SlideShare ist ein Scribd-Unternehmen logo
1 von 35
Downloaden Sie, um offline zu lesen
1
RECRYSTALLIZATION IN METALS
FLORENT LEFEVRE-SCHLICK and DAVID EMBURY
Department of Materials Science and Engineering
McMaster University, Hamilton, ON, Canada
2
OUTLINE
 Recrystallization
What is it?
How is it usually treated?
Importance of local misorientation/strain gradients on “nucleation”
First stages of recrystallization; how can we investigate the “nucleation”?
 Rapid heat treatments
What are they?
What can we expect from them?
Recrystallization in metals
 Modeling
 Conclusions-Future work
3
What is it?
Fe
E =Estored=~100J/mol
Deformation
Heat
Recovery
(rearrangement of dislocations in sub grains)
Recrystallization
(development of new strain free grains)
Recrystallization
4
Recrystallization
HOW DOES RECRYSTALLIZATION START?
 “nucleation”
 Strain Induced
Boundary Migration
∆Θ1
∆Θ2
∆Θ3
∆Θ4
∆Θ1
∆Θ3
∆Θ4
Θ1
Θ2
Θ1
Θ2
Θ2
E 1 E 2>
Coalescence and growth of subgrains
Migration of a boundary
In simple systems: small number of “nuclei” lead to recrystallized grains
5
Improving the mechanical properties of materials
 How does recrystallization proceed?
 How to control recrystallization?
 How to achieve an important grain refinement?
 Can we control more than just the scale?
0
1000
2000
3000
4000
5000
6000
7000
0 2 4 6 8 10
d
-1/2
(µm
-1/2
)
σY(MPa)
Cu
Fe
Al
Recrystallization
Grain refinement strengthening
6
Johnson, Mehl, Avrami, Kolmogorov approach
1 exp( )n
X Bt= − −
0
1
recrystallizedfractionX
time
 Random distribution of nucleation sites
 Constant rate of nucleation and growth n=4
 Site saturation n=3
Recrystallization
7
Johnson, Mehl, Avrami, Kolmogorov approach
Recrystallization
Is n misleading?
<1Fe-Mn-C
1.7Aluminium+ small amount of copper, 40% cold
rolled
4Fined grained Aluminium, low strain
4/3/2Constant nucleation rate 3d/2d/1d
3/2/1Site saturation 3d/2d/1d
8
“NUCLEATION” OF RECRYSTALLIZATION
Recrystallization
Hu et al. (1966) Adcock et al. (1922)
Large orientation gradient
(transition bands)
Strain heterogeneities
(shear bands)
Fe-Si system Cu
9
Particle Stimulated Nucleation
Leslie et al. (1963) Humphreys et al. (1977)
Oxide inclusions in Fe Al-Si system Cluster of SiO2 in Ni
 Recrystallization originates at pre-existing subgrains within the deformation zone
 Nucleation is affected by particle size and particle distribution
“NUCLEATION” OF RECRYSTALLIZATION
Recrystallization
10
INVESTIGATING THE “NUCLEATION” EVENT
 Injecting nucleation sites to increase N:
• Local misorientation (twins)
• Local strain gradient (high deformation)
Recrystallization
o
 Impeding growth of recrystallized grains
• Rapid heat treatments
11
What are rapid heat treatments?
T
time
•“Slow” heat treatment
(salt bath)
•“Rapid” heat treatment
(spot welding machine)
•“Ultra-fast” heat treatment
(pulsed laser)
T
time
T
time
seconds
mseconds
nano/pico/femtoseconds
Rapid heat treatments
12
“Slow” heat treatment: Salt bath
Time/Temperature profile during salt bath
heat treatment
0
100
200
300
400
500
600
700
0 5 10 15
Time (sec)
Temperature(C)
Duration of the heat
treatment: 5 seconds.
Temperature range: 500o
C
to 650o
C.
Heating rate ~300C/sec
Cooling rate ~1000C/sec
Salt bath
13
“NUCLEATION” IN IRON
Fe deformed by impact at 77K
50 µm B=[011]
01-1 -21-1
-200
21-1
-2-11
2-22
(-2-11)
(1-11)
grain
twin
Twinning plane {112}
Shear direction 111
Production of deformation twins to promote a variety of potential
nucleation sites for recrystallization, either at twin/grain
boundary or twin/twin intersections
4 µm
Salt bath
14
ZA=[011]
ZA=[113] ZA=[113]
ZA=[113]
200
0-11
22-2 21-1
ZA=[133]
-110
0-31
12-1
-301
21-1
-110
0-31
12-1
-301
21-1
-110
0-31
12-1 -301
21-1
Kikuchi patterns of the parent grain, a twin and a cell
of dislocations. Shift of about 0.5 deg in the ZA
between the grain (green circle) and the cell (red
circle).
-301
-310
5 seconds at 500o
C
BF images of a nuclei
along a deformed twin.
Salt bath
“NUCLEATION” IN IRON
15
“NUCLEATION” IN COPPER
50 µm
1 µm 4 µm
25 µm
Cu 60% cold rolled Cu ~ 2% recrystallized
5 seconds at 250o
C
No noticeable effect of annealing twins on nucleation
Salt bath
16
45% cold rolled @ 77K
100µm
Stainless steel 316L
Cooperation with X. Wang
Salt bath
“NUCLEATION” IN STAINLESS STEEL
17
2 min @ 950C
25µm
Stainless steel 316L
Average grain size: 7µm
Salt bath
“NUCLEATION” IN STAINLESS STEEL
18
25µm
2 min @ 900C
Stainless steel 316L
Average grain size: 5µm
Salt bath
“NUCLEATION” IN STAINLESS STEEL
19
Stainless steel 316L
25µm
2 min @ 850C
Average grain size: 3µm
Salt bath
“NUCLEATION” IN STAINLESS STEEL
20
1 min @ 800C
10µm
Role of annealing, deformation twins and phases on nucleation and growth?
Stainless steel 316L
Salt bath
“NUCLEATION” IN STAINLESS STEEL
21
DF image (austenite)
DF image
(austenite + martensite)
DF image (Twin)
BF image
Salt bath
1 min @ 800C
Stainless steel 316L
 Fine and complex deformed microstructure
 Over a range of possible growing grains, only a few seem to grow
“NUCLEATION” IN STAINLESS STEEL
22
Salt bath
Stainless steel 316L, 2 min @ 850C
25µm
RECRYSTALLIZATION AS A WAY TO CONTROL THE NATURE
OF GRAIN BOUNDARIES?
10o
20o
30o
40o
50o
60o
0%
30%
~30% of Σ3 boundaries
(rotation 60o
, axis <111>)
23
“RAPID” HEAT TREATMENT: SPOT WELDING MACHINE
3mm
250 µm
Fe annealed (thickness = 500 µm)
Fe 60% cold rolled (thickness = 200 µm)
Electrode of Cu
Pulse discharge width: 1 msec
Energy output: 100 J to 1 J
Estimated heating rate ~105
K/sec
Spot welding machine
24
PHASE TRANSITION IN IRON
50 µm 50 µm
40 J 20 J
Melted zone
Heated zone
 Refinement of the microstructure via phase transitions
 Distribution in grain size from 40 µm down to less than 1 µm
Spot welding machine
25
RECRYSTALLIZATION AND PHASE TRANSITION IN IRON
40 J
50 µm100 µm
 Refinement of the microstructure via phase transitions and recrystallization
 Distribution in grain size from 100 µm down to less than 1 µm
Spot welding machine
Fe 60% cold rolled
26
20 J
50 µm
 Localized event along specific grain boundaries
Spot welding machine
RECRYSTALLIZATION AND PHASE TRANSITION IN IRON
Fe 60% cold rolled
27
Laser pulse:
 Energy (nJ to µJ)
 Time (fsec to nsec)
 Beam size (µm to mm)
Small volume on the surface
 Rapid heating and cooling
(104
to 1012
K/sec)
 Increase in pressure (up to TPa)
Shock wave.
“ULTRA FAST” HEAT TREATMENT: PULSE LASER IRRADIATION
(nano/pico/femtosecond)
Cooperation with Preston/Haugen group
~100 nm
to mm
Pulse lasers
28
 λ = 800 nm
 The beam has a Gaussian profile
with a radius ω0
 E0: full energy pulse (~10 µJ)
 τp: duration of the pulse (~ 10 nsec/ 100psec/ 150 fsec)
 φ: fluence or energy per unit area (J/cm2
)
 φth: threshold fluence (J/cm2
)
fluence required to transform the surface
Pulse lasers
“ULTRA FAST” HEAT TREATMENT: PULSE LASER IRRADIATION
(nano/pico/femtosecond)
29
WHY PULSED LASERS?
Pulse lasers
30
SINGLE PULSE ABLATION OF FE
E = 9.2 µJ
10 µm
5 µm
E = 1.0 µJ
10 µm
E = 3.2 µJ
5 µm
E = 0.2 µJ
 What is the temperature profile?
 How to characterise the irradiated volume?
Pulse lasers
31
Si substrate
SiO2 isolant layer
Platinum
2 mm
2 mm 100 µm
25 nm2 µm
resistor
connector
TEMPERATURE MEASUREMENT DEVICE
Summer work of B. Iqbar
Measuring the changes in resistivity of Pt estimating the temperature
Pulse lasers
32
Fe annealed, 1 grain
Corrected harmonic contact stiffness: 1.106
N/m
0
10
20
30
200 400 600 800 1000 1200
Load On Sample (mN)
Displacement Into Surface (nm)
1
2
3
4
5
[6]
U
HD
I
E
M HN
L
0
100
200
300
400
200 400 600 800 1000 1200
Reduced Modulus (GPa)
Displacement Into Surface (nm)
IM
H
N
0
2
4
6
8
10
12
14
16
0 200 400 600 800 1000
Hardness (GPa)
Displacement Into Surface (nm)
1
2
3
4
5
[6]
I
M
HN
INSTRUMENTED INDENTATION
Pulse lasers
0
10
20
30
40
200 400 600 800 1000 1200
Load On Sample (mN)
Displacement Into Surface (nm)
[2]
3
4
U
HD
I
E
M HN
L
Fe annealed, 3 different grains
0
100
200
300
400
200 400 600 800 1000 1200
Reduced Modulus (GPa)
Displacement Into Surface (nm)
I
MH
N
0
2
4
6
8
10
12
14
16
200 400 600 800 1000 1200
Hardness (GPa)
Displacement Into Surface (nm)
[2]
3
4
IM HN
33
1 2 3
12 11 10
-1
0
1
2
3
4
5
6
7
100 200 300 400
Load On Sample (mN)
Displacement Into Surface (nm)
1
2
3
4
5
6
7
8
[9]
10
11
12S
U
HDI EM
H
N
L
-2
0
2
4
6
8
10
12
14
16
18
20
100 200 300 400
Hardness (GPa)
Displacement Into Surface (nm)
1
2
3
4
5
6
7
8
[9]
10
11
12
IM HN
INSTRUMENTED INDENTATION
Pulse lasers
 Softening of the deformed material?
 Is there local melting/solidification or local heating?
34
SGGrain I
Grain II
nucleus
Grain I
Grain II
)(
2
)(
tr
tG
γ
>
Modeling
ZUROB’S MODEL FOR RECRYSTALLIZATION
 Needs input on local misorientations
35
CONCLUSIONS – FUTURE WORK
 Investigation of the first stage of recrystallization by:
o Designing microstructures to promote N
o Using rapid heat treatments to allow nucleation but not G
o
o
 Characterize the heat treatment in terms of time/temperature
profile
 Characterize the “nucleation” event in terms of local
misorientation, local strain gradient (EBSD)
 Introduce the data on misorientation into Zurob’s model

Weitere ähnliche Inhalte

Was ist angesagt?

Disprosio
DisprosioDisprosio
Disprosio
jvprofe
 
8 precipitation hardening-of_aluminum
8 precipitation hardening-of_aluminum8 precipitation hardening-of_aluminum
8 precipitation hardening-of_aluminum
Mukhlis Adam
 
Hot deformation behaviour and microstructural evolution of modified
Hot deformation behaviour and microstructural evolution of modifiedHot deformation behaviour and microstructural evolution of modified
Hot deformation behaviour and microstructural evolution of modified
manjararun
 

Was ist angesagt? (17)

Khalid Presentation on BNOC 2013
Khalid Presentation on BNOC 2013Khalid Presentation on BNOC 2013
Khalid Presentation on BNOC 2013
 
VLSI FUNDAMENTALS--ABU SYED KUET
VLSI FUNDAMENTALS--ABU SYED KUETVLSI FUNDAMENTALS--ABU SYED KUET
VLSI FUNDAMENTALS--ABU SYED KUET
 
Younes Sina, Uk Huh, Ion Implantation
Younes Sina, Uk Huh, Ion ImplantationYounes Sina, Uk Huh, Ion Implantation
Younes Sina, Uk Huh, Ion Implantation
 
Disprosio
DisprosioDisprosio
Disprosio
 
Synthesis of zn se nanocrystals (1)
Synthesis of zn se nanocrystals (1)Synthesis of zn se nanocrystals (1)
Synthesis of zn se nanocrystals (1)
 
MSc Thesis Presentation
MSc Thesis PresentationMSc Thesis Presentation
MSc Thesis Presentation
 
8 precipitation hardening-of_aluminum
8 precipitation hardening-of_aluminum8 precipitation hardening-of_aluminum
8 precipitation hardening-of_aluminum
 
Zinc Oxide Nanowires Prepared by Hot Tube Thermal Evaporation
Zinc Oxide Nanowires Prepared by Hot Tube Thermal EvaporationZinc Oxide Nanowires Prepared by Hot Tube Thermal Evaporation
Zinc Oxide Nanowires Prepared by Hot Tube Thermal Evaporation
 
SYNTHESIS OF ZnSe final
SYNTHESIS OF ZnSe finalSYNTHESIS OF ZnSe final
SYNTHESIS OF ZnSe final
 
Ic technology-pattern transfer and etching
Ic technology-pattern transfer and etchingIc technology-pattern transfer and etching
Ic technology-pattern transfer and etching
 
Final Year Synopsis on ZnSe NANOCRYSTALS
Final Year Synopsis on ZnSe NANOCRYSTALSFinal Year Synopsis on ZnSe NANOCRYSTALS
Final Year Synopsis on ZnSe NANOCRYSTALS
 
Float Zone, Bridgman Techniques--ABU SYED KUET
Float Zone, Bridgman Techniques--ABU SYED KUETFloat Zone, Bridgman Techniques--ABU SYED KUET
Float Zone, Bridgman Techniques--ABU SYED KUET
 
Focus ht aplmedidant
Focus ht aplmedidantFocus ht aplmedidant
Focus ht aplmedidant
 
Zone melting
Zone meltingZone melting
Zone melting
 
Hot deformation behaviour and microstructural evolution of modified
Hot deformation behaviour and microstructural evolution of modifiedHot deformation behaviour and microstructural evolution of modified
Hot deformation behaviour and microstructural evolution of modified
 
Characterization of CVD grown molybdenum disulfide monolayer and exfoliated M...
Characterization of CVD grown molybdenum disulfide monolayer and exfoliated M...Characterization of CVD grown molybdenum disulfide monolayer and exfoliated M...
Characterization of CVD grown molybdenum disulfide monolayer and exfoliated M...
 
High pressure oven Inforgrapfic - ilshinautoclave
High pressure oven Inforgrapfic - ilshinautoclaveHigh pressure oven Inforgrapfic - ilshinautoclave
High pressure oven Inforgrapfic - ilshinautoclave
 

Ähnlich wie 702 florent lefevre-schlick_november_2005

poster New Mexico Consortium 2015
poster New Mexico Consortium 2015poster New Mexico Consortium 2015
poster New Mexico Consortium 2015
Swayandipta Dey
 
Vaneet K Sharma MS 2008
Vaneet K Sharma MS 2008Vaneet K Sharma MS 2008
Vaneet K Sharma MS 2008
vsharma78
 
Presentation__ferroelectric_materials.ppt
Presentation__ferroelectric_materials.pptPresentation__ferroelectric_materials.ppt
Presentation__ferroelectric_materials.ppt
RezaMohammadi90
 

Ähnlich wie 702 florent lefevre-schlick_november_2005 (20)

Characterization of Single crystal KNN Ceramics (K0.5Na0.5NbO3)
Characterization of Single crystal KNN Ceramics (K0.5Na0.5NbO3)Characterization of Single crystal KNN Ceramics (K0.5Na0.5NbO3)
Characterization of Single crystal KNN Ceramics (K0.5Na0.5NbO3)
 
Fabrication of patterned ferromagnetic shape memory thin films
Fabrication of patterned ferromagnetic shape memory thin filmsFabrication of patterned ferromagnetic shape memory thin films
Fabrication of patterned ferromagnetic shape memory thin films
 
Study on hardening mechanisms in aluminium alloys
Study on hardening mechanisms in aluminium alloysStudy on hardening mechanisms in aluminium alloys
Study on hardening mechanisms in aluminium alloys
 
Study on hardening mechanisms in aluminium alloys
Study on hardening mechanisms in aluminium alloysStudy on hardening mechanisms in aluminium alloys
Study on hardening mechanisms in aluminium alloys
 
HTC congress 2009
HTC congress  2009HTC congress  2009
HTC congress 2009
 
Annealing and Microstructural Characterization of Tin-Oxide Based Thick Film ...
Annealing and Microstructural Characterization of Tin-Oxide Based Thick Film ...Annealing and Microstructural Characterization of Tin-Oxide Based Thick Film ...
Annealing and Microstructural Characterization of Tin-Oxide Based Thick Film ...
 
Electrical power from heat: All-scale hierarchical thermoelectrics with and w...
Electrical power from heat: All-scale hierarchical thermoelectrics with and w...Electrical power from heat: All-scale hierarchical thermoelectrics with and w...
Electrical power from heat: All-scale hierarchical thermoelectrics with and w...
 
Sintering behavior of feldspar rocks
Sintering behavior of feldspar rocksSintering behavior of feldspar rocks
Sintering behavior of feldspar rocks
 
WARM PROCESSING FOR CUBE TEXTURE IN PURE IRON.pptx
WARM PROCESSING FOR CUBE TEXTURE IN PURE IRON.pptxWARM PROCESSING FOR CUBE TEXTURE IN PURE IRON.pptx
WARM PROCESSING FOR CUBE TEXTURE IN PURE IRON.pptx
 
poster New Mexico Consortium 2015
poster New Mexico Consortium 2015poster New Mexico Consortium 2015
poster New Mexico Consortium 2015
 
Zinc final
Zinc finalZinc final
Zinc final
 
Vaneet K Sharma MS 2008
Vaneet K Sharma MS 2008Vaneet K Sharma MS 2008
Vaneet K Sharma MS 2008
 
Effect of sintering time on the particle size and dielectric properties of La...
Effect of sintering time on the particle size and dielectric properties of La...Effect of sintering time on the particle size and dielectric properties of La...
Effect of sintering time on the particle size and dielectric properties of La...
 
NACE-July-6-2015
NACE-July-6-2015NACE-July-6-2015
NACE-July-6-2015
 
IntroToMetallography.pptx
IntroToMetallography.pptxIntroToMetallography.pptx
IntroToMetallography.pptx
 
Presentation__ferroelectric_materials.ppt
Presentation__ferroelectric_materials.pptPresentation__ferroelectric_materials.ppt
Presentation__ferroelectric_materials.ppt
 
Hot wire Anemometer: microfabrication
Hot wire Anemometer: microfabricationHot wire Anemometer: microfabrication
Hot wire Anemometer: microfabrication
 
Magnetic nde characterization of tempered 2.25 cr 1mo steel
Magnetic nde characterization of tempered 2.25 cr 1mo steelMagnetic nde characterization of tempered 2.25 cr 1mo steel
Magnetic nde characterization of tempered 2.25 cr 1mo steel
 
Master Presentation Part 1
Master Presentation Part 1Master Presentation Part 1
Master Presentation Part 1
 
D Day
D DayD Day
D Day
 

Mehr von Mukhlis Adam

Mehr von Mukhlis Adam (7)

boiler
boilerboiler
boiler
 
Pedoman pelaksanaan perwalian
Pedoman pelaksanaan perwalianPedoman pelaksanaan perwalian
Pedoman pelaksanaan perwalian
 
4 tension test
4 tension test4 tension test
4 tension test
 
Basic crystallography
Basic crystallographyBasic crystallography
Basic crystallography
 
6 heat treatment-of_steel
6 heat treatment-of_steel6 heat treatment-of_steel
6 heat treatment-of_steel
 
Career science,tech,eng,math
Career science,tech,eng,mathCareer science,tech,eng,math
Career science,tech,eng,math
 
554 pengetahuan bahan-teknik
554 pengetahuan bahan-teknik554 pengetahuan bahan-teknik
554 pengetahuan bahan-teknik
 

702 florent lefevre-schlick_november_2005

  • 1. 1 RECRYSTALLIZATION IN METALS FLORENT LEFEVRE-SCHLICK and DAVID EMBURY Department of Materials Science and Engineering McMaster University, Hamilton, ON, Canada
  • 2. 2 OUTLINE  Recrystallization What is it? How is it usually treated? Importance of local misorientation/strain gradients on “nucleation” First stages of recrystallization; how can we investigate the “nucleation”?  Rapid heat treatments What are they? What can we expect from them? Recrystallization in metals  Modeling  Conclusions-Future work
  • 3. 3 What is it? Fe E =Estored=~100J/mol Deformation Heat Recovery (rearrangement of dislocations in sub grains) Recrystallization (development of new strain free grains) Recrystallization
  • 4. 4 Recrystallization HOW DOES RECRYSTALLIZATION START?  “nucleation”  Strain Induced Boundary Migration ∆Θ1 ∆Θ2 ∆Θ3 ∆Θ4 ∆Θ1 ∆Θ3 ∆Θ4 Θ1 Θ2 Θ1 Θ2 Θ2 E 1 E 2> Coalescence and growth of subgrains Migration of a boundary In simple systems: small number of “nuclei” lead to recrystallized grains
  • 5. 5 Improving the mechanical properties of materials  How does recrystallization proceed?  How to control recrystallization?  How to achieve an important grain refinement?  Can we control more than just the scale? 0 1000 2000 3000 4000 5000 6000 7000 0 2 4 6 8 10 d -1/2 (µm -1/2 ) σY(MPa) Cu Fe Al Recrystallization Grain refinement strengthening
  • 6. 6 Johnson, Mehl, Avrami, Kolmogorov approach 1 exp( )n X Bt= − − 0 1 recrystallizedfractionX time  Random distribution of nucleation sites  Constant rate of nucleation and growth n=4  Site saturation n=3 Recrystallization
  • 7. 7 Johnson, Mehl, Avrami, Kolmogorov approach Recrystallization Is n misleading? <1Fe-Mn-C 1.7Aluminium+ small amount of copper, 40% cold rolled 4Fined grained Aluminium, low strain 4/3/2Constant nucleation rate 3d/2d/1d 3/2/1Site saturation 3d/2d/1d
  • 8. 8 “NUCLEATION” OF RECRYSTALLIZATION Recrystallization Hu et al. (1966) Adcock et al. (1922) Large orientation gradient (transition bands) Strain heterogeneities (shear bands) Fe-Si system Cu
  • 9. 9 Particle Stimulated Nucleation Leslie et al. (1963) Humphreys et al. (1977) Oxide inclusions in Fe Al-Si system Cluster of SiO2 in Ni  Recrystallization originates at pre-existing subgrains within the deformation zone  Nucleation is affected by particle size and particle distribution “NUCLEATION” OF RECRYSTALLIZATION Recrystallization
  • 10. 10 INVESTIGATING THE “NUCLEATION” EVENT  Injecting nucleation sites to increase N: • Local misorientation (twins) • Local strain gradient (high deformation) Recrystallization o  Impeding growth of recrystallized grains • Rapid heat treatments
  • 11. 11 What are rapid heat treatments? T time •“Slow” heat treatment (salt bath) •“Rapid” heat treatment (spot welding machine) •“Ultra-fast” heat treatment (pulsed laser) T time T time seconds mseconds nano/pico/femtoseconds Rapid heat treatments
  • 12. 12 “Slow” heat treatment: Salt bath Time/Temperature profile during salt bath heat treatment 0 100 200 300 400 500 600 700 0 5 10 15 Time (sec) Temperature(C) Duration of the heat treatment: 5 seconds. Temperature range: 500o C to 650o C. Heating rate ~300C/sec Cooling rate ~1000C/sec Salt bath
  • 13. 13 “NUCLEATION” IN IRON Fe deformed by impact at 77K 50 µm B=[011] 01-1 -21-1 -200 21-1 -2-11 2-22 (-2-11) (1-11) grain twin Twinning plane {112} Shear direction 111 Production of deformation twins to promote a variety of potential nucleation sites for recrystallization, either at twin/grain boundary or twin/twin intersections 4 µm Salt bath
  • 14. 14 ZA=[011] ZA=[113] ZA=[113] ZA=[113] 200 0-11 22-2 21-1 ZA=[133] -110 0-31 12-1 -301 21-1 -110 0-31 12-1 -301 21-1 -110 0-31 12-1 -301 21-1 Kikuchi patterns of the parent grain, a twin and a cell of dislocations. Shift of about 0.5 deg in the ZA between the grain (green circle) and the cell (red circle). -301 -310 5 seconds at 500o C BF images of a nuclei along a deformed twin. Salt bath “NUCLEATION” IN IRON
  • 15. 15 “NUCLEATION” IN COPPER 50 µm 1 µm 4 µm 25 µm Cu 60% cold rolled Cu ~ 2% recrystallized 5 seconds at 250o C No noticeable effect of annealing twins on nucleation Salt bath
  • 16. 16 45% cold rolled @ 77K 100µm Stainless steel 316L Cooperation with X. Wang Salt bath “NUCLEATION” IN STAINLESS STEEL
  • 17. 17 2 min @ 950C 25µm Stainless steel 316L Average grain size: 7µm Salt bath “NUCLEATION” IN STAINLESS STEEL
  • 18. 18 25µm 2 min @ 900C Stainless steel 316L Average grain size: 5µm Salt bath “NUCLEATION” IN STAINLESS STEEL
  • 19. 19 Stainless steel 316L 25µm 2 min @ 850C Average grain size: 3µm Salt bath “NUCLEATION” IN STAINLESS STEEL
  • 20. 20 1 min @ 800C 10µm Role of annealing, deformation twins and phases on nucleation and growth? Stainless steel 316L Salt bath “NUCLEATION” IN STAINLESS STEEL
  • 21. 21 DF image (austenite) DF image (austenite + martensite) DF image (Twin) BF image Salt bath 1 min @ 800C Stainless steel 316L  Fine and complex deformed microstructure  Over a range of possible growing grains, only a few seem to grow “NUCLEATION” IN STAINLESS STEEL
  • 22. 22 Salt bath Stainless steel 316L, 2 min @ 850C 25µm RECRYSTALLIZATION AS A WAY TO CONTROL THE NATURE OF GRAIN BOUNDARIES? 10o 20o 30o 40o 50o 60o 0% 30% ~30% of Σ3 boundaries (rotation 60o , axis <111>)
  • 23. 23 “RAPID” HEAT TREATMENT: SPOT WELDING MACHINE 3mm 250 µm Fe annealed (thickness = 500 µm) Fe 60% cold rolled (thickness = 200 µm) Electrode of Cu Pulse discharge width: 1 msec Energy output: 100 J to 1 J Estimated heating rate ~105 K/sec Spot welding machine
  • 24. 24 PHASE TRANSITION IN IRON 50 µm 50 µm 40 J 20 J Melted zone Heated zone  Refinement of the microstructure via phase transitions  Distribution in grain size from 40 µm down to less than 1 µm Spot welding machine
  • 25. 25 RECRYSTALLIZATION AND PHASE TRANSITION IN IRON 40 J 50 µm100 µm  Refinement of the microstructure via phase transitions and recrystallization  Distribution in grain size from 100 µm down to less than 1 µm Spot welding machine Fe 60% cold rolled
  • 26. 26 20 J 50 µm  Localized event along specific grain boundaries Spot welding machine RECRYSTALLIZATION AND PHASE TRANSITION IN IRON Fe 60% cold rolled
  • 27. 27 Laser pulse:  Energy (nJ to µJ)  Time (fsec to nsec)  Beam size (µm to mm) Small volume on the surface  Rapid heating and cooling (104 to 1012 K/sec)  Increase in pressure (up to TPa) Shock wave. “ULTRA FAST” HEAT TREATMENT: PULSE LASER IRRADIATION (nano/pico/femtosecond) Cooperation with Preston/Haugen group ~100 nm to mm Pulse lasers
  • 28. 28  λ = 800 nm  The beam has a Gaussian profile with a radius ω0  E0: full energy pulse (~10 µJ)  τp: duration of the pulse (~ 10 nsec/ 100psec/ 150 fsec)  φ: fluence or energy per unit area (J/cm2 )  φth: threshold fluence (J/cm2 ) fluence required to transform the surface Pulse lasers “ULTRA FAST” HEAT TREATMENT: PULSE LASER IRRADIATION (nano/pico/femtosecond)
  • 30. 30 SINGLE PULSE ABLATION OF FE E = 9.2 µJ 10 µm 5 µm E = 1.0 µJ 10 µm E = 3.2 µJ 5 µm E = 0.2 µJ  What is the temperature profile?  How to characterise the irradiated volume? Pulse lasers
  • 31. 31 Si substrate SiO2 isolant layer Platinum 2 mm 2 mm 100 µm 25 nm2 µm resistor connector TEMPERATURE MEASUREMENT DEVICE Summer work of B. Iqbar Measuring the changes in resistivity of Pt estimating the temperature Pulse lasers
  • 32. 32 Fe annealed, 1 grain Corrected harmonic contact stiffness: 1.106 N/m 0 10 20 30 200 400 600 800 1000 1200 Load On Sample (mN) Displacement Into Surface (nm) 1 2 3 4 5 [6] U HD I E M HN L 0 100 200 300 400 200 400 600 800 1000 1200 Reduced Modulus (GPa) Displacement Into Surface (nm) IM H N 0 2 4 6 8 10 12 14 16 0 200 400 600 800 1000 Hardness (GPa) Displacement Into Surface (nm) 1 2 3 4 5 [6] I M HN INSTRUMENTED INDENTATION Pulse lasers 0 10 20 30 40 200 400 600 800 1000 1200 Load On Sample (mN) Displacement Into Surface (nm) [2] 3 4 U HD I E M HN L Fe annealed, 3 different grains 0 100 200 300 400 200 400 600 800 1000 1200 Reduced Modulus (GPa) Displacement Into Surface (nm) I MH N 0 2 4 6 8 10 12 14 16 200 400 600 800 1000 1200 Hardness (GPa) Displacement Into Surface (nm) [2] 3 4 IM HN
  • 33. 33 1 2 3 12 11 10 -1 0 1 2 3 4 5 6 7 100 200 300 400 Load On Sample (mN) Displacement Into Surface (nm) 1 2 3 4 5 6 7 8 [9] 10 11 12S U HDI EM H N L -2 0 2 4 6 8 10 12 14 16 18 20 100 200 300 400 Hardness (GPa) Displacement Into Surface (nm) 1 2 3 4 5 6 7 8 [9] 10 11 12 IM HN INSTRUMENTED INDENTATION Pulse lasers  Softening of the deformed material?  Is there local melting/solidification or local heating?
  • 34. 34 SGGrain I Grain II nucleus Grain I Grain II )( 2 )( tr tG γ > Modeling ZUROB’S MODEL FOR RECRYSTALLIZATION  Needs input on local misorientations
  • 35. 35 CONCLUSIONS – FUTURE WORK  Investigation of the first stage of recrystallization by: o Designing microstructures to promote N o Using rapid heat treatments to allow nucleation but not G o o  Characterize the heat treatment in terms of time/temperature profile  Characterize the “nucleation” event in terms of local misorientation, local strain gradient (EBSD)  Introduce the data on misorientation into Zurob’s model