SlideShare ist ein Scribd-Unternehmen logo
1 von 11
Downloaden Sie, um offline zu lesen
- 1 -
Best practices and technologies to overcome barriers to implementing smart water
networks
Topic:
Smart water networks; Automatic Meter Reading; Systems modelling, optimization and
decision support;
Authors names and affiliations:
Miriam Surro (CEO MiDo Snc), Lamboglia Domenico (CTO MiDo Snc)
Key words:
smart meter, open protocol, cloud computing
Contact person:
Miriam Surro – m.surro@midoingegneria.com – tel.+39.346.6715601
Abstract
This paper reports the results of four years of pilot projects smart metering and monitoring of water
networks in different scenarios and application environments, made with various public and private
companies involved in the distribution of water resources
We want to prove that the applicability and economic sustainability of metering systems are only
possible if you adopt open systems, versatile, interoperable, self-powered and complete.
Open systems, versatile, interoperable, self-powered and complete in other word means consisting
of:
1. devices that can be connected to any type of mechanical counter or probes (pressure
temperature etc.) via radio or wired using standardized protocols,
2. self-powered with a lifetime of 10 years at least,
3. complete with communication interfaces, and able to transmit the data autonomously to
4. data management systems provided as Software as a service (cloud computing service) or that
can be interfaced to existing systems management software.
Introduction
Water scarcity and water quality are emerging as key issues of public concern and more pressing
inhibitors of growth in cities and countries around the world.
As a result, the market for safe, available water and for the infrastructure and technologies that treat
and transport water is expected to continue to grow rapidly as stakeholders look for new solutions
and approaches to integrated water resource management. However, according to Growing Blue, a
consortium of industry colleagues, scientists, academia and environmental professionals, one-third
of reporting countries lose more than 40 percent of the clean water pumped into the distribution
system because of leaks before that water reaches end consumers. Water utilities lose an estimated
$9.6 billion on an annual basis because of leaked water.
Utilities worldwide spend nearly $100 billion on water-related operations and almost $90 billion on
capital expenditures each year. Much of the spending is inefficiently allocated and savings
opportunities are lost because utilities:
 Do not have access to sufficient information regarding leaks, status of pipes and water quality
 Do not have data and knowledge integration across multiple operating divisions
 Are not capable of analysing the information to drive decisions
 Lack sufficient access to automated technologies that could turn information analysis and
decisions into network improvements in real time
- 2 -
SystemInputVolume
Authorised
consumption
Billed
Authorised
Consumption
Billed Metered Consumption Revenue
Water
Billed Unmetered
Consumption
Unbilled
Authorised
Consumption
Unbilled Metered
Consumption
Non-
Revenue
Water
(NRW)
Unbilled Unmetered
Consumption
Water losses Apparent Losses Unauthorised Consumption
Customer Metering
Inaccuracies
Real Losses Leakage on Transmission
and/or Distribution Mains
Leakage and Overflows at
Utility’s - Storage Tanks
Leakage on Service
Connections up to point of
Customer metering
Source: IWA - http://www.iwapublishing.com/pdf/WaterLoss-Aug.pdf
Figure 1: The IWA ‘best practice’ standard water balance
Opportunity of Smart water networks
Smart water networks offer utilities a tremendous opportunity to improve productivity and efficiency
while enhancing customer service. Utilities can save between $7.1 and $12.5 billion each year from
implementing smart water solutions that reduce operational inefficiencies and optimize capital
expenditures.
Smart water solutions will help regulators, lawmakers and municipalities to:
 To Savings on operating costs for network operations and maintenance
 To Constant monitoring and timely consumption and quality
 To Bill on real consumption: Pay for and manage water service easily and transparently. A smart
water network solution that includes smart meters enables e-billing and e-payment options and
allows consumers to interact with utilities via web portals for service requests and billing inquiries.
 To Remarks: losses / thefts and follows the evolution, or meter blocked, anomalous peak values
or sensor unsuitable: over-or undersized
 To Quantifies the resource is not accounted
 To Savings and rationalization of consumption: estimated consumption during certain periods or
time slots
 To Stimulates users to a more rational consumption
 To have a simple and complete control of the water network
Smart meter network
A smart water network is a fully integrated set of products, solutions and systems that enable water
utilities to:
 Remotely and continuously monitor and diagnose problems, pre-emptively prioritize and manage
maintenance issues, and remotely control and optimize all aspects of the water distribution
network using data-driven insights
 Comply transparently and confidently with regulatory and policy requirements on water quality
and conservation
 Provide water customers with the information and tools they need to make informed choices about
their behaviours and water usage patterns
- 3 -
Figure 2: Smart water network scheme
Figure 3: Smart water network conceptual functioning
Barrier in adoption
Smart water networks have existed conceptually for years but have failed to gain traction among
utilities, technology providers and other industry stakeholders.
Lack of a strong business case
Water utilities companies are not sure if there is a compelling base and the benefits were not high
enough to justify the investment.
Lack of funding even if there is a business case
Lack of funding emerged as a key constraint, even if the business case is compelling. “It’s too hard
and expensive to buy all at once and manage lifecycle costs because vendors want to sell a 20-
year investment all at once”
Lack of political and regulatory support
Political support consistently emerged as a theme preventing the adoption of smart water networks,
both internal to utilities and external through municipalities as well as regulators.
Lack of a clear, user-friendly integrated technology solution
Proprietary vendor solutions were difficult to integrate, utilities said, and different vendors had
different strengths in their offerings.
Overcome barriers to implementing smart water networks
To overcome the barriers of lack of funding Lack of political and regulatory support* actually they are
creating regulatory framework that will regulate the field of smart metering world. In Europe,
particularly there are cofinancing funds for the investments for the renewal and efficiency of networks
water, but these factors will not be enough to implement the smart metering massively:
The key question is the Lack of a clear, user-friendly integrated technology solution
save image
GPRS
Measurement and
Sensing Intruments
Communication
Channel
Data Analysis
model
Feedback to the instruments
- 4 -
Figure 4: Lack of a clear, user-friendly integrated technology solution
Nowadays the companies present in the smart meter market are the traditional producers of
mechanical counters. Everyone of these stakeholders has developed to become smart a custom
solution just for his meters, but you don’t find any utilities company in gas or water sector, that has
just one type of brand of counter.
In addition, the customer has to deal alone about the aspects of the data transfer and coverage of
the transmission costs, but the customer is responsible for water and gas and is not a
telecommunications company.
Finally, the data is transmitted through a closed protocol that require the customer to buy expensive
software and hardware that upsets the existing data management systems.
So these solutions are all wrong in all of their aspects: because they are based on a custom electronic
device, are incomplete, and the protocols are closed.
EU and Italian regulatory framework
Direttiva UE n. 32/2006 - EFFICIENZA ENERGIA E SERVIZI ENERGETICI
Decreto legislativo n. 152/99 agg.2012 NUOVO TESTO UNICO AMBIENTALE
Delibera 155/08 dell’authority per l’energia (AEEG) e la 28/12 Definisce le modalità di passaggio agli smartmeters gas e,
attraverso le norme UNICIG11291, anche le modalità di comunicazione dei contatori attraverso la rete fino al SAC
EN 16314 “Gas meters -Additional functionalities”
N°393/13 Regolamenta la sperimentazione di soluzioni di telegestione multiservizio di contatori domestici.
Best practices and technologies with open interoperability self-powered smart system for
water
We adopted "smart metering system" based on an electronic device with the following properties:
 SELF POWERED with 10-year life cycle,
 OPEN HARDWARE INTERFACE: the device is extremely versatile and can be connected to any
type of mechanical meter, or sensor, (wired or wireless radio sensors with standard new protocol
WM-BUS OMS (EN 1434))
 The device stores meter read data in a BIG MEMORY (more than year of capacity of storage),
 OPEN TRASMISSION PROTOCOL - SAAS (SOFTWARE AS A SERVICE) – CLOUD
COMPUTING MANAGEMENT SYSTEM BASED: the device send trough wired or wireless
network to a management system that we provide also as a cloud computing service. The
transmission protocol is open, so the data transmitted can be easily integrated with existing data
management system.
And we prove the above features are the key of success to the applicability and economic
sustainability of metering systems
- 5 -
Figure 5: Open, versatile, interoperable, self-powered and complete smart meter system
Application of smart metering in different scenario
We can classify users of a water network and therefore also the application fields of a smart metering
system, into 3 groups:
1. Distribution network (pipelines, tanks, power plants)
2. Large users (industries - irrigation networks etc.)
3. Domestic consumers
In each of these groups has different needs and smart metering can be applied, but in a way, different
technologies.
Figure 6: Example of a modelled city plant with different application of a interoperable smart meter system
Large users (industries, hospitals, schools), that is, all those users which consume large volumes
of resource. These users require intensive monitoring with a high amount of readings (one reading
per hour and sending data once a day). For these users, the remote reading is important to bill with
frequency on actual consumption, and to check for leaks.
- 6 -
The pipeline, production and distribution part of a water network requires a near real-time
monitoring and amounts of data very high (less than once an hour reading and sending data to the
management system less than once every 24 hours, for example) because the needs are:
 check the status of the network, to act promptly in case of breakdown
 to control and monitor the loss of water resources,
 to plan the intervention strategy
 and to be a valuable tool to support the management.
Final consumer needs: Few readings 1 or 2 per day, in order to obtain bills of real consumption,
awareness of resource use, transparency with Municipalities.
These types of users are never clearly divided by zones on the territory, but they are always mixed,
so in a metropolis for example we find large users (hospitals, schools, barracks) in the same area of
apartments, private houses close to of a network of irrigation or nearby industrial district.
So in order to efficiently apply smart meter network is first of all necessary that the devices used are
able to adapt without any changes or additional complexities for the utility companies, to the different
contexts and regardless of the type of counters.
The smart metering devices while reading from heterogeneous sources must be able to
interact between them and especially to send data into one remote management software.
The interaction between the various nodes monitoring enables nodes to calculate an
instantaneous water balance, and promptly identify network problems
To have a single remote management system is the key factor in the smart metering, because only
in this way, the remote management system can apply all the necessary mathematical models for
optimizing strategic planning management of the network to calculate an overall water balance of
the entire water network.
Field tests - Case of studies
The following scenarios shows different using of the same device in the different test pilot
made with collaboration of a utility company based in South of Italy Acquedotto Lucano
SpA and a Sub-metering company based in Florence Ditta Taglialegna
OPEN HARDWARE INTERFACE
What does means an open interoperability device? It means that the same device could be used in
different scenarios
Wired version
A single device with several inputs for connection with meters or sensors (for example temperature
and pressure) and GPRS communication interface.
It is addressed to: Block of flats with collectors meters, large utilities (high consumption): Irrigation,
Industries, Sub-distributions (such as support for the detection of leaks and breaks down on the
network)
Figure 7: Wired device plugged with cable to one or more counters
- 7 -
Master version
Concentrator for collecting consumption data by radio WM-BUS OMS (EN 1434), from meters (water,
gas, heating), and sending via GPRS to the management system.
It is addressed to: Domestic use, as block of flats or Industrial use: as Resorts, Hotels, Industries.
Figure 8: Master device connected Via Radio to the counters
Special version
For sewage and waste water with the use of ultrasonic sensors for example
For water quality with use of biosensors (for example: Ammonium,pH, Conductivity, Turbidity, etc.).
Figure 9: Device connected with several type of sensors
OPEN TRASMISSION PROTOCOL - SAAS (SOFTWARE AS A SERVICE) – CLOUD
COMPUTING MANAGEMENT SYSTEM BASED
Utilities emphasized in the lack of a quality, integrated solution. Proprietary vendor solutions were
difficult to integrate, utilities said, and different vendors had different strengths in their offerings. The
lack of international open standards for devices posed an additional challenge.
To overtake this limit we adopted a cloud computing service:
ARCHITECTURE AND CLOUD COMPUTING SERVICE FOR MANAGEMENT
A good Smart meter solution has to be a full service: in other words consisting of both the remote
reading device to be associated with mechanical meters, both from the management software,
tailored for the customer, also provided as a cloud computing service, without investments in
infrastructure (both hardware and software) and human resources management.
DATA TRASMISSION AND ALERT EVENTS
To transfer data from monitoring point to the cloud we used a GRPS network and a DATA SIM.
We used GPRS network, because it is safe, cheap, and standard. Both of OEM GPRS modem and
SIM DATA was already included, configured and ready to use. When the technician of water utility
company has setup the device on the mechanical counter, he did not made any extra and different
work than the simple plug in the probe with the device.
We adopt GPRS Network because it can be used as a bidirectional channel to send and change
configuration parameter: transmission frequencies, to set up configuration alarms.
- 8 -
SOFTWARE AS A SERVICE AND CLOUD COMPUTING
We complete our system with a management software, developed using programming languages:
Php, Jquery (java script library) programming and Mysql (Relational database management system).
All these technologies are free and open, does not require any software or hardware to be installed
in the water company buildings.
WE developed a web-application and provided to the water company as SAAS (SOFTWARE AS A
SERVICE where operators and maintenance workers and end users too "authorized", can access
through authentication with any connected device, laptop, smartphone, tablet and check many
information as
 GEOREFERENCING of the devices,
 Profile of the DAILY CONSUMPTION,
 Profile of the CONSUMPTION TIME, AND SECTION for STATISTICS AND ALARMS
Figure 10: pages examples of the management software
I use case: Wired solution on large users in a wide area
Scenario: 16 large users on an area of 9.992 km² (Basilicata region) water utility company Acquedotto
Lucano S.p.A.
Figure 11: Map of device on the region and example of installation
- 9 -
Results: About a year after the beginning of the trial of the system on 16 large users, the technical
department has been able to verify the reliability of the system adopted, the economy and especially
the efficiency of the system, in fact, no device installed has never had any problem both in the data
collection in the transmission of the same.
The Technical Department in the two cases on which it received the request for verification of
consumption by the consumers, thanks to the data in its possession has been able to quickly and
unequivocally fulfil all the exceptions made by users , thus avoiding inspections and tests of any kind
that would have lengthened the time with considerable additional expense for this company .
Where there have been anomalies the system were promptly alerted users, in fact, have been
reported excessive consumption on two occasions at the port and on a sub distribution, that alerted
promptly took steps to repair. A broken counter of a industrial district was detected and quickly
reported, otherwise it has been detected with considerable delay , even with months of heavy losses
for the company
Example of breakage of a pipe detected by smart meter system
Figure 12: Hourly detail consumption before and after the loss
Example: Counter stuck recorded on the day 07.16.2013 and 07.29.2013 replaced
Figure 13: Min, Max, Ave consumption before and after counter replaced
II use case: domestic consumer in a wide area using a mixing of wireless and wired probes
Scenario: The following pilot test concern a group of domestic users scattered in an area of 3km in
a country area in Tuscany.
Consumption
after restoring
Consumption
with loss
Counter stuck Counter replaced
- 10 -
Figure 14: Plant of the area
We used a mixed solution composed by
A master device connected both with radio probes (OMS WM-Bus Protocol 868Mhz)
(7,8,9,13 in the figure) in a distance of 300mt and with wired probes (1,2,3,4, 5,6 in the figure)
- A wired device connected to 3 counter with wired probes
(10,11,12) and a A wired device connect to a main counter that supply the entire area
Radio trasmitter 868 mhzFigure 15: Combinated wireless wired device
Figure 16: wired device connected to 3 counters and the main supply
- 11 -
All data-reading coming from all systems converge in the same remote repository via gprs network.
In this case the management system provide day by day at water balance comparing volumes main
input to the main counter and the output of the divisionals.
As we can see on the following figures just after 24hours days of working the system has detected
and quickly reported a gap in the water balance, there is a gas between volume of water input to the
main counter and the divisionals. The building administrator in fact discovered a lost in a section of
the net.
Conclusion
Smart water networks represent a tremendous opportunity for water utilities to realize significant
financial savings, address global concerns on water safety and quality, and position themselves for
an increasingly resource-constrained future. The time is right for utilities to seize this opportunity, but
that success will require smart solutions
 Easy to use
 Cheap
 Integrated
 Complete of transmission interface and Data SIM
 Interoperability with any kind of monitoring device
 Linkable with any kind of probes of counter
 open software in cloud management system
Figures
Figure 1: The IWA ‘best practice’ standard water balance
Figure 2: Smart water network scheme
Figure 3: Smart water network conceptual functioning
Figure 4: Lack of a clear, user-friendly integrated technology solution
Figure 5: Open, versatile, interoperable, self-powered and complete smart meter system
Figure 6: Example of a modelled city plant with different application of a interoperable smart meter system
Figure 7: Wired device plugged with cable to one or more counters
Figure 8: Master device connected via Radio to the counters
Figure 9: Device connected with several type of sensors
Figure 10: pages examples of the management software
Figure 11: Map of device on the region and example of installation
Figure 12: Hourly detail consumption before and after the loss
Figure 13: Min, Max, Ave consumption before and after counter replaced
Figure 14: Plant of the area
Figure 15: Combined wireless wired device
Figure 16: Wired device connected to 3 counters and the main supply
Figure 17: Water balance
Reference
http://growingblue.com/wp-content/uploads/2011/04/Growing-Blue.pdf
Water 20/20: Bringing Smart Water Networks Into Focus
http://sensus.com/documents/10157/34871/2012-12-4-Sensus-Reports-Smart-Water-Networks-Save-Utilities-Billions.pdf
Delibera 155/08 dell’authority per l’energia (AEEG) e la 28/12
http://www.autorita.energia.it/it/index.htm
Assessing non-revenue water and its components
http://www.iwapublishing.com/pdf/WaterLoss-Aug.pdf
Figure 17: Water balance

Weitere ähnliche Inhalte

Was ist angesagt?

NARUC Smart Inverters 2017
NARUC Smart Inverters 2017NARUC Smart Inverters 2017
NARUC Smart Inverters 2017Paul De Martini
 
Presentationsmartgrid 12706955747692-phpapp02
Presentationsmartgrid 12706955747692-phpapp02Presentationsmartgrid 12706955747692-phpapp02
Presentationsmartgrid 12706955747692-phpapp02ankurjain449
 
smart meter technical seminar report
smart meter technical seminar reportsmart meter technical seminar report
smart meter technical seminar reportravi kant
 
Advanced Metering Infrastructure Standards and protocol
Advanced Metering Infrastructure Standards and protocolAdvanced Metering Infrastructure Standards and protocol
Advanced Metering Infrastructure Standards and protocolEklavya Sharma
 
International approach - Smart Grid and DSM: Issues and Activities
International approach - Smart Grid and DSM: Issues and ActivitiesInternational approach - Smart Grid and DSM: Issues and Activities
International approach - Smart Grid and DSM: Issues and ActivitiesIEA DSM Implementing Agreement (IA)
 
Smart Metering And Smart Grids_11jul 09
Smart Metering And Smart Grids_11jul 09Smart Metering And Smart Grids_11jul 09
Smart Metering And Smart Grids_11jul 09Enel S.p.A.
 
Private Radio CDMA Network for Smart Metering
Private Radio CDMA Network for Smart MeteringPrivate Radio CDMA Network for Smart Metering
Private Radio CDMA Network for Smart Meteringandriesvandermeulen
 
Advance Metering Infrastructure:Smart Meter
Advance Metering Infrastructure:Smart MeterAdvance Metering Infrastructure:Smart Meter
Advance Metering Infrastructure:Smart MeterMD NAWAZ
 
Standardization and connectivity of smart metering solutions
Standardization and connectivity of smart metering solutionsStandardization and connectivity of smart metering solutions
Standardization and connectivity of smart metering solutionsLandis+Gyr
 
Advanced Metering Infrastructure
Advanced Metering InfrastructureAdvanced Metering Infrastructure
Advanced Metering InfrastructureJyoti Bhaskar
 
SMi Group's 3rd annual Smart Water conference
SMi Group's 3rd annual Smart Water conferenceSMi Group's 3rd annual Smart Water conference
SMi Group's 3rd annual Smart Water conferenceDale Butler
 
Data-Driven Selling and The Value of Data In The Water Industry
Data-Driven Selling and The Value of Data In The Water IndustryData-Driven Selling and The Value of Data In The Water Industry
Data-Driven Selling and The Value of Data In The Water IndustrySunit Mohindroo
 
SmartGrid System Report
SmartGrid System ReportSmartGrid System Report
SmartGrid System ReportGruene-it.org
 
A survey on smart grid technologies and applications
A survey on smart grid technologies and applicationsA survey on smart grid technologies and applications
A survey on smart grid technologies and applicationsdileep punalur
 
WiMAX: Innovative Application in Energy Consumption and Automated Smart Metering
WiMAX: Innovative Application in Energy Consumption and Automated Smart MeteringWiMAX: Innovative Application in Energy Consumption and Automated Smart Metering
WiMAX: Innovative Application in Energy Consumption and Automated Smart MeteringCisco Service Provider Mobility
 
Smart Grid Introduction
Smart Grid Introduction Smart Grid Introduction
Smart Grid Introduction Nilesh Dhage
 
Smart grid implementation challenges in ghana
Smart grid implementation challenges in ghanaSmart grid implementation challenges in ghana
Smart grid implementation challenges in ghanaEmmanuel Attah Marfo
 

Was ist angesagt? (20)

Smart grid technologies
Smart grid technologiesSmart grid technologies
Smart grid technologies
 
NARUC Smart Inverters 2017
NARUC Smart Inverters 2017NARUC Smart Inverters 2017
NARUC Smart Inverters 2017
 
Presentationsmartgrid 12706955747692-phpapp02
Presentationsmartgrid 12706955747692-phpapp02Presentationsmartgrid 12706955747692-phpapp02
Presentationsmartgrid 12706955747692-phpapp02
 
smart meter technical seminar report
smart meter technical seminar reportsmart meter technical seminar report
smart meter technical seminar report
 
Smart Meter Basics and Benefits
Smart Meter Basics and BenefitsSmart Meter Basics and Benefits
Smart Meter Basics and Benefits
 
Advanced Metering Infrastructure Standards and protocol
Advanced Metering Infrastructure Standards and protocolAdvanced Metering Infrastructure Standards and protocol
Advanced Metering Infrastructure Standards and protocol
 
International approach - Smart Grid and DSM: Issues and Activities
International approach - Smart Grid and DSM: Issues and ActivitiesInternational approach - Smart Grid and DSM: Issues and Activities
International approach - Smart Grid and DSM: Issues and Activities
 
Smart Metering And Smart Grids_11jul 09
Smart Metering And Smart Grids_11jul 09Smart Metering And Smart Grids_11jul 09
Smart Metering And Smart Grids_11jul 09
 
Private Radio CDMA Network for Smart Metering
Private Radio CDMA Network for Smart MeteringPrivate Radio CDMA Network for Smart Metering
Private Radio CDMA Network for Smart Metering
 
Advance Metering Infrastructure:Smart Meter
Advance Metering Infrastructure:Smart MeterAdvance Metering Infrastructure:Smart Meter
Advance Metering Infrastructure:Smart Meter
 
Standardization and connectivity of smart metering solutions
Standardization and connectivity of smart metering solutionsStandardization and connectivity of smart metering solutions
Standardization and connectivity of smart metering solutions
 
Advanced Metering Infrastructure
Advanced Metering InfrastructureAdvanced Metering Infrastructure
Advanced Metering Infrastructure
 
Smart power technology @ tata power delhi distribution
Smart power technology @ tata power delhi distributionSmart power technology @ tata power delhi distribution
Smart power technology @ tata power delhi distribution
 
SMi Group's 3rd annual Smart Water conference
SMi Group's 3rd annual Smart Water conferenceSMi Group's 3rd annual Smart Water conference
SMi Group's 3rd annual Smart Water conference
 
Data-Driven Selling and The Value of Data In The Water Industry
Data-Driven Selling and The Value of Data In The Water IndustryData-Driven Selling and The Value of Data In The Water Industry
Data-Driven Selling and The Value of Data In The Water Industry
 
SmartGrid System Report
SmartGrid System ReportSmartGrid System Report
SmartGrid System Report
 
A survey on smart grid technologies and applications
A survey on smart grid technologies and applicationsA survey on smart grid technologies and applications
A survey on smart grid technologies and applications
 
WiMAX: Innovative Application in Energy Consumption and Automated Smart Metering
WiMAX: Innovative Application in Energy Consumption and Automated Smart MeteringWiMAX: Innovative Application in Energy Consumption and Automated Smart Metering
WiMAX: Innovative Application in Energy Consumption and Automated Smart Metering
 
Smart Grid Introduction
Smart Grid Introduction Smart Grid Introduction
Smart Grid Introduction
 
Smart grid implementation challenges in ghana
Smart grid implementation challenges in ghanaSmart grid implementation challenges in ghana
Smart grid implementation challenges in ghana
 

Ähnlich wie Best practices and technologies to overcome barriers to implementing smart water networks

[whitepaper] Cellular Technology simplifies Smart Water Meter Deployments
[whitepaper] Cellular Technology simplifies Smart Water Meter Deployments [whitepaper] Cellular Technology simplifies Smart Water Meter Deployments
[whitepaper] Cellular Technology simplifies Smart Water Meter Deployments Orange Business Services
 
IRJET- Digital Water Management and Automatic Bill Generation System
IRJET-  	  Digital Water Management and Automatic Bill Generation SystemIRJET-  	  Digital Water Management and Automatic Bill Generation System
IRJET- Digital Water Management and Automatic Bill Generation SystemIRJET Journal
 
MIS: A case study on Smart Grid
MIS: A case study on Smart GridMIS: A case study on Smart Grid
MIS: A case study on Smart GridSultan Islam
 
IRJET- Automated Household Water Monitoring and Billing System
IRJET- Automated Household Water Monitoring and Billing SystemIRJET- Automated Household Water Monitoring and Billing System
IRJET- Automated Household Water Monitoring and Billing SystemIRJET Journal
 
IRJET- Smart Meter for Water Utilization using IoT
IRJET- Smart Meter for Water Utilization using IoTIRJET- Smart Meter for Water Utilization using IoT
IRJET- Smart Meter for Water Utilization using IoTIRJET Journal
 
Zpryme Report on Asset Monitoring
Zpryme Report on Asset MonitoringZpryme Report on Asset Monitoring
Zpryme Report on Asset MonitoringPaula Smith
 
Paper: The Internet of Things is transforming the energy and utilities indust...
Paper: The Internet of Things is transforming the energy and utilities indust...Paper: The Internet of Things is transforming the energy and utilities indust...
Paper: The Internet of Things is transforming the energy and utilities indust...Ericsson
 
Smart Grid Technology Use at East Grand Forks Water and Light
Smart Grid Technology Use at East Grand Forks Water and LightSmart Grid Technology Use at East Grand Forks Water and Light
Smart Grid Technology Use at East Grand Forks Water and LightUniversity of Minnesota
 
Waternomics Flyer - ICT for Water Resource Management
Waternomics Flyer - ICT for Water Resource ManagementWaternomics Flyer - ICT for Water Resource Management
Waternomics Flyer - ICT for Water Resource ManagementWaternomics
 
Community Networks: An Alternative Paradigm for Developing Network Infrastruc...
Community Networks: An Alternative Paradigm for Developing Network Infrastruc...Community Networks: An Alternative Paradigm for Developing Network Infrastruc...
Community Networks: An Alternative Paradigm for Developing Network Infrastruc...APNIC
 
Smart grid communications
Smart grid communicationsSmart grid communications
Smart grid communicationssrikanth reddy
 
Schneider Electric Smart City Success Stories (Worldwide)
Schneider Electric Smart City  Success Stories (Worldwide)Schneider Electric Smart City  Success Stories (Worldwide)
Schneider Electric Smart City Success Stories (Worldwide)Schneider Electric India
 
Smart metering solution in pakistan
Smart metering solution in pakistanSmart metering solution in pakistan
Smart metering solution in pakistanArslan Aftab
 

Ähnlich wie Best practices and technologies to overcome barriers to implementing smart water networks (20)

[whitepaper] Cellular Technology simplifies Smart Water Meter Deployments
[whitepaper] Cellular Technology simplifies Smart Water Meter Deployments [whitepaper] Cellular Technology simplifies Smart Water Meter Deployments
[whitepaper] Cellular Technology simplifies Smart Water Meter Deployments
 
IJSDR1606026
IJSDR1606026IJSDR1606026
IJSDR1606026
 
IRJET- Digital Water Management and Automatic Bill Generation System
IRJET-  	  Digital Water Management and Automatic Bill Generation SystemIRJET-  	  Digital Water Management and Automatic Bill Generation System
IRJET- Digital Water Management and Automatic Bill Generation System
 
MIS: A case study on Smart Grid
MIS: A case study on Smart GridMIS: A case study on Smart Grid
MIS: A case study on Smart Grid
 
IRJET- Automated Household Water Monitoring and Billing System
IRJET- Automated Household Water Monitoring and Billing SystemIRJET- Automated Household Water Monitoring and Billing System
IRJET- Automated Household Water Monitoring and Billing System
 
IRJET- Smart Meter for Water Utilization using IoT
IRJET- Smart Meter for Water Utilization using IoTIRJET- Smart Meter for Water Utilization using IoT
IRJET- Smart Meter for Water Utilization using IoT
 
Zpryme Report on Asset Monitoring
Zpryme Report on Asset MonitoringZpryme Report on Asset Monitoring
Zpryme Report on Asset Monitoring
 
Paper: The Internet of Things is transforming the energy and utilities indust...
Paper: The Internet of Things is transforming the energy and utilities indust...Paper: The Internet of Things is transforming the energy and utilities indust...
Paper: The Internet of Things is transforming the energy and utilities indust...
 
SMG.pdf
SMG.pdfSMG.pdf
SMG.pdf
 
Smart Grid Technology Use at East Grand Forks Water and Light
Smart Grid Technology Use at East Grand Forks Water and LightSmart Grid Technology Use at East Grand Forks Water and Light
Smart Grid Technology Use at East Grand Forks Water and Light
 
CBI energy conference: Jon Bentley
CBI energy conference: Jon BentleyCBI energy conference: Jon Bentley
CBI energy conference: Jon Bentley
 
Waternomics Flyer - ICT for Water Resource Management
Waternomics Flyer - ICT for Water Resource ManagementWaternomics Flyer - ICT for Water Resource Management
Waternomics Flyer - ICT for Water Resource Management
 
Community Networks: An Alternative Paradigm for Developing Network Infrastruc...
Community Networks: An Alternative Paradigm for Developing Network Infrastruc...Community Networks: An Alternative Paradigm for Developing Network Infrastruc...
Community Networks: An Alternative Paradigm for Developing Network Infrastruc...
 
Smart grid communications
Smart grid communicationsSmart grid communications
Smart grid communications
 
Applicability of Smart Metering Technology in Sri Lanka
Applicability of Smart Metering Technology in Sri LankaApplicability of Smart Metering Technology in Sri Lanka
Applicability of Smart Metering Technology in Sri Lanka
 
54278227-Smart-Grid (1).ppt
54278227-Smart-Grid (1).ppt54278227-Smart-Grid (1).ppt
54278227-Smart-Grid (1).ppt
 
54278227-Smart-Grid (1).ppt
54278227-Smart-Grid (1).ppt54278227-Smart-Grid (1).ppt
54278227-Smart-Grid (1).ppt
 
54278227-Smart-Grid.ppt
54278227-Smart-Grid.ppt54278227-Smart-Grid.ppt
54278227-Smart-Grid.ppt
 
Schneider Electric Smart City Success Stories (Worldwide)
Schneider Electric Smart City  Success Stories (Worldwide)Schneider Electric Smart City  Success Stories (Worldwide)
Schneider Electric Smart City Success Stories (Worldwide)
 
Smart metering solution in pakistan
Smart metering solution in pakistanSmart metering solution in pakistan
Smart metering solution in pakistan
 

Kürzlich hochgeladen

ANCHORING SCRIPT FOR A CULTURAL EVENT.docx
ANCHORING SCRIPT FOR A CULTURAL EVENT.docxANCHORING SCRIPT FOR A CULTURAL EVENT.docx
ANCHORING SCRIPT FOR A CULTURAL EVENT.docxNikitaBankoti2
 
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...Sheetaleventcompany
 
George Lever - eCommerce Day Chile 2024
George Lever -  eCommerce Day Chile 2024George Lever -  eCommerce Day Chile 2024
George Lever - eCommerce Day Chile 2024eCommerce Institute
 
Thirunelveli call girls Tamil escorts 7877702510
Thirunelveli call girls Tamil escorts 7877702510Thirunelveli call girls Tamil escorts 7877702510
Thirunelveli call girls Tamil escorts 7877702510Vipesco
 
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptx
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptxMohammad_Alnahdi_Oral_Presentation_Assignment.pptx
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptxmohammadalnahdi22
 
Report Writing Webinar Training
Report Writing Webinar TrainingReport Writing Webinar Training
Report Writing Webinar TrainingKylaCullinane
 
Night 7k Call Girls Noida Sector 128 Call Me: 8448380779
Night 7k Call Girls Noida Sector 128 Call Me: 8448380779Night 7k Call Girls Noida Sector 128 Call Me: 8448380779
Night 7k Call Girls Noida Sector 128 Call Me: 8448380779Delhi Call girls
 
Mathematics of Finance Presentation.pptx
Mathematics of Finance Presentation.pptxMathematics of Finance Presentation.pptx
Mathematics of Finance Presentation.pptxMoumonDas2
 
Air breathing and respiratory adaptations in diver animals
Air breathing and respiratory adaptations in diver animalsAir breathing and respiratory adaptations in diver animals
Air breathing and respiratory adaptations in diver animalsaqsarehman5055
 
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...Kayode Fayemi
 
If this Giant Must Walk: A Manifesto for a New Nigeria
If this Giant Must Walk: A Manifesto for a New NigeriaIf this Giant Must Walk: A Manifesto for a New Nigeria
If this Giant Must Walk: A Manifesto for a New NigeriaKayode Fayemi
 
BDSM⚡Call Girls in Sector 97 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 97 Noida Escorts >༒8448380779 Escort ServiceBDSM⚡Call Girls in Sector 97 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 97 Noida Escorts >༒8448380779 Escort ServiceDelhi Call girls
 
The workplace ecosystem of the future 24.4.2024 Fabritius_share ii.pdf
The workplace ecosystem of the future 24.4.2024 Fabritius_share ii.pdfThe workplace ecosystem of the future 24.4.2024 Fabritius_share ii.pdf
The workplace ecosystem of the future 24.4.2024 Fabritius_share ii.pdfSenaatti-kiinteistöt
 
Presentation on Engagement in Book Clubs
Presentation on Engagement in Book ClubsPresentation on Engagement in Book Clubs
Presentation on Engagement in Book Clubssamaasim06
 
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptx
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptxChiulli_Aurora_Oman_Raffaele_Beowulf.pptx
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptxraffaeleoman
 
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort ServiceBDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort ServiceDelhi Call girls
 
Introduction to Prompt Engineering (Focusing on ChatGPT)
Introduction to Prompt Engineering (Focusing on ChatGPT)Introduction to Prompt Engineering (Focusing on ChatGPT)
Introduction to Prompt Engineering (Focusing on ChatGPT)Chameera Dedduwage
 
SaaStr Workshop Wednesday w/ Lucas Price, Yardstick
SaaStr Workshop Wednesday w/ Lucas Price, YardstickSaaStr Workshop Wednesday w/ Lucas Price, Yardstick
SaaStr Workshop Wednesday w/ Lucas Price, Yardsticksaastr
 
Microsoft Copilot AI for Everyone - created by AI
Microsoft Copilot AI for Everyone - created by AIMicrosoft Copilot AI for Everyone - created by AI
Microsoft Copilot AI for Everyone - created by AITatiana Gurgel
 
Re-membering the Bard: Revisiting The Compleat Wrks of Wllm Shkspr (Abridged)...
Re-membering the Bard: Revisiting The Compleat Wrks of Wllm Shkspr (Abridged)...Re-membering the Bard: Revisiting The Compleat Wrks of Wllm Shkspr (Abridged)...
Re-membering the Bard: Revisiting The Compleat Wrks of Wllm Shkspr (Abridged)...Hasting Chen
 

Kürzlich hochgeladen (20)

ANCHORING SCRIPT FOR A CULTURAL EVENT.docx
ANCHORING SCRIPT FOR A CULTURAL EVENT.docxANCHORING SCRIPT FOR A CULTURAL EVENT.docx
ANCHORING SCRIPT FOR A CULTURAL EVENT.docx
 
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
 
George Lever - eCommerce Day Chile 2024
George Lever -  eCommerce Day Chile 2024George Lever -  eCommerce Day Chile 2024
George Lever - eCommerce Day Chile 2024
 
Thirunelveli call girls Tamil escorts 7877702510
Thirunelveli call girls Tamil escorts 7877702510Thirunelveli call girls Tamil escorts 7877702510
Thirunelveli call girls Tamil escorts 7877702510
 
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptx
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptxMohammad_Alnahdi_Oral_Presentation_Assignment.pptx
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptx
 
Report Writing Webinar Training
Report Writing Webinar TrainingReport Writing Webinar Training
Report Writing Webinar Training
 
Night 7k Call Girls Noida Sector 128 Call Me: 8448380779
Night 7k Call Girls Noida Sector 128 Call Me: 8448380779Night 7k Call Girls Noida Sector 128 Call Me: 8448380779
Night 7k Call Girls Noida Sector 128 Call Me: 8448380779
 
Mathematics of Finance Presentation.pptx
Mathematics of Finance Presentation.pptxMathematics of Finance Presentation.pptx
Mathematics of Finance Presentation.pptx
 
Air breathing and respiratory adaptations in diver animals
Air breathing and respiratory adaptations in diver animalsAir breathing and respiratory adaptations in diver animals
Air breathing and respiratory adaptations in diver animals
 
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...
 
If this Giant Must Walk: A Manifesto for a New Nigeria
If this Giant Must Walk: A Manifesto for a New NigeriaIf this Giant Must Walk: A Manifesto for a New Nigeria
If this Giant Must Walk: A Manifesto for a New Nigeria
 
BDSM⚡Call Girls in Sector 97 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 97 Noida Escorts >༒8448380779 Escort ServiceBDSM⚡Call Girls in Sector 97 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 97 Noida Escorts >༒8448380779 Escort Service
 
The workplace ecosystem of the future 24.4.2024 Fabritius_share ii.pdf
The workplace ecosystem of the future 24.4.2024 Fabritius_share ii.pdfThe workplace ecosystem of the future 24.4.2024 Fabritius_share ii.pdf
The workplace ecosystem of the future 24.4.2024 Fabritius_share ii.pdf
 
Presentation on Engagement in Book Clubs
Presentation on Engagement in Book ClubsPresentation on Engagement in Book Clubs
Presentation on Engagement in Book Clubs
 
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptx
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptxChiulli_Aurora_Oman_Raffaele_Beowulf.pptx
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptx
 
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort ServiceBDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
 
Introduction to Prompt Engineering (Focusing on ChatGPT)
Introduction to Prompt Engineering (Focusing on ChatGPT)Introduction to Prompt Engineering (Focusing on ChatGPT)
Introduction to Prompt Engineering (Focusing on ChatGPT)
 
SaaStr Workshop Wednesday w/ Lucas Price, Yardstick
SaaStr Workshop Wednesday w/ Lucas Price, YardstickSaaStr Workshop Wednesday w/ Lucas Price, Yardstick
SaaStr Workshop Wednesday w/ Lucas Price, Yardstick
 
Microsoft Copilot AI for Everyone - created by AI
Microsoft Copilot AI for Everyone - created by AIMicrosoft Copilot AI for Everyone - created by AI
Microsoft Copilot AI for Everyone - created by AI
 
Re-membering the Bard: Revisiting The Compleat Wrks of Wllm Shkspr (Abridged)...
Re-membering the Bard: Revisiting The Compleat Wrks of Wllm Shkspr (Abridged)...Re-membering the Bard: Revisiting The Compleat Wrks of Wllm Shkspr (Abridged)...
Re-membering the Bard: Revisiting The Compleat Wrks of Wllm Shkspr (Abridged)...
 

Best practices and technologies to overcome barriers to implementing smart water networks

  • 1. - 1 - Best practices and technologies to overcome barriers to implementing smart water networks Topic: Smart water networks; Automatic Meter Reading; Systems modelling, optimization and decision support; Authors names and affiliations: Miriam Surro (CEO MiDo Snc), Lamboglia Domenico (CTO MiDo Snc) Key words: smart meter, open protocol, cloud computing Contact person: Miriam Surro – m.surro@midoingegneria.com – tel.+39.346.6715601 Abstract This paper reports the results of four years of pilot projects smart metering and monitoring of water networks in different scenarios and application environments, made with various public and private companies involved in the distribution of water resources We want to prove that the applicability and economic sustainability of metering systems are only possible if you adopt open systems, versatile, interoperable, self-powered and complete. Open systems, versatile, interoperable, self-powered and complete in other word means consisting of: 1. devices that can be connected to any type of mechanical counter or probes (pressure temperature etc.) via radio or wired using standardized protocols, 2. self-powered with a lifetime of 10 years at least, 3. complete with communication interfaces, and able to transmit the data autonomously to 4. data management systems provided as Software as a service (cloud computing service) or that can be interfaced to existing systems management software. Introduction Water scarcity and water quality are emerging as key issues of public concern and more pressing inhibitors of growth in cities and countries around the world. As a result, the market for safe, available water and for the infrastructure and technologies that treat and transport water is expected to continue to grow rapidly as stakeholders look for new solutions and approaches to integrated water resource management. However, according to Growing Blue, a consortium of industry colleagues, scientists, academia and environmental professionals, one-third of reporting countries lose more than 40 percent of the clean water pumped into the distribution system because of leaks before that water reaches end consumers. Water utilities lose an estimated $9.6 billion on an annual basis because of leaked water. Utilities worldwide spend nearly $100 billion on water-related operations and almost $90 billion on capital expenditures each year. Much of the spending is inefficiently allocated and savings opportunities are lost because utilities:  Do not have access to sufficient information regarding leaks, status of pipes and water quality  Do not have data and knowledge integration across multiple operating divisions  Are not capable of analysing the information to drive decisions  Lack sufficient access to automated technologies that could turn information analysis and decisions into network improvements in real time
  • 2. - 2 - SystemInputVolume Authorised consumption Billed Authorised Consumption Billed Metered Consumption Revenue Water Billed Unmetered Consumption Unbilled Authorised Consumption Unbilled Metered Consumption Non- Revenue Water (NRW) Unbilled Unmetered Consumption Water losses Apparent Losses Unauthorised Consumption Customer Metering Inaccuracies Real Losses Leakage on Transmission and/or Distribution Mains Leakage and Overflows at Utility’s - Storage Tanks Leakage on Service Connections up to point of Customer metering Source: IWA - http://www.iwapublishing.com/pdf/WaterLoss-Aug.pdf Figure 1: The IWA ‘best practice’ standard water balance Opportunity of Smart water networks Smart water networks offer utilities a tremendous opportunity to improve productivity and efficiency while enhancing customer service. Utilities can save between $7.1 and $12.5 billion each year from implementing smart water solutions that reduce operational inefficiencies and optimize capital expenditures. Smart water solutions will help regulators, lawmakers and municipalities to:  To Savings on operating costs for network operations and maintenance  To Constant monitoring and timely consumption and quality  To Bill on real consumption: Pay for and manage water service easily and transparently. A smart water network solution that includes smart meters enables e-billing and e-payment options and allows consumers to interact with utilities via web portals for service requests and billing inquiries.  To Remarks: losses / thefts and follows the evolution, or meter blocked, anomalous peak values or sensor unsuitable: over-or undersized  To Quantifies the resource is not accounted  To Savings and rationalization of consumption: estimated consumption during certain periods or time slots  To Stimulates users to a more rational consumption  To have a simple and complete control of the water network Smart meter network A smart water network is a fully integrated set of products, solutions and systems that enable water utilities to:  Remotely and continuously monitor and diagnose problems, pre-emptively prioritize and manage maintenance issues, and remotely control and optimize all aspects of the water distribution network using data-driven insights  Comply transparently and confidently with regulatory and policy requirements on water quality and conservation  Provide water customers with the information and tools they need to make informed choices about their behaviours and water usage patterns
  • 3. - 3 - Figure 2: Smart water network scheme Figure 3: Smart water network conceptual functioning Barrier in adoption Smart water networks have existed conceptually for years but have failed to gain traction among utilities, technology providers and other industry stakeholders. Lack of a strong business case Water utilities companies are not sure if there is a compelling base and the benefits were not high enough to justify the investment. Lack of funding even if there is a business case Lack of funding emerged as a key constraint, even if the business case is compelling. “It’s too hard and expensive to buy all at once and manage lifecycle costs because vendors want to sell a 20- year investment all at once” Lack of political and regulatory support Political support consistently emerged as a theme preventing the adoption of smart water networks, both internal to utilities and external through municipalities as well as regulators. Lack of a clear, user-friendly integrated technology solution Proprietary vendor solutions were difficult to integrate, utilities said, and different vendors had different strengths in their offerings. Overcome barriers to implementing smart water networks To overcome the barriers of lack of funding Lack of political and regulatory support* actually they are creating regulatory framework that will regulate the field of smart metering world. In Europe, particularly there are cofinancing funds for the investments for the renewal and efficiency of networks water, but these factors will not be enough to implement the smart metering massively: The key question is the Lack of a clear, user-friendly integrated technology solution save image GPRS Measurement and Sensing Intruments Communication Channel Data Analysis model Feedback to the instruments
  • 4. - 4 - Figure 4: Lack of a clear, user-friendly integrated technology solution Nowadays the companies present in the smart meter market are the traditional producers of mechanical counters. Everyone of these stakeholders has developed to become smart a custom solution just for his meters, but you don’t find any utilities company in gas or water sector, that has just one type of brand of counter. In addition, the customer has to deal alone about the aspects of the data transfer and coverage of the transmission costs, but the customer is responsible for water and gas and is not a telecommunications company. Finally, the data is transmitted through a closed protocol that require the customer to buy expensive software and hardware that upsets the existing data management systems. So these solutions are all wrong in all of their aspects: because they are based on a custom electronic device, are incomplete, and the protocols are closed. EU and Italian regulatory framework Direttiva UE n. 32/2006 - EFFICIENZA ENERGIA E SERVIZI ENERGETICI Decreto legislativo n. 152/99 agg.2012 NUOVO TESTO UNICO AMBIENTALE Delibera 155/08 dell’authority per l’energia (AEEG) e la 28/12 Definisce le modalità di passaggio agli smartmeters gas e, attraverso le norme UNICIG11291, anche le modalità di comunicazione dei contatori attraverso la rete fino al SAC EN 16314 “Gas meters -Additional functionalities” N°393/13 Regolamenta la sperimentazione di soluzioni di telegestione multiservizio di contatori domestici. Best practices and technologies with open interoperability self-powered smart system for water We adopted "smart metering system" based on an electronic device with the following properties:  SELF POWERED with 10-year life cycle,  OPEN HARDWARE INTERFACE: the device is extremely versatile and can be connected to any type of mechanical meter, or sensor, (wired or wireless radio sensors with standard new protocol WM-BUS OMS (EN 1434))  The device stores meter read data in a BIG MEMORY (more than year of capacity of storage),  OPEN TRASMISSION PROTOCOL - SAAS (SOFTWARE AS A SERVICE) – CLOUD COMPUTING MANAGEMENT SYSTEM BASED: the device send trough wired or wireless network to a management system that we provide also as a cloud computing service. The transmission protocol is open, so the data transmitted can be easily integrated with existing data management system. And we prove the above features are the key of success to the applicability and economic sustainability of metering systems
  • 5. - 5 - Figure 5: Open, versatile, interoperable, self-powered and complete smart meter system Application of smart metering in different scenario We can classify users of a water network and therefore also the application fields of a smart metering system, into 3 groups: 1. Distribution network (pipelines, tanks, power plants) 2. Large users (industries - irrigation networks etc.) 3. Domestic consumers In each of these groups has different needs and smart metering can be applied, but in a way, different technologies. Figure 6: Example of a modelled city plant with different application of a interoperable smart meter system Large users (industries, hospitals, schools), that is, all those users which consume large volumes of resource. These users require intensive monitoring with a high amount of readings (one reading per hour and sending data once a day). For these users, the remote reading is important to bill with frequency on actual consumption, and to check for leaks.
  • 6. - 6 - The pipeline, production and distribution part of a water network requires a near real-time monitoring and amounts of data very high (less than once an hour reading and sending data to the management system less than once every 24 hours, for example) because the needs are:  check the status of the network, to act promptly in case of breakdown  to control and monitor the loss of water resources,  to plan the intervention strategy  and to be a valuable tool to support the management. Final consumer needs: Few readings 1 or 2 per day, in order to obtain bills of real consumption, awareness of resource use, transparency with Municipalities. These types of users are never clearly divided by zones on the territory, but they are always mixed, so in a metropolis for example we find large users (hospitals, schools, barracks) in the same area of apartments, private houses close to of a network of irrigation or nearby industrial district. So in order to efficiently apply smart meter network is first of all necessary that the devices used are able to adapt without any changes or additional complexities for the utility companies, to the different contexts and regardless of the type of counters. The smart metering devices while reading from heterogeneous sources must be able to interact between them and especially to send data into one remote management software. The interaction between the various nodes monitoring enables nodes to calculate an instantaneous water balance, and promptly identify network problems To have a single remote management system is the key factor in the smart metering, because only in this way, the remote management system can apply all the necessary mathematical models for optimizing strategic planning management of the network to calculate an overall water balance of the entire water network. Field tests - Case of studies The following scenarios shows different using of the same device in the different test pilot made with collaboration of a utility company based in South of Italy Acquedotto Lucano SpA and a Sub-metering company based in Florence Ditta Taglialegna OPEN HARDWARE INTERFACE What does means an open interoperability device? It means that the same device could be used in different scenarios Wired version A single device with several inputs for connection with meters or sensors (for example temperature and pressure) and GPRS communication interface. It is addressed to: Block of flats with collectors meters, large utilities (high consumption): Irrigation, Industries, Sub-distributions (such as support for the detection of leaks and breaks down on the network) Figure 7: Wired device plugged with cable to one or more counters
  • 7. - 7 - Master version Concentrator for collecting consumption data by radio WM-BUS OMS (EN 1434), from meters (water, gas, heating), and sending via GPRS to the management system. It is addressed to: Domestic use, as block of flats or Industrial use: as Resorts, Hotels, Industries. Figure 8: Master device connected Via Radio to the counters Special version For sewage and waste water with the use of ultrasonic sensors for example For water quality with use of biosensors (for example: Ammonium,pH, Conductivity, Turbidity, etc.). Figure 9: Device connected with several type of sensors OPEN TRASMISSION PROTOCOL - SAAS (SOFTWARE AS A SERVICE) – CLOUD COMPUTING MANAGEMENT SYSTEM BASED Utilities emphasized in the lack of a quality, integrated solution. Proprietary vendor solutions were difficult to integrate, utilities said, and different vendors had different strengths in their offerings. The lack of international open standards for devices posed an additional challenge. To overtake this limit we adopted a cloud computing service: ARCHITECTURE AND CLOUD COMPUTING SERVICE FOR MANAGEMENT A good Smart meter solution has to be a full service: in other words consisting of both the remote reading device to be associated with mechanical meters, both from the management software, tailored for the customer, also provided as a cloud computing service, without investments in infrastructure (both hardware and software) and human resources management. DATA TRASMISSION AND ALERT EVENTS To transfer data from monitoring point to the cloud we used a GRPS network and a DATA SIM. We used GPRS network, because it is safe, cheap, and standard. Both of OEM GPRS modem and SIM DATA was already included, configured and ready to use. When the technician of water utility company has setup the device on the mechanical counter, he did not made any extra and different work than the simple plug in the probe with the device. We adopt GPRS Network because it can be used as a bidirectional channel to send and change configuration parameter: transmission frequencies, to set up configuration alarms.
  • 8. - 8 - SOFTWARE AS A SERVICE AND CLOUD COMPUTING We complete our system with a management software, developed using programming languages: Php, Jquery (java script library) programming and Mysql (Relational database management system). All these technologies are free and open, does not require any software or hardware to be installed in the water company buildings. WE developed a web-application and provided to the water company as SAAS (SOFTWARE AS A SERVICE where operators and maintenance workers and end users too "authorized", can access through authentication with any connected device, laptop, smartphone, tablet and check many information as  GEOREFERENCING of the devices,  Profile of the DAILY CONSUMPTION,  Profile of the CONSUMPTION TIME, AND SECTION for STATISTICS AND ALARMS Figure 10: pages examples of the management software I use case: Wired solution on large users in a wide area Scenario: 16 large users on an area of 9.992 km² (Basilicata region) water utility company Acquedotto Lucano S.p.A. Figure 11: Map of device on the region and example of installation
  • 9. - 9 - Results: About a year after the beginning of the trial of the system on 16 large users, the technical department has been able to verify the reliability of the system adopted, the economy and especially the efficiency of the system, in fact, no device installed has never had any problem both in the data collection in the transmission of the same. The Technical Department in the two cases on which it received the request for verification of consumption by the consumers, thanks to the data in its possession has been able to quickly and unequivocally fulfil all the exceptions made by users , thus avoiding inspections and tests of any kind that would have lengthened the time with considerable additional expense for this company . Where there have been anomalies the system were promptly alerted users, in fact, have been reported excessive consumption on two occasions at the port and on a sub distribution, that alerted promptly took steps to repair. A broken counter of a industrial district was detected and quickly reported, otherwise it has been detected with considerable delay , even with months of heavy losses for the company Example of breakage of a pipe detected by smart meter system Figure 12: Hourly detail consumption before and after the loss Example: Counter stuck recorded on the day 07.16.2013 and 07.29.2013 replaced Figure 13: Min, Max, Ave consumption before and after counter replaced II use case: domestic consumer in a wide area using a mixing of wireless and wired probes Scenario: The following pilot test concern a group of domestic users scattered in an area of 3km in a country area in Tuscany. Consumption after restoring Consumption with loss Counter stuck Counter replaced
  • 10. - 10 - Figure 14: Plant of the area We used a mixed solution composed by A master device connected both with radio probes (OMS WM-Bus Protocol 868Mhz) (7,8,9,13 in the figure) in a distance of 300mt and with wired probes (1,2,3,4, 5,6 in the figure) - A wired device connected to 3 counter with wired probes (10,11,12) and a A wired device connect to a main counter that supply the entire area Radio trasmitter 868 mhzFigure 15: Combinated wireless wired device Figure 16: wired device connected to 3 counters and the main supply
  • 11. - 11 - All data-reading coming from all systems converge in the same remote repository via gprs network. In this case the management system provide day by day at water balance comparing volumes main input to the main counter and the output of the divisionals. As we can see on the following figures just after 24hours days of working the system has detected and quickly reported a gap in the water balance, there is a gas between volume of water input to the main counter and the divisionals. The building administrator in fact discovered a lost in a section of the net. Conclusion Smart water networks represent a tremendous opportunity for water utilities to realize significant financial savings, address global concerns on water safety and quality, and position themselves for an increasingly resource-constrained future. The time is right for utilities to seize this opportunity, but that success will require smart solutions  Easy to use  Cheap  Integrated  Complete of transmission interface and Data SIM  Interoperability with any kind of monitoring device  Linkable with any kind of probes of counter  open software in cloud management system Figures Figure 1: The IWA ‘best practice’ standard water balance Figure 2: Smart water network scheme Figure 3: Smart water network conceptual functioning Figure 4: Lack of a clear, user-friendly integrated technology solution Figure 5: Open, versatile, interoperable, self-powered and complete smart meter system Figure 6: Example of a modelled city plant with different application of a interoperable smart meter system Figure 7: Wired device plugged with cable to one or more counters Figure 8: Master device connected via Radio to the counters Figure 9: Device connected with several type of sensors Figure 10: pages examples of the management software Figure 11: Map of device on the region and example of installation Figure 12: Hourly detail consumption before and after the loss Figure 13: Min, Max, Ave consumption before and after counter replaced Figure 14: Plant of the area Figure 15: Combined wireless wired device Figure 16: Wired device connected to 3 counters and the main supply Figure 17: Water balance Reference http://growingblue.com/wp-content/uploads/2011/04/Growing-Blue.pdf Water 20/20: Bringing Smart Water Networks Into Focus http://sensus.com/documents/10157/34871/2012-12-4-Sensus-Reports-Smart-Water-Networks-Save-Utilities-Billions.pdf Delibera 155/08 dell’authority per l’energia (AEEG) e la 28/12 http://www.autorita.energia.it/it/index.htm Assessing non-revenue water and its components http://www.iwapublishing.com/pdf/WaterLoss-Aug.pdf Figure 17: Water balance