SlideShare ist ein Scribd-Unternehmen logo
1 von 23
The Application of Internet Of
Things (IOT) on Microfluidic
Devices
Chia Xun Nian
Mok Yan Ni
Teo Jin Wei
Content Page
01 Healthcare 4.0 & the Important of IoT on Microfluidics
02 Principle of IoT in Microfluidics & Key Developments
03 Conventional vs Digital Microfluidics & System Design on Internet of
Microfluidic Things
04 Results and discussion (Applications of Microfluidics based IOT)
05 Problems encountered
06 Conclusion and future work
Healthcare 4.0
Wearable & Point of Care
IOT
Capture & Processing of Biological
Data in Real Time
Ambient IOT
Sensor Detection for Non Intrusive
observation of individuals
Healthcare Digitalisation
Cloud and Storage
Healthcare 2.0
Healthcare 3.0
Healthcare 4.0
Healthcare 1.0
Chen, C., Loh, E.-W., Kuo, K. N., & Tam, K.-W. (2019). The Times they Are a-Changin’ – Healthcare 4.0 Is Coming! Journal of Medical Systems, 44(2). doi:10.1007/s10916-019-1513-0
Jayaraman, P. P., Forkan, A. R. M., Morshed, A., Haghighi, P. D., & Kang, Y. (2019). Healthcare 4.0: A review of frontiers in digital health. WIREs Data Mining and Knowledge Discovery. doi:10.1002/widm.1350
The Importance of IoT on Microfluidics
Conventional Microfluidic
Chemical Analysis
Integration with IoT
Big Data Analytics &
Artificial Intelligence
Mejía-Salazar, J. R.; Cruz, K. R.; Vásques, E. M. M.; de Oliveira, O. N. Microfluidic Point-of-Care Devices: New Trends and Future Prospects for Ehealth Diagnostics. Sensors (Switzerland) 2020, 20 (7), 1–20. https://doi.org/10.3390/s20071951
Ibrahim, M.; Gorlatova, M.; Chakrabarty, K. The Internet of Microfluidic Things: Perspectives on System Architecture and Design Challenges: Invited Paper. IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap. ICCAD 2019, 2019-November, 1–8. https://doi.org/10.1109/ICCAD45719.2019.8942080..
Internet of Things (IOT) Hardware & Software
Microcontroller Boards/Single
Board computer
Microcontroller
Functional Module (e.g
pumps, bluetooth and Wifi)
Microfluidics
Kassis, T., Perez, P. M., Yang, C. J. W., Soenksen, L. R., TrumperPrabhu, G. R. D., & Urban, P. L. (2020). Elevating Chemistry Research with a Modern Electronics Toolkit. Chemical Reviews. doi:10.1021/acs.chemrev.0c00206
, D. L., & Griffith, L. G. (2018). PiFlow: A biocompatible low-cost programmable dynamic flow pumping system utilizing a Raspberry Pi Zero and commercial piezoelectric pumps. HardwareX, 4, e00034.
Complementary Metal Oxide Semiconductor
(CMOS) Chip
Interface
● Processor
● Noise Removal
● Signal amplification
● Actuator controller
Sensors
● Image sensor
● Particle/Cells detection
● pH sensor
● DNA analysis
Actuators
● Particle Actuators
● Microheater
● Flow control
Khan, S. M., Gumus, A., Nassar, J. M., & Hussain, M. M. (2018). CMOS Enabled Microfluidic Systems for Healthcare Based Applications. Advanced Materials, 30(16), 1705759. doi:10.1002/adma.201705759
Complementary Metal Oxide Semiconductor
(CMOS) Chip
A Microfluidic Cytometer for Complete Blood Count With a 3.2-Megapixel, 1.1-
μm-Pitch Super-Resolution Image Sensor in 65-nm BSI CMOS
Khan, S. M., Gumus, A., Nassar, J. M., & Hussain, M. M. (2018). CMOS Enabled Microfluidic Systems for Healthcare Based Applications. Advanced Materials, 30(16), 1705759. doi:10.1002/adma.201705759
Liu, X.; Huang, X.; Jiang, Y.; Xu, H.; Guo, J.; Hou, H. W.; Yan, M.; Yu, H. A Microfluidic Cytometer for Complete Blood Count With a 3.2-Megapixel, 1.1- Μm-Pitch Super-Resolution Image Sensor in 65-Nm BSI CMOS. IEEE Trans. Biomed. Circuits Syst. 2017, 11 (4), 794–803. https://doi.org/10.1109/TBCAS.2017.2697451.
Conventional vs Digital Microfluidics
Digital Microfluidics
Conventional Microfluidics
Flow controlled by voltage or pressure
Utilizes small droplets as on chip analyte carrier
Manipulation of the droplets done by an array of
electrodes that are electrically controllable
Droplet handling mechanism - Electrowetting on
Dielectric (EWOD)
Digital Microfluidics - reconfigurable technology
● Cyber-Physical System
● Real-time decision making
Nguyen, N.-T., Hejazian, M., Ooi, C., & Kashaninejad, N. (2017). Recent Advances and Future Perspectives on Microfluidic Liquid Handling. Micromachines, 8(6), 186. doi:10.3390/mi8060186
Internet of Microfluidic Things (IoMT) System Design
5 Layer Architecture
M. Ibrahim, M. Gorlatova and K. Chakrabarty, "The Internet of Microfluidic Things: Perspectives on System Architecture and Design Challenges: Invited Paper," 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA, 2019, pp. 1-8, doi: 10.1109/ICCAD45719.2019.894208
Perception Layer
Consists of microfluidic sensors and actuators that
interact with biochemical substances
Universal control interface has to be designed and
customised to act as “adapters”
Adapters are capable of digitizing and transferring data
to abstraction layer
Abstraction Layer
Implements coordination protocol among
Microfluidic Things
Data transferred to data storage (Middleware Layer)
5 Layer Architecture
M. Ibrahim, M. Gorlatova and K. Chakrabarty, "The Internet of Microfluidic Things: Perspectives on System Architecture and Design Challenges: Invited Paper," 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA, 2019, pp. 1-8, doi: 10.1109/ICCAD45719.2019.894208
Middleware Layer
Stores real-time streaming data
Implements procedures based on specific
identification information (protocol name &
microfluidic device address)
Monitors the progress of biochemical service
Application Layer
Map user’s application specification to
unique biochemical services
Transmit sensor measurement back to
users
Semantics Layer
Manage performance metrics and
data collected
Build decision model, graphs and
flowchart
Creates a negative feedback loop
5 Layer Architecture
M. Ibrahim, M. Gorlatova and K. Chakrabarty, "The Internet of Microfluidic Things: Perspectives on System Architecture and Design Challenges: Invited Paper," 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA, 2019, pp. 1-8, doi: 10.1109/ICCAD45719.2019.894208
Application of Internet of things (IOT) on
Microfluidic Devices In Healthcare
Microfluidic-based
Wearables
Microfluidic-based Point
of Care (POC) Devices
Wearable Microfluidics devices (Biofluid)
Biofluid Sweat Analysis
Skin Patch pH analysis
Yeo, J. C., Kenry, K., & Lim, C. T. (2016). Emergence of microfluidic wearable technologies. Lab on a Chip, 16(21), 4082–4090. doi:10.1039/c6lc00926c
Wearable Microfluidics Devices (Mechanotransduction
Force)
Foot Pressure
Wrist PressureVocal Cords
Yeo, J. C., Kenry, K., & Lim, C. T. (2016). Emergence of microfluidic wearable technologies. Lab on a Chip, 16(21), 4082–4090. doi:10.1039/c6lc00926c
Liu, Y., Yang, T., Zhang, Y., Qu, G., Wei, S., Liu, Z., Kong, T., Ultrastretchable and Wireless Bioelectronics Based on All‐Hydrogel Microfluidics. Adv. Mater. 2019, 31, 1902783. https://doi.org/10.1002/adma.201902783
Microfluidic-based Point of Care (POC) Devices
Electrochemical microfluidic paper-based
immunosensor device (E-μPADs)
Mejía-Salazar, J. R.; Cruz, K. R.; Vásques, E. M. M.; de Oliveira, O. N. Microfluidic Point-of-Care Devices: New Trends and Future Prospects for Ehealth Diagnostics. Sensors (Switzerland) 2020, 20 (7), 1–20. https://doi.org/10.3390/s20071951.
Zhou, J.; Tao, F.; Zhu, J.; Lin, S.; Wang, Z.; Wang, X.; Ou, J. Y.; Li, Y.; Liu, Q. H. Portable Tumor Biosensing of Serum by Plasmonic Biochips in Combination with Nanoimprint and Microfluidics. Nanophotonics 2019, 8 (2), 307–316. https://doi.org/10.1515/nanoph-2018-0173
Microfluidic-based Point of Care (POC) Devices
IoT lab chip on monitoring Ebola Virus
Diseases
Brangel, P.; Sobarzo, A.; Parolo, C.; Miller, B. S.; Howes, P. D.; Gelkop, S.; Lutwama, J. J.; Dye, J. M.; McKendry, R. A.; Lobel, L.; Stevens, M. M. A Serological Point-of-Care Test for the Detection of IgG Antibodies against Ebola Virus in Human Survivors. ACS Nano 2018, 12 (1), 63–73. https://doi.org/10.1021/acsnano.7b07021
Application of Internet of things (IOT) on Microfluidic
Devices In Research and Drug Development
Research & Development Drug Development
IoT and Microfluidics Aiding in Research and
Development
micrIO: an open-source autosampler and fraction
collector for automated microfluidic input–output
Longwell, S. A., & Fordyce, P. M. (2019). micrIO: an open-source autosampler and fraction collector for automated microfluidic input–output. Lab on a Chip. doi:10.1039/c9lc00512a
IoT and Microfluidics in Pharmaceutical
AI Aided Synthesis of Personalised Drugs
Herbal Medicine
Chemical Based
Pharmaceuticals
Protein based
Pharmaceuticals
Personalised Drugs
Zhong, J.; Riordon, J.; Wu, T. C.; Edwards, H.; Wheeler, A. R.; Pardee, K.; Aspuru-Guzik, A.; Sinton, D. When Robotics Met Fluidics. Lab Chip 2020, 20 (4), 709–716. https://doi.org/10.1039/c9lc01042d
Security of
Internet
Prevent hacking or
leaking of sensitive
data
Materials
Technology
Limited by the
capabilities of current
available materials
Multidisciplinary
Efforts
Incorporation of
Hardware and
Software requires
multiple skill sets
Problems and Challenges
Conclusion and Future Work
Incorporation of
acoustic levitation
Samples and analytes
will not touch the
surface
Reduce any chance
possible
contamination
Open Source and 3D
printing
Integration of Open Source
Platforms and 3D printing
Higher accessibility
contributes to lower cost
Synergy of IoT and
microfluidics
Effectiveness of integrating IoT
into mircofludics
Give rise to potential solution
to upgrade quality of life
Eg. wearable IoT, healthcare
4.0, personalised
pharmaceuticals
Brangel, P., Sobarzo, A., Parolo, C., Miller, B. S., Howes, P. D., Gelkop, S., … Stevens, M. M. (2018). A Serological Point-of-Care Test for the Detection of IgG Antibodies against Ebola Virus in Human Survivors. ACS Nano, 12(1), 63–73. doi:10.1021/acsnano.7b07021
Question and Answers
References
1. Chen, C., Loh, E.-W., Kuo, K. N., & Tam, K.-W. (2019). The Times they Are a-Changin’ – Healthcare 4.0 Is Coming! Journal of Medical Systems, 44(2). doi:10.1007/s10916-019-1513-0
2. Jayaraman, P. P., Forkan, A. R. M., Morshed, A., Haghighi, P. D., & Kang, Y. (2019). Healthcare 4.0: A review of frontiers in digital health. WIREs Data Mining and Knowledge Discovery.
doi:10.1002/widm.1350
3. Liu, X.; Huang, X.; Jiang, Y.; Xu, H.; Guo, J.; Hou, H. W.; Yan, M.; Yu, H. A Microfluidic Cytometer for Complete Blood Count With a 3.2-Megapixel, 1.1- Μm-Pitch Super-Resolution Image
Sensor in 65-Nm BSI CMOS. IEEE Trans. Biomed. Circuits Syst. 2017, 11 (4), 794–803. https://doi.org/10.1109/TBCAS.2017.2697451.
4. Zhao, C.; Liu, X. A Portable Paper-Based Microfluidic Platform for Multiplexed Electrochemical Detection of Human Immunodeficiency Virus and Hepatitis C Virus Antibodies in Serum.
Biomicrofluidics 2016, 10 (2). https://doi.org/10.1063/1.4945311.
5. Ibrahim, M.; Gorlatova, M.; Chakrabarty, K. The Internet of Microfluidic Things: Perspectives on System Architecture and Design Challenges: Invited Paper. IEEE/ACM Int. Conf. Comput.
Des. Dig. Tech. Pap. ICCAD 2019, 2019-November, 1–8. https://doi.org/10.1109/ICCAD45719.2019.8942080.
6. Liu, Y.; Yang, T.; Zhang, Y.; Qu, G.; Wei, S.; Liu, Z.; Kong, T. Ultrastretchable and Wireless Bioelectronics Based on All-Hydrogel Microfluidics. Adv. Mater. 2019, 31 (39), 1–7.
https://doi.org/10.1002/adma.201902783.
7. Zhong, J.; Riordon, J.; Wu, T. C.; Edwards, H.; Wheeler, A. R.; Pardee, K.; Aspuru-Guzik, A.; Sinton, D. When Robotics Met Fluidics. Lab Chip 2020, 20 (4), 709–716.
https://doi.org/10.1039/c9lc01042d.
8. Jha, A. K.; Akhter, Z.; Tiwari, N.; Muhammed Shafi, K. T.; Samant, H.; Jaleel Akhtar, M.; Cifra, M. Broadband Wireless Sensing System for Non-Invasive Testing of Biological Samples. IEEE
J. Emerg. Sel. Top. Circuits Syst. 2018, 8 (2), 251–259. https://doi.org/10.1109/JETCAS.2018.2829205.
9. Khan, S. M.; Gumus, A.; Nassar, J. M.; Hussain, M. M. CMOS Enabled Microfluidic Systems for Healthcare Based Applications. Adv. Mater. 2018, 30 (16), 1–26.
https://doi.org/10.1002/adma.201705759.
10. (Prabhu, G. R. D.; Urban, P. L. Elevating Chemistry Research with a Modern Electronics Toolkit. Chem. Rev. 2020, 120 (17), 9482–9553. https://doi.org/10.1021/acs.chemrev.0c00206.
11. Kulkarni, M. B.; Yashas; Enaganti, P. K.; Amreen, K.; Goel, S. Internet of Things Enabled Portable Thermal Management System with Microfluidic Platform to Synthesize
MnO2nanoparticles for Electrochemical Sensing. Nanotechnology 2020, 31 (42). https://doi.org/10.1088/1361-6528/ab9ed8.
12. Longwell, S. A.; Fordyce, P. M. MicrIO: An Open-Source Autosampler and Fraction Collector for Automated Microfluidic Input-Output. Lab Chip 2020, 20 (1), 93–106.
https://doi.org/10.1039/c9lc00512a.
13. Mejía-Salazar, J. R.; Cruz, K. R.; Vásques, E. M. M.; de Oliveira, O. N. Microfluidic Point-of-Care Devices: New Trends and Future Prospects for Ehealth Diagnostics. Sensors (Switzerland)
2020, 20 (7), 1–20. https://doi.org/10.3390/s20071951.
14. Lin, S.; Wang, B.; Zhao, Y.; Shih, R.; Cheng, X.; Yu, W.; Hojaiji, H.; Lin, H.; Hoffman, C.; Ly, D.; Tan, J.; Chen, Y.; Di Carlo, D.; Milla, C.; Emaminejad, S. Natural Perspiration Sampling and in Situ
Electrochemical Analysis with Hydrogel Micropatches for User-Identifiable and Wireless Chemo/Biosensing. ACS Sensors 2020, 5 (1), 93–102.
https://doi.org/10.1021/acssensors.9b01727.
15. Zhou, J.; Tao, F.; Zhu, J.; Lin, S.; Wang, Z.; Wang, X.; Ou, J. Y.; Li, Y.; Liu, Q. H. Portable Tumor Biosensing of Serum by Plasmonic Biochips in Combination with Nanoimprint and
Microfluidics. Nanophotonics 2019, 8 (2), 307–316. https://doi.org/10.1515/nanoph-2018-0173.
16. Brangel, P.; Sobarzo, A.; Parolo, C.; Miller, B. S.; Howes, P. D.; Gelkop, S.; Lutwama, J. J.; Dye, J. M.; McKendry, R. A.; Lobel, L.; Stevens, M. M. A Serological Point-of-Care Test for the
Detection of IgG Antibodies against Ebola Virus in Human Survivors. ACS Nano 2018, 12 (1), 63–73. https://doi.org/10.1021/acsnano.7b07021.
17. Edris S. (2019) Paradigm Change in the History of the Pharmaceutical Industry. In: Cantwell J., Hayashi T. (eds) Paradigm Shift in Technologies and Innovation Systems. Springer,
Singapore. https://doi.org/10.1007/978-981-32-9350-2_9

Weitere ähnliche Inhalte

Was ist angesagt?

Brain-computer interface
Brain-computer interfaceBrain-computer interface
Brain-computer interface
Sri Neela
 

Was ist angesagt? (20)

2016 3D printing for organ on a chip
2016 3D printing for organ on a chip2016 3D printing for organ on a chip
2016 3D printing for organ on a chip
 
Nano robots
Nano robotsNano robots
Nano robots
 
The Future of Medicine
The Future of MedicineThe Future of Medicine
The Future of Medicine
 
brain machin interfacing
brain machin interfacingbrain machin interfacing
brain machin interfacing
 
Bio-MEMS
Bio-MEMSBio-MEMS
Bio-MEMS
 
Nanorobotics
Nanorobotics Nanorobotics
Nanorobotics
 
Brain Computer Interface.ppt
Brain Computer Interface.pptBrain Computer Interface.ppt
Brain Computer Interface.ppt
 
Lab-On-a-Chip: Think small to Think BIG by Anamika Sarkar.pdf
Lab-On-a-Chip: Think small to Think BIG by Anamika Sarkar.pdfLab-On-a-Chip: Think small to Think BIG by Anamika Sarkar.pdf
Lab-On-a-Chip: Think small to Think BIG by Anamika Sarkar.pdf
 
Seminar report nanorobotics
Seminar report nanoroboticsSeminar report nanorobotics
Seminar report nanorobotics
 
Brain computer interface
Brain computer interfaceBrain computer interface
Brain computer interface
 
NANOROBOTICS
NANOROBOTICSNANOROBOTICS
NANOROBOTICS
 
Brain-computer interface
Brain-computer interfaceBrain-computer interface
Brain-computer interface
 
BCI
BCIBCI
BCI
 
Cyborg
CyborgCyborg
Cyborg
 
Brain computer Interface
Brain computer InterfaceBrain computer Interface
Brain computer Interface
 
Nanorobotics future era of medicines
Nanorobotics   future era of medicinesNanorobotics   future era of medicines
Nanorobotics future era of medicines
 
NANOROBOT
NANOROBOTNANOROBOT
NANOROBOT
 
HAPTIC TECHNOLOGY
HAPTIC TECHNOLOGYHAPTIC TECHNOLOGY
HAPTIC TECHNOLOGY
 
BRAIN COMPUTER INTERFACE (BCI)
BRAIN COMPUTER INTERFACE (BCI)BRAIN COMPUTER INTERFACE (BCI)
BRAIN COMPUTER INTERFACE (BCI)
 
Wearable Tech - What is Next?
Wearable Tech - What is Next?Wearable Tech - What is Next?
Wearable Tech - What is Next?
 

Ähnlich wie The Application of Internet of Things (IoT) on Microfluidic Devices

The Role of IoT in Cardiovascular Diseases.pptx
The Role of IoT in Cardiovascular Diseases.pptxThe Role of IoT in Cardiovascular Diseases.pptx
The Role of IoT in Cardiovascular Diseases.pptx
DibashHembram
 
sensors-22-04577.pdf
sensors-22-04577.pdfsensors-22-04577.pdf
sensors-22-04577.pdf
sharada3
 
sensors-22-04577.pdf
sensors-22-04577.pdfsensors-22-04577.pdf
sensors-22-04577.pdf
sharada3
 

Ähnlich wie The Application of Internet of Things (IoT) on Microfluidic Devices (20)

The Application of Internet of Things on Microfluidic Devices
The Application of Internet of Things on Microfluidic Devices The Application of Internet of Things on Microfluidic Devices
The Application of Internet of Things on Microfluidic Devices
 
Internet of things(IOT) literature survey -2.pptx
Internet of things(IOT) literature survey -2.pptxInternet of things(IOT) literature survey -2.pptx
Internet of things(IOT) literature survey -2.pptx
 
Iot-Internet-of-Things-ppt.pptx
Iot-Internet-of-Things-ppt.pptxIot-Internet-of-Things-ppt.pptx
Iot-Internet-of-Things-ppt.pptx
 
The Role of IoT in Cardiovascular Diseases.pptx
The Role of IoT in Cardiovascular Diseases.pptxThe Role of IoT in Cardiovascular Diseases.pptx
The Role of IoT in Cardiovascular Diseases.pptx
 
TOP CITED UBICOMPUTING ARTICLES IN 2013 - International Journal of Ubiquitous...
TOP CITED UBICOMPUTING ARTICLES IN 2013 - International Journal of Ubiquitous...TOP CITED UBICOMPUTING ARTICLES IN 2013 - International Journal of Ubiquitous...
TOP CITED UBICOMPUTING ARTICLES IN 2013 - International Journal of Ubiquitous...
 
sensors-22-04577.pdf
sensors-22-04577.pdfsensors-22-04577.pdf
sensors-22-04577.pdf
 
sensors-22-04577.pdf
sensors-22-04577.pdfsensors-22-04577.pdf
sensors-22-04577.pdf
 
AI, IoMT and Blockchain in Healthcare.pdf
AI, IoMT and Blockchain in Healthcare.pdfAI, IoMT and Blockchain in Healthcare.pdf
AI, IoMT and Blockchain in Healthcare.pdf
 
Internet-of-things- (IOT) - a-seminar - ppt - by- mohan-kumar-g
Internet-of-things- (IOT) - a-seminar - ppt - by- mohan-kumar-gInternet-of-things- (IOT) - a-seminar - ppt - by- mohan-kumar-g
Internet-of-things- (IOT) - a-seminar - ppt - by- mohan-kumar-g
 
Challenges and Opportunities of Internet of Things in Healthcare
Challenges and Opportunities of Internet of Things in Healthcare  Challenges and Opportunities of Internet of Things in Healthcare
Challenges and Opportunities of Internet of Things in Healthcare
 
IRJET- A Comprehensive Survey on Smart Healthcare Monitoring of Patients usin...
IRJET- A Comprehensive Survey on Smart Healthcare Monitoring of Patients usin...IRJET- A Comprehensive Survey on Smart Healthcare Monitoring of Patients usin...
IRJET- A Comprehensive Survey on Smart Healthcare Monitoring of Patients usin...
 
IoT on Medical System
IoT on Medical SystemIoT on Medical System
IoT on Medical System
 
IoT on Medical System
IoT on Medical SystemIoT on Medical System
IoT on Medical System
 
January_2024 Top 10 Read Articles in Computer Networks & Communications.pdf
January_2024 Top 10 Read Articles in Computer Networks & Communications.pdfJanuary_2024 Top 10 Read Articles in Computer Networks & Communications.pdf
January_2024 Top 10 Read Articles in Computer Networks & Communications.pdf
 
Latex Beamer Presentation, Smart Wearable Sensor
Latex Beamer Presentation, Smart Wearable Sensor Latex Beamer Presentation, Smart Wearable Sensor
Latex Beamer Presentation, Smart Wearable Sensor
 
Btechseminar 190826153808
Btechseminar 190826153808Btechseminar 190826153808
Btechseminar 190826153808
 
Hand Pose Tracking for Clinical Applications
Hand Pose Tracking for Clinical ApplicationsHand Pose Tracking for Clinical Applications
Hand Pose Tracking for Clinical Applications
 
Societal Change and Transformation by Internet of Things (IoT)
Societal Change and Transformation by Internet of Things (IoT)Societal Change and Transformation by Internet of Things (IoT)
Societal Change and Transformation by Internet of Things (IoT)
 
IoT and Big Data.pptx
IoT and Big Data.pptxIoT and Big Data.pptx
IoT and Big Data.pptx
 
IoT and Big Data.pptx
IoT and Big Data.pptxIoT and Big Data.pptx
IoT and Big Data.pptx
 

Kürzlich hochgeladen

The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
SanaAli374401
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
MateoGardella
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Kürzlich hochgeladen (20)

Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 

The Application of Internet of Things (IoT) on Microfluidic Devices

  • 1. The Application of Internet Of Things (IOT) on Microfluidic Devices Chia Xun Nian Mok Yan Ni Teo Jin Wei
  • 2. Content Page 01 Healthcare 4.0 & the Important of IoT on Microfluidics 02 Principle of IoT in Microfluidics & Key Developments 03 Conventional vs Digital Microfluidics & System Design on Internet of Microfluidic Things 04 Results and discussion (Applications of Microfluidics based IOT) 05 Problems encountered 06 Conclusion and future work
  • 3. Healthcare 4.0 Wearable & Point of Care IOT Capture & Processing of Biological Data in Real Time Ambient IOT Sensor Detection for Non Intrusive observation of individuals Healthcare Digitalisation Cloud and Storage Healthcare 2.0 Healthcare 3.0 Healthcare 4.0 Healthcare 1.0 Chen, C., Loh, E.-W., Kuo, K. N., & Tam, K.-W. (2019). The Times they Are a-Changin’ – Healthcare 4.0 Is Coming! Journal of Medical Systems, 44(2). doi:10.1007/s10916-019-1513-0 Jayaraman, P. P., Forkan, A. R. M., Morshed, A., Haghighi, P. D., & Kang, Y. (2019). Healthcare 4.0: A review of frontiers in digital health. WIREs Data Mining and Knowledge Discovery. doi:10.1002/widm.1350
  • 4. The Importance of IoT on Microfluidics Conventional Microfluidic Chemical Analysis Integration with IoT Big Data Analytics & Artificial Intelligence Mejía-Salazar, J. R.; Cruz, K. R.; Vásques, E. M. M.; de Oliveira, O. N. Microfluidic Point-of-Care Devices: New Trends and Future Prospects for Ehealth Diagnostics. Sensors (Switzerland) 2020, 20 (7), 1–20. https://doi.org/10.3390/s20071951 Ibrahim, M.; Gorlatova, M.; Chakrabarty, K. The Internet of Microfluidic Things: Perspectives on System Architecture and Design Challenges: Invited Paper. IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap. ICCAD 2019, 2019-November, 1–8. https://doi.org/10.1109/ICCAD45719.2019.8942080..
  • 5. Internet of Things (IOT) Hardware & Software Microcontroller Boards/Single Board computer Microcontroller Functional Module (e.g pumps, bluetooth and Wifi) Microfluidics Kassis, T., Perez, P. M., Yang, C. J. W., Soenksen, L. R., TrumperPrabhu, G. R. D., & Urban, P. L. (2020). Elevating Chemistry Research with a Modern Electronics Toolkit. Chemical Reviews. doi:10.1021/acs.chemrev.0c00206 , D. L., & Griffith, L. G. (2018). PiFlow: A biocompatible low-cost programmable dynamic flow pumping system utilizing a Raspberry Pi Zero and commercial piezoelectric pumps. HardwareX, 4, e00034.
  • 6. Complementary Metal Oxide Semiconductor (CMOS) Chip Interface ● Processor ● Noise Removal ● Signal amplification ● Actuator controller Sensors ● Image sensor ● Particle/Cells detection ● pH sensor ● DNA analysis Actuators ● Particle Actuators ● Microheater ● Flow control Khan, S. M., Gumus, A., Nassar, J. M., & Hussain, M. M. (2018). CMOS Enabled Microfluidic Systems for Healthcare Based Applications. Advanced Materials, 30(16), 1705759. doi:10.1002/adma.201705759
  • 7. Complementary Metal Oxide Semiconductor (CMOS) Chip A Microfluidic Cytometer for Complete Blood Count With a 3.2-Megapixel, 1.1- μm-Pitch Super-Resolution Image Sensor in 65-nm BSI CMOS Khan, S. M., Gumus, A., Nassar, J. M., & Hussain, M. M. (2018). CMOS Enabled Microfluidic Systems for Healthcare Based Applications. Advanced Materials, 30(16), 1705759. doi:10.1002/adma.201705759 Liu, X.; Huang, X.; Jiang, Y.; Xu, H.; Guo, J.; Hou, H. W.; Yan, M.; Yu, H. A Microfluidic Cytometer for Complete Blood Count With a 3.2-Megapixel, 1.1- Μm-Pitch Super-Resolution Image Sensor in 65-Nm BSI CMOS. IEEE Trans. Biomed. Circuits Syst. 2017, 11 (4), 794–803. https://doi.org/10.1109/TBCAS.2017.2697451.
  • 8. Conventional vs Digital Microfluidics Digital Microfluidics Conventional Microfluidics Flow controlled by voltage or pressure Utilizes small droplets as on chip analyte carrier Manipulation of the droplets done by an array of electrodes that are electrically controllable Droplet handling mechanism - Electrowetting on Dielectric (EWOD) Digital Microfluidics - reconfigurable technology ● Cyber-Physical System ● Real-time decision making Nguyen, N.-T., Hejazian, M., Ooi, C., & Kashaninejad, N. (2017). Recent Advances and Future Perspectives on Microfluidic Liquid Handling. Micromachines, 8(6), 186. doi:10.3390/mi8060186
  • 9. Internet of Microfluidic Things (IoMT) System Design 5 Layer Architecture M. Ibrahim, M. Gorlatova and K. Chakrabarty, "The Internet of Microfluidic Things: Perspectives on System Architecture and Design Challenges: Invited Paper," 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA, 2019, pp. 1-8, doi: 10.1109/ICCAD45719.2019.894208
  • 10. Perception Layer Consists of microfluidic sensors and actuators that interact with biochemical substances Universal control interface has to be designed and customised to act as “adapters” Adapters are capable of digitizing and transferring data to abstraction layer Abstraction Layer Implements coordination protocol among Microfluidic Things Data transferred to data storage (Middleware Layer) 5 Layer Architecture M. Ibrahim, M. Gorlatova and K. Chakrabarty, "The Internet of Microfluidic Things: Perspectives on System Architecture and Design Challenges: Invited Paper," 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA, 2019, pp. 1-8, doi: 10.1109/ICCAD45719.2019.894208
  • 11. Middleware Layer Stores real-time streaming data Implements procedures based on specific identification information (protocol name & microfluidic device address) Monitors the progress of biochemical service Application Layer Map user’s application specification to unique biochemical services Transmit sensor measurement back to users Semantics Layer Manage performance metrics and data collected Build decision model, graphs and flowchart Creates a negative feedback loop 5 Layer Architecture M. Ibrahim, M. Gorlatova and K. Chakrabarty, "The Internet of Microfluidic Things: Perspectives on System Architecture and Design Challenges: Invited Paper," 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA, 2019, pp. 1-8, doi: 10.1109/ICCAD45719.2019.894208
  • 12. Application of Internet of things (IOT) on Microfluidic Devices In Healthcare Microfluidic-based Wearables Microfluidic-based Point of Care (POC) Devices
  • 13. Wearable Microfluidics devices (Biofluid) Biofluid Sweat Analysis Skin Patch pH analysis Yeo, J. C., Kenry, K., & Lim, C. T. (2016). Emergence of microfluidic wearable technologies. Lab on a Chip, 16(21), 4082–4090. doi:10.1039/c6lc00926c
  • 14. Wearable Microfluidics Devices (Mechanotransduction Force) Foot Pressure Wrist PressureVocal Cords Yeo, J. C., Kenry, K., & Lim, C. T. (2016). Emergence of microfluidic wearable technologies. Lab on a Chip, 16(21), 4082–4090. doi:10.1039/c6lc00926c Liu, Y., Yang, T., Zhang, Y., Qu, G., Wei, S., Liu, Z., Kong, T., Ultrastretchable and Wireless Bioelectronics Based on All‐Hydrogel Microfluidics. Adv. Mater. 2019, 31, 1902783. https://doi.org/10.1002/adma.201902783
  • 15. Microfluidic-based Point of Care (POC) Devices Electrochemical microfluidic paper-based immunosensor device (E-μPADs) Mejía-Salazar, J. R.; Cruz, K. R.; Vásques, E. M. M.; de Oliveira, O. N. Microfluidic Point-of-Care Devices: New Trends and Future Prospects for Ehealth Diagnostics. Sensors (Switzerland) 2020, 20 (7), 1–20. https://doi.org/10.3390/s20071951. Zhou, J.; Tao, F.; Zhu, J.; Lin, S.; Wang, Z.; Wang, X.; Ou, J. Y.; Li, Y.; Liu, Q. H. Portable Tumor Biosensing of Serum by Plasmonic Biochips in Combination with Nanoimprint and Microfluidics. Nanophotonics 2019, 8 (2), 307–316. https://doi.org/10.1515/nanoph-2018-0173
  • 16. Microfluidic-based Point of Care (POC) Devices IoT lab chip on monitoring Ebola Virus Diseases Brangel, P.; Sobarzo, A.; Parolo, C.; Miller, B. S.; Howes, P. D.; Gelkop, S.; Lutwama, J. J.; Dye, J. M.; McKendry, R. A.; Lobel, L.; Stevens, M. M. A Serological Point-of-Care Test for the Detection of IgG Antibodies against Ebola Virus in Human Survivors. ACS Nano 2018, 12 (1), 63–73. https://doi.org/10.1021/acsnano.7b07021
  • 17. Application of Internet of things (IOT) on Microfluidic Devices In Research and Drug Development Research & Development Drug Development
  • 18. IoT and Microfluidics Aiding in Research and Development micrIO: an open-source autosampler and fraction collector for automated microfluidic input–output Longwell, S. A., & Fordyce, P. M. (2019). micrIO: an open-source autosampler and fraction collector for automated microfluidic input–output. Lab on a Chip. doi:10.1039/c9lc00512a
  • 19. IoT and Microfluidics in Pharmaceutical AI Aided Synthesis of Personalised Drugs Herbal Medicine Chemical Based Pharmaceuticals Protein based Pharmaceuticals Personalised Drugs Zhong, J.; Riordon, J.; Wu, T. C.; Edwards, H.; Wheeler, A. R.; Pardee, K.; Aspuru-Guzik, A.; Sinton, D. When Robotics Met Fluidics. Lab Chip 2020, 20 (4), 709–716. https://doi.org/10.1039/c9lc01042d
  • 20. Security of Internet Prevent hacking or leaking of sensitive data Materials Technology Limited by the capabilities of current available materials Multidisciplinary Efforts Incorporation of Hardware and Software requires multiple skill sets Problems and Challenges
  • 21. Conclusion and Future Work Incorporation of acoustic levitation Samples and analytes will not touch the surface Reduce any chance possible contamination Open Source and 3D printing Integration of Open Source Platforms and 3D printing Higher accessibility contributes to lower cost Synergy of IoT and microfluidics Effectiveness of integrating IoT into mircofludics Give rise to potential solution to upgrade quality of life Eg. wearable IoT, healthcare 4.0, personalised pharmaceuticals Brangel, P., Sobarzo, A., Parolo, C., Miller, B. S., Howes, P. D., Gelkop, S., … Stevens, M. M. (2018). A Serological Point-of-Care Test for the Detection of IgG Antibodies against Ebola Virus in Human Survivors. ACS Nano, 12(1), 63–73. doi:10.1021/acsnano.7b07021
  • 23. References 1. Chen, C., Loh, E.-W., Kuo, K. N., & Tam, K.-W. (2019). The Times they Are a-Changin’ – Healthcare 4.0 Is Coming! Journal of Medical Systems, 44(2). doi:10.1007/s10916-019-1513-0 2. Jayaraman, P. P., Forkan, A. R. M., Morshed, A., Haghighi, P. D., & Kang, Y. (2019). Healthcare 4.0: A review of frontiers in digital health. WIREs Data Mining and Knowledge Discovery. doi:10.1002/widm.1350 3. Liu, X.; Huang, X.; Jiang, Y.; Xu, H.; Guo, J.; Hou, H. W.; Yan, M.; Yu, H. A Microfluidic Cytometer for Complete Blood Count With a 3.2-Megapixel, 1.1- Μm-Pitch Super-Resolution Image Sensor in 65-Nm BSI CMOS. IEEE Trans. Biomed. Circuits Syst. 2017, 11 (4), 794–803. https://doi.org/10.1109/TBCAS.2017.2697451. 4. Zhao, C.; Liu, X. A Portable Paper-Based Microfluidic Platform for Multiplexed Electrochemical Detection of Human Immunodeficiency Virus and Hepatitis C Virus Antibodies in Serum. Biomicrofluidics 2016, 10 (2). https://doi.org/10.1063/1.4945311. 5. Ibrahim, M.; Gorlatova, M.; Chakrabarty, K. The Internet of Microfluidic Things: Perspectives on System Architecture and Design Challenges: Invited Paper. IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap. ICCAD 2019, 2019-November, 1–8. https://doi.org/10.1109/ICCAD45719.2019.8942080. 6. Liu, Y.; Yang, T.; Zhang, Y.; Qu, G.; Wei, S.; Liu, Z.; Kong, T. Ultrastretchable and Wireless Bioelectronics Based on All-Hydrogel Microfluidics. Adv. Mater. 2019, 31 (39), 1–7. https://doi.org/10.1002/adma.201902783. 7. Zhong, J.; Riordon, J.; Wu, T. C.; Edwards, H.; Wheeler, A. R.; Pardee, K.; Aspuru-Guzik, A.; Sinton, D. When Robotics Met Fluidics. Lab Chip 2020, 20 (4), 709–716. https://doi.org/10.1039/c9lc01042d. 8. Jha, A. K.; Akhter, Z.; Tiwari, N.; Muhammed Shafi, K. T.; Samant, H.; Jaleel Akhtar, M.; Cifra, M. Broadband Wireless Sensing System for Non-Invasive Testing of Biological Samples. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8 (2), 251–259. https://doi.org/10.1109/JETCAS.2018.2829205. 9. Khan, S. M.; Gumus, A.; Nassar, J. M.; Hussain, M. M. CMOS Enabled Microfluidic Systems for Healthcare Based Applications. Adv. Mater. 2018, 30 (16), 1–26. https://doi.org/10.1002/adma.201705759. 10. (Prabhu, G. R. D.; Urban, P. L. Elevating Chemistry Research with a Modern Electronics Toolkit. Chem. Rev. 2020, 120 (17), 9482–9553. https://doi.org/10.1021/acs.chemrev.0c00206. 11. Kulkarni, M. B.; Yashas; Enaganti, P. K.; Amreen, K.; Goel, S. Internet of Things Enabled Portable Thermal Management System with Microfluidic Platform to Synthesize MnO2nanoparticles for Electrochemical Sensing. Nanotechnology 2020, 31 (42). https://doi.org/10.1088/1361-6528/ab9ed8. 12. Longwell, S. A.; Fordyce, P. M. MicrIO: An Open-Source Autosampler and Fraction Collector for Automated Microfluidic Input-Output. Lab Chip 2020, 20 (1), 93–106. https://doi.org/10.1039/c9lc00512a. 13. Mejía-Salazar, J. R.; Cruz, K. R.; Vásques, E. M. M.; de Oliveira, O. N. Microfluidic Point-of-Care Devices: New Trends and Future Prospects for Ehealth Diagnostics. Sensors (Switzerland) 2020, 20 (7), 1–20. https://doi.org/10.3390/s20071951. 14. Lin, S.; Wang, B.; Zhao, Y.; Shih, R.; Cheng, X.; Yu, W.; Hojaiji, H.; Lin, H.; Hoffman, C.; Ly, D.; Tan, J.; Chen, Y.; Di Carlo, D.; Milla, C.; Emaminejad, S. Natural Perspiration Sampling and in Situ Electrochemical Analysis with Hydrogel Micropatches for User-Identifiable and Wireless Chemo/Biosensing. ACS Sensors 2020, 5 (1), 93–102. https://doi.org/10.1021/acssensors.9b01727. 15. Zhou, J.; Tao, F.; Zhu, J.; Lin, S.; Wang, Z.; Wang, X.; Ou, J. Y.; Li, Y.; Liu, Q. H. Portable Tumor Biosensing of Serum by Plasmonic Biochips in Combination with Nanoimprint and Microfluidics. Nanophotonics 2019, 8 (2), 307–316. https://doi.org/10.1515/nanoph-2018-0173. 16. Brangel, P.; Sobarzo, A.; Parolo, C.; Miller, B. S.; Howes, P. D.; Gelkop, S.; Lutwama, J. J.; Dye, J. M.; McKendry, R. A.; Lobel, L.; Stevens, M. M. A Serological Point-of-Care Test for the Detection of IgG Antibodies against Ebola Virus in Human Survivors. ACS Nano 2018, 12 (1), 63–73. https://doi.org/10.1021/acsnano.7b07021. 17. Edris S. (2019) Paradigm Change in the History of the Pharmaceutical Industry. In: Cantwell J., Hayashi T. (eds) Paradigm Shift in Technologies and Innovation Systems. Springer, Singapore. https://doi.org/10.1007/978-981-32-9350-2_9