inter  and  intra-­discipline  interactions  –   Emergence  of  a  Giant  Component  !       We  have  reached    critical  point  wherein  researchers  from  diverse   disciplines  are  starting  to  share  their  ideas  and  interact   (Gladwell’s  Tipping  point)     Beautiful  convergence  of  ideas  and  view  points  in  CS,  Engineering,   Economics,  Mathematics,  Physics,    Social  Science,  Biology….   (convergence  of  several  events,  world  becoming  smaller,  funding   agencies  pushing  to  do  joint  work!,  global  problems,  problems  that   were  being  solved  by  disciplinary  viewpoints)     Economic  drivers:  Information  economy,  distributed  logisitics,   global  markets,  mobile  labor  force,  funding  shortfalls     Measurement  technologies  and  technologies  for  developing  and   sustaining  diverse  organizations  and  ecosystems  have  taken  hold   Multi-­disciplinary  view  important:  from  real  research   social  networks  !  
  • 23. Network Dynamics & Simulation Science Laboratory Culmination  of  diverse  _ields:  Viewpoints   are  different  and  interesting   Engineers   • Understand  how  infrastructure   networks  work     • Design  and  control  of  these   networks   Computer  Scientists   • Understand  and  design  complex,   distributed  networks   •   algorithmic  view:    design  of  a   system  and  inferring  its   semantics   Social  Scientists,  Behavioral   Psychologists,  Economists   • Understand  human  behavior  in   “simple”  settings   • Revised  views  of  economic   rationality  in  humans   Biologists   • Neural  networks,  gene  regulatory   networks,…   • Understanding  the  evolution  of   networks   Physicists  and   Mathematicians   • Interest  and  methods  in  complex   systems   • Theories  of  macroscopic  behavior   (phase  transitions)   Scientists forming co-evolving networks World
  • 24. Network Dynamics & Simulation Science Laboratory Proposed  Components  of  a  Research  Program  in   Network  Science  and  Engineering   Structural  Analysis   of  Complex   Networks   Dynamics  on   Complex  Networks   Co-­‐evolution  of   dynamics,  network   and  individual   behavior   Measurement  and   Inference   Networks Science in Real World
  • 25. Network Dynamics & Simulation Science Laboratory Key  Research  Challenges  (NA  report  on  Network     Science)   1.  Dynamics:  Better  understanding  between  structure   and  function   2.  Modeling  and  Analysis  of  large  networks:  Tools,   abstractions,  approximations   3.  Design  and  Synthesis  of  Networks   4.  Increasing  level  of  rigor  and  mathematical  structure   5.  Abstracting  common  concepts  across  Mields   6.  Better  experiments  and  measurements  of  network   structure   7.  Robustness  and  Security  
  • 27. Network Dynamics & Simulation Science Laboratory Application  1  (1736):  First  Use  of  Graphs     Seven  Bridges  of  Königsberg     Seven  Bridges  of  Königsberg  –  one  of  the  Mirst  problems  in  graph   theory     Is  there  a  route  that  crosses  each  bridge  only  once  and  returns  to  the   starting  point?   We  will  see  how  this  problem  can  be  solved  by  modeling  it  as  a   graph  theory  problem  later  
  • 28. Network Dynamics & Simulation Science Laboratory Application  2  (1850s):   Cholera  Pandemic:  John  Snow     First  Cholera  Pandemic   Second  Cholera  Pandemic    During  this  time  germ  theory  of  diseases  was   not  widely  accepted.    During  John  Snow's  life  time  there  were  three   pandemics  of  Asiatic  cholera  (1817-­‐23,  1826-­‐37   and  1846-­‐63),  two  of  which  reached  the  British   isles.      The  epidemic  in  1848  to  1849,  killed    between   50,000  and  70,000  in  England  and  Wales.  A  third   outbreak  in  1854  left  over  30,000  people  dead  in   London  alone.      Vibrio  cholerae:  Toxin  alters  sodium  pump  in   intestinal  cells    Mluid  loss    Entry:  oral  Colonization:  small  intestine   Symptoms:  nausea,  diarrhea,  muscle  cramps,   shock   http://www.ph.ucla.edu/epi/snow.html
  • 29. Network Dynamics & Simulation Science Laboratory Application  3  (1950-­60)     Segregation  (Schelling):  Micromotives  to  Macrobehavior     Duncan  and  Duncan’s  (1957)  study  of  Chicago     1940-­‐1950  Census  tracts,  mixed  neighborhoods  all  segregate     Placed  pennies  and  dimes  on  a  chess  board  and  moved  them   around  according  to  various  rules.       Board  =    city,    Square  =  Housing  lot,  agent:  at  a  location     Pennies  and  dimes  =  agents  representing  two  groups  in  society,     e.g.  boys  and  girls,  smokers  and  non-­‐smokers,  etc.       Neighborhood  =adjacent    locations  on  the  board     Happy  if  (neighbors  of  same  type  >  threshold)       If  Unhappy  then  move  to  a  random  location    that  is  happy     Result:  Many  basic  conMigurations  produce  segregation     relate  decisions  about  where  to  live  (micro)  to  patterns  of   segregation  (macro)     No  obvious  relationship  between  individual  behavior  and   aggregate  outcomes.       Behavior  is  interdependent.  Individuals’  behaviors  depend  on   social  context  (micro)     Individual  behaviors  collectively  change  social  context  (long   term,  macro)   http://cs.gmu.edu/~eclab/projects/mason/projects/schelling/
  • 30. Network Dynamics & Simulation Science Laboratory Application  4:  Power  grids  and  cascading  failures     Vast  system  of  electricity  generation,  transmission  &  distribution  is   essentially   a  single  network     Power  Mlows  through   all  paths  from  source  to  sink   (Mlow  calculations  are   important  for  other  networks,   even  social  ones)     All  AC  lines  within  an     interconnect  must  be  in  sync     If  frequency  varies  too  much  (as  line  approaches  capacity),  a  circuit   breaker  takes  the  generator  out  of  the  system     Larger  Mlows  are  sent  to  neighboring  parts  of  the  grid  –  triggering  a   cascading  failure  
  • 31. Network Dynamics & Simulation Science Laboratory Application  4:     Blackout  of  2003:     Electrical  Infrastructure   Affected     Area  of  50  million  people  in  eight  US   states  and  two  provinces  in  Canada     Approximately61,800Megawatts (MW)oMload       Most  cascaded  happen  extremely   rapidly  from  4.10  pm  to  4.13  pm     Human  and  information  system   error  also  contributed  to  the   cascade     Other  Infrastructures  including   water,  communication,  and  most   notably  transportation  (rail,  road   and  air)  were  affected     TV  and  radio  stations  also   affected  
  • 32. Network Dynamics & Simulation Science Laboratory Timeline  for  2003  Blackout:  Need  for  Multi-­level   networks   The  2003  blackout  wasn't  just  about  fallen  trees  and  broken   transmission  lines.  As  this  timeline  from  the  Department  of  Energy   report  shows,  it  resulted  from  a  combination  of  many  grid  events,   computer  glitches,  and  human  interaction.  
  • 33. Network Dynamics & Simulation Science Laboratory Blackout  of  2003:Time  Line  –  The  Initial  Phase     12:15  p.m.  Incorrect  telemetry  data  renders  inoperative  the  state  estimator,  a  power  Mlow   monitoring  tool  operated  by  the  Indiana-­‐based Midwest  Independent  Transmission  System  Operator  (MISO).  An  operator  corrects  the  telemetry   problem  but  forgets  to  restart  the  monitoring  tool.       1:31  p.m.  The  Eastlake,  Ohio  generating  plant  shuts  down.  The  plant  is  owned  by  FirstEnergy,  an   Akron,  Ohio-­‐based  company  that  had  experienced  extensive  recent  maintenance  problems.     2:02  p.m.  The  Mirst  of  several  345  kV  overhead  transmission  lines  in  northeast  Ohio  fails  due  to   contact  with  a  tree  in  Walton  Hills,  Ohio.      2:14  p.m.  An  alarm  system  fails  at  FirstEnergy's  control  room  and  is  not  repaired.       3:05  p.m.  A  345  kV  transmission  line  known  as  the  Chamberlain-­‐Harding  line  fails  in  Parma,  south   of  Cleveland,  due  to  a  tree.       3:17  p.m.  Voltage  dips  temporarily  on  the  Ohio  portion  of  the  grid.  Controllers  take  no  action.       3:32  p.m.  Power  shifted  by  the  Mirst  failure  onto  another  345  kV  power  line,  the  Hanna-­‐Juniper   interconnection,  causes  it  to  sag  into  a  tree,  bringing  it  ofMline  as  well.  While  MISO  and  FirstEnergy   controllers  concentrate  on  understanding  the  failures,  they  fail  to  inform  system  controllers  in   nearby  states.       3:39  p.m.  A  FirstEnergy  138  kV  line  fails  in  northern  Ohio.     3:41  p.m.  A  circuit  breaker  connecting  FirstEnergy's  grid  with  that  of  American  Electric  Power  is   tripped  as  a  345  kV  power  line  (Star-­‐South  Canton  interconnection)  and  Mifteen  138  kV  lines  fail  in   rapid  succession  in  northern  Ohio.     http://en.wikipedia.org/wiki/Northeast_Blackout_of_2003  
  • 34. Network Dynamics & Simulation Science Laboratory Blackout  of  2003:  Timeline  -­-­    the    cascade  begins     3:46  p.m.  A  Mifth  345  kV  line,  the  Tidd-­‐Canton  Central  line,  trips  ofMline.       4:05:57  p.m.  The  Sammis-­‐Star  345  kV  line  trips  due  to  undervoltage  and  overcurrent   interpreted  as  a  short  circuit.  Later  analysis  suggests  that  the  blackout  could  have  been   averted  prior  to  this  failure  by  cutting  1.5  GW  of  load  in  the  Cleveland–Akron  area.       4:06–4:08  p.m.  Sustained  power  surge  north  toward  Cleveland  overloads  3  138  kV  lines.       4:09:02  p.m.  Voltage  sags  deeply  as  Ohio  draws  2  GW  of  power  from  Michigan,  creating   simultaneous  undervoltage  and  overcurrent  conditions  as  power  attempts  to  Mlow  in  such  a   way  as  to  rebalance  the  system's  voltage.       4:10:34  p.m.  Many  transmission  lines  trip  out,  Mirst  in  Michigan  and  then  in  Ohio,  blocking  the   eastward  Mlow  of  power  around  the  south  shore  of  Lake  Erie.  Suddenly  bereft  of  demand,   generating  stations  go  ofMline,  creating  a  huge  power  deMicit.  In  seconds,  power  surges  in  from   the  east,  overloading  east-­‐coast  power  plants  whose  generators  go  ofMline  as  a  protective   measure,  and  the  blackout  is  on.     4:10:37  p.m.  The  eastern  and  western  Michigan  power  grids  disconnect  from  each  other.  Two   345  kV  lines  in  Michigan  trip.  A  line  that  runs  from  Grand  Ledge  to  Ann  Arbor  known  as  the   Oneida-­‐Majestic  interconnection  trips.  A  short  time  later,  a  line  running  from  Bay  City  south   to  Flint  in  Consumers  Energy's  system  known  as  the  Hampton-­‐Thetford  line  also  trips.       4:10:38  p.m.  Cleveland  separates  from  the  Pennsylvania  grid.  
  • 35. Network Dynamics & Simulation Science Laboratory Blackout  of  2003:  Timeline  -­-­  Crescendo     4:10:39  p.m.  3.7  GW  power  Mlows  from  the  east  along  the  north  shore  of  Lake  Erie,  through   Ontario  to  southern  Michigan  and  northern  Ohio,  a  Mlow  more  than  ten  times  greater  than  the   condition  30  seconds  earlier,  causing  a  voltage  drop  across  the  system.  4:10:40  p.m.  Flow  Mlips  to   2  GW  eastward  from  Michigan  through  Ontario  (a  net  reversal  of  5.7  GW  of  power),  then  reverses   back  westward  again  within  a  half  second.     4:10:40  p.m.  Flow  Mlips  to  2  GW  eastward  from  Michigan  through  Ontario  (a  net  reversal  of  5.7   GW  of  power),  then  reverses  back  westward  again  within  a  half  second.       4:10:43  p.m.  International  connections  between  the  United  States  and  Canada  begin  failing.     4:10:45  p.m.  Northwestern  Ontario  separates  from  the  east  when  the  Wawa-­‐Marathon  230  kV   line  north  of  Lake  Superior  disconnects.  The  Mirst  Ontario  power  plants  go  ofMline  in  response  to   the  unstable  voltage  and  current  demand  on  the  system.       4:10:46  p.m.  New  York  separates  from  the  New  England  grid.       4:10:50  p.m.  Ontario  separates  from  the  western  New  York  grid.       4:11:57  p.m.  The  Keith-­‐Waterman,  Bunce  Creek-­‐Scott  230  kV  lines  and  the  St.  Clair-­‐Lambton  #1   230  kV  line  and  #2  345  kV  line  between  Michigan  and  Ontario  fail.       4:12:03  p.m.  Windsor,  Ontario  and  surrounding  areas  drop  off  the  grid.       4:12:58  p.m.  Northern  New  Jersey  separates  its  power-­‐grids  from  New  York  and  the  Philadelphia   area,  causing  a  cascade  of  failing  secondary  generator  plants  along  the  Jersey  coast  and   throughout  the  inland  west.       4:13  p.m.  End  of  cascading  failure.  256  power  plants  are  off-­‐line,  85%  of  which  went  ofMline  after   the  grid  separations  occurred,  most  due  to  the  action  of  automatic  protective  controls.  
  • 36. Network Dynamics & Simulation Science Laboratory Milgram’s  Small  World  Experiment     Travers  &  Milgram  1969:  classic  early  social   network  study     destination:  a  Boston  stockbroker;      lived  in  Sharon,  MA     sources:  Nebraska  stockowners;       forward  letter  to  a  Mirst-­‐name      acquaintance  “closer”  to  target     Information  provided:     name,  address,  occupation,  Mirm,  college,  wife’s   name  and  hometown     navigational  value?     Basic  Mindings:     64  of  296  chains  reached  the  target     20%  of  senders  reached  target.     average  chain  length  =  6.5:  “Six  degrees  of  separation”     average  length  of  completed  chains:  5.2     interaction  of  chain  length  and  navigational   difMiculties     main  approach  routes:  home  (6.1)  and  work   (4.6)     Boston  sources  (4.4)  faster  than  Nebraska  (5.5)     no  advantage  for  Nebraska  stockowners   NE MA
  • 37. Network Dynamics & Simulation Science Laboratory Recent  small  world  experiment   Setup     Email  experiment    Dodds,   Muhamad,  Watts,    Science  301,   (2003)     18  targets,  13  different  countries   60,000+  participants     a  professor  at  an  Ivy  League   university,     an  archival  inspector  in  Estonia,     a  technology  consultant  in  India,     a  policeman  in  Australia,     a  veterinarian  in  the  Norwegian   army.   Basic  Analysis     Approximate  37%  participation  rate   approximately  .     Probability  of  a  chain  of  length  10   getting  through:     .3710  ~  5  x  10-­‐5     so  only  one  out  of  20,000  chains  would   make  it     actual  #  of  completed  chains:  384   (1.6%  of  all  chains).     Average  path  length:  4,  median:  7     Small  changes  in  attrition  rates  lead  to   large  changes  in  completion  rates     e.g.,  a  15%  decrease  in  attrition  rate   would  lead  to  a  800%  increase  in   completion  rate  
  • 38. Network Dynamics & Simulation Science Laboratory Estimating  ‘recovered’  chain  lengths  for  uncompleted   chains     <L>  =  4.05  for  all  completed  chains     L*  =  Estimated  `true'  median  chain  length     Intra-­‐country  chains:  L*  =  5     Inter-­‐country  chains:  L*  =  7     All  chains:  L*  =  7     Milgram:  L  *  ~  8-­‐9  hops  
  • 39. Network Dynamics & Simulation Science Laboratory Attrition  rate  stays  approx.  constant  throughout     rL  –  probability  of  not  passing  on  the  message  at   distance  L  from  the  source   average 95 % confidence interval
  • 40. Network Dynamics & Simulation Science Laboratory Estimated  ‘recovered’  chain  lengths     observed  chain   lengths     ‘recovered’   histogram  of   path  lengths       inter-­‐country   intra-­‐country    
  • 41. Network Dynamics & Simulation Science Laboratory Small  world  experiment  at  Columbia    Successful  chains  disproportionately  used      weak  ties  (Granovetter)      professional  ties  (34%  vs.  13%)      ties  originating  at  work/college      target's  work  (65%  vs.  40%)    .  .  .  and  disproportionately  avoided      hubs  (8%  vs.  1%)  (+  no  evidence  of  funnels)      family/friendship  ties  (60%  vs.  83%)    Strategy:  Geography  -­‐>  Work  
  • 42. Network Dynamics & Simulation Science Laboratory How  many  hops  actually  separate  any  two  individuals   in  the  world?     Participants  are  not  perfect  in  routing  messages     They  use  only  local  information     “The  accuracy  of  small  world  chains  in  social  networks”     Peter  D.  Killworth,  Chris  McCarty  ,  H.  Russell  Bernard&  Mark  House:     Analyze  10920  shortest  path  connections  between  105   members  of  an  interviewing  bureau,     together  with  the  equivalent  conceptual,  or  ‘small  world’  routes,   which  use  individuals’  selections  of  intermediaries.       This  permits  the  Mirst  study  of  the  impact  of  accuracy  within   small  world  chains.     The  mean  small  world  path  length  (3.23)  is  40%  longer  than  the   mean  of  the  actual  shortest  paths  (2.30)     Model  suggests  that  people  make  a  less  than  optimal  small   world  choice  more  than  half  the  time.  
  • 43. Network Dynamics & Simulation Science Laboratory Tentative  Schedule     Week  1  –  Module  1.  December  1-­‐2  (Wednesday,  &  Thursday)     Wednesday(1st  December):  Introduction  to  Network  Science     Thursday(2nd  December):  SDS  and  Diffusion  on  Networks,     Friday  (Extra  Class  if  interest):  EpiCure  –  modeling  environment  for  studying   malware  propagation  in  wireless  networks.      Week  2  –  Module  2  December  7-­‐9    (Monday,  Tuesday,  Thursday)       Monday  (6th  December):    Control  and  InMluence  maximization     Tuesday  (7th  December):  Branching  process  result,  proof  of  Fastdiffuse.  Introduction  to   various  diffusion  style  modeling  environments     Wednesday  (Extra  class  if  interest):    Population  and  Network  Synthesis.  Introduction   to  graph  analysis     Thursday  (9th  December):  SIMDEMICS  and  related  modeling  environments.     Week  3  –  Module  3  and  Module  4  (December  13-­‐16)     Monday  (13th  December):  Markets,  Games,  Mechanism  Design  and  SIGMA:  a  modeling   environment  to  study  commodity  markets  on  networks,       Tuesday  (14th  December):  Shortest  Paths,  Formal  language  constrained  paths,  Greedy   routing,  routing  in  small  world  networks,  Introduction  to  TRANSIMS.     Thursday  (15th  December):    Concluding  remarks,  Brief  discussion  of    uncovered  topics,   Open  Problems,  Directions  for  Future  Work.