Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Ded Algorithm1

405 Aufrufe

Veröffentlicht am

Veröffentlicht in: Technologie, Kunst & Fotos
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Ded Algorithm1

  1. 1. Äýä àëãîðèòì áà ôóíêö
  2. 2. Àãóóëãà <ul><li>Äýä àëãîðèòì ãýæ þó âý? </li></ul><ul><li>ßìàð õýëáýðòýé áè÷èõ âý? </li></ul><ul><li>Õýðõýí äóóäàõ âý? </li></ul><ul><li>Óòãà äàìæóóëàõ </li></ul><ul><li>Õýðõýí áóöàõ âý? </li></ul><ul><li>Õóâüñàã÷ </li></ul><ul><li>Æèøýý </li></ul>
  3. 3. Äýä àëãîðèòì ãýæ þó âý? <ul><li>Áèå äààñàí øèíæòýé </li></ul><ul><li>Òîäîðõîé ¿ð ä¿í ºãäºã, ýñâýë òîäîðõîé ¿éëäýë ã¿éöýòãýäýã </li></ul><ul><li>Îëîí äàõèí àøèãëàãäàõ áîëîìæûã õàíãàñàí </li></ul><ul><li>ýõ àëãîðèòìä àøèãëàãäàæ áàéãàà àëãîðèòìûã äýä àëãîðèòì ãýíý. </li></ul>
  4. 4. Äýä àëãîðèòì ãýæ þó âý? <ul><li>Àëãîðèòì áîëîõûíõîî õóâüä àëãîðèòìûí á¿õ øèíæèéã õàíãàñàí áàéíà.Æ: çààâàë òºãñºæ ýõ àëãîðèòìä óäèðäëàãûã áóöààäàã áàéõ. </li></ul><ul><li>Íèéëáýð îëîõ, õàìãèéí èõ áà áàãûã îëîõ, ôàéë íýýõ, õààõ ãýõ ìýò. </li></ul><ul><li>Õýí íýãíèé áè÷ñýí òîäîðõîé äýä àëãîðèòìûã ÿìàð íýãýí ýõ àëãîðèòìä øóóä àâ÷ àøèãëàæ áîëíî. </li></ul>
  5. 5. Äýä àëãîðèòì ãýæ þó âý? <ul><li>Ýõ àëãîðèòì ãýäýã íü äýä àëãîðèòìûã àøèãëàæ áàéãàà àëãîðèòì þì. </li></ul><ul><li>Ýõ àëãîðèòì íü ¿íäñýí àëãîðèòì ýñâýë ººð íýã äýä àëãîðèòì áàéæ áîëíî. </li></ul><ul><li>Äýä àëãîðèòìä øààðäàãäàõ àíõíû óòãûã àðãóìåíò ãýíý. </li></ul><ul><li>Äýä àëãîðèòìààñ ýõ àëãîðèòìä áóöààõ óòãûã äýä àëãîðèòìûí ¿ð ä¿í ãýíý. </li></ul>
  6. 6. ßìàð õýëáýðòýé áè÷èõ âý? <ul><li>äýä_àë ã íýð (òºðºë_1 ïàðàìåòð_1,..,òºðºë_n </li></ul><ul><li> ïàðàìåòð_n) </li></ul><ul><li> áèå_¿éëäë¿¿ä </li></ul><ul><li>áóö; </li></ul><ul><li>Æ: äýä_àëã max (áîäèò x, y) </li></ul><ul><li>xymax:=x; </li></ul><ul><li>õýðýâ y>xymax áîë xymax:=y </li></ul><ul><li> áóö; </li></ul>a) procedure b) function
  7. 7. ßìàð õýëáýðòýé áè÷èõ âý? <ul><li>Íýð íü ò¿¿íä õàðãàëçàõ íèéëìýë ¿éëäýë þó õèéäýã âý ãýäãèéã õàðóóëàõóéöààð ºãíº. Íýðèéã àøèãëàí äýä àëãîðèòìûã äóóääàã. </li></ul><ul><li>Áèå íü ýíý ¿éëäýë ÿàæ õèéæ áàéãààã õàðóóëäàã. </li></ul><ul><li>Áóö ¿éëäýë íü äýä àëãîðèòì òºãñºæ ýõ àëãîðèòì ðóó øèëæèæ áàéãààã èëòãýíý. </li></ul>
  8. 8. ßìàð õýëáýðòýé áè÷èõ âý? <ul><li>(òºðºë_1 ïàðàìåòð_1,...,òºðºë_n ïàðàìåòð_n) - äýä àëãîðèòìûí àðãóìåíò </li></ul><ul><ul><li>òºðºë- àðãóìåíòûí òºðºë. Æ: áîäèò, á¿õýë ãýõ ìýò. </li></ul></ul><ul><ul><li>ïàðàìåòð- àðãóìåíòûí íýð. Æ: õ, ó ãýõ ìýò. </li></ul></ul><ul><li>Ýíý àðãóìåíòûí óòãûã ýõ àëãîðèòìààñ äàìæóóëæ ºãºõ人 õóâüñàã÷ àøèãëàäàã. </li></ul>
  9. 9. ßìàð õýëáýðòýé áè÷èõ âý? <ul><li>(ïàðàìåòð_1,…,ïàðàìåòð_n) íü õóâü-ñàã÷èéí íýð áàéõ áºãººä ò¿¿íèéã õèéñâýð àðãóìåíò ãýæ íýðëýíý. </li></ul><ul><li>Õèéñâýð àðãóìåíòàä àðãóìåíòûí æèí-õýíý óòãûã ºãºõã¿é, õàðèí çºâõºí ÿìàð òºðëèéí, õýäýí àðãóìåíòòýé àëãîðèòì áîëîõûã ë çààíà. </li></ul><ul><li>Õàðèí äýä àëãîðèòìûã äóóäàõ ¿åä õóâüñàã÷óóä óòãàòàé áîëäîã. </li></ul>
  10. 10. Õýðõýí äóóäàõ âý? <ul><li>ßìàð íýã àëãîðèòì äîòîð òîäîðõîé äýä àëãîðèòìûã àøèãëàõûí òóëä øààðäëàãàòàé áàéðàíä ò¿¿íèé íýðýýð õàíääàã . ¯¿íèéã äýä àëãîðèòìûã äóóäàõ ¿éëäýë ãýæ íýðëýäýã. </li></ul><ul><li>Äóóäàõ ¿éëäýë íü: íýð(æ_ïàðàìåòð_1,...,æ_ïàðàìåòð_n); õýëáýðòýé áàéíà. </li></ul>
  11. 11. Õýðõýí äóóäàõ âý? <ul><li>Äóóäàõ ¿éëäýë áèåëýõýä àëãîðèòìûã áèåë¿¿ëýõ óäèðäëàãà äýä àëãîðèòìä øèëæèæ ò¿¿íèé ¿éëäë¿¿ä áèåëæ ýõýëäýã. </li></ul><ul><li>æ_ïàðàìåòð_1,...,æ_ïàðàìåòð_n íü àëãîðèòì áèåëýõ ¿åä õàðãàëçàí ïàðàìåòð_1,...,ïàðàìåòð_n õóâüñàã÷èéí æèíõýíý óòãà áîëæ àøèãëàãäàõ ó÷ðààñ æèíõýíý àðãóìåíò ãýæ íýðëýäýã. </li></ul>
  12. 12. <ul><li>Æèíõýíý àðãóìåíòûí òîî áîëîí òºðºë íü õèéñâýð àðãóìåíòûí òîî áîëîí òºðºëòýé õàðãàëçàí òîõèð÷ áàéõ ¸ñòîé. </li></ul><ul><li>Äóóäàõ ¿éëäýë áèåëæ äýä àëãîðèòìä óäèðäëàãà î÷èõ ¿åä {ïàðàìåòð_1:=æ_ïàðàìåòð_1;...; ïàðàìåòð_n:=æ_ïàðàìåòð_n}; ãýñýí ¿éëäýë àâòîìàòààð õèéãääýã. </li></ul>Óòãà äàìæóóëàõ ººðººð õýëáýë õóâüñàã÷óóä óòãàòàé áîëäîã
  13. 13. Õýðõýí áóöàõ âý? <ul><li>Äóóäàõ ¿éëäýë áèåëýõýä áóöàõ õàÿã èéã ñàíàæ õàäãàëààä äýä àëãîðèòìä øèëæäýã. </li></ul><ul><li>¯éëäë¿¿ä áèåëæ ¿ð ä¿í áýëýí áîëîõîä óäèðäëàãûã ýõ àëãîðèòìä áóö ãýñýí ò¿ëõ¿¿ð ¿ã àøèãëàí áóöààíà. </li></ul><ul><li>Áóö ¿éëäýë áèåëýõýä ºìíº õàäãàëàãäñàí áóöàõ õàÿã èéí òóñëàìæòàéãààð àëãîðèòì ýõ àëãîðèòìä øèëæäýã. </li></ul>
  14. 14. Õóâüñàã÷ <ul><li>Äýä àëãîðèòìûí àðãóìåíòèéí óòãûã 2 õýëáýðèéí õóâüñàã÷ààð äàìæóóëäàã. </li></ul><ul><li>Ãëîáàëü õóâüñàã÷ : Ýõ áà äýä àëãîðèò-ìóóäàä á¿ãäýä íü õýðýãëýæ áîëîõîîð òîäîðõîéëîãäñîí õóâüñàã÷ </li></ul><ul><li>Ëîêàëü õóâüñàã÷ : Äýä àëãîðèòì äîòîð òîäîðõîéëîãäñîí áºãººä çºâõºí òýíä õýðýãëýãäýæ áàéãàà õóâüñàã÷ </li></ul>Ãëîáàëü õóâüñàã÷èéã àøèãëàõ íü èõýíõäýý òîõèðîìæã¿é áàéäàã.
  15. 15. Æèøýý <ul><li>max(x,y)= x, õýðýâ x  y </li></ul><ul><li> y, õýðýâ x<y </li></ul><ul><li>ôóíêöèéã àøèãëàí ºãñºí a,b,c áîäèò óòãàíä </li></ul><ul><li>max(a, b+c)+max(a, a+c) </li></ul><ul><li> 1+max(a+bc, 3.1415) </li></ul><ul><li>õýìæèãäýõ¿¿íèé óòãûã áîäîæ îë. </li></ul>t=
  16. 16. Àëãîðèòì <ul><li>Alg Æ1 </li></ul><ul><ul><li>áîäèò a,b,c,t,x,y,xy max; îðóóë(a,b,c); </li></ul></ul><ul><ul><li>x:=a; </li></ul></ul><ul><ul><li>y:=b+c; </li></ul></ul><ul><ul><li>xymax:=x; </li></ul></ul><ul><ul><li>õýðýâ y>xymax áîë xymax:=y; </li></ul></ul><ul><ul><li>t:=xymax; </li></ul></ul><ul><ul><li>y:=a+c; </li></ul></ul><ul><ul><li>xymax:=x; </li></ul></ul><ul><ul><li>õýðýâ y>xymax áîë xymax:=y; </li></ul></ul><ul><ul><li>t:=t+xymax; </li></ul></ul><ul><ul><li>x:=a+b*c; </li></ul></ul><ul><ul><li>y:=3.1415; </li></ul></ul><ul><ul><li>xymax:=x; </li></ul></ul><ul><ul><li>õýðýâ y>xymax áîë xymax:=y; </li></ul></ul><ul><ul><li>t:=t/(1+xymax); </li></ul></ul><ul><ul><li>ãàðãà(t) </li></ul></ul><ul><li>òºãñ </li></ul>
  17. 17. Àëãîðèòì (ãëîáàëü) <ul><li>AlgÆ2 </li></ul><ul><ul><li>áîäèò a,b,c,t,x,y,xymax; </li></ul></ul><ul><ul><li>îðóóë(a,b,c); </li></ul></ul><ul><ul><li>x:=a; </li></ul></ul><ul><ul><li>y:=b+c; </li></ul></ul><ul><ul><li>max; </li></ul></ul><ul><ul><li>t:=xymax; </li></ul></ul><ul><ul><li>y:=a+c; </li></ul></ul><ul><ul><li>max; </li></ul></ul><ul><ul><li>t:=t+xymax; </li></ul></ul><ul><ul><li>x:=a+b*c; </li></ul></ul><ul><ul><li>y:=3.1415; </li></ul></ul><ul><ul><li>max; </li></ul></ul><ul><ul><li>t:=t/(1+xymax); </li></ul></ul><ul><ul><li>ãàðãà(t) </li></ul></ul><ul><li>òºãñ </li></ul><ul><li>äýä_àëã max </li></ul><ul><li> xymax:=x; </li></ul><ul><li>õýðýâ y>xymax áîë </li></ul><ul><li> xymax:=y </li></ul><ul><li>áóö; </li></ul>
  18. 18. Àëãîðèòì (ëîêàëü) <ul><li>AlgÆ3 </li></ul><ul><ul><li>áîäèò a,b,c,t,xymax; </li></ul></ul><ul><ul><li>îðóóë(a,b,c); </li></ul></ul><ul><ul><li>max(a, b+c); </li></ul></ul><ul><ul><li>t:=xymax; </li></ul></ul><ul><ul><li>max(a, a+c); </li></ul></ul><ul><ul><li>t:=t+xymax; </li></ul></ul><ul><ul><li>max(a+b*c, 3.1415); </li></ul></ul><ul><ul><li>t:=t/(1+xymax); </li></ul></ul><ul><ul><li>ãàðãà(t) </li></ul></ul><ul><li>òºãñ </li></ul><ul><li>äýä_àëã max(áîäèò x,y) </li></ul><ul><li> xymax:=x; </li></ul><ul><li>õýðýâ y>xymax áîë </li></ul><ul><li> xymax:=y </li></ul><ul><li>áóö; </li></ul>
  19. 19. Ôóíêö áà ïðîöåäóð <ul><li>Òîäîðõîé ¿éëäýë ã¿éöýòãýäýã äýä àëãîðèòì-procedure </li></ul><ul><li>Òîäîðõîé ÿìàð íýã óòãà îëæ ò¿¿íèéãýý áóöààæ ºãäºã äýä àëãîðèòì-function </li></ul>
  20. 20. ßìàð ¿åä ò¿ãýýìýë õýðýãëýäýã âý? <ul><li>Àðãóìåíòûí ºãñºí óòãàíä òîäîðõîé íýã óòãûã õàðãàëçóóëàí áîäîæ ºãäºã äýä àëãîðèòìûã function õýëáýðòýé </li></ul><ul><li>Áè÷èõ, óíøèõ, íýýõ, õààõ ãýõ ìýò òîäîðõîé ¿éëäýë áèåë¿¿ëýõ ýñâýë õýä õýäýí óòãà áîäîõîä çîðèóëñàí äýä àëãîðèòìûã procedure õýëáýðòýé </li></ul>
  21. 21. ßàæ áè÷èõ âý? <ul><li>ôóíêö íýð (òºðºë_1 ïàðàìåòð_1,..,òºðºë_n </li></ul><ul><li> ïàðàìåòð_n) </li></ul><ul><li> áèå_¿éëäë¿¿ä </li></ul><ul><li>áóö(áóöààõ óòãà); </li></ul><ul><li>Æ: </li></ul><ul><ul><li>ôóíêö ìàõ(áîäèò õ, ó) </li></ul></ul><ul><ul><li>õýðýâ ó>õ áîë õ:=ó </li></ul></ul><ul><ul><li>áóö(õ); </li></ul></ul>
  22. 22. Æèøýý
  23. 23. Õ¿ñíýãòýí àðãóìåíòòàé äýä àëãîðèòì

×