SlideShare ist ein Scribd-Unternehmen logo
1 von 12
Downloaden Sie, um offline zu lesen
Universidad De La Amazonia

Parcial 3
Matem´ticas De Control Y
a
Comunicaci´n
o

Author:
Miguel Leonardo
´
Sanchez Fajardo

Supervisor:
˜
Prof. Jorge E. Trivino
Macias

17 de octubre de 2013
1. Para f (x) =

PREGUNTAS

 0, si −π ≤ x ≤ 0


x, si 0 ≤ x ≤ π

a) Escriba la serie de Fourier de f en [−π, π] y pruebe que esta serie
converge a f en (−π, π).
b) Pruebe que esta serie se puede integrar t´rmino a t´rmino.
e
e
c) Use los resultados obtenidos en (a) y (b) para obtener un desarrollo
x

f (t) dt en [−π, π]

en series trigonom´trica para
e
−π

2. Sea f (x) = x sen x , para −π ≤ x ≤ π.

a) Escriba la serie de Fourier para f en [−π, π].
b) Pruebe que la serie se puede diferenciar t´rmino a t´rmino y utilice
e
e
´ste hecho para obtener el desarrollo de Fourier de: sen x + x cos x
e
en [−π, π].
∞

3. Encuentre la suma de la serie
n=1

(−1)n
.
4n2 − 1

SUGERENCIA: Desarrolle sen x en una serie en cosenos en [0, π] y
escoja un valor adecuado de x.

OBSERVACION: El documento fu´ elaborado mediante el software
e
a
EX y las gr´ficas fueron realizadas y editadas mediante Geogeobra 4.2.
Los ejercicios fueron hechos con las f´rmulas del libro Matem´ticas Avano
a
zadas para Ingenieria - Peter O’Neil - 5ta Edici´n con el fin de evitar
o
problemas, mal entendidos (copia del trabajo), discusiones.
A
LT

1
1. Para f (x) =

DESARROLLO

 0, si −π ≤ x ≤ 0


x, si 0 ≤ x ≤ π

a) Escriba la serie de Fourier de f en [−π, π] y pruebe que esta serie
converge a f en [−π, π]. RESPUESTA:
∞

1
bn sen
f (x) = a0 +
2
n=1
1
L
1
=
π
x2
=
2π
π
=
2

u = x;

an =
=
=
=
=

L

f (x) cos
−L

+ an cos

nπx
L

π

f (x) dx

a0 =

1
an =
L

nπx
L

−π
0

1
0 dx +
π
−π

π

x dx
0

π
0

nπx
L

dx

du = dx | dv = cos(nx) dx;

v=

0
π
1
nπx
1
0 cos
dx +
x cos
π −π
π
π 0
π
π
1
1
x sen(nx) −
sen(nx)dx
nπ
0
0 nπ
π
1
cos(nx)
n2 π
0
1
cos(nπ) − 1
n2 π
1
(−1)n − 1 .
2 π
n

2

1
sen(nx)
n
nπx
π

dx
bn =
u = x;

1
L

L

f (x) sen
−L

nπx
L

du = dx | dv = sen(nx) dx;

dx.
1
v = − cos(nx)
n

π
1
0 sen(nx)dx +
x sen(nx)dx
π 0
−π
π
π
1
1
x cos(nx) +
=−
cos(nx) dx
nπ
0 nπ 0
π
1
1
π cos(nπ) − 0 + 2
sen(nx)
=−
nπ
n π
0
1
1
= − cos(nπ) + 2
sen(nπ) − 0
n
nπ
1
= (−1)n+1 .
n

1
bn =
π

0

La serie general de fourier para f (x) es:
∞

f (x) =

π
(−1)n+1
(−1)n − 1
+
sen(nx) +
cos(nx)
4 n=1
n
n2 π

Para probar la convergencia de la serie de fourier de f (x) es necesario
comprobar que f sea continua a tramos. Para ello, es necesario graficar
la funci´n dada y comprobar las hip´tesis del teorema de convergencia
o
o
de serie de fourier.

Comprobamos si f (x) es continua a tramos.
3
• Comprobamos que tenga un l´
ımite finito de discontinuidades.
En este caso, f (x) tiene un punto de discontinuidad que es x0 = 0.
• Comprobamos que existan los l´
ımites en los extremos. Entonces
+
f (−π ) = 0.
f (π − ) = π.
• Comprobamos que existan los l´
ımites laterales en el punto de discontinuidad.
f (0− ) = 0.
f (0+ ) = 0.
Dado que f (x) cumple las 3 hip´tesis del teorema, podemos decir con
o
seguridad que f (x) es continua a tramos. Luego f (x) converge a la
funci´n Φ que est´ dada por:
o
a

Φ=


 0, −π ≤ x ≤ 0.






 0, x = 0.


 x, 0 < x ≤ π.





 π


 , x ± π.
2

b) Pruebe que esta serie se puede integrar t´rmino a t´rmino.
e
e
RESPUESTA: La serie se puede integrar t´rtmino a t´rmino porque
e
e
f (x) es una funci´n continua a tramos en [−L, L], con serie de Fourier:
o
∞

1
f (x) = a0 +
an cos
2
n=1

nπx
L

+ bn sen

nπx
L

.

c) Use los resultados obtenidos en (a) y (b) para obtener un desarrollo en
x

series trigonom´trica para
e

f (t) dt en [−π, π]
−π

RESPUESTA: Entonces para cada x con −L ≤ x ≤ L:

4
x

∞

x

π
dt +
4
n=1

f (t) dt =
−L

−π

x

π
f (t) dt =
4
−L
x

f (t) dt =
−L

∞

x

dt +
−π

π
t
4

n=1

∞

x

+
−π

n=1

x
−π

(−1)n − 1
cos(nt)dt +
n2 π

(−1)n − 1
n2 π

x

cos(nt)dt +
−π

(−1)n − 1
sen(nt)
n3 π

x

+
−π

x
−π

(−1)n+1
sen(nt)dt
n

(−1)n+1
n

x

sen(nt)dt
−π

(−1)n+2
cos(nt)
n2

x
−π

∞

x

π
(−1)n+1 + 1
f (t) dt =
x+π +
sen(nx) + sen(nπ)
4
n3 π
−L
n=1

+

x

(−1)n+2
cos(nx) − cos(nπ)
n2
∞

(−1)n+1 + 1
(−1)n+2
π(x + π)
+
cos(nx) − (−1)n .
f (t) dt =
sen(nx) +
3π
2
4
n
n
−L
n=1

5
2. Sea f (x) = x sen x , para −π ≤ x ≤ π.
a) Escriba la serie de Fourier para f en [−π, π]. RESPUESTA:
∞

f (x) =

1
nπx
nπx
a0 +
bn sen
+ an cos
2
L
L
n=1
π

1
a0 =
L
1
=
π
2
=
π
u = x;

x sen x dx
−π
π

x sen x dx
0

du = dx | dv = sen x dx;

2
π
2
=−
π
2
=−
π
2
=−
π
= 2.

a0 = −

π

+

x cos x
0

2
π

v = − cos x

π

cos xdx
0

2
(π) cos(π) − (0) cos(0) + sen x
π
2
(π) cos(π) + sen(π) − sen(0)
π

π
0

[−π]

1
L
1
=
π
2
=
π

L

an =

u = x;

f (x) dx
−π
π

f (x) cos
−L
π

nπx
L

dx

x sen(x) cos(nx)dx
−π
π

x sen(x) cos(nx)dx
0

du = dx | dv = sen(x(1 ± n)) dx;
6

v=−

1
cos(x(1 ± n))
n±1
1
π
1
=
π

π

x sen(x(1 + n)) + sen(x(1 − n)) dx

an =

0
π

x sen(x(1 + n)) dx +
0

1
π

π

x sen(x(1 − n)) dx
0

π

π
1
1
=−
x cos(x(1 + n)) +
cos(x(1 + n)) dx
π(1 + n)
0 π(1 + n) 0
π
π
1
1
x cos(x(1 − n)) +
cos(x(1 − n)) dx
−
π(1 − n)
0 π(1 − n) 0
π
1
1
=−
(π) cos(π(1 + n)) − (0) cos(0(1 + n)) +
sen(x(1 + n))
π(1 + n)
π(1 + n)2
0
π
1
1
−
(π) cos(π(1 − n)) − (0) cos(0(1 + n)) +
sen(x(1 − n))
π(1 + n)
π(1 − n)2
0
1
1
=−
π cos(π(1 + n)) +
sen(π(1 + n)) − sen(0(1 + n))
π(1 + n)
π(1 + n)2
1
1
−
(π) cos(π(1 − n)) +
sen(π(1 − n)) − sen(0(1 − n))
π(1 + n)
π(1 − n)2
1
1
(π) cos(π(1 + n)) +
=−
sen(π(1 + n))
π(1 + n)
π(1 + n)2
1
1
(π) cos(π(1 − n)) +
sen(π(1 − n))
−
π(1 + n)
π(1 − n)2
1
1
=−
(π)(−1)n cos(π) +
(−1)n sen(π)
π(1 + n)
π(1 + n)2
1
1
−
π(−1)n cos(π) +
(−1)n sen(π)
π(1 + n)
π(1 − n)2
(−1)n+1
.
= 2
n −1

1
L
1
=
π

L

bn =

f (x) sen
−L
π

nπx
L

dx

x sen(x) sen(nx)dx
−π

Como los l´
ımites son sim´tricos y la funci´n es impar dado que x y sen
e
o
son funciones impares y seg´n las f´rmulas
u
o
impar ∗ impar = par
7
Pero como son 3 funciones impares entonces
impar ∗ impar ∗ impar = par ∗ impar = impar
Las funciones impares son = 0. Por lo tanto: bn = 0

La serie general de fourier para f (x) es:
∞

f (x) = 1 +
n=1

(−1)n+1
cos(nx)
n2 − 1

b) Pruebe que la serie se puede diferenciar t´rmino a t´rmino y utilice ´ste
e
e
e
hecho para obtener el desarrollo de Fourier de:
sen x + x cos x en [−π, π]
RESPUESTA:
Comprobamos si f (x) es continua a tramos. Para ello, es necesario comprobar si cumple las 3 hip´tesis del teorema.
o

• Comprobamos que tenga un l´
ımite finito de discontinuidades. En
este caso, f (x) tiene cero puntos de discontinuidad.

8
• Comprobamos que existan los l´
ımites en los extremos.
f (−π + ) = 0
f (π − ) = 0
• Como f (x) es continua entonces no hay problema en el punto de
discontinuidad.
Por lo tanto, comprobamos que f (x) es continua a tramos. Adem´s
a
f (−π) = f (π). Luego el siguiente paso es encontrar la derivada de
f (x).
f (x) = x cos x + sen x en[−π, π].
Comprobamos si f (x) es continua a tramos.
• Comprobamos que tenga un l´
ımite finito de discontinuidades. En
este caso, f (x) tiene cero puntos de discontinuidad.
• Comprobamos que existan los l´
ımites en los extremos.
+
f (−π ) = 0
f (π − ) = 0
Comprobamos que f (x) es continua a tramos. Despues, comprobamos
la existencia de f (x). Entonces:
f (x) = 2 cos x − x sen x en [−π, π].

Entonces f (x) es igual a la serie de fourier para [−π, π].
∞

f (x) =
n=1

nπx
nπx
nπ
−an sen
+ bn cos
L
L
L
∞

x cos x + sen x = −

n
n=1

9

(−1)n+1
sen(nx)
n2 − 1
∞

3. Encuentre la suma de la serie
n=1

(−1)n
4n2 − 1

SUGERENCIA: Desarrolle sen x en una serie en cosenos en [0, π] y
escoja un valor adecuado de x.
RESPUESTA:
∞

Serie de Cosenos: =⇒

nπx
1
a0 +
an cos
.
2
L
n=1

a0 =

2
π

π

sen(x)dx
0
π

2
cos(x)
π
0
2
= − cos(π) − cos(0)
π
2
= − (1 − 1)
π
=0

=−

10

π
0
an =
=
=
=
=
=
=
=
=

2
L
2
π
1
π
1
π
1
π
1
π
1
π
1
π
1
π

L

f (x) cos
0

nπx
L

dx

π

sen(x) cos(nx)dx
0
π

sen(x + nx) + sen(x − nx) dx
0
π

sen(x(1 + n)) + sen(x(1 − n)) dx
0
π

−1
1
cos(x(1 + n)) −
cos(x(1 − n))
1+n
1−n
0
−1
1
1
cos(π(1 + n)) − cos(0) +
cos(π(1 − n)) − cos(0)
1+n
π 1−n
−1
1
1
(−1)1+n − 1 +
(−1)1−n − 1
1+n
π 1−n
(−1)2+n
1
1 (−1)−n
1
+
+
+
1+n
1+n π 1−n
1−n
2+n
−n
(−1)
2 (−1)
+
1+n
1 + n2 1 − n

Serie de Cosenos:
∞

1 (−1)2+n
1
2
(−1)−n
(0) +
+
+
cos(nx)
2
π 1+n
1 − n2
1−n
n=1
∞

n=1

1 (−1)2+n
2
(−1)−n
+
+
cos(nx)
π 1+n
1 − n2
1−n

Si x = π, entonces
∞

n=1
∞

n=1

1 (−1)2+n
2
(−1)−n
+
+
cos(nπ)
π 1+n
1 − n2
1−n
1 (−1)2+n
2
(−1)−n
+
+
(−1)n
2
π 1+n
1−n
1−n

11

Weitere ähnliche Inhalte

Was ist angesagt?

Solucionario ecuaciones2
Solucionario ecuaciones2Solucionario ecuaciones2
Solucionario ecuaciones2
ERICK CONDE
 
Calculo de la capacitancia
Calculo de la capacitanciaCalculo de la capacitancia
Calculo de la capacitancia
Victor Vega
 
V corriente alterna 1
V corriente alterna 1V corriente alterna 1
V corriente alterna 1
brayham2010
 
Aplicaciones de las ecuaciones diferenciales de segundo orden
Aplicaciones de las ecuaciones diferenciales de segundo ordenAplicaciones de las ecuaciones diferenciales de segundo orden
Aplicaciones de las ecuaciones diferenciales de segundo orden
Aƞdrea DitƬerǐch
 

Was ist angesagt? (20)

Series de fourier - Ejemplos Resueltos
Series de fourier - Ejemplos Resueltos Series de fourier - Ejemplos Resueltos
Series de fourier - Ejemplos Resueltos
 
serie de taylor
 serie de taylor serie de taylor
serie de taylor
 
Funciones ortogonales (1)
Funciones ortogonales (1)Funciones ortogonales (1)
Funciones ortogonales (1)
 
ejercicios-resueltos-interpolacion-polinomial
ejercicios-resueltos-interpolacion-polinomialejercicios-resueltos-interpolacion-polinomial
ejercicios-resueltos-interpolacion-polinomial
 
Solucionario ecuaciones2
Solucionario ecuaciones2Solucionario ecuaciones2
Solucionario ecuaciones2
 
Calculo de la capacitancia
Calculo de la capacitanciaCalculo de la capacitancia
Calculo de la capacitancia
 
Metodo de Runge Kutta en Matlab
Metodo de Runge Kutta en Matlab Metodo de Runge Kutta en Matlab
Metodo de Runge Kutta en Matlab
 
3+ +problemas+resueltos+de+metodos+generales(1)
3+ +problemas+resueltos+de+metodos+generales(1)3+ +problemas+resueltos+de+metodos+generales(1)
3+ +problemas+resueltos+de+metodos+generales(1)
 
Serie de fourier
Serie de fourierSerie de fourier
Serie de fourier
 
TRANSFORMADA DISCRETA DE FOURIER
TRANSFORMADA DISCRETA DE FOURIERTRANSFORMADA DISCRETA DE FOURIER
TRANSFORMADA DISCRETA DE FOURIER
 
Ley de coulomb TE
Ley de coulomb TELey de coulomb TE
Ley de coulomb TE
 
Int superficie
Int superficieInt superficie
Int superficie
 
Valores eficaces
Valores eficacesValores eficaces
Valores eficaces
 
Divisor de voltaje y divisor de corriente
Divisor de voltaje y divisor de corriente Divisor de voltaje y divisor de corriente
Divisor de voltaje y divisor de corriente
 
Ejercicios circuitos i
Ejercicios circuitos iEjercicios circuitos i
Ejercicios circuitos i
 
Clase 2015 i electromagnetismo ii
Clase 2015 i electromagnetismo iiClase 2015 i electromagnetismo ii
Clase 2015 i electromagnetismo ii
 
Ejercicios Resueltos Series de Forurier
Ejercicios Resueltos Series de ForurierEjercicios Resueltos Series de Forurier
Ejercicios Resueltos Series de Forurier
 
V corriente alterna 1
V corriente alterna 1V corriente alterna 1
V corriente alterna 1
 
La Transformada de Fourier
La Transformada de FourierLa Transformada de Fourier
La Transformada de Fourier
 
Aplicaciones de las ecuaciones diferenciales de segundo orden
Aplicaciones de las ecuaciones diferenciales de segundo ordenAplicaciones de las ecuaciones diferenciales de segundo orden
Aplicaciones de las ecuaciones diferenciales de segundo orden
 

Ähnlich wie Ejercicios serie de fourier

Ähnlich wie Ejercicios serie de fourier (20)

Fourier.pdf
Fourier.pdfFourier.pdf
Fourier.pdf
 
Transparencias tema4
Transparencias tema4Transparencias tema4
Transparencias tema4
 
Clase del jueves 24 de abril de 2014
Clase del jueves 24 de abril de 2014Clase del jueves 24 de abril de 2014
Clase del jueves 24 de abril de 2014
 
Series de taylor y fourier
Series de taylor y fourierSeries de taylor y fourier
Series de taylor y fourier
 
Ampte8
Ampte8Ampte8
Ampte8
 
Mr1i 753-2007-2
Mr1i 753-2007-2Mr1i 753-2007-2
Mr1i 753-2007-2
 
Soluciones por series
Soluciones por seriesSoluciones por series
Soluciones por series
 
Calculo avanzado-formula de taylor
Calculo avanzado-formula de taylorCalculo avanzado-formula de taylor
Calculo avanzado-formula de taylor
 
Método de Newton
Método de NewtonMétodo de Newton
Método de Newton
 
Interpolación método de Lagrange
Interpolación método de LagrangeInterpolación método de Lagrange
Interpolación método de Lagrange
 
Polinomios taylor
Polinomios taylorPolinomios taylor
Polinomios taylor
 
Polinomios taylor
Polinomios taylorPolinomios taylor
Polinomios taylor
 
William
WilliamWilliam
William
 
Ejercicios resueltos 2011 series de fourier
Ejercicios resueltos 2011 series de fourierEjercicios resueltos 2011 series de fourier
Ejercicios resueltos 2011 series de fourier
 
Examen
ExamenExamen
Examen
 
6.metodo de newton
6.metodo de newton6.metodo de newton
6.metodo de newton
 
Tema 5 : Resolución mediante series
Tema 5 : Resolución mediante seriesTema 5 : Resolución mediante series
Tema 5 : Resolución mediante series
 
Metodos iterativos
Metodos iterativosMetodos iterativos
Metodos iterativos
 
Sistema de ed de primer orden
Sistema de ed de primer ordenSistema de ed de primer orden
Sistema de ed de primer orden
 
Interpolacion lagrange
Interpolacion lagrangeInterpolacion lagrange
Interpolacion lagrange
 

Mehr von Miguel Leonardo Sánchez Fajardo

Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpoleSolucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
Miguel Leonardo Sánchez Fajardo
 

Mehr von Miguel Leonardo Sánchez Fajardo (20)

Teoría cognitiva
Teoría cognitivaTeoría cognitiva
Teoría cognitiva
 
Infoxicación y uso excesivo de tecnologías
Infoxicación y uso excesivo de tecnologíasInfoxicación y uso excesivo de tecnologías
Infoxicación y uso excesivo de tecnologías
 
Presentación: Amazonia continental
Presentación: Amazonia continentalPresentación: Amazonia continental
Presentación: Amazonia continental
 
Presentación: Ciencia en la Edad Media
Presentación: Ciencia en la Edad MediaPresentación: Ciencia en la Edad Media
Presentación: Ciencia en la Edad Media
 
Ensayo: PROBLEMAS SOCIALES DE LA CIENCIA Y LA TECNOLOGÍA FRENTE AL RETO DEL D...
Ensayo: PROBLEMAS SOCIALES DE LA CIENCIA Y LA TECNOLOGÍA FRENTE AL RETO DEL D...Ensayo: PROBLEMAS SOCIALES DE LA CIENCIA Y LA TECNOLOGÍA FRENTE AL RETO DEL D...
Ensayo: PROBLEMAS SOCIALES DE LA CIENCIA Y LA TECNOLOGÍA FRENTE AL RETO DEL D...
 
Tutorial de Python
Tutorial de PythonTutorial de Python
Tutorial de Python
 
INTERNET EN COLOMBIA
INTERNET EN COLOMBIAINTERNET EN COLOMBIA
INTERNET EN COLOMBIA
 
PROBLEMAS DE PROGRAMACIÓN LINEAL
PROBLEMAS DE PROGRAMACIÓN LINEALPROBLEMAS DE PROGRAMACIÓN LINEAL
PROBLEMAS DE PROGRAMACIÓN LINEAL
 
Recetario de Látex
Recetario de LátexRecetario de Látex
Recetario de Látex
 
Sistema de Gestión de Base de Datos
Sistema de Gestión de Base de DatosSistema de Gestión de Base de Datos
Sistema de Gestión de Base de Datos
 
BASE DE DATOS PARA EMPRESA PORCINA
BASE DE DATOS PARA EMPRESA PORCINABASE DE DATOS PARA EMPRESA PORCINA
BASE DE DATOS PARA EMPRESA PORCINA
 
Diccionario ilustrado de conceptos matemáticos
Diccionario ilustrado de conceptos matemáticosDiccionario ilustrado de conceptos matemáticos
Diccionario ilustrado de conceptos matemáticos
 
Investigación cuantitativa (exposición)
Investigación cuantitativa (exposición)Investigación cuantitativa (exposición)
Investigación cuantitativa (exposición)
 
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpoleSolucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
 
Presentación: Reducción del espacio de color
Presentación: Reducción del espacio de colorPresentación: Reducción del espacio de color
Presentación: Reducción del espacio de color
 
Marco Lógico (Exposición)
Marco Lógico (Exposición)Marco Lógico (Exposición)
Marco Lógico (Exposición)
 
Ensayo matrimonio gay
Ensayo matrimonio gayEnsayo matrimonio gay
Ensayo matrimonio gay
 
Problemas De Vibraciones Y Ondas Resueltos
Problemas De Vibraciones Y Ondas ResueltosProblemas De Vibraciones Y Ondas Resueltos
Problemas De Vibraciones Y Ondas Resueltos
 
Diagramas De Caso De Uso
Diagramas De Caso De UsoDiagramas De Caso De Uso
Diagramas De Caso De Uso
 
Principio De Huygens
Principio De HuygensPrincipio De Huygens
Principio De Huygens
 

Kürzlich hochgeladen

Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
patriciaines1993
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Fernando Solis
 

Kürzlich hochgeladen (20)

Sesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdfSesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdf
 
Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024
 
Los dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la VerdadLos dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la Verdad
 
FUERZA Y MOVIMIENTO ciencias cuarto basico.ppt
FUERZA Y MOVIMIENTO ciencias cuarto basico.pptFUERZA Y MOVIMIENTO ciencias cuarto basico.ppt
FUERZA Y MOVIMIENTO ciencias cuarto basico.ppt
 
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
 
activ4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdfactiv4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdf
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
SESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.docSESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.doc
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
 
Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024
 
Novena de Pentecostés con textos de san Juan Eudes
Novena de Pentecostés con textos de san Juan EudesNovena de Pentecostés con textos de san Juan Eudes
Novena de Pentecostés con textos de san Juan Eudes
 
PP_Comunicacion en Salud: Objetivación de signos y síntomas
PP_Comunicacion en Salud: Objetivación de signos y síntomasPP_Comunicacion en Salud: Objetivación de signos y síntomas
PP_Comunicacion en Salud: Objetivación de signos y síntomas
 
Posición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptxPosición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptx
 
Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
 
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdfPlan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
 
Factores que intervienen en la Administración por Valores.pdf
Factores que intervienen en la Administración por Valores.pdfFactores que intervienen en la Administración por Valores.pdf
Factores que intervienen en la Administración por Valores.pdf
 
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
 

Ejercicios serie de fourier

  • 1. Universidad De La Amazonia Parcial 3 Matem´ticas De Control Y a Comunicaci´n o Author: Miguel Leonardo ´ Sanchez Fajardo Supervisor: ˜ Prof. Jorge E. Trivino Macias 17 de octubre de 2013
  • 2. 1. Para f (x) = PREGUNTAS   0, si −π ≤ x ≤ 0  x, si 0 ≤ x ≤ π a) Escriba la serie de Fourier de f en [−π, π] y pruebe que esta serie converge a f en (−π, π). b) Pruebe que esta serie se puede integrar t´rmino a t´rmino. e e c) Use los resultados obtenidos en (a) y (b) para obtener un desarrollo x f (t) dt en [−π, π] en series trigonom´trica para e −π 2. Sea f (x) = x sen x , para −π ≤ x ≤ π. a) Escriba la serie de Fourier para f en [−π, π]. b) Pruebe que la serie se puede diferenciar t´rmino a t´rmino y utilice e e ´ste hecho para obtener el desarrollo de Fourier de: sen x + x cos x e en [−π, π]. ∞ 3. Encuentre la suma de la serie n=1 (−1)n . 4n2 − 1 SUGERENCIA: Desarrolle sen x en una serie en cosenos en [0, π] y escoja un valor adecuado de x. OBSERVACION: El documento fu´ elaborado mediante el software e a EX y las gr´ficas fueron realizadas y editadas mediante Geogeobra 4.2. Los ejercicios fueron hechos con las f´rmulas del libro Matem´ticas Avano a zadas para Ingenieria - Peter O’Neil - 5ta Edici´n con el fin de evitar o problemas, mal entendidos (copia del trabajo), discusiones. A LT 1
  • 3. 1. Para f (x) = DESARROLLO   0, si −π ≤ x ≤ 0  x, si 0 ≤ x ≤ π a) Escriba la serie de Fourier de f en [−π, π] y pruebe que esta serie converge a f en [−π, π]. RESPUESTA: ∞ 1 bn sen f (x) = a0 + 2 n=1 1 L 1 = π x2 = 2π π = 2 u = x; an = = = = = L f (x) cos −L + an cos nπx L π f (x) dx a0 = 1 an = L nπx L −π 0 1 0 dx + π −π π x dx 0 π 0 nπx L dx du = dx | dv = cos(nx) dx; v= 0 π 1 nπx 1 0 cos dx + x cos π −π π π 0 π π 1 1 x sen(nx) − sen(nx)dx nπ 0 0 nπ π 1 cos(nx) n2 π 0 1 cos(nπ) − 1 n2 π 1 (−1)n − 1 . 2 π n 2 1 sen(nx) n nπx π dx
  • 4. bn = u = x; 1 L L f (x) sen −L nπx L du = dx | dv = sen(nx) dx; dx. 1 v = − cos(nx) n π 1 0 sen(nx)dx + x sen(nx)dx π 0 −π π π 1 1 x cos(nx) + =− cos(nx) dx nπ 0 nπ 0 π 1 1 π cos(nπ) − 0 + 2 sen(nx) =− nπ n π 0 1 1 = − cos(nπ) + 2 sen(nπ) − 0 n nπ 1 = (−1)n+1 . n 1 bn = π 0 La serie general de fourier para f (x) es: ∞ f (x) = π (−1)n+1 (−1)n − 1 + sen(nx) + cos(nx) 4 n=1 n n2 π Para probar la convergencia de la serie de fourier de f (x) es necesario comprobar que f sea continua a tramos. Para ello, es necesario graficar la funci´n dada y comprobar las hip´tesis del teorema de convergencia o o de serie de fourier. Comprobamos si f (x) es continua a tramos. 3
  • 5. • Comprobamos que tenga un l´ ımite finito de discontinuidades. En este caso, f (x) tiene un punto de discontinuidad que es x0 = 0. • Comprobamos que existan los l´ ımites en los extremos. Entonces + f (−π ) = 0. f (π − ) = π. • Comprobamos que existan los l´ ımites laterales en el punto de discontinuidad. f (0− ) = 0. f (0+ ) = 0. Dado que f (x) cumple las 3 hip´tesis del teorema, podemos decir con o seguridad que f (x) es continua a tramos. Luego f (x) converge a la funci´n Φ que est´ dada por: o a Φ=   0, −π ≤ x ≤ 0.        0, x = 0.    x, 0 < x ≤ π.       π    , x ± π. 2 b) Pruebe que esta serie se puede integrar t´rmino a t´rmino. e e RESPUESTA: La serie se puede integrar t´rtmino a t´rmino porque e e f (x) es una funci´n continua a tramos en [−L, L], con serie de Fourier: o ∞ 1 f (x) = a0 + an cos 2 n=1 nπx L + bn sen nπx L . c) Use los resultados obtenidos en (a) y (b) para obtener un desarrollo en x series trigonom´trica para e f (t) dt en [−π, π] −π RESPUESTA: Entonces para cada x con −L ≤ x ≤ L: 4
  • 6. x ∞ x π dt + 4 n=1 f (t) dt = −L −π x π f (t) dt = 4 −L x f (t) dt = −L ∞ x dt + −π π t 4 n=1 ∞ x + −π n=1 x −π (−1)n − 1 cos(nt)dt + n2 π (−1)n − 1 n2 π x cos(nt)dt + −π (−1)n − 1 sen(nt) n3 π x + −π x −π (−1)n+1 sen(nt)dt n (−1)n+1 n x sen(nt)dt −π (−1)n+2 cos(nt) n2 x −π ∞ x π (−1)n+1 + 1 f (t) dt = x+π + sen(nx) + sen(nπ) 4 n3 π −L n=1 + x (−1)n+2 cos(nx) − cos(nπ) n2 ∞ (−1)n+1 + 1 (−1)n+2 π(x + π) + cos(nx) − (−1)n . f (t) dt = sen(nx) + 3π 2 4 n n −L n=1 5
  • 7. 2. Sea f (x) = x sen x , para −π ≤ x ≤ π. a) Escriba la serie de Fourier para f en [−π, π]. RESPUESTA: ∞ f (x) = 1 nπx nπx a0 + bn sen + an cos 2 L L n=1 π 1 a0 = L 1 = π 2 = π u = x; x sen x dx −π π x sen x dx 0 du = dx | dv = sen x dx; 2 π 2 =− π 2 =− π 2 =− π = 2. a0 = − π + x cos x 0 2 π v = − cos x π cos xdx 0 2 (π) cos(π) − (0) cos(0) + sen x π 2 (π) cos(π) + sen(π) − sen(0) π π 0 [−π] 1 L 1 = π 2 = π L an = u = x; f (x) dx −π π f (x) cos −L π nπx L dx x sen(x) cos(nx)dx −π π x sen(x) cos(nx)dx 0 du = dx | dv = sen(x(1 ± n)) dx; 6 v=− 1 cos(x(1 ± n)) n±1
  • 8. 1 π 1 = π π x sen(x(1 + n)) + sen(x(1 − n)) dx an = 0 π x sen(x(1 + n)) dx + 0 1 π π x sen(x(1 − n)) dx 0 π π 1 1 =− x cos(x(1 + n)) + cos(x(1 + n)) dx π(1 + n) 0 π(1 + n) 0 π π 1 1 x cos(x(1 − n)) + cos(x(1 − n)) dx − π(1 − n) 0 π(1 − n) 0 π 1 1 =− (π) cos(π(1 + n)) − (0) cos(0(1 + n)) + sen(x(1 + n)) π(1 + n) π(1 + n)2 0 π 1 1 − (π) cos(π(1 − n)) − (0) cos(0(1 + n)) + sen(x(1 − n)) π(1 + n) π(1 − n)2 0 1 1 =− π cos(π(1 + n)) + sen(π(1 + n)) − sen(0(1 + n)) π(1 + n) π(1 + n)2 1 1 − (π) cos(π(1 − n)) + sen(π(1 − n)) − sen(0(1 − n)) π(1 + n) π(1 − n)2 1 1 (π) cos(π(1 + n)) + =− sen(π(1 + n)) π(1 + n) π(1 + n)2 1 1 (π) cos(π(1 − n)) + sen(π(1 − n)) − π(1 + n) π(1 − n)2 1 1 =− (π)(−1)n cos(π) + (−1)n sen(π) π(1 + n) π(1 + n)2 1 1 − π(−1)n cos(π) + (−1)n sen(π) π(1 + n) π(1 − n)2 (−1)n+1 . = 2 n −1 1 L 1 = π L bn = f (x) sen −L π nπx L dx x sen(x) sen(nx)dx −π Como los l´ ımites son sim´tricos y la funci´n es impar dado que x y sen e o son funciones impares y seg´n las f´rmulas u o impar ∗ impar = par 7
  • 9. Pero como son 3 funciones impares entonces impar ∗ impar ∗ impar = par ∗ impar = impar Las funciones impares son = 0. Por lo tanto: bn = 0 La serie general de fourier para f (x) es: ∞ f (x) = 1 + n=1 (−1)n+1 cos(nx) n2 − 1 b) Pruebe que la serie se puede diferenciar t´rmino a t´rmino y utilice ´ste e e e hecho para obtener el desarrollo de Fourier de: sen x + x cos x en [−π, π] RESPUESTA: Comprobamos si f (x) es continua a tramos. Para ello, es necesario comprobar si cumple las 3 hip´tesis del teorema. o • Comprobamos que tenga un l´ ımite finito de discontinuidades. En este caso, f (x) tiene cero puntos de discontinuidad. 8
  • 10. • Comprobamos que existan los l´ ımites en los extremos. f (−π + ) = 0 f (π − ) = 0 • Como f (x) es continua entonces no hay problema en el punto de discontinuidad. Por lo tanto, comprobamos que f (x) es continua a tramos. Adem´s a f (−π) = f (π). Luego el siguiente paso es encontrar la derivada de f (x). f (x) = x cos x + sen x en[−π, π]. Comprobamos si f (x) es continua a tramos. • Comprobamos que tenga un l´ ımite finito de discontinuidades. En este caso, f (x) tiene cero puntos de discontinuidad. • Comprobamos que existan los l´ ımites en los extremos. + f (−π ) = 0 f (π − ) = 0 Comprobamos que f (x) es continua a tramos. Despues, comprobamos la existencia de f (x). Entonces: f (x) = 2 cos x − x sen x en [−π, π]. Entonces f (x) es igual a la serie de fourier para [−π, π]. ∞ f (x) = n=1 nπx nπx nπ −an sen + bn cos L L L ∞ x cos x + sen x = − n n=1 9 (−1)n+1 sen(nx) n2 − 1
  • 11. ∞ 3. Encuentre la suma de la serie n=1 (−1)n 4n2 − 1 SUGERENCIA: Desarrolle sen x en una serie en cosenos en [0, π] y escoja un valor adecuado de x. RESPUESTA: ∞ Serie de Cosenos: =⇒ nπx 1 a0 + an cos . 2 L n=1 a0 = 2 π π sen(x)dx 0 π 2 cos(x) π 0 2 = − cos(π) − cos(0) π 2 = − (1 − 1) π =0 =− 10 π 0
  • 12. an = = = = = = = = = 2 L 2 π 1 π 1 π 1 π 1 π 1 π 1 π 1 π L f (x) cos 0 nπx L dx π sen(x) cos(nx)dx 0 π sen(x + nx) + sen(x − nx) dx 0 π sen(x(1 + n)) + sen(x(1 − n)) dx 0 π −1 1 cos(x(1 + n)) − cos(x(1 − n)) 1+n 1−n 0 −1 1 1 cos(π(1 + n)) − cos(0) + cos(π(1 − n)) − cos(0) 1+n π 1−n −1 1 1 (−1)1+n − 1 + (−1)1−n − 1 1+n π 1−n (−1)2+n 1 1 (−1)−n 1 + + + 1+n 1+n π 1−n 1−n 2+n −n (−1) 2 (−1) + 1+n 1 + n2 1 − n Serie de Cosenos: ∞ 1 (−1)2+n 1 2 (−1)−n (0) + + + cos(nx) 2 π 1+n 1 − n2 1−n n=1 ∞ n=1 1 (−1)2+n 2 (−1)−n + + cos(nx) π 1+n 1 − n2 1−n Si x = π, entonces ∞ n=1 ∞ n=1 1 (−1)2+n 2 (−1)−n + + cos(nπ) π 1+n 1 − n2 1−n 1 (−1)2+n 2 (−1)−n + + (−1)n 2 π 1+n 1−n 1−n 11